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ON THE HEAT OPERATORS
OF NORMAL SINGULAR ALGEBRAIC SURFACES

MASAYOSHI NAGASE

1. Introduction

Let X be a normal singular algebraic surface (over C) embedded in the
projective space PΛ Γ(C). The singularity set S of X is a finite set of isolated
points. By restricting the Fubini-Study metric of Έ>N(C) to Sf = X - S,
we obtain an incomplete Riemannian manifold (β?, g). Now consider the
Laplacian Δ = δd acting on square-integrable functions on (β?, g). Here d
means the closure of the exterior derivative d acting on the smooth functions
which are square-integrable, and whose images by d are square-integrable too.
Also δ means the closure of its formal adjoint δ acting on the smooth 1-forms
which are square-integrable, and whose images by δ are square-integrable too.
Then the purpose of this paper can be said to show the following.

Main Theorem. (1) The Laplacian Δ is self-adjoint.
(2) The heat operator e~At is of trace class, and there exists a constant

K > 0 such that

(1.1) T r e " Δ ί <KΓ2, 0<t<to.

Defining do to be the exterior derivative d restricted to the subspace of
smooth functions with compact supports, we have δ* = do [4]. Hence (1) can
be rewritten in the following way.

Assertion A. d — Jo-
in §5 we intend to prove this assertion, which is equivalent to (1). Thereby,

we will prove (2) with Δ = δdo, the (self-adjoint) Laplacian of the (general-
ized) Dirichlet type (§§2-4).

In general, if a certain self-adjoint Laplacian on a certain Riemannian man-
ifold has the basic property mentioned in (2), but replacing the 2 of t~2 by
half of the real dimension of the manifold, then we say that the Laplacian has
the property {BP). In using this expression, what we want to prove is stated
as follows: Δ = δdo has the property (BP). Let us transform this assertion
(2)' into a more convenient one.
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Let dis(x), x € X, be the distance from x to the singularity set S (induced
by the given metric g) and set, for sufficiently small ε > 0,

(1.2) Xε = {x e XI dis(x) > ε } .

Then the Laplacian Δ e of the Dirichlet type on (Xε, g\Xe) obviously has the

property {BP). Also the trace of the heat operator e~Aet increases mono-

tonically when ε decreases. Moreover, provided we define Tre"~Δt = oc when

e~At is not of trace class, [1, VIII, Theorem 4] generally says

(1.3) T r e " Δ t = lim

Note that Δ = δdo. Hence, in order to prove (2)', we have only to prove

Assertion B. There exists a constant K > 0 such that

(1.4) Ύre-Aεt < KΓ2, 0 < t < ί0, 0 < ε < ε0.

We intend to prove this assertion in §§2-4. Let us introduce the principle

on which our discussion is based.

Principle (Cheeger [3, Lemma 7.1]). The property {BP) is of quasi-

isometric invariant.

Recall that a diffeomorphism / : (Yι,gχ) —• (Y2,02) is called a quasi-

isometry if there exists a constant C > 0 such that C~ιg\ < /*<?2 ^ Cg\.

Our principle asserts that, as long as the object under consideration is of

the property (BP), we have only to discuss it on a Riemannian manifold

less complicated than and quasi-isometric to the given one. We will start by

decomposing a neighborhood (c %?) of the singularity set S into certain less-

complicated parts (§2). Precisely "less-complicated" means that each part

(with the given metric g) is quasi-isometric to one of the Riemannian mani-

folds W of the following Types (±).

Type (—): Fix c > 1. Let Y be a compact polygon in R 2 and g be the

standard metric on Y Then we set

W = " ( 0 , l ] x [ 0 , l ] x y (3(rAv))

with metric dr2 + r2dθ2 + r2cg{y)?

Type (+): Fix b > 0 and c > 1. Let f(r) be a smooth function on (0,1]

satisfying /'(r) > 0 for any r > 0, f{r) = rb for small r > 0 and f{r) = 1/2 for

large r < 1. Also, let l(x) be a smooth function on [0,00) satisfying l'(x) > 0

and l"(x) > 0 for any x > 0, l(x) = 1 for 0 < x < 1 - ε and l(x) = x for

x > 1 + ε. Set ft(r, s) = f(r)l(s/f(r)). Then we set

with metric dr2 + r 2d0 2 + r 2 c (ds 2 + Λ2(r, s)dθ 2)."
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Finally we shall put S = {p}, the one-point set, which obviously causes no
loss of generality.

2. Decomposition of 2?

The purpose of this section is to decompose Sf into less-complicated finite
parts, nonoverlapping, except on the boundaries. The parts which cover near
the singular point p must be quasi-isometric to the VF's of Types (±).

We start, according to Hsiang and Pati [6], by looking over the metric g
near p through a resolution of X.

Let the singular point p be at [(1,0, ••• ,0)] e P N (C) . Using the local
coordinates around the point,

[{WQ,WU" ,WN)] •-• (2i, ,zN) = (wi/wor- ,wN/w0),

regard X as a normal surface which is contained in C^ and has the singularity
at the origin. Then we must make a good resolution π: X —• X at the origin to
satisfy the condition that, through the resolution, the local parametrizations
of the standard form can be taken [6, III]. That is, near an arbitrary point
of π~1(0), take a suitable pair, a permutation σ G &N and local coordinates
(u,v); then the map π can be written on the coordinates as follows:

det ("X m i ) φ 0,

detf"1 W l ) φ 0,

^l(0, 0) φ 0,

Zσ(N) =

satisfying that fj(z) — Y^ajnz
En with εn > 1 for 2 < j < N, and moreover,

^1 < ^2 < < w/ ^n (i m i ^ m 2 ^ • !$ m / Such a resolution can be con-
structed by first resolving the singularity and (if necessary) next performing
the quadratic transformations [6, II and III].

Now consider a sufficiently small local coordinate neighborhood (£/, {u,v),
\u\ < Po> \v\ < To) with the standard local parametrization (2.1). Set
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V = U - 7Γ"1 (0). Then let us find the metric less-complicated than and quasi-
isometric to π*g onV. We set

n2 m2

(2.2) n = | t ι n i v m i | , θι = argti n i i;m i,

With the definition of c, we consider +/0 = oo.
Proposition 2.1 (Hsiang and Pati [6, Lemma 3.2]). On V the metric

π*g is quasi-isometric to the metric

(2.3) dr\ + r?d02 + r2c ( d r2 + ^ 2 )

Further we will search for additionally less-complicated ones. Let us make
some preparations. Because (2.3) is a metric, we have,

if fix = 0, then n2 = 1,
if mi = 0, then πι2 — 1.

In fact, for example, if mi = 0, then τr~1(O) ="v-axis" in U and the norm
(defined by (2.3)) of the tangent vector d/d\v\ at (u,0) G £/, t/ 7̂  0, is equal
to |w|n2 l im| v |_o m 2 |^ | m 2 ~ 1 Hence m2 / 1 leads to a contradiction, that is,
its norm is equal to 0. Next, setting

( 2 5 )

we have the following:

Proposition 2.1 holds even if θ 2 is replaced by

(2.6)

In particular, if πirrii φ 0, then Proposition 2.1 still holds
even if θ 2 is replaced by

φ, d > 0,

ψ, d < 0.•-{
Let us prove only (2.6) with d > 0. Setting θ = (d/n^ψ, (2.3) can be
rewritten as follows:

(2.8) dr\ + (1 + c2rfc-l)rl)rldθ\ + r\cdr\ + r
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Since we have, for a sufficiently small ε > 0,

(2.9) |2cr 2 c r 2 dMΘ| < C-^r\cr\dQ\ + ε 2 r 2 c r 2 d θ 2 ,

(2.8) can be dominated from above and below by

( 2 1 0 ) ί / 1 \ 1

dr\ + 11 + M ± i J c 2 r 2 ( c - 1 } r 2 J r2d02 + r2 c {dr2 + (1 ± ε 2 )r 2 dθ 2 } .
This implies (2.6) with d > 0 for sufficiently small r± > 0 and r<2 > 0, which
is obviously sufficient for the proof of (2.6) with d > 0 itself.

Now, observing (2.4)-(2.7), we can obtain the following corollary. That is,
with the definitions:

,9 1 1 x in the case where either the v-axis or the w-axis is the divisor
contained in {/, we set

Φ \p I Φ\ d < 0,

. v in the case where both the v-axis and the u-axis are the di-
visors contained in [/, we set

\ θ = mφ + m i ψ 5 \ M I M " "

w e g e t

Corollary 2.2. On V ίfte metric π*g is quasi-isometric to

(2.13) dr2 + r2d^2 + r 2 c(ds 2 + s 2 dθ 2 ).

As for T Γ " 1 ^ ) from which certain neighborhoods of the intersection points
of the (irreducible) divisors are deleted, the corollary (in the case (2.11)) says
that we can decompose its neighborhood (c π~ι{%?)) into the parts quasi-
isometric to the Ws of Type (—). Note that the indices c fixed in Type (—)
are those of (2.13); they depend only on divisors (not on the choice of U)
and are called the exponents of the divisors [6, III]. On the other hand, the
corollary does not give the desired decomposition of the neighborhoods of the
intersection points; the map (u, υ) »-• (r, θ, s, θ) does not introduce the desired
product structure into them, despite the fact that the metric is of Type (—).
In the following, we will show that they are quasi-isometric to the VΓ's of Type

(+)•
As they are treated similarly, we need only treat the case (2.12) with d > 0.

That is, on our U, both the v-axis and the u-axis are divisors and the index d
is positive. We have c = n2/ni, which is the exponent of the v-axis; note that
πi2/mι is that of the w-axis. Set 6 = m2/mi - n 2 /ni. Now (performing the
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rescale if necessary) we put po = 2, and fix a smooth function f(p) on (0,2]
satisfying f'{p) < 0 for any p > 0, f(p) = 1 on (0,1] and f(p) = (2 - p)pd'mχ

near p = 2. Then, replacing 5 by 5 = τdlnχ/(/?), the map

(2.14) Tiv: (t i ,v)»-(r,M,e)

induces a diffeomorphism from V to

(2.15) {(r,S)|O < r < 2 " % m i , 0 < S < τ*/nιf (τόmι/nιrι'n*)} x Γ,

where T = R2/{(2niπ, 2π), (2mxπ, 0)}. Regarding r0 > 0 as sufficiently large
(by rescaling), we set

(2.16) V = πv 1 ((0, l ]x[0, l ]xΓ).

Then, using the function h(r, s) defined in Type (+), we have
Corollary 2.3. On V the metric π*g is quasi-isometric to

(2.17) dr2 + r2dθ2 + r2c{ds2 + Λ2(r

Froo/. It suffices to prove the corollary for small r > 0, so that f(r) = r6.
Let ε > 0 be the one given in Type (+):

(i) On the part s > (1 + ε)rb. Since p < (1 4- ε ) " m i / d < 1, we have s = s
(given in (2.12)) and h(r,s) = h(r,s) = rbl(sr~b) = s. Hence the corollary
restricted to the part is guaranteed by Corollary 2.2.

(ii) On the part s < (1 + ε)rb. We have p > (1 + ε ) ~ m i / d > 0. Therefore
Corollary 2.2 with (2.11), corresponding to Type (-), asserts that the metric
π*g on the part is quasi-isometric to the metric associated to the divisor
"iί-axis," that is,

(2.18) dr2 + r2dθ2 + r2d{dp2 + dθ 2 ), c = m2/m1.

Here r,0 and θ are those defined in (2.12). Hence it suffices to prove that
(2.17) is quasi-isometric to (2.18). Let us rewrite (2.17):

S rp

ds2= b2r2^b-^F2dr2 + r2b{F')2dp2 + 2br2b-ιFF'drdp.

Since, for a sufficiently small ξ > 0, we have

(2.20) βfcr^FF'drdpI < ^ r 2 ( 6 - ^ F 2 d r 2 + ξ2r2b{F')2dp2,

(2.17) can be dominated from above and below by

( l + fl ± i Λ b2r^-^F2\dr2 +r2dθ2

(2.21) I \ ί V i
+ r2c~ {(1 ± ξ2)(ϊ')2dp2 + r-2bh2(r,r»F(p))dθ2}.
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Here we know that 1 < r~bh(r, rbF(ρ)) < 2 and there exists a constant C > 0

such that -C < F' < -C~ι. Thus (when r > 0 is sufficiently small) (2.17) is

quasi-isometric to (2.18).

Now we can decompose a neighborhood (c %?) of p into the desired parts.

That is, observing (2.16), first, decompose T into \Jj[θ-jiθ+j] x [θ-j,θ+j]

and next decompose V compatibly. Each part is quasi-isometric to the W of

Type (+). Second, decompose the closure of π - 1 (0) — V into polygons Yj and

we get the decomposition of a neighborhod W (c π~λ (3?)) of the closure, each

part of which is quasi-isometric to the (0,1] x S1 x Yj with metric (2.13). By

decomposing 5 1 , we get the decomposition of W, each part of which is quasi-

isometric to the W of Type (—). Thus, a neighborhood (c 3?) of p, which

is diffeomorphic to a neighborhood of π~1(0), can be decomposed desirably

into \Ja Wa. Adding the part M = "the closure of 8? - (Jα VFα", we get the

desired decomposition

(2.22) <T

3. Proof of Assertion B

In this section, we prove Assertion B assuming that the following proposi-

tion is true. The proof of the proposition will be given in the next section.

On each (Wa,g) given in (2.22), consider the self-adjoint Laplacian

(3.1) Aa=d*Ja.

Here da is the exterior derivative acting on functions, smooth on Wa (up to

the boundary dWa), with compact supports. Also d* means the dual of da.

Note that dWa does not contain the singular point p.

Proposition 3.1. Each Aa has the property {BP).

Now, set Xaε — Wa Γ)Xε (see (1.2)). Decompose its boundary into

dXaε = doXaε U d\Xaε,

(3.2) dQXae

and, on X α ε , consider the self-adjoint Laplacian Δ α ε , together with the

boundary conditions of the Dirichlet type on doXaε and of the Neumann

type on dχXaε. If we denote by daε the exterior derivative acting on smooth

functions / on Xaε satisfying f\d0Xaε = 0, we can also write

(3.3) Aaε = d*aedae.
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This obviously has the property (BP). Also, on M, consider the self-adjoint
Laplacian AM of the Neumann type, which has the property {BP) as well.
Then, combined with Proposition 3.1, the following proposition justifies As-
sertion B.

Proposition 3.2. Suppose 0 < ε < εO Then
(1) Ίϊ e-Δ"* <ΊYe- Δ "*,
(2) T r e " Δ e t < Tre~ Δ Λ ί t + £ Q Tre~A-εt.
The proof follows the argument given in [10, Chapter XIV, 14.5 and 14.6].
Proof of (1). Let

(3.4) (0 <) λ0 < λx < T oo, (0 <) μo < μi < ΐ oo

be the eigenvalues (with multiplicities) of Δ α and Aaε respectively. Then we
have only to prove

(3.5) λn < μn

for any n. Let {φm} and {ψm} be the sequences of the orthonormal eigen-
functions corresponding to (3.4) respectively. Moreover, consider the (energy)
integrals,

D(f,g) = (df,dg)Wa, f,gedomda,

Dε(f,g) = (df,dg)Xae, f,ge domd a ε ,

where {df,dg)Wa = fWa df Λ *dg etc. We set £>(/) = D(f,f) etc., for short.

The integral D(f) has the following inequality: for / G dom J α , expanding

/ = Σm=o cmΦm, cm = (/, φm), we have

(3.7)

m=0

In fact, since £>(/, φm) = (/, δdφm) = λ m c m , we have, for any n,

( n \ n n

f - Σ C™<t>™ = D(f) + Σ Σ
m=0 / /=0 m=0

n

(3-8) -2Σ
m=0

ra=0

On the other hand, / G domdα ε can be regarded as / G domdα provided
we define / = 0 on Wa — Xaε. In this sense, we have the implication that
dom daε C dom da.
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Now we can prove (3.5). In setting c m = (τ/>o,0m), (3.7) says

(3.9) λo = λ0 £ c2

m < f ; Xmc2

m < D(φ0) = De{φo) = μo.
m=0 m=0

Thus (3.5) with n = 0 was proved. Next, take

(3.10) / = aoψo + cnψu <*o + «i = 1, (/> <£o) = 0.

That is, setting A = (ψ0, φ0) and B = {ψi,φo)> we put α0 = B(A2 + B 2 ) " 1 / 2

and αi = -A(A2 + β 2 ) " 1 / 2 . (If A = B — 0, α0 and αx can be chosen clearly
to satisfy (3.10).) Then, setting c m = (/, φm), we have

(3.11) m = 1 m = 0

oo oo

λj = Ax ^ <4 < J ] λmc^ < D(f) = De(f) = μoal + μιa\ < μi
m=l m=l

That is, (3.5) with n = 1 was also proved. In order to prove (3.5) generally,
it suffices to find / = αo^o + + anΨn satisfying α§ + + α2 = 1 and
(.Λ Φm) = 0 for 0 < m < n — 1. It is obviously possible.

Proof of (2). Let us gather all of the eigenvalues (with multiplicities)
of Δjvf,Δαε (any a and fixed ε) and arrange them in nondecreasing order,
(0 <) λo < λi < t oo. Also arrange the eigenvalues of Δ e in nondecreas-
ing order, (0 <) μo < μi < ΐ oo. Then it suffices to prove

(3.12) λ n < μ n

for any n. Let {φm} and {^m} be the corresponding orthonormal eigenfunc-
tions respectively. Here 0 m , which is a function on one of M or the Xaε, must
be regarded as a functions on M U (Uα^<*ε) by setting φm = 0 elsewhere.
Next consider the (energy) integrals,

De(f,g) = (df,dg)Xe, /,ff € {/ € C°°(Xe)\f\dXe = 0},
(3.13) DM(f,g) = (df,dg)M, f,geC°°(M),

Daε(f,g) = (df,dg)Xaε, f,ge{fe C°°(Xaε)\ f\d0Xaε = 0}.

Set Dε(f) = De(f,f), etc. Then, for / e C°°{Xε) with f\dXε = 0, we have

(3.14) J£ λ - c - ^ DMW + Σ D " M c - = </'̂ »)
m=0 α
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The proof is similar to that of (3.7). Now setting cm = (ψo, φm), we have

(3.15)

m=0

That is, (3.12) with n = 0 was proved. As for the general case, it can be
proved with a discussion similar to the one following (3.9).

4. Proof of Proposition 3.1

In this section we prove Proposition 3.1. According to (2.22) and our
principle, it suffices to prove the following. The self-adjoint Laplacians Δ on
the W's of Types (±) are defined similarly to (3.1).

Proposition 4.1. Each Δ on W has the property (BP).

Now, fix 0 < R < 1 and consider the self-adjoint Laplacian Δ R on WR =
{{r, • ) € W \ R < r < 1} defined in the same way as (3.3). It has the prop-
erty {BP) and the trace T r e ~ Δ β t increases monotonically when R decreases,
and, moreover, we have Tr e~At = lim^-^o T r e ~ Δ β ί (see (1.3)). Hence Propo-
sition 4.1 can be reduced to the following.

Assertion 4.2. There exists a constant K > 0 such that

(4.1) T r e ~ Δ β ί <KΓ2, 0 < t < ί0, 0 < R < ifo.

We shall introduce a certain lemma. If we assume that it is true, we can
prove the above assertion. First consider the ordinary differential equation
w"{x) + λw{x) = 0, 0 < x < 1, with the boundary conditions of the three
types; the sequences on the right-hand sides denote the eigenvalues in the
cases respectively:

w'(0) = w'{l) = 0 ; (0 =) μ0 < μx < μ2 < ί oo, μn = N 2 ,

(4.2) "(0) = £(*- ( 2 c + 1 ) / 2 ™)(l ) = 0; v0 < i/! < u2 < ΐ oo,

^ ^ 2 = 0; ξ0 < ί i < ζ2 < ΐ oo.

Here c > 1 is the one fixed in Types (±). Note that VQ < 0 < v\ and
ô < 0 < ξι. Second, let (0 =) ηo < ηi < η2 < T oo be the eigenvalues of

the Laplacian of the Neumann type on Y given in Type (—). Third, adding
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ξ0 = 0 to the ξj, j > 1, the zero points of \/XJQ(>/\), we make the sequence,
(0 =) ξo = fl < £2 < * * ί oo Here Jo(x) is the Bessel function of order 0.
Note that \/~XJQ(\/\) has its zero points only on the nonnegative half line on
the real axis [11].

Let us explain briefly why we consider its zero points ζj, j > 1. It is
because we must later consider the boundary value problem,

(4.3)'Xo w"{x) + (X + -±Λ w(x) = 0, (0 <) xo < x < 1,
(4 .3) X O

 V 4X J

(4.3/4 w\xo) = fχ{χ-^

and the singular boundary value problem (4.3)o = lmxCo_+o(4.3):Co, that is,
the problem obtained by making xo j 0; in the latter problem we are in the
limit-circle case. The ξj, j > 1, are the eigenvalues of the latter problem
(4.3)o According to the general expansion theory [10, Chapter III], we will
explain the above somewhat further. The differential equation (4.3)'Xo, with
the conditions wi(l,λ) = 1, wί(l,λ) = 0, W2(l>λ) = 0, wf

2{l,λ) = 1 added,
has the following solutions (λ φ 0, LommeΓs formulas):

(4.4)
tι;2(x, A) = --

where Jo, No are the Bessel and Neumann functions of order 0. Therefore, if
we define, according to [10, (2.1.5)],

= lim - -
(4.5) *°-° L2

X {M(xo,X)No(VX)- r.u/\\\-i

M(xQ,X) = TΓ
No{\/Xxo)

then the eigenvalues of the problems (4.3) l0 and (4.3)o are given as the poles
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of the meromorphic functions (/Xo(λ,0) — /i(λ, —1/2))"1 and

(mo(λ) - mxtλ))-1 - My/λΠy/λJάiyfλ)}-1

respectively. Thus the ξj, j > 1, are the eigenvalues of (4.3)o

Also, the general expansion theory says that, if the eigenvalues of (4.3)a;0

are denoted by £i(xo) < £2(20) < * > then we have

(4.6) limJJ(x0) = ξJ, y > l ,

which will also be a key point of our later discussion.

Now, arranging the eigenvalues of Δ# in nondecreasing order,

(4.7) ( 0 < ) A ! ( i ? ) < A 2 ( i ? ) < . . . T o c ,

we get

Lemma 4.3. (1) In the case of Type (-). Rearranging the elements of

the set {μi + Ύ\J + μk) in nondecreasing order, λi < λ2 < ΐ 00, we have

λn < K{R) for any n.

(2) In the case of Type (+). Fix a (possibly negative) constant a. Then, re-

arranging the elements of the set {μi+μj + ξk + ^ί+α j > 0}ϋ{μi + ξfc + ̂ + α }

in nondecreasing order, λi < λ2 < T °°> w e have λn < Xn(R) for any n.

If we assume the above, we can prove Assertion 4.2 as follows.

Proof of Assertion 4.2. There exists a constant K\ > 0 such that

(4.8) /in^n£n,|n>#l(n-l) 2, fl > 1.

This implies that there exists a constant K^ > 0 such that

(4.9) Σ e " μ n t ' Σ e " " n t ' Σ e ~ ζ n t > Σ e ~ i n t ^ κ * r l / 2 ' o < t < t 0 .
Also we nave K3 > 0 satisfying Σe~ηnt < KSΓ\ 0 < t < t0. These facts

combined with Lemma 4.3 say that T r e ~ Δ β < = ]Γe- λ "( β )* has the estimate

(4.1).

Thus only the proof of Lemma 4.3 remains. Let {φm} and {ipm} be the

orthonormal eigenfunctions corresponding to {μm} and {ηm} respectively.

4.1. Proof of Lemma 4.3(1). Let us consider the differential equation

ARF = AF, F E domΔfi, on W of Type (-). Its solutions are given as

the linear combinations of the functions G(r)φi(θ)ψj(y), where the G are the

solutions of the boundary value problem,

G" + (2c + \)r-ιG' + (Λ - μtr~2 - ηjr^G = 0,

' G{R)=G'(l) = 0.
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Performing the normalization G(r) = r-( 2 c + 1)/ 2/f(r), we get

H" + (λ - qij{r))H = 0, R < r < 1,

(4.11) tf (#) = ^-(r-( 2 c + 1)/ 2/f)(l) = 0,

Let Xijo{R) < Xiji(R) < be the eigenvalues of the problem (4.11). Re-
arrange {Xijk{K)}i,j,k m nondecreasing order and we get the sequence (4.7).
Now, let us consider the problem reduced from (4.11) by replacing q%j{r) by
pi3 = μj+ηj — i/Q ̂  the eigenvalues of this problem, denoted by (4.11)', are writ-
ten as (0 <) Xijo(R) < Xiji{R) < . Then we have Xijk{R) < Xijk{R) - "o
for any i, j and k. The proof is similar to that of Proposition 3.2(1), however,
instead of (3.6), we use

(4.12)' D(f, g) = f {f'g1 + Pijfg} dr - /'(1)<?(1),

(4.12) j R

(4.12)" J5(/, g) = / {f'g1 + ( f t i - !*)/»} dr - /'f
R

for f,ge{f e Cι{[R, 1]) | f{R) = (d/dr)(r-(2 c + 1)/2/)(l) = 0}. Notice that
both D and D are symmetric with respect to /, g and we have 0 < D{f) <
D(f).

Further we have the problem reduced from (4.11)' by replacing R < r < 1
by 0 < r < 1 (and, of course, H(R) = 0 by H(0) = 0); its eigenvalues are the
μi +Vj + vie — vo, 0 < k < oo. We have μ{ H- r\j + v^ — v§ < Xijk{R) for any
i,j and k. The proof is similar to that of Proposition 3.2(1), however, instead
of (3.6) we use both (4.12)7 and (4.12)' with /^ replaced by /0\

Thus the proof of Lemma 4.3(1) is complete.

4.2. Proof of Lemma 4.3(2). Let us consider the differential equation
ΔflF = λF, F E domΔfi, on W of Type (+). Its solutions are given as the
linear combinations of the functions G(r,s)φi(θ)φj(θ), where the G are the
solutions of the boundary value problem,

d2G 1 d2G [ 2c + 1 1 dh ) dG 1 dh dG

dr2 r2c ds2 \ r h dr j dr r2ch ds ds

(4.13) + (λ - μτr-2 - μ3h~2r-2c)G = 0,
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Performing the normalization G(r,s) = r~^2 c + 1^2/ι~1/2i/(r, s), we get

β2H
+

(4.14) =?£

Let λjjo(Λ) < A<ji(i2) < be the eigenvalues of the problem (4.14). Rear-
range {\ijm{R)}i,j,m in nondecreasing order and we get the sequence (4.7).

4.4. (1) There exists a constant a such that, for 0 < r < 1 and 0 < s < 1,

, . , . , ί 2 1 2 c + l r d / ι r 2 / 9 / ι \ r d h \ 1 ^ _

(4.15) | c 2 - - + -Y—h^ ~ W, [Tr) + Y h ^ y2 > a.
r2 /9/ι\2 r2 d2h

(2)

l (dh\2 l d2h l

Ϊ W + 2 ^ - 4

As for (1), it suffices to show that the left side of (4.15) is nonneg-
ative, that is, bounded from below, for small r > 0. Hence we may assume
r > 0 is small, so that f(r) = rb. By noticing Λ(r, s) = rbl(sr~b), the left side
of (4.15) can be rewritten as follows:

Since si'/fl < s/fl = x/l(x) < 1, (1) was proved. On the other hand,
(2) can be shown by using the facts dh/ds = /'(s/"1) < 1 and d2h/ds2 =
/-^"(sΓ1) > 0.

From here, we divide our discussion into two cases, i.e., the case j > 0
(μj > 1/4) and the case j = 0 (μ0 = 0). Set a-a- 1/4.

(I) The case j > 0 (μj > 1/4).

Let us consider the problem reduced from (4.14) by replacing qij(r,s)

by Qij{f) = μ% + (μ.? — l/4)r~2c + 1/4 — £o — ̂ o; denote its eigenvalues by
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R) < . Next, consider the boundary value problem,

(4.16) *y"l-'dry

~ ' C + 7 — ζθ — VQ.

Denote its eigenvalues by λijko{R) < λijki(R) < •••; if we rearrange

{λijki{R)}k,ι in nondecreasing order, the sequence thus obtained is

{λijm{R)}m- Moreover, let us consider the problem (4.16)' reduced from

(4.16) by replacing Pijk{r) by p^fc(l); denote its eigenvalues by Xijko{R) <

λijki{R) < •••• Finally, let us consider the problem (4.16)" reduced from

(4.16)' by replacing R<r<lbγO<r<l (and, of course, z(R) = 0 by

z(0) = 0); its eigenvalues are precisely the μi + μj + ξk + vι — ξo ~ *Ό with I

arbitrary.

These eigenvalues have the following relation:

(4 17) ( 4 ' 1 ? ) / (° ~) βi + μ i + ζk + ^ ~ ζ° ~ ̂  ~
(4.17)" A0 m ( Λ ) < λ ί i

Each inequality can be proved similarly to that of Proposition 3.2(1). The

proof of Lemma 4.3(1) is a more direct model for that of (4.17)'; notice that

μj + ξk - 1/4 > μi + ξo - 1/4 = τr2 + ξ0 - 1/4 > 0. To prove (4.17)", we use

the following integrals instead of (3.6):

for f,g € {f € CX{[R, 1] x [0,1]) | / satisfies the condition (4.12)"}. Both D

and D are symmetric with respect to / and g. Observing Lemma 4.4, we have

0 < D(f) < D(f).

(II) The case j = 0 (μo = 0). Let us consider the problem reduced from

(4.14) by replacing qi0(r, s) by ^(r , s) = μ* - \(dh/ds)2h~2r~2c -1/0; denote

its eigenvalues by Xio{R) < Xn{R) <
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In order to estimate the sequence {λ;m(i?)}m, we consider the following.

Take so > 0 small, so that h(r, s) = f(r) for R < r < 1 and 0 < s < so Giving

our attention to this so > 0, we consider the boundary value problems:

R < r < 1, so < s < 1,

(4.19) d ( H \ t Λ dH

and

R<r<ί, 0 < s < s0,
(4.20)

dH. n. dH. . n
= a s - ( r ' 0 ) = a 7 ( r ' 5 o ) = 0

Gather their eigenvalues and rearrange them in nondecreasing order; denote

the sequence by (0 <) μiO(so,R) < μn(so,R) < . Then the facts that

{dh/ds)2h~2 < s~2 for s > s0 and {dh/ds)2h~2 = 0 for 0 < s < s0 demand

fiim{so,R) < λim(R) for any m. The proof is similar to that of Proposition

3.2(2). Hence, setting fiim{R) = \imSo^oμirn(so,R), we get

(4.21) μιm(R) < λim(R) •

for any m. Moreover, when we consider the problems, k > 0,

wι: •̂ {λ - {μt + ξkr~2c - uo)}w = 0, R < r < 1,

w(R) = ^ ( r - ( 2 c + 1 ) / 2 i ι ; ) ( l ) = 0,

their eigenvalues {βiki{R)}k,ι are rearranged into the nondecreasing sequence

{μim{R)}m> This fact is obviously deduced from (4.6) and the fact that the

eigenvalues of the problem y" + λy = 0, 0 < x < so, with y'(0) = yf{so) — 0

are the μj{s0) — μjSQ2, j > 0.

Next, let us consider the problem (4.22)' reduced from (4.22) by replacing

lkr~2c by ξk; denote its eigenvalues by μiko{R) < μiki{R) < Finally,

consider the problem reduced from (4.22)' by replacing / u < r < l b y O < r < l

(and, of course, w(R) = 0 by w(0) — 0); its eigenvalues are exactly the

βi + ζk + vι — UQ with I arbitrary.
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These eigenvalues have the following relation:

(4 23) (° -* μi + *k +

λ ( Λ ) < λ

Each proof is similar to that of Proposition 3.2(1).
Now Lemma 4.3(2) is a natural consequence following from (4.17), (4.21)

and (4.23).

5. Proof of Assertion A

First of all, according to Hsiang and Pati [6, IV], we will review the method
of introducing a product structure into a neighborhood (c %?} of the singular
point p. Observing (2.22), we take the Wa of Types (±) corresponding to the
Wa and take the quasi-isometries ta;Wa = Wa. Let us make the vector field
ξa on the Wa by rescaling and perturbing the vector field d/dr (however,
the ξa and the d/dr must be quasi-isometric), so that the t^ζa together
produce a smooth vector field ξ on Y = IJWV Moreover, let us denote
by R(x) > 0, x G y, the distance along the flow line of ξ from x to the
singular point p. We may assume (by performing the rescale) that each flow
line extends to the point where R > 1. Then the flow lines and the function
R: Y —> (0, oo) produce a product structure

Here the decomposition

a

is compatible with the structure (5.1), that is, each Wa Π R~x(0,l] has a
natural product structure induced from (5.1). Moreover, by replacing ta(x) =
(r, ) by Ia{x) = (Λ, ), that is, by replacing only the r by the i?, we get
the quasi-isometries

(5.3) Ia - Wa Π i?-1(0,1] cz Wa.

Now, let us start the proof of Assertion A. Because of the Stokes' theorem
and the fact δ* = do, it suffices to prove the following.

Proposition 5.1. For any F € domd and any G E dom<5, there exists
a sequence εn [ 0 such that

lim / FΛ*G = 0.ί
jR-Hεn
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Proof. Considering the structure (5.1), we can write *G = A + dR A J3,
where A and B do not involve dR. Hence we have fR-iu\ FA*G = fR-irε\ FA
A. Now, let *η be the *-operator on R~λ(η) with the metric g restricted and
let us define

(5.4) \\F\\^ε} = f FA *ηF, \\A\\\^} = ί A A *ηA.

For example, regard F\R~1(ε) as a function on R~x(η) naturally; then
7,e} is precisely its L2-norm. Using (5.4), we have

<\\F\\{ε,ε}\\A\\{ε,ε}.(5.5) / FAA
\JR-ι(ε)

And, because of [2, Lemma 1.2] and the fact ||^4||{e εy E 1^(0,1), there exists
a sequence εn j 0 such that

Hence the following lemma asserts that the proposition is true.

Lemma 5.2. There exists a constant K > 0 such that

\\F\\{ε,ε}<K{\\F\\ + \\dF\\}ε1'2

for 0 < ε < 1/2 and F € άomd.

Here | |F | | and | |dF|| are the ZΛnorms of F and dF on %? respectively.
Considering the quasi-isometries (5.3) and providing Fa = Ia*F for F G

), there exists a constant K\ > 0 such that

for 0 < ε < 1 and F E C°°(<£"). Here we define H-Fαllίe.e} in the same way as
(5.4). Hence we have only to prove the following.

Lemma 5.3. There exists a constant K > 0 such that

for 0 < ε < 1/2 and F G dome/.

Here | | F α | | and | |dFα | | mean the L2-norms of Fa and dFa on Wa respec-
tively. The proof follows the argument given in [2, Lemma 2.3].

Proof in the case Wa is of Type (—). To simplify the description, we use
F and W instead of Fa and Wa. Here W is of Type (-). Fix 0 < ε < a.
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Then we have

dF

\{ε,ε}

< ε (2c+l)/2

dr

dr

(5.8)

Γ\\—II
Jε \ \ d r \ \ { h r }

= ε(2c+l)/2 /*α

r-(2c+l)/2

f z α •> 1/2

<ε(2c+l)/2l / r -(2c+l) d r l

1

On the other hand, assuming that the function ||ί1||{i>r}j 1/2
the minimum at r = α, we have

takes

\\F{a)\\{ε,ε} = f̂
1/2

(5.9)

< 2ε(2c+l)/2

= 2ε(2c+l)/2

1 Λ/».l_ 1

l / 2

Hence the following inequality implies the lemma:

(5.10) <
fadF

Jε dr +

Proo/ m Me case Wa is of Type (+). We use F and W instead of Fa and
Wa. Here IV is of Type (+). First of all, we know that the metric on W is
quasi-isometric to

(5.11) dr2 + r2dθ2 + r2c{ds2 + (r5 + s) 2 dθ 2 }.

In fact, there exists a constant C > 0 such that C~ι{rb + s) < Λ(r, s) <
C(rb + s) for 0 < r < 1 and 0 < s < 1. This is a consequence of a straightfor-
ward computation; take ro > 0 so small that /(r) = rb for 0 < r < r0, decom-
pose the region defined by 0 < r < ro into three parts, sf~x < 1 — ε, 1 — ε <
s/" 1 < 1 + ε and 1 + ε < s/"1, and then estimate (rfc + s)(/ι(r, s))" 1 on each
part.
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Therefore it suffices to prove the lemma on W with metric (5.11). Set

b = c — c (> 0). Decompose \\F\\^η εy in the following way:

(5.12)

Then, similarly to (5.8), we have

b + s)F2(ε,θ,s,θ)dθdsdθ

= ίηe+c+1F2(ε,θ,s,θ)dθdsdθ

η2c+1sF2(ε,θ,s,θ)dθdsdθf

r
(5.13)

dF , 2

„ • \ι:
dF J

 2

1 ίa

+ c Jε

a dF ,
—dr
dr

dF]

dr\ 2c Jε

dF\

dr

Also, similarly to (5.9), assuming that the function ||ίΊ|{i,r}i 1/2 < r < 1,

takes the minimum at r = a, we have

II*ΊI2,{

2c+l
ε

(5.14)
<2 ε(2c+l)/2

Λ/2

/•I

I

'

< 2 c + a + 2 ε 2 c + 1 | | F | | 2

Hence the same inequality as (5.10) implies the lemma.

The author would like to thank the referee, who gave him the comment, "It

shouldn't be too difficult to prove d = do for z-forms rather than functions,

as in Cheeger [2]. Since Hsiang and Pati [6] use Cheeger's argument without

verifying d = Jo> your result seems to partially fill that gap in their proof."

However, the assertion d = do for forms (which must be true) seems to be

difficult to prove in the same way as in §5 (or as in [2]). The readers may

have already noticed that [6] did not treat Type(-h), which is certainly a gap

of [6]. Because of the complexity of Type(-h), the above assertion has a subtle

problem and also Hsiang-Pati's argument in [6] needs to be revised (at least we

must treat Type(-h)), which will be discussed elsewhere. Finally the author
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would like to thank the Institute for Advanced Study for their hospitality
during the author's stay there (in 1985-86).
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