ON THE HEAT OPERATORS OF NORMAL SINGULAR ALGEBRAIC SURFACES

MASAYOSHI NAGASE

1. Introduction

Let X be a normal singular algebraic surface (over \mathbf{C}) embedded in the projective space $\mathbf{P}^{N}(\mathbf{C})$. The singularity set S of X is a finite set of isolated points. By restricting the Fubini-Study metric of $\mathbf{P}^{N}(\mathbf{C})$ to $\mathscr{X}=X-S$, we obtain an incomplete Riemannian manifold (\mathscr{X}, g). Now consider the Laplacian $\Delta=\bar{\delta} \bar{d}$ acting on square-integrable functions on (\mathscr{X}, g). Here \bar{d} means the closure of the exterior derivative d acting on the smooth functions which are square-integrable, and whose images by d are square-integrable too. Also $\bar{\delta}$ means the closure of its formal adjoint δ acting on the smooth 1 -forms which are square-integrable, and whose images by δ are square-integrable too. Then the purpose of this paper can be said to show the following.

Main Theorem. (1) The Laplacian Δ is self-adjoint.
(2) The heat operator $e^{-\Delta t}$ is of trace class, and there exists a constant $K>0$ such that

$$
\begin{equation*}
\operatorname{Tr} e^{-\Delta t} \leq K t^{-2}, \quad 0<t \leq t_{0} \tag{1.1}
\end{equation*}
$$

Defining d_{0} to be the exterior derivative d restricted to the subspace of smooth functions with compact supports, we have $\bar{\delta}^{*}=\bar{d}_{0}[4]$. Hence (1) can be rewritten in the following way.

Assertion A. $\bar{d}=\bar{d}_{0}$.
In $\S 5$ we intend to prove this assertion, which is equivalent to (1). Thereby, we will prove (2) with $\Delta=\bar{\delta} \bar{d}_{0}$, the (self-adjoint) Laplacian of the (generalized) Dirichlet type (§§2-4).

In general, if a certain self-adjoint Laplacian on a certain Riemannian manifold has the basic property mentioned in (2), but replacing the 2 of t^{-2} by half of the real dimension of the manifold, then we say that the Laplacian has the property $(B P)$. In using this expression, what we want to prove is stated as follows: $\Delta=\bar{\delta} \bar{d}_{0}$ has the property $(B P)$. Let us transform this assertion (2)' into a more convenient one.

Received May 5, 1986 and, in revised form, January 16, 1987. The author was supported by National Science Foundation grant MCS-8108814(A04).

Let $\operatorname{dis}(x), x \in X$, be the distance from x to the singularity set S (induced by the given metric g) and set, for sufficiently small $\varepsilon>0$,

$$
\begin{equation*}
X_{\varepsilon}=\{x \in X \mid \operatorname{dis}(x) \geq \varepsilon\} . \tag{1.2}
\end{equation*}
$$

Then the Laplacian Δ_{ε} of the Dirichlet type on ($X_{\varepsilon}, g \mid X_{\varepsilon}$) obviously has the property ($B P$). Also the trace of the heat operator $e^{-\Delta_{\epsilon} t}$ increases monotonically when ε decreases. Moreover, provided we define $\operatorname{Tr} e^{-\Delta t}=\infty$ when $e^{-\Delta t}$ is not of trace class, [1, VIII, Theorem 4] generally says

$$
\begin{equation*}
\operatorname{Tr} e^{-\Delta t}=\lim _{\varepsilon \rightarrow 0} \operatorname{Tr} e^{-\Delta_{\epsilon} t} \tag{1.3}
\end{equation*}
$$

Note that $\Delta=\bar{\delta} \bar{d}_{0}$. Hence, in order to prove (2)', we have only to prove
Assertion B. There exists a constant $K>0$ such that

$$
\begin{equation*}
\operatorname{Tr} e^{-\Delta_{\varepsilon} t} \leq K t^{-2}, \quad 0<t \leq t_{0}, 0<\varepsilon \leq \varepsilon_{0} \tag{1.4}
\end{equation*}
$$

We intend to prove this assertion in $\S \S 2-4$. Let us introduce the principle on which our discussion is based.

Principle (Cheeger [3, Lemma 7.1]). The property (BP) is of quasiisometric invariant.

Recall that a diffeomorphism $f:\left(Y_{1}, g_{1}\right) \rightarrow\left(Y_{2}, g_{2}\right)$ is called a quasiisometry if there exists a constant $C>0$ such that $C^{-1} g_{1} \leq f^{*} g_{2} \leq C g_{1}$. Our principle asserts that, as long as the object under consideration is of the property $(B P)$, we have only to discuss it on a Riemannian manifold less complicated than and quasi-isometric to the given one. We will start by decomposing a neighborhood ($\subset \mathscr{X}$) of the singularity set S into certain lesscomplicated parts (§2). Precisely "less-complicated" means that each part (with the given metric g) is quasi-isometric to one of the Riemannian manifolds W of the following Types (\pm).

Type (-): Fix $c \geq 1$. Let Y be a compact polygon in \mathbf{R}^{2} and \tilde{g} be the standard metric on Y Then we set

$$
\begin{aligned}
& W="(0,1] \times[0,1] \times Y(\ni(r, \theta, y)) \\
& \quad \text { with metric } d r^{2}+r^{2} d \theta^{2}+r^{2 c} \tilde{g}(y) . "
\end{aligned}
$$

Type (+): Fix $b>0$ and $c \geq 1$. Let $f(r)$ be a smooth function on $(0,1]$ satisfying $f^{\prime}(r) \geq 0$ for any $r>0, f(r)=r^{b}$ for small $r>0$ and $f(r)=1 / 2$ for large $r \leq 1$. Also, let $l(x)$ be a smooth function on $[0, \infty)$ satisfying $l^{\prime}(x) \geq 0$ and $l^{\prime \prime}(x) \geq 0$ for any $x \geq 0, l(x)=1$ for $0 \leq x \leq 1-\varepsilon$ and $l(x)=x$ for $x \geq 1+\varepsilon$. Set $h(r, s)=f(r) l(s / f(r))$. Then we set

$$
\begin{aligned}
& W="(0,1] \times[0,1]^{3}(\ni(r, \theta, s, \Theta)) \\
& \quad \text { with metric } d r^{2}+r^{2} d \theta^{2}+r^{2 c}\left(d s^{2}+h^{2}(r, s) d \Theta^{2}\right) . "
\end{aligned}
$$

Finally we shall put $S=\{p\}$, the one-point set, which obviously causes no loss of generality.

2. Decomposition of \mathscr{X}

The purpose of this section is to decompose \mathscr{X} into less-complicated finite parts, nonoverlapping, except on the boundaries. The parts which cover near the singular point p must be quasi-isometric to the W 's of Types (\pm).

We start, according to Hsiang and Pati [6], by looking over the metric g near p through a resolution of X.

Let the singular point p be at $[(1,0, \cdots, 0)] \in \mathbf{P}^{N}(\mathbf{C})$. Using the local coordinates around the point,

$$
\left[\left(w_{0}, w_{1}, \cdots, w_{N}\right)\right] \mapsto\left(z_{1}, \cdots, z_{N}\right)=\left(w_{1} / w_{0}, \cdots, w_{N} / w_{0}\right)
$$

regard X as a normal surface which is contained in \mathbf{C}^{N} and has the singularity at the origin. Then we must make a good resolution $\pi: \tilde{X} \rightarrow X$ at the origin to satisfy the condition that, through the resolution, the local parametrizations of the standard form can be taken [6, III]. That is, near an arbitrary point of $\pi^{-1}(0)$, take a suitable pair, a permutation $\sigma \in \mathfrak{S}_{N}$ and local coordinates (u, v); then the map π can be written on the coordinates as follows:

$$
\begin{array}{lc}
z_{\sigma(1)}=u^{n_{1}} v^{m_{1}}, & \left(n_{1}, m_{1}\right) \neq(0,0), \\
z_{\sigma(2)}=f_{2}\left(z_{\sigma(1)}\right)+u^{n_{2}} v^{m_{2}} g_{2}(u, v), & \operatorname{det}\left(\begin{array}{cc}
n_{1} & m_{1} \\
n_{2} & m_{2}
\end{array}\right) \neq 0, \\
\vdots & g_{2}(0,0) \neq 0, \\
\vdots \tag{2.1}\\
z_{\sigma(l)}=f_{l}\left(z_{\sigma(1)}\right)+u^{n_{l}} v^{m_{l}} g_{l}(u, v), & \operatorname{det}\left(\begin{array}{cc}
n_{1} & m_{1} \\
n_{l} & m_{l}
\end{array}\right) \neq 0, \\
z_{\sigma(l+1)}=f_{l+1}\left(z_{\sigma(1)}\right), & g_{l}(0,0) \neq 0, \\
\vdots &
\end{array}
$$

satisfying that $f_{j}(z)=\sum a_{j n} z^{\varepsilon_{n}}$ with $\varepsilon_{n} \geq 1$ for $2 \leq j \leq N$, and moreover, $n_{1} \leq n_{2} \leq \cdots \leq n_{l}$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{l}$. Such a resolution can be constructed by first resolving the singularity and (if necessary) next performing the quadratic transformations [6, II and III].

Now consider a sufficiently small local coordinate neighborhood ($U,(u, v)$, $\left.|u| \leq \rho_{0},|v| \leq \tau_{0}\right)$ with the standard local parametrization (2.1). Set
$V=U-\pi^{-1}(0)$. Then let us find the metric less-complicated than and quasiisometric to $\pi^{*} g$ on V. We set

$$
\begin{array}{ll}
c=\min \left\{\frac{n_{2}}{n_{1}}, \frac{m_{2}}{m_{1}}\right\} & (\geq 1), \\
r_{1}=\left|u^{n_{1}} v^{m_{1}}\right|, & d=\operatorname{det}\left(\begin{array}{ll}
n_{1} & m_{1} \\
n_{2} & m_{2}
\end{array}\right)(\neq 0) \tag{2.2}\\
r_{2}= \begin{cases}|v|^{d / n_{1}}, & d>0, \\
|u|^{|d| / m_{1}}, & d<0,\end{cases} & \theta_{2}=\arg u^{n_{1}} v^{m_{1}}
\end{array}
$$

With the definition of c, we consider $+/ 0=\infty$.
Proposition 2.1 (Hsiang and Pati [6, Lemma 3.2]). On V the metric $\pi^{*} g$ is quasi-isometric to the metric

$$
\begin{equation*}
d r_{1}^{2}+r_{1}^{2} d \theta_{1}^{2}+r_{1}^{2 c}\left(d r_{2}^{2}+r_{2}^{2} d \theta_{2}^{2}\right) \tag{2.3}
\end{equation*}
$$

Further we will search for additionally less-complicated ones. Let us make some preparations. Because (2.3) is a metric, we have,

$$
\begin{align*}
& \text { if } n_{1}=0, \quad \text { then } n_{2}=1 \tag{2.4}\\
& \text { if } m_{1}=0, \quad \text { then } m_{2}=1
\end{align*}
$$

In fact, for example, if $m_{1}=0$, then $\pi^{-1}(0)=" v$-axis" in U and the norm (defined by (2.3)) of the tangent vector $\partial / \partial|v|$ at $(u, 0) \in U, u \neq 0$, is equal to $|u|^{n_{2}} \lim _{|v| \rightarrow 0} m_{2}|v|^{m_{2}-1}$. Hence $m_{2} \neq 1$ leads to a contradiction, that is, its norm is equal to 0 . Next, setting

$$
\left\{\begin{array} { l }
{ \rho = | u | , } \tag{2.5}\\
{ \phi = \operatorname { a r g } u , }
\end{array} \quad \left\{\begin{array}{l}
\tau=|v| \\
\psi=\arg v
\end{array}\right.\right.
$$

we have the following:
Proposition 2.1 holds even if Θ_{2} is replaced by

$$
\Theta= \begin{cases}\psi, & d>0 \tag{2.6}\\ \phi, & d<0\end{cases}
$$

In particular, if $n_{1} m_{1} \neq 0$, then Proposition 2.1 still holds even if Θ_{2} is replaced by

$$
\Theta= \begin{cases}\phi, & d>0 \tag{2.7}\\ \psi, & d<0\end{cases}
$$

Let us prove only (2.6) with $d>0$. Setting $\tilde{\Theta}=\left(d / n_{1}\right) \psi$, (2.3) can be rewritten as follows:

$$
\begin{equation*}
d r_{1}^{2}+\left(1+c^{2} r_{1}^{2(c-1)} r_{2}^{2}\right) r_{1}^{2} d \theta_{1}^{2}+r_{1}^{2 c} d r_{2}^{2}+r_{1}^{2 c} r_{2}^{2} d \tilde{\Theta}^{2}+2 c r_{1}^{2 c} r_{2}^{2} d \theta_{1} d \tilde{\Theta} \tag{2.8}
\end{equation*}
$$

Since we have, for a sufficiently small $\varepsilon>0$,

$$
\begin{equation*}
\left|2 c r_{1}^{2 c} r_{2}^{2} d \theta_{1} d \tilde{\Theta}\right| \leq \frac{c^{2}}{\varepsilon^{2}} r_{1}^{2 c} r_{2}^{2} d \theta_{1}^{2}+\varepsilon^{2} r_{1}^{2 c} r_{2}^{2} d \tilde{\Theta}^{2} \tag{2.9}
\end{equation*}
$$

(2.8) can be dominated from above and below by

$$
\begin{equation*}
d r_{1}^{2}+\left\{1+\left(1 \pm \frac{1}{\varepsilon^{2}}\right) c^{2} r_{1}^{2(c-1)} r_{2}^{2}\right\} r_{1}^{2} d \theta_{1}^{2}+r_{1}^{2 c}\left\{d r_{2}^{2}+\left(1 \pm \varepsilon^{2}\right) r_{2}^{2} d \tilde{\Theta}^{2}\right\} \tag{2.10}
\end{equation*}
$$

This implies (2.6) with $d>0$ for sufficiently small $r_{1}>0$ and $r_{2}>0$, which is obviously sufficient for the proof of (2.6) with $d>0$ itself.

Now, observing (2.4)-(2.7), we can obtain the following corollary. That is, with the definitions:
in the case where either the v-axis or the u-axis is the divisor contained in U, we set

$$
r=\left\{\begin{array}{l}
\rho^{n_{1}} \tag{2.11}\\
\tau^{m_{1}}
\end{array} \quad \theta=\left\{\begin{array}{l}
\phi \\
\psi
\end{array} \quad s=\left\{\begin{array}{l}
\tau \\
\rho
\end{array} \quad \Theta= \begin{cases}\psi ; & d>0 \\
\phi ; & d<0\end{cases}\right.\right.\right.
$$

in the case where both the v-axis and the u-axis are the divisors contained in U, we set

$$
\left\{\begin{array}{l}
r=\rho^{n_{1}} \tau^{m_{1}} \tag{2.12}\\
\theta=n_{1} \phi+m_{1} \psi
\end{array} \quad s=\left\{\begin{array}{l}
\tau^{d / n_{1}} \\
\rho^{|d| / m_{1}}
\end{array} \quad \Theta= \begin{cases}\phi ; & d>0 \\
\psi ; & d<0\end{cases}\right.\right.
$$

we get

Corollary 2.2. On V the metric $\pi^{*} g$ is quasi-isometric to

$$
\begin{equation*}
d r^{2}+r^{2} d \theta^{2}+r^{2 c}\left(d s^{2}+s^{2} d \Theta^{2}\right) \tag{2.13}
\end{equation*}
$$

As for $\pi^{-1}(0)$ from which certain neighborhoods of the intersection points of the (irreducible) divisors are deleted, the corollary (in the case (2.11)) says that we can decompose its neighborhood $\left(\subset \pi^{-1}(\mathscr{X})\right)$ into the parts quasiisometric to the W 's of Type (-). Note that the indices c fixed in Type (-) are those of (2.13); they depend only on divisors (not on the choice of U) and are called the exponents of the divisors [6, III]. On the other hand, the corollary does not give the desired decomposition of the neighborhoods of the intersection points; the map $(u, v) \mapsto(r, \theta, s, \Theta)$ does not introduce the desired product structure into them, despite the fact that the metric is of Type (-). In the following, we will show that they are quasi-isometric to the W 's of Type (+).

As they are treated similarly, we need only treat the case (2.12) with $d>0$. That is, on our U, both the v-axis and the u-axis are divisors and the index d is positive. We have $c=n_{2} / n_{1}$, which is the exponent of the v-axis; note that m_{2} / m_{1} is that of the u-axis. Set $b=m_{2} / m_{1}-n_{2} / n_{1}$. Now (performing the
rescale if necessary) we put $\rho_{0}=2$, and fix a smooth function $\tilde{f}(\rho)$ on $(0,2]$ satisfying $\tilde{f}^{\prime}(\rho) \leq 0$ for any $\rho>0, \tilde{f}(\rho)=1$ on $(0,1]$ and $\tilde{f}(\rho)=(2-\rho) \rho^{d / m_{1}}$ near $\rho=2$. Then, replacing s by $\tilde{s}=\tau^{d / n_{1}} \tilde{f}(\rho)$, the map

$$
\begin{equation*}
\pi_{V}:(u, v) \mapsto(r, \tilde{s}, \theta, \Theta) \tag{2.14}
\end{equation*}
$$

induces a diffeomorphism from V to

$$
\begin{equation*}
\left\{(r, \tilde{s}) \mid 0<r \leq 2^{n_{1}} \tau_{0}^{m_{1}}, 0 \leq \tilde{s} \leq \tau_{0}^{d / n_{1}} \tilde{f}\left(\tau_{0}^{-m_{1} / n_{1}} r^{1 / n_{1}}\right)\right\} \times T \tag{2.15}
\end{equation*}
$$

where $T=\mathbf{R}^{2} /\left\{\left(2 n_{1} \pi, 2 \pi\right),\left(2 m_{1} \pi, 0\right)\right\}$. Regarding $\tau_{0}>0$ as sufficiently large (by rescaling), we set

$$
\begin{equation*}
\tilde{V}=\pi_{V}^{-1}((0,1] \times[0,1] \times T) \tag{2.16}
\end{equation*}
$$

Then, using the function $h(r, s)$ defined in Type (+), we have
Corollary 2.3. On \tilde{V} the metric $\pi^{*} g$ is quasi-isometric to

$$
\begin{equation*}
d r^{2}+r^{2} d \theta^{2}+r^{2 c}\left(d \tilde{s}^{2}+h^{2}(r, \tilde{s}) d \Theta^{2}\right) \tag{2.17}
\end{equation*}
$$

Proof. It suffices to prove the corollary for small $r>0$, so that $f(r)=r^{b}$. Let $\varepsilon>0$ be the one given in Type (+):
(i) On the part $\tilde{s} \geq(1+\varepsilon) r^{b}$. Since $\rho \leq(1+\varepsilon)^{-m_{1} / d}<1$, we have $\tilde{s}=s$ (given in (2.12)) and $h(r, \tilde{s})=h(r, s)=r^{b} l\left(s r^{-b}\right)=s$. Hence the corollary restricted to the part is guaranteed by Corollary 2.2.
(ii) On the part $\tilde{s} \leq(1+\varepsilon) r^{b}$. We have $\rho \geq(1+\varepsilon)^{-m_{1} / d}>0$. Therefore Corollary 2.2 with (2.11), corresponding to Type (-), asserts that the metric $\pi^{*} g$ on the part is quasi-isometric to the metric associated to the divisor " u-axis," that is,

$$
\begin{equation*}
d r^{2}+r^{2} d \theta^{2}+r^{2 \tilde{c}}\left(d \rho^{2}+d \Theta^{2}\right), \quad \tilde{c}=m_{2} / m_{1} \tag{2.18}
\end{equation*}
$$

Here r, θ and Θ are those defined in (2.12). Hence it suffices to prove that (2.17) is quasi-isometric to (2.18). Let us rewrite (2.17):

$$
\begin{align*}
\tilde{s} & =r^{d / n_{1} m_{1}} \rho^{-d / m_{1}} \tilde{f}(\rho)=r^{b} \tilde{F}(\rho), \tag{2.19}\\
d \tilde{s}^{2} & =b^{2} r^{2(b-1)} \tilde{F}^{2} d r^{2}+r^{2 b}\left(\tilde{F}^{\prime}\right)^{2} d \rho^{2}+2 b r^{2 b-1} \tilde{F} \tilde{F}^{\prime} d r d \rho
\end{align*}
$$

Since, for a sufficiently small $\xi>0$, we have

$$
\begin{equation*}
\left|2 b r^{2 b-1} \tilde{F} \tilde{F}^{\prime} d r d \rho\right| \leq \frac{b^{2}}{\xi^{2}} r^{2(b-1)} \tilde{F}^{2} d r^{2}+\xi^{2} r^{2 b}\left(\tilde{F}^{\prime}\right)^{2} d \rho^{2} \tag{2.20}
\end{equation*}
$$

(2.17) can be dominated from above and below by

$$
\begin{align*}
\{1+ & \left.\left(1 \pm \frac{1}{\xi^{2}}\right) b^{2} r^{2(\tilde{c}-1)} \tilde{F}^{2}\right\} d r^{2}+r^{2} d \theta^{2} \tag{2.21}\\
& +r^{2 \tilde{c}}\left\{\left(1 \pm \xi^{2}\right)\left(\tilde{F}^{\prime}\right)^{2} d \rho^{2}+r^{-2 b} h^{2}\left(r, r^{b} \tilde{F}(\rho)\right) d \Theta^{2}\right\}
\end{align*}
$$

Here we know that $1 \leq r^{-b} h\left(r, r^{b} \tilde{F}(\rho)\right) \leq 2$ and there exists a constant $C>0$ such that $-C \leq \tilde{F}^{\prime} \leq-C^{-1}$. Thus (when $r>0$ is sufficiently small) (2.17) is quasi-isometric to (2.18).

Now we can decompose a neighborhood ($\subset \mathscr{X}$) of p into the desired parts. That is, observing (2.16), first, decompose T into $\bigcup_{j}\left[\theta_{-j}, \theta_{+j}\right] \times\left[\Theta_{-j}, \Theta_{+j}\right]$ and next decompose \tilde{V} compatibly. Each part is quasi-isometric to the W of Type (+). Second, decompose the closure of $\pi^{-1}(0)-\tilde{V}$ into polygons Y_{j} and we get the decomposition of a neighborhod $\tilde{W}\left(\subset \pi^{-1}(\mathscr{X})\right)$ of the closure, each part of which is quasi-isometric to the $(0,1] \times S^{1} \times Y_{j}$ with metric (2.13). By decomposing S^{1}, we get the decomposition of \tilde{W}, each part of which is quasiisometric to the W of Type (-). Thus, a neighborhood $(\subset \mathscr{X}$) of p, which is diffeomorphic to a neighborhood of $\pi^{-1}(0)$, can be decomposed desirably into $\bigcup_{\alpha} W_{\alpha}$. Adding the part $M=$ "the closure of $\mathscr{X}-\bigcup_{\alpha} W_{\alpha}$ ", we get the desired decomposition

$$
\begin{equation*}
\mathscr{X}=M \cup\left(\bigcup_{\alpha} W_{\alpha}\right) . \tag{2.22}
\end{equation*}
$$

3. Proof of Assertion B

In this section, we prove Assertion B assuming that the following proposition is true. The proof of the proposition will be given in the next section.

On each (W_{α}, g) given in (2.22), consider the self-adjoint Laplacian

$$
\begin{equation*}
\Delta_{\alpha}=\bar{d}_{\alpha}^{*} \bar{d}_{\alpha} \tag{3.1}
\end{equation*}
$$

Here d_{α} is the exterior derivative acting on functions, smooth on W_{α} (up to the boundary ∂W_{α}), with compact supports. Also \bar{d}_{α}^{*} means the dual of \bar{d}_{α}. Note that ∂W_{α} does not contain the singular point p.

Proposition 3.1. Each Δ_{α} has the property (BP).
Now, set $X_{\alpha \varepsilon}=W_{\alpha} \cap X_{\varepsilon}$ (see (1.2)). Decompose its boundary into

$$
\begin{align*}
& \partial X_{\alpha \varepsilon}=\partial_{0} X_{\alpha \varepsilon} \cup \partial_{1} X_{\alpha \varepsilon}, \\
& \partial_{0} X_{\alpha \varepsilon}=\partial X_{\alpha \varepsilon} \cap \partial X_{\varepsilon}, \tag{3.2}\\
& \partial_{1} X_{\alpha \varepsilon}=\partial X_{\alpha \varepsilon} \cap \partial W_{\alpha},
\end{align*}
$$

and, on $X_{\alpha \varepsilon}$, consider the self-adjoint Laplacian $\Delta_{\alpha \varepsilon}$, together with the boundary conditions of the Dirichlet type on $\partial_{0} X_{\alpha \varepsilon}$ and of the Neumann type on $\partial_{1} X_{\alpha \varepsilon}$. If we denote by $d_{\alpha \varepsilon}$ the exterior derivative acting on smooth functions f on $X_{\alpha \varepsilon}$ satisfying $f \mid \partial_{0} X_{\alpha \varepsilon}=0$, we can also write

$$
\begin{equation*}
\Delta_{\alpha \varepsilon}=\bar{d}_{\alpha \varepsilon}^{*} \bar{d}_{\alpha \varepsilon} \tag{3.3}
\end{equation*}
$$

This obviously has the property ($B P$). Also, on M, consider the self-adjoint Laplacian Δ_{M} of the Neumann type, which has the property $(B P)$ as well. Then, combined with Proposition 3.1, the following proposition justifies Assertion B.

Proposition 3.2. Suppose $0<\varepsilon \leq \varepsilon_{0}$. Then
(1) $\operatorname{Tr} e^{-\Delta_{\alpha \epsilon} t} \leq \operatorname{Tr} e^{-\Delta_{\alpha} t}$,
(2) $\operatorname{Tr} e^{-\Delta_{\epsilon} t} \leq \operatorname{Tr} e^{-\Delta_{M} t}+\sum_{\alpha} \operatorname{Tr} e^{-\Delta_{\alpha \epsilon} t}$.

The proof follows the argument given in [10, Chapter XIV, 14.5 and 14.6].
Proof of (1). Let

$$
\begin{equation*}
(0 \leq) \lambda_{0} \leq \lambda_{1} \leq \cdots \uparrow \infty, \quad(0 \leq) \mu_{0} \leq \mu_{1} \leq \cdots \uparrow \infty \tag{3.4}
\end{equation*}
$$

be the eigenvalues (with multiplicities) of Δ_{α} and $\Delta_{\alpha \varepsilon}$ respectively. Then we have only to prove

$$
\begin{equation*}
\lambda_{n} \leq \mu_{n} \tag{3.5}
\end{equation*}
$$

for any n. Let $\left\{\phi_{m}\right\}$ and $\left\{\psi_{m}\right\}$ be the sequences of the orthonormal eigenfunctions corresponding to (3.4) respectively. Moreover, consider the (energy) integrals,

$$
\begin{align*}
& D(f, g)=\langle d f, d g\rangle_{W_{\alpha}}, \\
& D_{\varepsilon}(f, g)=\langle d f, d g\rangle_{X_{\alpha \varepsilon}}, \quad f, g \in \operatorname{dom} \bar{d}_{\alpha} \tag{3.6}\\
& \bar{d}_{\alpha \varepsilon}
\end{align*}
$$

where $\langle d f, d g\rangle_{W_{\alpha}}=\int_{W_{\alpha}} d f \wedge * d g$ etc. We set $D(f)=D(f, f)$ etc., for short. The integral $D(f)$ has the following inequality: for $f \in \operatorname{dom} \bar{d}_{\alpha}$, expanding $f=\sum_{m=0}^{\infty} c_{m} \phi_{m}, c_{m}=\left\langle f, \phi_{m}\right\rangle$, we have

$$
\begin{equation*}
\sum_{m=0}^{\infty} \lambda_{m} c_{m}^{2} \leq D(f) \tag{3.7}
\end{equation*}
$$

In fact, since $D\left(f, \phi_{m}\right)=\left\langle f, \delta d \phi_{m}\right\rangle=\lambda_{m} c_{m}$, we have, for any n,

$$
\begin{align*}
0 \leq D\left(f-\sum_{m=0}^{n} c_{m} \phi_{m}\right)= & D(f)+\sum_{l=0}^{n} \sum_{m=0}^{n} c_{l} c_{m} D\left(\phi_{l}, \phi_{m}\right) \\
& -2 \sum_{m=0}^{n} c_{m} D\left(f, \phi_{m}\right) \tag{3.8}\\
= & D(f)-\sum_{m=0}^{n} \lambda_{m} c_{m}^{2}
\end{align*}
$$

On the other hand, $f \in \operatorname{dom} \bar{d}_{\alpha \varepsilon}$ can be regarded as $f \in \operatorname{dom} \bar{d}_{\alpha}$ provided we define $f=0$ on $W_{\alpha}-X_{\alpha \varepsilon}$. In this sense, we have the implication that $\operatorname{dom} \bar{d}_{\alpha \varepsilon} \subset \operatorname{dom} \bar{d}_{\alpha}$.

Now we can prove (3.5). In setting $c_{m}=\left\langle\psi_{0}, \phi_{m}\right\rangle$, (3.7) says

$$
\begin{equation*}
\lambda_{0}=\lambda_{0} \sum_{m=0}^{\infty} c_{m}^{2} \leq \sum_{m=0}^{\infty} \lambda_{m} c_{m}^{2} \leq D\left(\psi_{0}\right)=D_{\varepsilon}\left(\psi_{0}\right)=\mu_{0} . \tag{3.9}
\end{equation*}
$$

Thus (3.5) with $n=0$ was proved. Next, take

$$
\begin{equation*}
f=a_{0} \psi_{0}+a_{1} \psi_{1}, \quad a_{0}^{2}+a_{1}^{2}=1, \quad\left\langle f, \phi_{0}\right\rangle=0 . \tag{3.10}
\end{equation*}
$$

That is, setting $A=\left\langle\psi_{0}, \phi_{0}\right\rangle$ and $B=\left\langle\psi_{1}, \phi_{0}\right\rangle$, we put $a_{0}=B\left(A^{2}+B^{2}\right)^{-1 / 2}$ and $a_{1}=-A\left(A^{2}+B^{2}\right)^{-1 / 2}$. (If $A=B=0, a_{0}$ and a_{1} can be chosen clearly to satisfy (3.10).) Then, setting $c_{m}=\left\langle f, \phi_{m}\right\rangle$, we have

$$
\begin{align*}
& \sum_{m=1}^{\infty} c_{m}^{2}=\sum_{m=0}^{\infty} c_{m}^{2}=\langle f, f\rangle=a_{0}^{2}+a_{1}^{2}=1, \tag{3.11}\\
& \lambda_{1}=\lambda_{1} \sum_{m=1}^{\infty} c_{m}^{2} \leq \sum_{m=1}^{\infty} \lambda_{m} c_{m}^{2} \leq D(f)=D_{\varepsilon}(f)=\mu_{0} a_{0}^{2}+\mu_{1} a_{1}^{2} \leq \mu_{1}
\end{align*}
$$

That is, (3.5) with $n=1$ was also proved. In order to prove (3.5) generally, it suffices to find $f=a_{0} \psi_{0}+\cdots+a_{n} \psi_{n}$ satisfying $a_{0}^{2}+\cdots+a_{n}^{2}=1$ and $\left\langle f, \phi_{m}\right\rangle=0$ for $0 \leq m \leq n-1$. It is obviously possible.

Proof of (2). Let us gather all of the eigenvalues (with multiplicities) of $\Delta_{M}, \Delta_{\alpha \varepsilon}$ (any α and fixed ε) and arrange them in nondecreasing order, $(0 \leq) \lambda_{0} \leq \lambda_{1} \leq \cdots \uparrow \infty$. Also arrange the eigenvalues of Δ_{ε} in nondecreasing order, $(0 \leq) \mu_{0} \leq \mu_{1} \leq \cdots \uparrow \infty$. Then it suffices to prove

$$
\begin{equation*}
\lambda_{n} \leq \mu_{n} \tag{3.12}
\end{equation*}
$$

for any n. Let $\left\{\phi_{m}\right\}$ and $\left\{\psi_{m}\right\}$ be the corresponding orthonormal eigenfunctions respectively. Here ϕ_{m}, which is a function on one of M or the $X_{\alpha \varepsilon}$, must be regarded as a functions on $M \sqcup\left(\bigsqcup_{\alpha} X_{\alpha \varepsilon}\right)$ by setting $\phi_{m}=0$ elsewhere. Next consider the (energy) integrals,

$$
\begin{array}{ll}
D_{\varepsilon}(f, g)=\langle d f, d g\rangle_{X_{\varepsilon}}, & f, g \in\left\{f \in C^{\infty}\left(X_{\varepsilon}\right)|f| \partial X_{\varepsilon}=0\right\}, \\
D_{M}(f, g)=\langle d f, d g\rangle_{M}, & f, g \in C^{\infty}(M), \tag{3.13}\\
D_{\alpha \varepsilon}(f, g)=\langle d f, d g\rangle_{X_{\alpha \varepsilon}}, & f, g \in\left\{f \in C^{\infty}\left(X_{\alpha \varepsilon}\right)|f| \partial_{0} X_{\alpha \varepsilon}=0\right\} .
\end{array}
$$

Set $D_{\varepsilon}(f)=D_{\varepsilon}(f, f)$, etc. Then, for $f \in C^{\infty}\left(X_{\varepsilon}\right)$ with $f \mid \partial X_{\varepsilon}=0$, we have

$$
\begin{equation*}
\sum_{m=0}^{\infty} \lambda_{m} c_{m}^{2} \leq D_{M}(f)+\sum_{\alpha} D_{\alpha \varepsilon}(f), \quad c_{m}=\left\langle f, \phi_{m}\right\rangle \tag{3.14}
\end{equation*}
$$

The proof is similar to that of (3.7). Now setting $c_{m}=\left\langle\psi_{0}, \phi_{m}\right\rangle$, we have

$$
\begin{align*}
\lambda_{0} & =\lambda_{0}\left\langle\psi_{0}, \psi_{0}\right\rangle=\lambda_{0}\left\{\left\langle\psi_{0}, \psi_{0}\right\rangle_{M}+\sum_{\alpha}\left\langle\psi_{0}, \psi_{0}\right\rangle_{X_{\alpha \varepsilon}}\right\} \tag{3.15}\\
& \leq \sum_{m=0}^{\infty} \lambda_{m} c_{m}^{2} \leq D_{M}\left(\psi_{0}\right)+D_{\alpha \varepsilon}\left(\psi_{0}\right)=D_{\varepsilon}\left(\psi_{0}\right)=\mu_{0} .
\end{align*}
$$

That is, (3.12) with $n=0$ was proved. As for the general case, it can be proved with a discussion similar to the one following (3.9).

4. Proof of Proposition 3.1

In this section we prove Proposition 3.1. According to (2.22) and our principle, it suffices to prove the following. The self-adjoint Laplacians Δ on the W 's of Types (\pm) are defined similarly to (3.1).

Proposition 4.1. Each Δ on W has the property $(B P)$.
Now, fix $0<R<1$ and consider the self-adjoint Laplacian Δ_{R} on $W_{R}=$ $\{(r, \cdots) \in W \mid R \leq r \leq 1\}$ defined in the same way as (3.3). It has the property $(B P)$ and the trace $\operatorname{Tr} e^{-\Delta_{R} t}$ increases monotonically when R decreases, and, moreover, we have $\operatorname{Tr} e^{-\Delta t}=\lim _{R \rightarrow 0} \operatorname{Tr} e^{-\Delta_{R} t}$ (see (1.3)). Hence Proposition 4.1 can be reduced to the following.

Assertion 4.2. There exists a constant $K>0$ such that

$$
\begin{equation*}
\operatorname{Tr} e^{-\Delta_{R} t} \leq K t^{-2}, \quad 0<t \leq t_{0}, 0<R \leq R_{0} \tag{4.1}
\end{equation*}
$$

We shall introduce a certain lemma. If we assume that it is true, we can prove the above assertion. First consider the ordinary differential equation $w^{\prime \prime}(x)+\lambda w(x)=0,0 \leq x \leq 1$, with the boundary conditions of the three types; the sequences on the right-hand sides denote the eigenvalues in the cases respectively:

$$
\begin{align*}
& w^{\prime}(0)=w^{\prime}(1)=0 ; \quad(0=) \mu_{0}<\mu_{1}<\mu_{2}<\cdots \uparrow \infty, \mu_{n}=(n \pi)^{2}, \\
& w(0)=\frac{d}{d x}\left(x^{-(2 c+1) / 2} w\right)(1)=0 ; \quad \nu_{0}<\nu_{1}<\nu_{2}<\cdots \uparrow \infty \tag{4.2}\\
& w^{\prime}(0)=\frac{d}{d x}\left(x^{-1 / 2} w\right)(1)=0 ; \quad \xi_{0}<\xi_{1}<\xi_{2}<\cdots \uparrow \infty
\end{align*}
$$

Here $c \geq 1$ is the one fixed in Types (\pm). Note that $\nu_{0}<0<\nu_{1}$ and $\xi_{0}<0<\xi_{1}$. Second, let $(0=) \eta_{0} \leq \eta_{1} \leq \eta_{2} \leq \cdots \uparrow \infty$ be the eigenvalues of the Laplacian of the Neumann type on Y given in Type (-). Third, adding
$\tilde{\xi}_{0}=0$ to the $\tilde{\xi}_{j}, j \geq 1$, the zero points of $\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda})$, we make the sequence, $(0=) \tilde{\xi}_{0}=\tilde{\xi}_{1}<\tilde{\xi}_{2}<\cdots \uparrow \infty$. Here $J_{0}(x)$ is the Bessel function of order 0 . Note that $\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda})$ has its zero points only on the nonnegative half line on the real axis [11].

Let us explain briefly why we consider its zero points $\tilde{\xi}_{j}, j \geq 1$. It is because we must later consider the boundary value problem,

$$
\begin{array}{ll}
(4.3)_{x_{0}}^{\prime} & w^{\prime \prime}(x)+\left(\lambda+\frac{1}{4 x^{2}}\right) w(x)=0, \quad(0<) x_{0} \leq x \leq 1 \tag{4.3}\\
(4.3)_{x_{0}}^{\prime \prime} & w^{\prime}\left(x_{0}\right)=\frac{d}{d x}\left(x^{-1 / 2} w\right)(1)=0
\end{array}
$$

and the singular boundary value problem (4.3) $=\lim _{x_{0} \rightarrow 0}(4.3)_{x_{0}}$, that is, the problem obtained by making $x_{0} \downarrow 0$; in the latter problem we are in the limit-circle case. The $\tilde{\xi}_{j}, j \geq 1$, are the eigenvalues of the latter problem $(4.3)_{0}$. According to the general expansion theory [10, Chapter III], we will explain the above somewhat further. The differential equation (4.3) ${ }_{x_{0}}^{\prime}$, with the conditions $w_{1}(1, \lambda)=1, w_{1}^{\prime}(1, \lambda)=0, w_{2}(1, \lambda)=0, w_{2}^{\prime}(1, \lambda)=1$ added, has the following solutions ($\lambda \neq 0$, Lommel's formulas):

$$
\begin{align*}
& w_{1}(x, \lambda)=\frac{\pi}{2} \sqrt{\lambda} x\left\{N_{0}^{\prime}(\sqrt{\lambda}) J_{0}(\sqrt{\lambda} x)-J_{0}^{\prime}(\sqrt{\lambda}) N_{0}(\sqrt{\lambda} x)\right\}-\frac{1}{2} w_{2}(x, \lambda) \tag{4.4}\\
& w_{2}(x, \lambda)=-\frac{\pi}{2} \sqrt{x}\left\{N_{0}(\sqrt{\lambda}) J_{0}(\sqrt{\lambda} x)-J_{0}(\sqrt{\lambda}) N_{0}(\sqrt{\lambda} x)\right\}
\end{align*}
$$

where J_{0}, N_{0} are the Bessel and Neumann functions of order 0 . Therefore, if we define, according to [10, (2.1.5)],

$$
\begin{align*}
m_{1}(\lambda)= & l_{1}\left(\lambda,-\frac{1}{2}\right)=-\frac{-\frac{1}{2} w_{1}(1, \lambda)+w_{1}^{\prime}(1, \lambda)}{-\frac{1}{2} w_{2}(1, \lambda)+w_{2}^{\prime}(1, \lambda)}=\frac{1}{2}, \\
m_{0}(\lambda)= & \lim _{x_{0} \rightarrow 0} l_{x_{0}}(\lambda, 0)=-\lim _{x_{0} \rightarrow 0} \frac{w_{1}^{\prime}\left(x_{0}, \lambda\right)}{w_{2}^{\prime}\left(x_{0}, \lambda\right)} \\
= & \lim _{x_{0} \rightarrow 0}\left[\frac{1}{2}+\sqrt{\lambda}\left\{M\left(x_{0}, \lambda\right) N_{0}^{\prime}(\sqrt{\lambda})-J_{0}^{\prime}(\sqrt{\lambda})\right\}\right. \tag{4.5}\\
& \left.\times\left\{M\left(x_{0}, \lambda\right) N_{0}(\sqrt{\lambda})-J_{0}(\sqrt{\lambda})\right\}^{-1}\right] \\
= & \frac{1}{2}+\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda})\left(J_{0}(\sqrt{\lambda})\right)^{-1}, \\
M\left(x_{0}, \lambda\right)= & \frac{J_{0}\left(\sqrt{\lambda} x_{0}\right)+2 \sqrt{\lambda} x_{0} J_{0}^{\prime}\left(\sqrt{\lambda} x_{0}\right)}{N_{0}\left(\sqrt{\lambda} x_{0}\right)+2 \sqrt{\lambda} x_{0} N_{0}^{\prime}\left(\sqrt{\lambda} x_{0}\right)},
\end{align*}
$$

then the eigenvalues of the problems $(4.3)_{x_{0}}$ and $(4.3)_{0}$ are given as the poles
of the meromorphic functions $\left(l_{x_{0}}(\lambda, 0)-l_{1}(\lambda,-1 / 2)\right)^{-1}$ and

$$
\left(m_{0}(\lambda)-m_{1}(\lambda)\right)^{-1}=J_{0}(\sqrt{\lambda})\left\{\sqrt{\lambda} J_{0}^{\prime}(\sqrt{\lambda})\right\}^{-1}
$$

respectively. Thus the $\tilde{\xi}_{j}, j \geq 1$, are the eigenvalues of $(4.3)_{0}$.
Also, the general expansion theory says that, if the eigenvalues of $(4.3)_{x_{0}}$ are denoted by $\tilde{\xi}_{1}\left(x_{0}\right)<\tilde{\xi}_{2}\left(x_{0}\right)<\cdots$, then we have

$$
\begin{equation*}
\lim _{x_{0} \rightarrow 0} \tilde{\xi}_{j}\left(x_{0}\right)=\tilde{\xi}_{j}, \quad j \geq 1 \tag{4.6}
\end{equation*}
$$

which will also be a key point of our later discussion.
Now, arranging the eigenvalues of Δ_{R} in nondecreasing order,

$$
\begin{equation*}
(0<) \lambda_{1}(R) \leq \lambda_{2}(R) \leq \cdots \uparrow \infty, \tag{4.7}
\end{equation*}
$$

we get
Lemma 4.3. (1) In the case of Type (-). Rearranging the elements of the set $\left\{\mu_{i}+\eta_{j}+\mu_{k}\right\}$ in nondecreasing order, $\lambda_{1} \leq \lambda_{2} \leq \cdots \uparrow \infty$, we have $\lambda_{n} \leq \lambda_{n}(R)$ for any n.
(2) In the case of Type (+). Fix a (possibly negative) constant a. Then, rearranging the elements of the set $\left\{\mu_{i}+\mu_{j}+\xi_{k}+\nu_{l}+a ; j>0\right\} \cup\left\{\mu_{i}+\tilde{\xi}_{k}+\nu_{l}+a\right\}$ in nondecreasing order, $\lambda_{1} \leq \lambda_{2} \leq \cdots \uparrow \infty$, we have $\lambda_{n} \leq \lambda_{n}(R)$ for any n.

If we assume the above, we can prove Assertion 4.2 as follows.
Proof of Assertion 4.2. There exists a constant $K_{1}>0$ such that

$$
\begin{equation*}
\mu_{n}, \nu_{n} \xi_{n}, \tilde{\xi}_{n} \geq K_{1}(n-1)^{2}, \quad n \geq 1 \tag{4.8}
\end{equation*}
$$

This implies that there exists a constant $K_{2}>0$ such that

$$
\begin{equation*}
\sum e^{-\mu_{n} t}, \sum e^{-\nu_{n} t}, \sum e^{-\xi_{n} t}, \sum e^{-\tilde{\xi}_{n} t} \leq K_{2} t^{-1 / 2}, \quad 0<t \leq t_{0} \tag{4.9}
\end{equation*}
$$

Also we have $K_{3}>0$ satisfying $\sum e^{-\eta_{n} t} \leq K_{3} t^{-1}, 0<t \leq t_{0}$. These facts combined with Lemma 4.3 say that $\operatorname{Tr} e^{-\Delta_{R} t}=\sum e^{-\lambda_{n}(R) t}$ has the estimate (4.1).

Thus only the proof of Lemma 4.3 remains. Let $\left\{\phi_{m}\right\}$ and $\left\{\psi_{m}\right\}$ be the orthonormal eigenfunctions corresponding to $\left\{\mu_{m}\right\}$ and $\left\{\eta_{m}\right\}$ respectively.
4.1. Proof of Lemma 4.3(1). Let us consider the differential equation $\Delta_{R} F=\lambda F, F \in \operatorname{dom} \Delta_{R}$, on W of Type (-). Its solutions are given as the linear combinations of the functions $G(r) \phi_{i}(\theta) \psi_{j}(y)$, where the G are the solutions of the boundary value problem,

$$
\begin{align*}
& G^{\prime \prime}+(2 c+1) r^{-1} G^{\prime}+\left(\lambda-\mu_{i} r^{-2}-\eta_{j} r^{-2 c}\right) G=0 \tag{4.10}\\
& G(R)=G^{\prime}(1)=0
\end{align*}
$$

Performing the normalization $G(r)=r^{-(2 c+1) / 2} H(r)$, we get

$$
\begin{align*}
& H^{\prime \prime}+\left(\lambda-q_{i j}(r)\right) H=0, \quad R \leq r \leq 1 \\
& H(R)=\frac{d}{d r}\left(r^{-(2 c+1) / 2} H\right)(1)=0 \tag{4.11}\\
& q_{i j}(r)=\left(\mu_{i}+c^{2}+\frac{1}{4}\right) r^{-2}+\eta_{j} r^{-2 c}
\end{align*}
$$

Let $\lambda_{i j 0}(R) \leq \lambda_{i j 1}(R) \leq \cdots$ be the eigenvalues of the problem (4.11). Rearrange $\left\{\lambda_{i j k}(R)\right\}_{i, j, k}$ in nondecreasing order and we get the sequence (4.7). Now, let us consider the problem reduced from (4.11) by replacing $q_{i j}(r)$ by $p_{i j}=\mu_{i}+\eta_{j}-\nu_{0}$; the eigenvalues of this problem, denoted by (4.11) ${ }^{\prime}$, are written as $(0 \leq) \tilde{\lambda}_{i j 0}(R) \leq \tilde{\lambda}_{i j 1}(R) \leq \cdots$. Then we have $\tilde{\lambda}_{i j k}(R) \leq \lambda_{i j k}(R)-\nu_{0}$ for any i, j and k. The proof is similar to that of Proposition 3.2(1), however, instead of (3.6), we use

$$
\begin{align*}
& \tilde{D}(f, g)=\int_{R}^{1}\left\{f^{\prime} g^{\prime}+p_{i j} f g\right\} d r-f^{\prime}(1) g(1) \tag{4.12}\\
& D(f, g)=\int_{R}^{1}\left\{f^{\prime} g^{\prime}+\left(q_{i j}-\nu_{0}\right) f g\right\} d r-f^{\prime}(1) g(1) \tag{4.12}
\end{align*}
$$

for $f, g \in\left\{f \in C^{1}([R, 1]) \mid f(R)=(d / d r)\left(r^{-(2 c+1) / 2} f\right)(1)=0\right\}$. Notice that both \tilde{D} and D are symmetric with respect to f, g and we have $0 \leq \tilde{D}(f) \leq$ $D(f)$.

Further we have the problem reduced from (4.11)' by replacing $R \leq r \leq 1$ by $0 \leq r \leq 1$ (and, of course, $H(R)=0$ by $H(0)=0$); its eigenvalues are the $\mu_{i}+\eta_{j}+\nu_{k}-\nu_{0}, 0 \leq k<\infty$. We have $\mu_{i}+\eta_{j}+\nu_{k}-\nu_{0} \leq \tilde{\lambda}_{i j k}(R)$ for any i, j and k. The proof is similar to that of Proposition 3.2(1), however, instead of (3.6) we use both (4.12) ${ }^{\prime}$ and (4.12) ${ }^{\prime}$ with \int_{R}^{1} replaced by \int_{0}^{1}.

Thus the proof of Lemma 4.3(1) is complete.
4.2. Proof of Lemma 4.3(2). Let us consider the differential equation $\Delta_{R} F=\lambda F, F \in \operatorname{dom} \Delta_{R}$, on W of Type (+). Its solutions are given as the linear combinations of the functions $G(r, s) \phi_{i}(\theta) \phi_{j}(\Theta)$, where the G are the solutions of the boundary value problem,

$$
\begin{align*}
& \frac{\partial^{2} G}{\partial r^{2}}+\frac{1}{r^{2 c}} \frac{\partial^{2} G}{\partial s^{2}}+\left\{\begin{array}{l}
\left.\frac{2 c+1}{r}+\frac{1}{h} \frac{\partial h}{\partial r}\right\} \frac{\partial G}{\partial r}+\frac{1}{r^{2 c} h} \frac{\partial h}{\partial s} \frac{\partial G}{\partial s} \\
\quad+\left(\lambda-\mu_{i} r^{-2}-\mu_{j} h^{-2} r^{-2 c}\right) G=0
\end{array}\right. \\
& G(R, s)=\frac{\partial G}{\partial r}(1, s)=\frac{\partial G}{\partial s}(r, 0)=\frac{\partial G}{\partial s}(r, 1)=0 \tag{4.13}
\end{align*}
$$

Performing the normalization $G(r, s)=r^{-(2 c+1) / 2} h^{-1 / 2} H(r, s)$, we get

$$
\begin{align*}
& \frac{\partial^{2} H}{\partial r^{2}}+r^{-2 c} \frac{\partial^{2} H}{\partial s^{2}}+\left(\lambda-q_{i j}(r, s)\right) H=0, \quad R \leq r \leq 1,0 \leq s \leq 1, \\
& H(R, s)= \frac{\partial}{\partial r}\left(r^{-(2 c+1) / 2} H\right)(1, s) \\
&= \frac{\partial H}{\partial s}(r, 0)=\frac{\partial}{\partial s}\left(s^{-1 / 2} H\right)(r, 1)=0, \tag{4.14}\\
& q_{i j}(r, s)=\left\{\mu_{i}+c^{2}-\frac{1}{4}+\frac{2 c+1}{2} \frac{r}{h} \frac{\partial h}{\partial r}-\frac{r^{2}}{4 h^{2}}\left(\frac{\partial h}{\partial r}\right)^{2}+\frac{r^{2}}{2 h} \frac{\partial^{2} h}{\partial r^{2}}\right\} \frac{1}{r^{2}} \\
&+\left\{\mu_{j}-\frac{1}{4}\left(\frac{\partial h}{\partial s}\right)^{2}+\frac{1}{2} h \frac{\partial^{2} h}{\partial s^{2}}\right\} h^{-2} r^{-2 c} .
\end{align*}
$$

Let $\lambda_{i j 0}(R) \leq \lambda_{i j 1}(R) \leq \cdots$ be the eigenvalues of the problem (4.14). Rearrange $\left\{\lambda_{i j m}(R)\right\}_{i, j, m}$ in nondecreasing order and we get the sequence (4.7).
4.4. (1) There exists a constant \tilde{a} such that, for $0<r \leq 1$ and $0 \leq s \leq 1$,

$$
\begin{equation*}
\left\{c^{2}-\frac{1}{4}+\frac{2 c+1}{2} \frac{r}{h} \frac{\partial h}{\partial r}-\frac{r^{2}}{4 h^{2}}\left(\frac{\partial h}{\partial r}\right)^{2}+\frac{r^{2}}{2 h} \frac{\partial^{2} h}{\partial r^{2}}\right\} \frac{1}{r^{2}} \geq \tilde{a} \tag{4.15}
\end{equation*}
$$

(2)

$$
-\frac{1}{4}\left(\frac{\partial h}{\partial s}\right)^{2}+\frac{1}{2} h \frac{\partial^{2} h}{\partial s^{2}} \geq-\frac{1}{4}
$$

Proof. As for (1), it suffices to show that the left side of (4.15) is nonnegative, that is, bounded from below, for small $r>0$. Hence we may assume $r>0$ is small, so that $f(r)=r^{b}$. By noticing $h(r, s)=r^{b} l\left(s r^{-b}\right)$, the left side of (4.15) can be rewritten as follows:

$$
\left\{c^{2}-\frac{1}{4}+b c\left(1-\frac{s l^{\prime}}{f l}\right)+\frac{b^{2}}{4}\left(1-\left(\frac{s l^{\prime}}{f l}\right)^{2}\right)+\frac{b^{2}}{2} \frac{s^{2} l^{\prime \prime}}{f^{2} l}\right\} r^{-2} .
$$

Since $s l^{\prime} / f l \leq s / f l=x / l(x) \leq 1$, (1) was proved. On the other hand, (2) can be shown by using the facts $\partial h / \partial s=l^{\prime}\left(s f^{-1}\right) \leq 1$ and $\partial^{2} h / \partial s^{2}=$ $f^{-1} l^{\prime \prime}\left(s f^{-1}\right) \geq 0$.

From here, we divide our discussion into two cases, i.e., the case $j>0$ ($\mu_{j}>1 / 4$) and the case $j=0\left(\mu_{0}=0\right)$. Set $a=\tilde{a}-1 / 4$.
(I) The case $j>0\left(\mu_{j}>1 / 4\right)$.

Let us consider the problem reduced from (4.14) by replacing $q_{i j}(r, s)$ by $\tilde{q}_{i j}(r)=\mu_{i}+\left(\mu_{j}-1 / 4\right) r^{-2 c}+1 / 4-\xi_{0}-\nu_{0}$; denote its eigenvalues by
$\tilde{\lambda}_{i j 0}(R) \leq \tilde{\lambda}_{i j 1}(R) \leq \cdots$. Next, consider the boundary value problem,

$$
\begin{align*}
& z^{\prime \prime}+\left(\lambda-\tilde{p}_{i j k}(r)\right) z=0, \quad R \leq r \leq 1 \\
& z(R)=\frac{d}{d r}\left(r^{-(2 c+1) / 2} z\right)(1)=0 \tag{4.16}\\
& \tilde{P}_{i j k}(r)=\mu_{i}+\left(\mu_{j}+\xi_{k}-\frac{1}{4}\right) r^{-2 c}+\frac{1}{4}-\xi_{0}-\nu_{0}
\end{align*}
$$

Denote its eigenvalues by $\tilde{\lambda}_{i j k 0}(R)<\tilde{\lambda}_{i j k 1}(R)<\cdots$; if we rearrange $\left\{\tilde{\lambda}_{i j k l}(R)\right\}_{k, l}$ in nondecreasing order, the sequence thus obtained is $\left\{\tilde{\lambda}_{i j m}(R)\right\}_{m}$. Moreover, let us consider the problem (4.16)' reduced from (4.16) by replacing $\tilde{p}_{i j k}(r)$ by $\tilde{p}_{i j k}(1)$; denote its eigenvalues by $\lambda_{i j k 0}(R)<$ $\lambda_{i j k 1}(R)<\cdots$. Finally, let us consider the problem (4.16)" reduced from (4.16) ${ }^{\prime}$ by replacing $R \leq r \leq 1$ by $0 \leq r \leq 1$ (and, of course, $z(R)=0$ by $z(0)=0)$; its eigenvalues are precisely the $\mu_{i}+\mu_{j}+\xi_{k}+\nu_{l}-\xi_{0}-\nu_{0}$ with l arbitrary.

These eigenvalues have the following relation:

$$
\begin{array}{cl}
(4.17)^{\prime} & (0 \leq) \mu_{i}+\mu_{j}+\xi_{k}+\nu_{l}-\xi_{0}-\nu_{0} \leq \lambda_{i j k l}(R) \leq \tilde{\lambda}_{i j k l}(R) \tag{4.17}\\
(4.17)^{\prime \prime} & \tilde{\lambda}_{i j m}(R) \leq \lambda_{i j m}(R)-a-\xi_{0}-\nu_{0} .
\end{array}
$$

Each inequality can be proved similarly to that of Proposition 3.2(1). The proof of Lemma 4.3(1) is a more direct model for that of (4.17)'; notice that $\mu_{j}+\xi_{k}-1 / 4 \geq \mu_{1}+\xi_{0}-1 / 4=\pi^{2}+\xi_{0}-1 / 4 \geq 0$. To prove (4.17) ${ }^{\prime \prime}$, we use the following integrals instead of (3.6):

$$
\begin{aligned}
\tilde{D}(f, g)= & \int_{0}^{1} \int_{R}^{1}\left\{\frac{\partial f}{\partial r} \frac{\partial g}{\partial r}+r^{-2 c} \frac{\partial f}{\partial s} \frac{\partial g}{\partial s}+\tilde{q}_{i j} f g\right\} d r d s \\
& -\int_{0}^{1}\left(\frac{\partial f}{\partial r} g\right)(1, s) d s-\int_{R}^{1} r^{-2 c}\left(\frac{\partial f}{\partial s} g\right)(r, 1) d r \\
D(f, g)= & \int_{0}^{1} \int_{R}^{1}\left\{\frac{\partial f}{\partial r} \frac{\partial g}{\partial r}+r^{-2 c} \frac{\partial f}{\partial s} \frac{\partial g}{\partial s}+\left(q_{i j}-a-\xi_{0}-\nu_{0}\right) f g\right\} d r d s \\
& -\int_{0}^{1}\left(\frac{\partial f}{\partial r} g\right)(1, s) d s-\int_{R}^{1} r^{-2 c}\left(\frac{\partial f}{\partial s} g\right)(r, 1) d r
\end{aligned}
$$

for $f, g \in\left\{f \in C^{1}([R, 1] \times[0,1]) \mid f\right.$ satisfies the condition (4.12)" $\}$. Both \tilde{D} and D are symmetric with respect to f and g. Observing Lemma 4.4, we have $0 \leq \tilde{D}(f) \leq D(f)$.
(II) The case $j=0\left(\mu_{0}=0\right)$. Let us consider the problem reduced from (4.14) by replacing $q_{i 0}(r, s)$ by $q_{i}(r, s)=\mu_{i}-\frac{1}{4}(\partial h / \partial s)^{2} h^{-2} r^{-2 c}-\nu_{0}$; denote its eigenvalues by $\tilde{\lambda}_{i 0}(R) \leq \tilde{\lambda}_{i 1}(R) \leq \cdots$.

In order to estimate the sequence $\left\{\tilde{\lambda}_{i m}(R)\right\}_{m}$, we consider the following. Take $s_{0}>0$ small, so that $h(r, s)=f(r)$ for $R \leq r \leq 1$ and $0 \leq s \leq s_{0}$. Giving our attention to this $s_{0}>0$, we consider the boundary value problems:

$$
\begin{align*}
& \frac{\partial^{2} H}{\partial r^{2}}+\left[\lambda-\left\{\mu_{i}-r^{-2 c}\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{1}{4 s^{2}}\right)-\nu_{0}\right\}\right] H=0 \\
& \quad R \leq r \leq 1, s_{0} \leq s \leq 1 \\
& H(R, s)= \tag{4.19}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial^{2} H}{\partial r^{2}}+\left[\lambda-\left\{\mu_{i}-r^{-2 c} \frac{\partial^{2}}{\partial s^{2}}-\nu_{0}\right\}\right] H=0 \\
& \quad R \leq r \leq 1,0 \leq s \leq s_{0} \\
& H(R, s)=\frac{\partial}{\partial r}\left(r^{-(2 c+1) / 2} H\right)(1, s) \tag{4.20}\\
& \quad=\frac{\partial H}{\partial s}(r, 0)=\frac{\partial H}{\partial s}\left(r, s_{0}\right)=0
\end{align*}
$$

Gather their eigenvalues and rearrange them in nondecreasing order; denote the sequence by $(0<) \tilde{\mu}_{i 0}\left(s_{0}, R\right) \leq \tilde{\mu}_{i 1}\left(s_{0}, R\right) \leq \cdots$. Then the facts that $(\partial h / \partial s)^{2} h^{-2} \leq s^{-2}$ for $s \geq s_{0}$ and $(\partial h / \partial s)^{2} h^{-2}=0$ for $0 \leq s \leq s_{0}$ demand $\tilde{\mu}_{i m}\left(s_{0}, R\right) \leq \tilde{\lambda}_{i m}(R)$ for any m. The proof is similar to that of Proposition 3.2(2). Hence, setting $\tilde{\mu}_{i m}(R)=\lim _{s_{0} \rightarrow 0} \tilde{\mu}_{i m}\left(s_{0}, R\right)$, we get

$$
\begin{equation*}
\tilde{\mu}_{i m}(R) \leq \tilde{\lambda}_{i m}(R) \tag{4.21}
\end{equation*}
$$

for any m. Moreover, when we consider the problems, $k \geq 0$,

$$
\begin{align*}
& w^{i}+\left\{\lambda-\left(\mu_{i}+\tilde{\xi}_{k} r^{-2 c}-\nu_{0}\right)\right\} w=0, \quad R \leq r \leq 1, \\
& w(R)=\frac{d}{d r}\left(r^{-(2 c+1) / 2} w\right)(1)=0 \tag{4.22}
\end{align*}
$$

their eigenvalues $\left\{\tilde{\mu}_{i k l}(R)\right\}_{k, l}$ are rearranged into the nondecreasing sequence $\left\{\tilde{\mu}_{i m}(R)\right\}_{m}$. This fact is obviously deduced from (4.6) and the fact that the eigenvalues of the problem $y^{\prime \prime}+\lambda y=0,0 \leq x \leq s_{0}$, with $y^{\prime}(0)=y^{\prime}\left(s_{0}\right)=0$ are the $\mu_{j}\left(s_{0}\right)=\mu_{j} s_{0}^{-2}, j \geq 0$.

Next, let us consider the problem (4.22)' reduced from (4.22) by replacing $\tilde{\xi}_{k} r^{-2 c}$ by $\tilde{\xi}_{k}$; denote its eigenvalues by $\mu_{i k 0}(R)<\mu_{i k 1}(R)<\cdots$. Finally, consider the problem reduced from (4.22)' by replacing $R \leq r \leq 1$ by $0 \leq r \leq 1$ (and, of course, $w(R)=0$ by $w(0)=0$); its eigenvalues are exactly the $\mu_{i}+\tilde{\xi}_{k}+\nu_{l}-\nu_{0}$ with l arbitrary.

These eigenvalues have the following relation:

$$
\begin{gather*}
(0 \leq) \mu_{i}+\tilde{\xi}_{k}+\nu_{l}-\nu_{0} \leq \mu_{i k l}(R) \leq \tilde{\mu}_{i k l}(R) \tag{4.23}\\
\quad \tilde{\lambda}_{i m}(R) \leq \lambda_{i m}(R)-a-\nu_{0}
\end{gather*}
$$

Each proof is similar to that of Proposition 3.2(1).
Now Lemma 4.3(2) is a natural consequence following from (4.17), (4.21) and (4.23).

5. Proof of Assertion A

First of all, according to Hsiang and Pati [6, IV], we will review the method of introducing a product structure into a neighborhood $(\subset \mathscr{X})$ of the singular point p. Observing (2.22), we take the \tilde{W}_{α} of Types (\pm) corresponding to the $\tilde{\tilde{\xi}}_{\alpha}$ and take the quasi-isometries $\iota_{\alpha} ; W_{\alpha} \cong \tilde{W}_{\alpha}$. Let us make the vector field $\tilde{\xi}_{\alpha}$ on the \tilde{W}_{α} by rescaling and perturbing the vector field $\partial / \partial r$ (however, the $\tilde{\xi}_{\alpha}$ and the $\partial / \partial r$ must be quasi-isometric), so that the $\iota_{\alpha}^{*} \tilde{\xi}_{\alpha}$ together produce a smooth vector field $\tilde{\xi}$ on $Y=\bigcup W_{\alpha}$. Moreover, let us denote by $R(x)>0, x \in Y$, the distance along the flow line of $\tilde{\xi}$ from x to the singular point p. We may assume (by performing the rescale) that each flow line extends to the point where $R>1$. Then the flow lines and the function $R: Y \rightarrow(0, \infty)$ produce a product structure

$$
\begin{equation*}
R^{-1}(0,1]=(0,1] \times R^{-1}(1) \tag{5.1}
\end{equation*}
$$

Here the decomposition

$$
\begin{equation*}
R^{-1}(0,1]=\bigcup_{\alpha}\left(W_{\alpha} \cap R^{-1}(0,1]\right) \tag{5.2}
\end{equation*}
$$

is compatible with the structure (5.1), that is, each $W_{\alpha} \cap R^{-1}(0,1]$ has a natural product structure induced from (5.1). Moreover, by replacing $\iota_{\alpha}(x)=$ (r, \cdots) by $I_{\alpha}(x)=(R, \cdots)$, that is, by replacing only the r by the R, we get the quasi-isometries

$$
\begin{equation*}
I_{\alpha}: W_{\alpha} \cap R^{-1}(0,1] \simeq \tilde{W}_{\alpha} \tag{5.3}
\end{equation*}
$$

Now, let us start the proof of Assertion A. Because of the Stokes' theorem and the fact $\bar{\delta}^{*}=\bar{d}_{0}$, it suffices to prove the following.

Proposition 5.1. For any $F \in \operatorname{dom} d$ and any $G \in \operatorname{dom} \delta$, there exists a sequence $\varepsilon_{n} \downarrow 0$ such that

$$
\lim _{n \rightarrow \infty} \int_{R^{-1}\left(\varepsilon_{n}\right)} F \wedge * G=0
$$

Proof. Considering the structure (5.1), we can write $* G=A+d R \wedge B$, where A and B do not involve $d R$. Hence we have $\int_{R^{-1}(\varepsilon)} F \wedge * G=\int_{R^{-1}(\varepsilon)} F \wedge$ A. Now, let $\tilde{\tau}_{\eta}$ be the $*$-operator on $R^{-1}(\eta)$ with the metric g restricted and let us define

$$
\begin{equation*}
\|F\|_{\{\eta, \varepsilon\}}^{2}=\int_{R^{-1}(\varepsilon)} F \wedge \tilde{*}_{\eta} F, \quad\|A\|_{\{\eta, \varepsilon\}}^{2}=\int_{R^{-1}(\varepsilon)} A \wedge \tilde{*}_{\eta} A \tag{5.4}
\end{equation*}
$$

For example, regard $F \mid R^{-1}(\varepsilon)$ as a function on $R^{-1}(\eta)$ naturally; then $\|F\|_{\{\eta, \varepsilon\}}$ is precisely its L^{2}-norm. Using (5.4), we have

$$
\begin{equation*}
\left|\int_{R^{-1}(\varepsilon)} F \wedge A\right| \leq\|F\|_{\{\varepsilon, \varepsilon\}}\|A\|_{\{\varepsilon, \varepsilon\}} \tag{5.5}
\end{equation*}
$$

And, because of [2, Lemma 1.2] and the fact $\|A\|_{\{\varepsilon, \varepsilon\}}^{2} \in L^{1}(0,1)$, there exists a sequence $\varepsilon_{n} \downarrow 0$ such that

$$
\begin{equation*}
\|A\|_{\left\{\varepsilon_{n}, \varepsilon_{n}\right\}}=o\left(\varepsilon_{n}^{-1 / 2}\left|\log \varepsilon_{n}\right|^{-1 / 2}\right) \tag{5.6}
\end{equation*}
$$

Hence the following lemma asserts that the proposition is true.
Lemma 5.2. There exists a constant $K>0$ such that

$$
\|F\|_{\{\varepsilon, \varepsilon\}} \leq K\{\|F\|+\|d F\|\} \varepsilon^{1 / 2}
$$

for $0<\varepsilon<1 / 2$ and $F \in \operatorname{dom} d$.
Here $\|F\|$ and $\|d F\|$ are the L^{2}-norms of F and $d F$ on \mathscr{X} respectively. Considering the quasi-isometries (5.3) and providing $F_{\alpha}=I_{\alpha *} F$ for $F \in$ $C^{\infty}(\mathscr{X})$, there exists a constant $K_{1}>0$ such that

$$
\begin{equation*}
\|F\|_{\{\varepsilon, \varepsilon\}} \leq K_{1} \sum_{\alpha}\left\|F_{\alpha}\right\|_{\{\varepsilon, \varepsilon\}} \tag{5.7}
\end{equation*}
$$

for $0<\varepsilon<1$ and $F \in C^{\infty}\left(\mathscr{x}^{2}\right)$. Here we define $\left\|F_{\alpha}\right\|_{\{\varepsilon, \varepsilon\}}$ in the same way as (5.4). Hence we have only to prove the following.

Lemma 5.3. There exists a constant $K>0$ such that

$$
\left\|F_{\alpha}\right\|_{\{\varepsilon, \varepsilon\}} \leq K\left\{\left\|F_{\alpha}\right\|+\left\|d F_{\alpha}\right\|\right\} \varepsilon^{1 / 2}
$$

for $0<\varepsilon<1 / 2$ and $F \in \operatorname{dom} d$.
Here $\left\|F_{\alpha}\right\|$ and $\left\|d F_{\alpha}\right\|$ mean the L^{2}-norms of F_{α} and $d F_{\alpha}$ on \tilde{W}_{α} respectively. The proof follows the argument given in [2, Lemma 2.3].

Proof in the case \tilde{W}_{α} is of Type (-). To simplify the description, we use F and W instead of F_{α} and \tilde{W}_{α}. Here W is of Type (-). Fix $0<\varepsilon<a$.

Then we have

$$
\begin{align*}
\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{\{\varepsilon, \varepsilon\}} & =\varepsilon^{(2 c+1) / 2}\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{\{1, \varepsilon\}} \\
& \leq \varepsilon^{(2 c+1) / 2} \int_{\varepsilon}^{a}\left\|\frac{\partial F}{\partial r}\right\|_{\{1, r\}} d r \\
& =\varepsilon^{(2 c+1) / 2} \int_{\varepsilon}^{a} r^{-(2 c+1) / 2}\left\|\frac{\partial F}{\partial r}\right\|_{\{r, r\}} d r \tag{5.8}\\
& \leq \varepsilon^{(2 c+1) / 2}\left\{\int_{\varepsilon}^{a} r^{-(2 c+1)} d r\right\}^{1 / 2}\|d F\| \\
& \leq \frac{1}{\sqrt{2 c}} \varepsilon^{1 / 2}\|d F\| .
\end{align*}
$$

On the other hand, assuming that the function $\|F\|_{\{1, r\}}, 1 / 2 \leq r \leq 1$, takes the minimum at $r=a$, we have

$$
\begin{align*}
\|F(a)\|_{\{\varepsilon, \varepsilon\}} & =\varepsilon^{(2 c+1) / 2}\|F\|_{\{1, a\}}=2 \varepsilon^{(2 c+1) / 2} \int_{1 / 2}^{1}\|F\|_{\{1, a\}} d r \\
& \leq 2 \varepsilon^{(2 c+1) / 2} \int_{1 / 2}^{1}\|F\|_{\{1, r\}} d r \tag{5.9}\\
& =2 \varepsilon^{(2 c+1) / 2} \int_{1 / 2}^{1} r^{-(2 c+1) / 2}\|F\|_{\{r, r\}} d r \\
& \leq \frac{1}{\sqrt{2 c}} 2^{c+1} \varepsilon^{(2 c+1) / 2}\|F\| .
\end{align*}
$$

Hence the following inequality implies the lemma:

$$
\begin{equation*}
\|F\|_{\{\varepsilon, \varepsilon\}} \leq\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{\{\varepsilon, \varepsilon\}}+\|F(a)\|_{\{\varepsilon, \varepsilon\}} . \tag{5.10}
\end{equation*}
$$

Proof in the case \tilde{W}_{α} is of Type (+). We use F and W instead of F_{α} and \tilde{W}_{α}. Here W is of Type (+). First of all, we know that the metric on W is quasi-isometric to

$$
\begin{equation*}
d r^{2}+r^{2} d \theta^{2}+r^{2 c}\left\{d s^{2}+\left(r^{b}+s\right)^{2} d \Theta^{2}\right\} . \tag{5.11}
\end{equation*}
$$

In fact, there exists a constant $C>0$ such that $C^{-1}\left(r^{b}+s\right) \leq h(r, s) \leq$ $C\left(r^{b}+s\right)$ for $0<r \leq 1$ and $0 \leq s \leq 1$. This is a consequence of a straightforward computation; take $r_{0}>0$ so small that $f(r)=r^{b}$ for $0<r \leq r_{0}$, decompose the region defined by $0<r \leq r_{0}$ into three parts, $s f^{-1} \leq 1-\varepsilon, 1-\varepsilon \leq$ $s f^{-1} \leq 1+\varepsilon$ and $1+\varepsilon \leq s f^{-1}$, and then estimate $\left(r^{b}+s\right)(h(r, s))^{-1}$ on each part.

Therefore it suffices to prove the lemma on W with metric (5.11). Set $b=\tilde{c}-c(>0)$. Decompose $\|F\|_{\{\eta, \varepsilon\}}^{2}$ in the following way:

$$
\begin{align*}
\|F\|_{\{\eta, \varepsilon\}}^{2}= & \int \eta^{2 c+1}\left(\eta^{b}+s\right) F^{2}(\varepsilon, \theta, s, \Theta) d \theta d s d \Theta \\
= & \int \eta^{\tilde{c}+c+1} F^{2}(\varepsilon, \theta, s, \Theta) d \theta d s d \Theta \tag{5.12}\\
& +\int \eta^{2 c+1} s F^{2}(\varepsilon, \theta, s, \Theta) d \theta d s d \Theta \\
= & \|F\|_{1,\{\eta, \varepsilon\}}^{2}+\|F\|_{2,\{\eta, \varepsilon\}}^{2} .
\end{align*}
$$

Then, similarly to (5.8), we have

$$
\begin{align*}
\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{\{\varepsilon, \varepsilon\}}^{2} & =\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{1,\{\varepsilon, \varepsilon\}}^{2}+\left\|\int_{\varepsilon}^{a} \frac{\partial F}{\partial r} d r\right\|_{2,\{\varepsilon, \varepsilon\}}^{2} \\
& \leq \varepsilon\left\{\frac{1}{c+c} \int_{\varepsilon}^{a}\left\|\frac{\partial F}{\partial r}\right\|_{1,\{r, r\}}^{2} d r+\frac{1}{2 c} \int_{\varepsilon}^{a}\left\|\frac{\partial F}{\partial r}\right\|_{2,\{r, r\}}^{2} d r\right\} \tag{5.13}\\
& \leq \frac{1}{2 c} \varepsilon \int_{\varepsilon}^{a}\left\|\frac{\partial F}{\partial r}\right\|_{\{r, r\}}^{2} d r \leq \frac{1}{2 c} \varepsilon\|d F\|^{2} .
\end{align*}
$$

Also, similarly to (5.9), assuming that the function $\|F\|_{\{1, r\}}, 1 / 2 \leq r \leq 1$, takes the minimum at $r=a$, we have

$$
\begin{align*}
\|F(a)\|_{\{\varepsilon, \varepsilon\}}^{2} & =\varepsilon^{c+\tilde{c}+1}\|F\|_{1,\{1, a\}}^{2}+\varepsilon^{2 c+1}\|F\|_{2,\{1, a\}}^{2} \\
& \leq \varepsilon^{2 c+1}\|F\|_{\{1, a\}}^{2} \leq 2 \varepsilon^{2 c+1} \int_{1 / 2}^{1}\|F\|_{\{1, r\}}^{2} d r \\
& \leq 2 \varepsilon^{(2 c+1) / 2} \int_{1 / 2}^{1} r^{-(c+\tilde{c}+1)}\|F\|_{\{r, r\}}^{2} d r \tag{5.14}\\
& \leq 2^{c+\tilde{c}+2} \varepsilon^{2 c+1}\|F\|^{2} .
\end{align*}
$$

Hence the same inequality as (5.10) implies the lemma.
The author would like to thank the referee, who gave him the comment, "It shouldn't be too difficult to prove $\bar{d}=\bar{d}_{0}$ for i-forms rather than functions, as in Cheeger [2]. Since Hsiang and Pati [6] use Cheeger's argument without verifying $\bar{d}=\bar{d}_{0}$, your result seems to partially fill that gap in their proof." However, the assertion $\bar{d}=\bar{d}_{0}$ for forms (which must be true) seems to be difficult to prove in the same way as in $\S 5$ (or as in [2]). The readers may have already noticed that [6] did not treat Type(+), which is certainly a gap of [6]. Because of the complexity of Type(+), the above assertion has a subtle problem and also Hsiang-Pati's argument in [6] needs to be revised (at least we must treat Type(+)), which will be discussed elsewhere. Finally the author
would like to thank the Institute for Advanced Study for their hospitality during the author's stay there (in 1985-86).

References

[1] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984.
[2] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, 91-146.
[3] __, Spectral geometry of singular Riemannian spaces, J. Differential Geometry 18 (1983) 575-657.
[4] P. E. Conner, The Neumann's problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc., No. 20, 1956.
[5] A. Erdélyi et al., Higher transcendental functions. II, McGraw-Hill, New York, 1953.
[6] W. C. Hsiang \& V. Pati, L^{2}-cohomology of normal algebraic surfaces. I, Invent. Math. 81 (1985) 395-412.
[7] M. Nagase, The fundamental solutions of the heat equations on Riemannian spaces with cone-like singular points, Kodai Math. J. 7 (1984) 382-455.
[8] ___, Sheaf theoretic L^{2}-cohomology, Advanced Studies in Pure Math., Vol. 8, Kinokuniya and North Holland, 1986, 273-279.
[9] ___ On the heat operators of cuspidally stratified Riemannian spaces, Proc. Japan Acad. 62 (1986) 58-60.
[10] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. I, II, Oxford, 1946, 1958.
[11] G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge, 1944.

> Institute for Advanced Study
> Tokyo Institute of Technology

