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THE TOPOLOGY AND GEOMETRY
OF EMBEDDED SURFACES

OF CONSTANT MEAN CURVATURE

WILLIAM H. MEEKS, III

The mean curvature function H on an oriented surface M in R3 is defined at
a point p in M to be

where Xx(p) and X2(P) a r e t n e principal curvatures of M at p. When H is
constant, M is called a surface of constant mean curvature.

A surface is said to have finite type if it is homeomorphic to a closed surface
with a finite number of points removed. An important problem in classical
differential geometry is the classification of properly embedded finite type
surfaces M of constant mean curvature in R3.

If M is a closed embedded surface of constant mean curvature, then it
follows from Alexandrov [1] that M must be a round sphere. He proved this
theorem with a technique which shows that any embedded closed hypersurface
of Rn which has constant mean curvature is invariant under reflection in a
large number of hyperplanes. The technique used in his proof is known as the
Alexandrov reflection principle. The classical examples of properly embedded
surfaces of finite type with zero mean curvature are the plane, the helicoid, and
the catenoid. Surfaces of zero mean curvature are usually referred to as
minimal surfaces. The remaining classical examples of properly embedded
surfaces of nonzero constant mean curvature of finite type were found in 1841
by Delaunay [5]. The Delaunay surfaces are surfaces of revolution. Recently N.
Kapouleas [11] has constructed several new examples of properly embedded
surfaces of nonzero mean curvature which are homeomorphic to a sphere
punctured in a finite number of points.
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Recently Hoffman and Meeks ([8], [9], [10]) have found examples of prop-
erly embedded minimal surfaces which are homeomorphic to closed surfaces of
positive genus with three points removed. Besides finding new examples of
properly embedded minimal surfaces of finite type, Hoffman and Meeks [8]
have developed a theory to deal with global problems concerning the geometry
of these surfaces. In particular, they obtained results concerning the geometry
of the annular ends of a properly embedded minimal surface M in R3 even
when M does not have finite type. An annular end of M is a properly
embedded annulus A on M which is homeomorphic to Sl X [0,1), where Sl is
a circle.

In this paper we shall study the geometry of the annular ends of a properly
embedded surface M of nonzero constant mean curvature. As a consequence
of this study we shall be able to prove the following theorems.

Theorem 1. If M is a properly embedded surface in R3 with nonzero constant
mean curvature, then M is not homeomorphic to a closed surface with a single
point removed.

Theorem 2. Suppose M is a properly embedded surface in R3 with nonzero
constant mean curvature. If M is homeomorphic to a closed surf ace with 2 points
removed, then M is a bounded distance from some straight line.

Theorem 3. Suppose M is a properly embedded surface of nonzero mean
curvature which is homeomorphic to a closed surface with three points removed.
Then M stays a bounded distance from a plane.

The above theorems are proved by studying stable minimal disks in one of
the complements of M in R3. The curvature estimates for stable minimal
surfaces given by R. Schoen [17] play an essential role in our analysis.

Recently, B. Palmer [16] and A. Silveira [19] independently proved that the
only complete "stable" surfaces of nonzero constant mean curvature are the
round spheres. A simple consequence of this stability theorem is that any
foliation of an open subset of R3 by complete surfaces of a fixed constant
mean curvature consists of parallel planes. This consequence was observed by
Barbosa, Gomes, and Silveira [2]. We prove from their observation and
Theorem 1 that the only foliation of R3 by surfaces, each of which has constant
mean curvature, is by parallel planes.

The paper is divided into four sections. The first section deals with the
geometry of a properly embedded annulus A with mean curvature function
greater than or equal to 1, where A is homeomorphic to Sl X [0,1). We prove
a compactness theorem that shows that if P is a plane, and P Pi A contains a
connected component which is noncompact, then any parallel plane P' which
is sufficiently far from P must intersect A in only compact connected
components. In §2 we show that a compact surface of constant mean curvature
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1 whose boundary is contained in the jc^-plane has x3 coordinate bounded in
norm by 2. In §3 we apply the results of the previous sections to analyze the
geometry of a properly embedded annulus of constant nonzero mean curva-
ture. The main theorems follow directly from these geometric results. In §4 we
apply Theorem 1 to study foliations of R3 where the leaves are surfaces of
constant mean curvature.

The author would like to thank Rob Kusner and the referee for helpful
comments.

1. The geometry of properly embedded annuli with
mean curvature function greater than 1

The following lemma is an immediate consequence of the curvature esti-
mates for stable minimal disks given by R. Schoen [17].

Lemma 1.1. There exists a universal constant C such that the following
statement holds.

Let f: M —> R3 be a stable compact orientable minimal immersion of a surface
in R3 satisfying:

(i) There exists a point p e Mwithf(p) = (0,0,0).
(ii) The tangent space TpM equals the xxx ^coordinate plane.

(iii) / ( 3M) is contained in the complement of the ball Bc = {(x1? JC2, *3) | x\
+ x\ + x\ < C2}.

Then there exists a disk D c M with p e D such that f(D) is a graph of a
function g defined on the disk E = {(x1? JC2, 0) I xl + x\ < 9}, and \g\ < 1.

We use the above lemma to prove the following main result of this section.
Proposition 1.2. Suppose A is a smooth properly embedded annulus in R3

which is homeomorphic to Sl X [0,1) and which has mean curvature which is
greater than or equal to 1 at each point on A. Let C be the universal constant
given in Lemma 1.1. If the distance between parallel planes Px and P2 is greater
than 2C, then either PY Pi A or P2 O A contains connected components which are
all compact.

Proof. First we modify A inside a ball B to obtain a simply-connected
properly embedded surface M such that M Pi (R3 \ B) is contained in A. Let
B be a round closed ball centered at the origin so that 92? is transverse to A
and dA is contained in the interior of B. Let 3f be a collection of pairwise
disjoint embedded compact disks in B where the boundary curves of the disks
in Sf correspond to the boundary curves of the noncompact component W of
A Pi (R3\interior(2?)). Suppose that 3 is chosen so that the surface M = W
U S) is smooth. Note that M is homeomorphic to R2. Alexander duality [7]
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implies that M separates R3 into two closed components with common
boundary M. Let X be that component whose boundary outside of B has
positive mean curvature with respect to the inward pointing normal.

Suppose, for simplicity, that Px and P2 are transverse to A and that each
contains connected components which are noncompact proper curves. Now
choose a parametrization / : R2 -> R3 of M and note that there are properly
embedded arcs al9 a2: [0,1) -> R2 so that f(ax) aPlr\A and f(a2) c P2 n A.
Choose a smooth embedded arc a3 in R2 which joins a^O) and a2(0) and so
that ax U a2 U <x3 is a properly embedded arc (see Figure 1).

FIGURE 1

After a possible rigid motion o f M U ? 1 U P 2 , w e may assume that Pl and
P2 are planes which are equidistant to the jc1jc2-plane. Now choose a ball
BK = {(xvx2,x3)\xl + x\ + x\ < K2} large enough so that BK intersects
Px U P2, and a3\J B <z BK (see Figure 1). Since f~l(BK+2C+16) is compact,
there exists a smooth embedded arc a4 in R 2 \ ( / ~ 1 ( # A : + 2 C + I 6 ) )

 such t n a t

R 2 \ ( a x U a2 U a3 U a4) contains a unique component which is a bounded
disk with a simple closed boundary curve a (see Figure 1).

Let S = {(*!, JC2,0)|JC2 + jcf = (K 4- C + 4)2} and note that 8 and f(o)
are linked in R3. Now modify the metric o n l n ^ t o obtain a new Rieman-
nian metric on X so that dX has positive mean curvature (see [14] for the
construction of such a metric). With respect to this new metric, the work of
Meeks and Yau ([13] and [14]) shows that / (a) is the boundary of a least area
embedded disk E in X. (Actually to apply the theorem of Meeks-Yau one uses
the fact that f(o) is the boundary of a disk in dX.) Since the curve 8 links
/(a) , there exists a point p e S n E.

Since 2 = E n (X\ interior(i?)) is a stable orientable minimal surface in R3

in the flat metric whose boundary is a distance of at least C from />, Lemma
1.1 implies that 2 contains a subdisk F which is a graph over the disk centered
at p in 7^2 of radius 3 and this graph is at most distance 1 from 7^2. Now
choose an orthogonal coordinate system (yl9 y2, y3) for R3 centered at p so
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that 7̂ ,2 is the yx^-coordinate plane. Let Vt = {(yv y2, y3)\yi + yl +
(^3 "" 0 2 = 4} and note that Vt is disjoint from B for t e [-4,4] and F, is
disjoint from F for / = [3,4].

Assertion 1.3. 7%e sphere V3 is contained in X\B.
Proof of Assertion 1.3. Throughout this proof refer to Figure 2. Consider

the solid cylinder C3 = {(j^, j>2> J3) 17i2 + Ĵ 2 < 9} of radius 3. Suppose that
the disk F is represented as a graph of a function g(^x, j;2) and recall that
\g\ < 1. Let W= {(^,^,^3) e C3|j;3 >g(^,^2)} and let t/r = Vt n »F. Note
that £/, = 0 for t < -2 and [/, = Vt for r > 2. If Fr is not contained in X\ B
for some t G [-3,3], then Ut is not contained in X\B for some smallest
t0 e [-3,3]. Since Wt is contained in F, F is disjoint from dX U .5, and

0 for e G (0,1), there exists an interior point q e C/,o such that
t//o O (dX\B) and t//o is contained in X\B. This implies that the mean

curvature of UtQ at q must be greater than or equal to the mean curvature of
dX at q. However, this statement contradicts the observation that the mean
curvature of UtQ at q is 1/2 and the mean curvature of dX at q is at least 1.
This proves the assertion.

f/ro+e n

FIGURE 2

Assertion 1.3 implies that there exists a sphere S of radius 2 in X\ B. Now
continuously translate S away from B and toward the boundary of X until the
translated sphere intersects dX for the first time. As in the proof of Assertion
1.3, a simple comparison of mean curvatures of dX and of the translated
sphere at the common point of contact gives the contradiction which proves
the proposition.
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Remark 1.4. With minor modifications in the proof of Proposition 1.2 one
can prove the following more general result. Suppose that Pl and P2 are two
properly embedded surfaces of distance greater than 2C outside some compact
set. If M is a connected properly embedded annulus homeomorphic to
Sl X [0,1) with mean curvature function at least 1, then M n P1 and M Pi P2

cannot both have noncompact connected components.

2. Boundedness properties for constant mean curvature 1 surfaces

In this section we shall prove that a compact surface of constant mean
curvature whose boundary is contained in a plane must stay close to that
plane. A first step in proving this boundedness theorem is the following
proposition which was proved by Serrin [18] in the case of surfaces.

Proposition 2.1. Suppose Mn c Rn+l is a graph over a compact domain in
the hyperplane {xn+l = 0}. / / M has constant mean curvature 1, then
\\xn + l\M

n\\ < 1. Furthermore, this estimate is sharp for a hemisphere.
Proof. If a graph in Rw+1 lies above {xn+1 = 0}, has boundary in {xn+l =

0}, and has constant mean curvature n (with the appropriate sign convention)
and upper normal Vn+1, then one has

(2.1) A(x" + 1 - vn+1) = (-/i + \A\2)vn+l >0 on M,

(2.2) (xn+l - vn+1) < 0 on 3M.

Therefore one has by the maximum principle that j c w + 1 < ^ w + 1 < l o n the

entire surface.

Proposition 2.2. Suppose M a Rn+l is a compact embedded hypersurface of
constant mean curvature. If the boundary of M is contained in a hyperplane P,
then the maximum distance of M from P is 2.

Proof. Let q e M be a point of maximum distance T from P and let K
be the hyperplane of distance 7 /2 from P which separates P and the point q.
Let Y be the component of M \ K which contains the point q. A straightfor-
ward application of the Alexandrov reflection principle proves that 7 is a
graph over P with boundary in K. Proposition 2.1 implies that the graph Y
which has height 7 /2 actually has height at most 1. Hence T < 2 which proves
the proposition.

Corollary 2.3. If M is a properly embedded connected hypersurface of con-
stant mean curvature with some coordinate function being proper and bounded
from below, then M is a round sphere.
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Proof. Recall that Alexandrov proved that if M is closed, then M is a
round sphere. Suppose M is noncompact and xx\M: M -> R is proper and
bounded from below. Since M is noncompact, we may assume, after a possible
translation of M, that xx\M is nonnegative on M, xx is not bounded from
above, and there exists a point p e M with xx(p) = (0,0,0). Let T e (2, oo)
be a regular value for xx \ M and let MT be the component of JC{" 1[0, T] which
contains /?. Proposition 2.2 shows M r cannot exist. This contradiction proves
the corollary.

In the next lemma we have generalized the situation described for surfaces in
Proposition 2.1 to the case of graphs over closed domains of the plane.
Actually we do not need this more general result to prove our main theorems.
However, we include it here because of some independently interesting ideas
which occur in the proof and which, if suitably generalized, might give an
elementary proof of Proposition 1.2 without the use of Schoen's curvature
estimates for stable minimal disks. In this regard the interested reader might
want to compare the proofs of Lemma 2.4 and Proposition 1.2.

Lemma 2.4. Suppose R is a smooth connected closed region of R2 and M is
the graph of a nonnegative function / : / £ - > R which is zero on dR. If M has
constant mean curvature 1, then f is bounded in norm by 2.

Proof. Let Pt = {(xv x2, t)\xv x2 e R} and suppose, for simplicity, that
Px is transverse to M. Let X be the region under the graph M and bounded by
RUM.

Note that M has mean curvature 4-1 with respect to the inward pointing
normal to X. To prove this observation assume that (0,0,0) is a point in the
interior of R. Consider the sphere Vt = {(xl9 x2, x3) \ x\ + x\ + (x3 - t)1 =
4}. For large positive /, Vt n M = 0 . Since / is nonnegative, there is a largest
t0 e [1, oo) such that Vt n M # 0 . A comparison of mean curvatures at a
point of intersection shows that the mean curvature of VtQ which is an absolute
value 1/2 must have an opposite sign from the sign of the mean curvature of
M at a point in Vto n M with respect to a common normal vector. This means
that the mean curvature of M has the correct sign.

Let W = Px n X and suppose that W contains a component Y and a pair of
interior points r0 and rx of distance greater than or equal to 1. Hence, there are
two parallel lines Lo and Lx in Pl of distance 1 and such that r0 e Lo and
rx G Lv Let Lo and Lx be the lines in the x1jc2-plane obtained from Lo and
Ll9 respectively, by a vertical x3-translation. Furthermore, choose an em-
bedded arc ax: [0,1] -> interior(Y) such that ax n Lo = cc^O) and aY Pi Lx =
ax(l). For t e [0,1] let at(s) = (x^a^s)), x2(a1(s)% t) and let E = U , e [ ( U ] <*r

Let Q be the convex hull of Lo U Lx U Lo U Lx (see Figure 3). Let Jx and J2

denote the closures of the two components of Q \ E.
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M

FIGURE 3

Let L be the line which is equidistant from the lines in { Lo, Lv Lo, Lx} and
let Vn t G (-00, oo), be a continuous parametrization of the spheres of radius 1
with centers on L. For large negative values of t we may assume that Vt c Jx

and for large positive values of / that Vt c J2. The argument given in the proof
of Assertion 1.3 shows that Vt c X for some t0. Now translate Vto vertically
upward until it touches M for the first time. The maximum principle [1] for
surfaces of constant mean curvature applied to a point of contact between Vto

and M shows that Vt must agree on an open set. The unique continuation
property for surfaces of constant mean curvature shows that Mis a sphere.
This contradicts our assumption that M is a graph. We conclude that the
component Y must be contained completely inside of a disk of radius 1 in the
plane Pv This proves that every component of W is compact. The lemma now
follows directly from Proposition 2.1.

3. The main results

Proposition 3.1. Suppose A is a properly embedded annulus of nonzero
constant mean curvature where A is homeomorphic to Sl X [0,1). Then, after a
possible rigid motion of A, the annulus A stays a bounded distance from the
positive xx-axis.
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Proof. After composing A with a homothety of R3, we shall assume that A
has constant mean curvature 1. We first prove the following assertion concern-
ing A.

Assertion 3.2. Suppose (y v y2, y3) is an orthogonal coordinate system for
R3. If yx | A is unbounded from above, then the coordinate function yx \ A is a
proper function on A.

Proof of Assertion 3.2. Assume yx \ A is unbounded and let
{sv s29-'

 m
9 sn, • • • } be a sequence of points on A with y^s^ > i for each

integer /. Proposition 1.2 implies that, after a fixed vertical downward transla-
tion of A, we may assume that yx |(&4) has negative values, every component
of (yr | A)~l(t) is compact for t > 0, and t = 0 is a regular value for yx \ A. Let
A + = (yl\A)~l[0,oo). Proposition 2.2 implies that A+ must have at least 1
noncompact component. Suppose that Y is any smooth noncompact proper
connected domain in A whose boundary consists of simple closed curves in A
and dY n dA = 0 . In this case Y has the property that A \(interior(y))
consists of a single component which is a compact annulus and a collection of
compact disks. Furthermore, the domain Y has the property that it contains a
unique boundary curve which is homotopically nontrivial. It follows from this
description that A + contains a unique noncompact component Eo.

The above discussion implies that for any positive regular value t for 711 A,
(Yx |^4)"1([^, oo)) has a unique noncompact component Et. Let At denote the
noncompact subdomain of A whose boundary is the homotopically nontrivial
boundary curve of Er Since every component of At \ (interior(£,)) is compact,
Proposition 2.2 implies that Yx \At is bounded from below by the constant
t - 2. Hence Yx \ A is proper, which completes the proof of the assertion.

Assume now that the boundary of A is contained in a round ball B centered
at the origin. Choose a sequence of points {Pi," ',pn, " - } on A where
||/?,|| > /. Let Q = { /vil/7,-11} b e ^ e rented set of normalized vectors and let q
be a limit point of the set Q. After a possible rotation of A, we may assume
that q = (1,0,0).

Suppose that A is not a bounded distance from the jcraxis. Since A has one
end and the ^-coordinate is unbounded from above on A, Assertion 3.2
implies that the .^-coordinate is proper. Hence xx \ A must be bounded from
below. Since A is not a bounded distance from the positive x1-axis, we now
conclude that after a possible rotation of A around the xraxis, x3 \ A is proper
and goes to 4- oo at the end of A.

Let R be the radius of a ball B centered at the origin which contains dA.
Since x3\A is proper and bounded from below, there is a regular value
T > R + 10 and a Jordan curve yT in (x3\A)~l(T) which is homotopically
nontrivial in A. From this information it is straightforward to find a plane P
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which satisfies the following properties:
(3.3) P is transverse to A.
(3.4) P is disjoint from yT U B and the positive j
(3.5) The normal vector to P is of the form v/\\v\\ where v = (-e,0,1),

e > 0 .
(3.6) P separates yT and B.
(3.7) The distance from yT to P is greater than 2.
Let (yv y29 y3) be the orthogonal coordinate system on R3 generated by the

ordered set of vectors {vx = v, v2 = (0,1,0), v3 = v2 X v^} and with y3\0) =
P. By construction of the limit point q of g, it follows that the set of numbers
{•Vi(/*i)>" *"» y\(Pn)> * * * } is unbounded from below. Assertion 3.2 implies that
yx\A is proper and goes to -oo at the end of A. It follows that there is a
homotopically nontrivial Jordan curve 8 in X2l([T9 oo)) such that yi(S) is
negative (see Figure 4).

FIGURE 4

The curves dA and 8 form the boundary of a compact annulus A in A and
the boundary of A has negative j^-coordinate. On the other hand
(yx | ̂ 4)~1([0, oo)) is compact, has its boundary contained in the plane y{\0) =
P, and contains points on yT which have distance greater than 2 from the
plane y{\0). This contradicts Proposition 2.2 and shows that x2 \ A and x3 \ A
must be bounded. Since xx\A is bounded from below, the proposition is
proved.

Theorems 1 and 2 follow immediately from Proposition 3.1 and Corollary
2.3. The proof is as follows:

Proof of Theorems 1 and 2. Suppose M is a properly embedded surface of
nonzero constant mean curvature. If M is homeomorphic to a closed surface
with one point removed, then there exists an annular end A of M homeomor-
phic to S1 X [0,1) such that M\ (interior^) is compact. It follows from
Proposition 3.1 that some coordinate function on M is proper and bounded
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from below. However, Corollary 2.3 shows M cannot have a proper coordinate
function bounded from below which proves Theorem 1. If M is homeomorphic
to a closed surface with two points removed, then there exist two pairwise
disjoint annular ends Ax and A2 on M where each annulus is homeomorphic
to S1 X [0,1) and M\ (interior^ U A2)) is compact. Proposition 3.1 implies
that M stays a bounded distance from two rays. If these rays are parallel, then
M stays a bounded distance from a line. However, if the rays are not parallel,
then clearly there is a coordinate function (in some orthogonal coordinate
system) of M which is proper and bounded from below but no such proper
coordinate function exists by Corollary 2.3. This concludes the proof of
Theorem 2.

Using an argument similar to the proof of Theorem 2, we prove Theorem 3.

Proof of Theorem 3. Let Al9 A2, A3 be three pairwise disjoint annular ends
and note that M \ (interior^ U A2 U A3)) is compact. Proposition 3.1 im-
plies that there exist rays Ll9 L2, and L3 such that M stays a bounded
distance from LXU L2U L3. Let vl9 v2, v3 be the inward pointing unit nor-
mals at the end points of Ll9 L2, L3, respectively. The surface M will stay a
bounded distance from a plane if and only if the vector parts vvv2,v3 of
vl9 v2, v3 are coplanar. If vl9 v2, v3 are not coplanar, then there exists a vector w
such that the inner product of w with each of the vectors in {vvv2,v3} is
positive. It follows immediately from this description that orthogonal projec-
tion of M onto a line parallel to w is a proper function that is bounded from
below. The existence of such a proper function contradicts Corollary 3.2, which
proves the theorem.

Remark 3.9. The known surfaces which satisfy the hypotheses of Theorem
2 are the surfaces of revolution found by Delaunay. It is likely that the
Delaunay surfaces are the only possible examples of properly embedded
surfaces of constant mean curvature which are homeomorphic to a closed
surface with two points removed. We conjecture that a noncompact connected
surface of constant mean curvature which is disjoint from two nonparallel
planes must be a surface of revolution. This conjecture together with Theorem
2 would demonstrate the uniqueness of the Delaunay surfaces. More generally,
we conjecture that if M is a properly embedded connected surface of constant
mean curvature which is contained in a half-space of R3, then M will be
invariant under reflection through some plane which is parallel to the boundary
of the half-space. If this conjecture is true, then all surfaces satisfying the
hypotheses of Theorem 3 must be invariant under reflection through a plane.
An example of properly embedded surface with genus 0 and three ends was
recently given by N. Kapouleas. It has the conjectured reflectional symmetry.
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4. Foliations of constant mean curvature

As mentioned in the introduction we shall prove that one cannot foliate R3

with surfaces of (possible varying) constant mean curvature except by parallel
planes. In their theses B. Palmer [16] and A. Silveira [19] proved that the only
stable complete surfaces of constant nonzero mean curvature are spheres. It
follows immediately from their result [2] that one cannot foliate an open set of
R3 by complete surfaces of a fixed nonzero constant mean curvature. We use
this observation to prove that the only foliation of R3 by "soap bubbles" is by
parallel planes.

Theorem 4.1. Suppose F is a C2-foliation of R3 where each leaf of F is a
surface of constant mean curvature. Then F consists entirely of parallel planes.

Proof. Let L be a leaf of F. If L is not proper, then the foliation must
have nontrivial holonomy along some nonsimply-connected leaf L. Clearly, if
the foliation F has nontrivial holonomy, then there is an open set 3? of leaves
of F such that each leaf of this open set contains the leaf L in its closure. Since
F is a C2-foliation, every leaf in L must have the same constant mean
curvature as the leaf L. However, the result in [2] shows that each leaf in S£ is
a flat plane. Since the limit of flat planes is also a flat plane, the leaf L is
simply connected, which gives a contradiction. Hence, every leaf of F must be
proper.

If every leaf of F is simply-connected, then the main theorem in [15] also
implies that every leaf of F is proper. Thus, if every leaf of F is simply-
connected, Theorem 1 shows that every leaf of F must have zero mean
curvature. Since the leaves of a minimal orientable foliation have least area, the
foliation F must consist entirely of planes by [3] or [6].

Suppose now that every leaf of F is proper but some leaf L of F is not
simply-connected. Since L is proper it divides R3 into two components, X and
Y. Since R3 is simply-connected, Van Kampen's theorem [7] implies that one of
these components, say X, has compressible boundary. In other words, the
inclusion of the fundamental group of the boundary of X into the fundamental
group of X has a nontrivial kernel. In particular, Dehn's lemma [13] implies
that there is a Jordan curve y on L which is the boundary of a disk D in X
and where y is homo topically nontrivial in L.

Suppose that such a D is chosen to be in general position with F. Such a
general position disk will have an induced foliation by curves with a finite
number of singularities. A simple innermost circle argument shows, after a
possible new choice of L and y, that the disk D intersects F in a collection of
concentric Jordan curves T = {yt\t e (0,1]} where yx = y, the y, converge to
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3 /4

FIGURE 5

a point as t -> 0, and each yt bounds a unique disk Dt on a leaf Lt of i7 when
t ¥= 1 (see Figure 5).

Since R3 is simply-connected, the foliation F can be oriented by a unit
normal vector field N to F. Once the vector field N has been chosen, the mean
curvature of the leaves of F induce a function H: R3 -> R. Using N it makes
sense to ask whether or not H is increasing or monotonic at a given point in
space. If H is not monotonic at a given point /?, then a simple argument shows
the leaves that pass near p are stable and one easily deduces from [16] and [19]
that the leaves near p are parallel planes. (Note, we are using the fact that the
leaves of F are proper and noncompact and hence no leaf is a round sphere.)
From this discussion one easily deduces that if the earlier chosen leaf L is
minimal (recall L is not a flat plane), then a nearly leaf L, on either side of L,
will have positive mean curvature when considered to be the boundary of the
component R of R3 \ L which is disjoint from L. Fix such a leaf L. Since dR
has positive mean curvature, the remark at the end of §4 in [12] shows that R
is a handlebody. The fact that R is a handlebody implies that there is a
homotopically nontrivial Jordan curve y in dR which is the boundary of a disk
in R. It follows that the earlier chosen disk D can be chosen to be contained in
R. Since the leaf L which contains dD is disjoint from L, the strong half-space
theorem [10] implies that L is not minimal. Thus, after a possible replacement
of L by L we may assume that L has positive mean curvature. After a possible
homothety of R3 we can further assume that the mean curvature of the disks
Dv t e (0, e), is greater than 1 for some fixed positive number e.



552 WILLIAM H. MEEKS, III

Let K be the closure of \Jt<lDt. Since F has no holonomy, each disk Dt

intersects D only in the point set yr It follows that K must be simply-
connected. If K is compact, then y must bound the disk D = (dK)\D which
is contained on L. However, our choice of y was such that y does not bound a
disk on L. It follows that K is a closed subset of R3 which is not a bounded
distance from a round ball B containing D. In particular there exist T e (0, e)
and a point pT^ DT such that the distance from pT to B is greater than 2.
Let P be a plane which separates pT and B and such that the distance from P
to pT is greater than 2. Let C be the closure of the component of (R3 \ P) n Z>r

which contains the point pT. The proof of Proposition 2.2 shows that pT

cannot exist. This contradiction proves the theorem.
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