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NONNEGATIVELY CURVED MANIFOLDS
WITH SOULS OF CODIMENSION 2

GERARD WALSCHAP

J. Cheeger and D. Gromoll have classified the complete noncompact mani-
folds of nonnegative curvature in dimensions < 3 up to isometry (cf. [3]).
This classification is partly based on the fact that for souls S of dimension 1
(respectively codimension 1), the manifold M is a locally isometrically trivial
bundle over S (respectively a flat line bundle over S).

In dimension 4, an additional case may arise, namely dim S = codim S = 2.
This situation is analyzed in §1, where it is shown that when S has codimen-
sion 2, there is a Riemannian submersion IT: M —» S, or else the normal
bundle v(S) of S in M is flat with respect to the induced connection. Those
M for which both conditions occur at the same time are the ones that split
locally isometrically. Some results on total curvature follow. It turns out that
the case where v(S) is not flat is not as rigid as might be expected: in §2,
the standard submersion metric on S3 X51 R2 is rather arbitrarily deformed
while still retaining its nonnegative curvature. Finally, we show that given
a metric of positive curvature on the n-sphere S, any 2-dimensional vector
bundle over S admits a metric of nonnegative curvature with soul isometric
to 5.

1. Basic results

M will denote a complete noncompact manifold of nonnegative curvature
with soul S. The reader is referred to [3] for the basic construction and main
properties of souls, and to [6] for some facts about Riemannian submersions.

Lemma 1.1. Let c: [0,a] —• S be a piecewise smooth curve joining p and
q in 5 , and suppose 7 : [0,00) —• M is a ray originating at p. If u E Mq

denotes the parallel translate 0/7(0) G Mp along c, then t 1—• expq(tu) is a
ray originating at q.

Proof. Since any piecewise smooth curve is a limit of broken geodesies,
we may assume that c is a geodesic, and thus extendable to c: R —> S. Carry
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out the basic soul construction at p, so that M = Ut>o ^
Now c(R) lies in the compact set 5, and is therefore contained in some Ct0,
hence in every Ct for t > t0. By [3, Theorem 1.10], the distance function
5 »-> d(c(s), dCt) is concave. Being bounded from below and defined on all of
R, it must be constant. Consider the parallel field X along c with X(0) = 7(0),
and set cs(t) := expc(5) tX(s). Again by [3, Theorem 1.10], cs is a minimal
geodesic from c(s) to dCt. Since this is true for all t > to, cs is a ray. q.e.d.

Recall that M is diffeomorphic to the normal bundle v(S) of S in M. The
following result was already known to D. Gromoll in the case dimM = 4.

Theorem 1.2. Suppose codimS = 2. Then one of the following holds:
(a) The normal bundle of S is flat (with respect to the induced connection).
(b) There is a Riemannian submersion w: M —• S.
Remark, (a) and (b) are not mutually exclusive. In fact, their intersection

consists precisely of those M which are locally isometrically trivial bundles
over S (cf. 1.4).

Proof of 1.2. Since the fibers of v are 2-dimensional, the reduced holon-
omy group $o(p) of the connection is either trivial or isomorphic to SO(2) =
S1. The trivial case corresponds to (a). Assume then that $o(p) is isomor-
phic to S1 for each p G S. The remaining part of the proof is divided into
several steps. First, notice that every direction in the normal bundle yields
a ray, i.e. given v G ^(5), \\v\\ = 1, t »-• exp(tv) is a ray. Indeed, since M
is noncompact, there is at least one ray emanating from any one point of M.
Fix p G S, and choose v G Mp so that t h-> expp(tv) is a ray. By [3, Theo-
rem 5.1], v E v{S). Since S is totally geodesic in M, a parallel section of v
along a curve will be parallel in M. By 1.1, t »-• exp(^) is a ray for any u
in $o(p)v. Since $o(p) is S1, the result follows. Next, let p G 5, and carry
out the basic soul construction at p. Then S = Co = dCb, and the closure of
Bt(S) equals Ct, where Bt(S) := {q G M\d(q,S) < t}. To see this, consider
a minimal connection 7' from a given q G M — S to S. Then 7 := — 7' is a
ray with 7(^0) = q, where £0 := d(q, S). Let X denote the parallel vector field
along some minimal geodesic c: [0,a] —• 5 from 7(0) to p, with X(0) = 7(0).
Then t »-+ 7(*) := exp*X(a) is a ray at p, 7(^0) G dCto, and by [3, 1.10],
s »-• expc(s) toX(s) is a curve in 3Cto from # to 7(^0)- In particular, q G dCt0.
Thus d'Bto(S) C dCto, *o > 0. This also shows that Co C S. Now assume
g is in S, and choose a minimal geodesic c from p to q. By the argument in
1.1, c(R) is contained in some dCt. Then p = c(0) belongs to dCo H dCt, so
£ = 0. Hence S c <9C0. The inclusion dCt C d i ^ S ) now follows easily.

Finally, we show that exp^: v(S) —> M is a diffeomorphism. Since every
<7 in M has a minimal connection to 5, exp^ is onto. Suppose there are
two minimal connections 7*: [0, *o] —• M from S to q, i = 1,2. This would
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contradict 7i(*o + <$) € dCto+6, since the composite curve 72|[o,t0] *7i|[to,to+«]
is a connection of length to+ 8 from 5 to 71 (to + 6) which can be shortened.
Thus exp^ is 1-1.

To complete the proof of 1.2, recall that if K denotes the connection map
of i/(5), then

((a, b)) := (Ka, Kb) + (TT^O, 7^*6), a, 6 G (TV)*,

defines a metric on J/(5), called the connection metric, such that the projection
7iv: i/(5) —• 5 becomes a Riemannian submersion.

Define TT := TIV o exp"1: M —> S. Then TT is a submersion, and to show TT
is Riemannian, it suffices to establish the following:

(1) exp^* maps the horizontal and vertical subspaces of TIV onto mutually
orthogonal subspaces.

(2) exp^* is isometric on the horizontal subspaces.
So let 0 ^ z G i/(5), Tiv (2) =: p, a G (Ti/)z horizontal, 6 G (TV)* ver-

tical. Since exp is radially isometric, we may assume ((b,Azz)) = 0, where
Az' vv —• (i/p)^ denotes the canonical isomorphism between the fiber through
p and its tangent space at z. Set u := exp^* 6, W := exp^* a, and let 7
denote the ray 7(2) = exp(te/||z||). w determines a variation of 7 through
rays emanating from p, and thus a Jacobi field X along 7, with X(0) =
0, X'(0) = (A^ty/WzW, and X(||z||) = u. Consider the geodesic c: R — 5
with c(0) = Tr̂ â = TT*I(;. c and 7 determine a flat totally geodesic rectan-
gle V(t,s) = expc(tj sW(t), where W is the parallel vector field along c with
W{0) = z/\\z\\. Thus the Jacobi field Y along 7, Y(s) := V*at|0)5 is parallel
along 7. Moreover, by uniqueness of horizontal lifts, ||2||VF(0) = a, so that
w = exp, a = Y(\\z\\). Then \\w\\ = \\Y(\\z\\)\\ = ||F(0)|| = | |^ .a | | = ||a||,
which proves (2).

Finally, since X and Y are Jacobi and Y is parallel, {Xf,Y) - (Yf,X) =
(X',Y) is constant, and (X',Y) = (X',Y)\0 = (A-^^^.a)/!^!! = 0. There-
fore, (X, y) is constant, and (u, iy) = (X, 30|||*|| = ( ^ ^)lo = 0, which proves
(1). q.e.d.

We now examine the submersion case in more detail. For the sake of
simplicity, M and S will be assumed oriented, even though this hypothesis is
often unnecessary. In any case, local results carry through to nonorientable
M, while similar global results can be obtained by considering the orientation
covering.

Denote by J the canonical complex structure on */(5), i.e., JU = V for
(local) oriented orthonormal sections {[/, V} of v. Define vector fields dr,d#
on i/(5) — 5 as follows:

dr\z := Azz/\\zl d#\z := AzJz, z G i/(S) - 5,
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where A is the isomorphism defined in 1.2. (dr, d#, when restricted to a fiber,
are just the standard polar coordinates vector fields.) Let dr and d# denote
the corresponding exp^-related vector fields on M — S, with dual 1-forms dr
and dti. Observe that dr = Vefe, where ds is the distance function from
the soul, while d#, when restricted to a ray originating at 5, is a Jacobi
field Y with initial conditions Y{0) = 0,||y'(0)|| = 1. Moreover, [dr,dt] =
0, and if X is the horizontal lift of X € XS, then [X, dr] = [X, dt) = 0,
since [X,dr] = [X,d#] = 0 in v(S), for the horizontal lift X of X to v(S).
Write Z = Zh + ZV for the orthogonal splitting of Z e XM induced by the
Riemannian submersion TT: M —• S, with Zv tangent to the fiber.

Proposition 1.3. (i) Let Q denote the curvature form ofi/(S), viewed as
a 2-form onS^i.e., Q{X,Y) := (R(X,Y)U,JU) for X,Y eXS, U e IV of
norm 1. IfX,Ye XM are the horizontal lifts of X,Y e XS, then

In particular, if the O'Neill tensor is zero (resp. nonzero) at some point q,
then it is identically zero (resp. nowhere zero) on the fiber through q.

(ii) Set G2 := (d* ,^ ) , so that the fiber metric is dr2 + G2 dti2. // the
O'Neill tensor is nonzero on a fiber, then G is bounded on that fiber. The
intrinsic sectional curvature of a fiber equals the one induced by M,

= ~G Grr.

(iii) Consider v(S) with the connection metric, and replace the standard
flat fiber metric dr2+r2 dd2 by dr2 + (Goexp J 2 dd2. Then exp,,: i/(S) -> M
is an isometry.

Proof. As before, X and X are the horizontal lifts of X G XS to v(S)
and M respectively. Since exp^ preserves the orthogonal splitting,

If R and K denote the curvature tensor and the connection map of v{S), then

R(X,Y)z = -K[X,Y]z,

or equivalently,

[X,Y]V\Z = -AzR(X,Y)z = -n{X,Y)AzJz = -Q{X,Y)do\z.

Applying exp^, to the last equation now yields (i).
By O'Neill's formula and (i),

ffi2(X,Y)G2 = | | | [ X , F ] 1 2 = KX<Y - KXV < KX,Y,

hence G is bounded if fi is nonzero.
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Consider a horizontal u G TM. Since Vudr = 0, we have lu{dr,dr) =
lu{dr,d#) = 0, where lu is the second fundamental form of the fiber with
respect to u; the statement about the curvature of the fiber now follows from
the Gauss equations. Finally, (iii) is implicitly contained in the proof of
1.2. q.e.d.

For any horizontal unit-speed geodesic c: R —• M, T := d# o c is a Jacobi
field along c. Let /j,(t) denote the principal curvature of the fiber through c(t)
with corresponding principal curvature direction G~XT. Thus Scd# = //T (5
is the second fundamental tensor of the fiber), and

Differentiating this equation yields:

Suppose now that v(S) is flat, or equivalently, that the O'Neill tensor is
identically zero. Then T'h = 0, and since T'v = Scd#, we obtain

This in turn implies that /J, = 0. For if <p is an antiderivative of //, then

Thus e^ is concave and bounded from below, hence constant, and /i = 0.
Therefore, the fibers are totally geodesic. Together with the fact that v is
flat, this implies (cf. [9]):

Theorem 1.4. Assume S has codirnension 2. If v(S) is flat and if every
normal direction represents a ray, then M is locally isometrically a product.

One should take care, when dealing with flat normal bundles, to distinguish
them from trivial ones. Of course, if S is topologically a 2-sphere, then v(S)
is trivial whenever it is flat. The converse is not true in general. Consider for
example the free R-action r on S2 x R2 x R given by (q, i/, £o) |-)> {PtQ, eltu,
to + t), where <pt denotes rotation by angle t in S2 about the z-axis, and elt

is rotation by angle t in R2 around the origin. F acts freely by isometries
on the Riemannian product S2 x R2 x R, and there is a unique metric of
nonnegative curvature on M = S2 x R2 x R/F for which the projection
p: S2 x R2 x R —• M becomes a Riemannian submersion (cf. §2). M is
diffeomorphic to S2 x R2, and under this identification, the soul S turns
out to be S2 x 0, while the submersion TT: M —• S becomes the projection
TTI : S2 x R2 —• S2 x 0. Nevertheless, the metric on M is not a Riemannian
product, hence the normal bundle of S is not flat even though it is trivial.
The key obstruction here is that the fibers are not totally geodesic, as one can
easily check. Indeed, one has
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Theorem 1.5. If M4 is a trivial bundle over S, andir: M —• 5 has totally
geodesic fibers, then IT is a locally isometrically trivial fibration.

Together with 1.4, this result immediately implies
Corollary 1.6. Suppose M4 has soul S diffeomorphic to a 2-sphere, and

every direction in i/(5) is a ray direction. Then the following statements are
equivalent:

(i) i/(5) is flat.
(ii) M is diffeomorphic to S x R 2 and it: M —• S has totally geodesic

fibers.
(iii) M — S x P2 isometrically, where P2 is R2 together with some metric

of nonnegative curvature.
To prove 1.5, we need
Lemma 1.7.

(i) div<9# = d#\nG. If d# is divergence-free, then it is a Killing field on
M.

(ii) If v(S) is not flat and TT: M —• S has totally geodesic fibers, then d#
is a Killing field.

Proof of 1.1. If {Xi} is a local orthonormal basis of basic vectors fields,
then

a,3*,3*) + (Vdrd*,dr)

- (da, Vdrdr) - J2(d*,

Assume div d# = 0. Then

(VXid*,Xj) + (VXjd*,Xi) = -{d^Vx.Xjf + (VXjXty) = 0,

( *],d*) = 0,

r + VdrXi) = 0,

>],d*) = 0.

Thus d# is a Killing field. To prove (ii), choose p G S so that Qp / 0.
Since the fibers are totally geodesic, [X,Y]V = -fi(X,F)dtf is Killing on
the fiber through p, implying d#G = 0 on this fiber. But for any basic
X, Xd#G = d#XG = 0, so that d#G = 0 on M. By (i), d# is Killing on M.

Proof of 1.5. If 7T is not locally isometrically trivial, then i/(S) cannot be
flat by 1.4. By 1.7, d# is a Killing field. Fix some positive r, and consider the
set N of points of M at distance r from S. N has nonnegative curvature by
the Gauss equations, is diffeomorphic to 5 x 5 1 , and thus admits a parallel
vector field Z by basic harmonic theory or [3]. Then (Z, d#) is constant, and
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since G = ||<9#|| is also constant on TV, the same must be true for the angle
between Z and d#. Choose p E S so that fip ^ 0, and let q E N D 7r~1(p). If
X, y are basic orthonormal, equation (2.2) in §2 yields:

But 0 = X(Z,d#) = £fi(X,y)G2(F,Z), so that Z±Y on the fiber over p.
Similarly Z_LX, and Z is then vertical on this fiber. Hence Z is vertical
everywhere, and so <9#, being a constant multiple of Z, is a parallel vector
field, contradicting V^ d# ̂  0. Thus n is locally isometrically trivial, q.e.d.

Recall that the total curvature of an oriented complete even-dimensional
manifold M is defined as fM x (if it exists), where x is the Chern-Euler form
of M. When dimM = 2, x = {1/2TT)K (K is the sectional curvature), and
for K > 0, it is known that the total curvature is bounded between 0 and 1
(cf. [4]).

Lemma 1.8. Suppose ( ] / 0 d some p E S. Then the fiber through p has
total curvature 1. In particular, if IT: M —• S has totally geodesic fibers and
is not locally a Riemannian product, then every fiber has total curvature 1.

Proof. By 1.3(ii), G is bounded on the fiber through p. Since r i—• G(r, fl)
is concave and positive, Gr —• 0 as r —• oo. Thus

roo
-Grr\r,#

 dr = l i n l Gr\ = 1,

and the total curvature of the fiber through p is:

If 1 f27r f°°
5 - / tffiber"/ / -Grrdr<M = l, byl.3(ii).
^ ./fiber ™ JO JO

If M is not locally isometrically a product, then fi is nonzero at some p E S
by 1.4. Thus the fiber through p has total curvature 1. Since the fibers
are totally geodesic, they are all isometric to one another (cf. [5]), and the
statement follows, q.e.d.

It is known that the total curvature of any 4-dimensional oriented manifold
of nonnegative curvature exists, and is bounded between 0 and the Euler
characteristic of M (cf. [7]). Assume dimM = 4. Under our additional
assumptions, namely dim 5 = 2 and every normal direction represents a ray,
we can prove a stronger result:

Theorem 1.9. Let /c(p) denote the total curvature of the fiber through
p E 5, /c: S —• [0,1]. Then the total curvature of M 4 equals

I

is

where Ks is the sectional curvature of S.
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Assume furthermore that S is diffeomorphic to the 2-sphere (the only other
possibility is S = flat torusy in which case the total curvature of M is 0), and
that 7T: M —• S has totally geodesic fibers. Then the total curvature of M is
2, unless M = S x P2 isometrically, in which case it is 2/c.

Proof Let Mr := {q e M\d(q, S) < r}. Thus each dMr is diffeomorphic
via exp"1 to the sphere bundle of radius r over 5, and admits the restriction
of V ds = dr as unit normal vector field. ojr and (JJS will denote the volume
forms of dMr and S respectively. The Gauss-Bonnet theorem for manifolds
with boundary then yields:

I
JdldMr

where x(S) is the Euler characteristic of 5, and

9r(q) = (—1/47T ){XiK23 -f- X2K\3 + A3/C12

(cf. [7]). Here the Â  are the principal curvatures of dMr at <?, with principal
curvature direction Ui, and K^ is the sectional curvature of the plane spanned
by Ui and Uj. Now Vudr = 0 for horizontal u, and V(\/G)d^dr = G~2Grd#.
Thus

where Kh(q) is the sectional curvature of the unique horizontal 2-plane con-
tained in (dMr)q. Since the restriction of TT to dMr is a Riemannian submer-
sion, Fubini's theorem yields:

I KhG-xGrujr= f {Ks-\f2G2)G-lGrur
JdMr JdMr I 4 J

Here, / is defined by the equation Q = fu3. Now

r nG2Grc

Ks(JWGrdAujSi

I [ [ ( P
s \Jo J Hfjto) \Jo

by 1.3(ii). Thus
c2n

= 0,lim f f i t * G2Gr<r—00 y s \j0
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and

f X= lim / x = X(S) - -^ lim / K s ( [*GrdAus
JM r^°° JMr 47T2 r^oo Js \JQ )

is
The last statement of the theorem now follows from 1.6.

2. Some metrics on vector bundles over spheres

Theorem 1.4 shows that the flat bundle case is rigid. The standard exam-
ples of nonnegative curvature in the nonflat case are found in [2] and [3]. We
briefly recall this construction for fibers diffeomorphic to R2:

Let G be a Lie group with bi-invariant metric, and let P2 denote R2 to-
gether with a metric of nonnegative curvature. Suppose His a, closed subgroup
of G which acts on P2 by isometries. Then H acts freely on the Riemannian
product GxP2 via (#, m) »-* (gh, /i~1m), and there is a metric of nonnegative
curvature on the quotient M = GXH P2 with respect to which the projection
7T: GxP2 —• M becomes a Riemannian submersion. For example, let G = S3,
and H = S1 acting on R2 by rotations around the origin, so that M is topo-
logically the 2-dimensional vector bundle over S2 associated with the Hopf
fibration. It is straightforward to check that with the above metric, the soul
(= the zero section) of M is isometric to the 2-sphere of constant curvature 4.
The fibers are totally geodesic, and with the notation of §1, G = r/(l-f r2)1/2 ,
while / = 2.

In contrast to the rigidity when v(S) is flat, one has
Theorem 2.1. Consider M = S3 x$i R2 with the standard submersion

metric. Let h denote an arbitrary real valued function with compact support in
M — S and with bounded derivatives up to order 2. Then for small enough e >
0, the metric on M obtained by deforming G to G = G + eh has nonnegative
sectional curvature.

Notice that if one chooses h so that h# ^ 0, then the resulting metric
on M cannot originate from the construction described above, i.e., M is not
isometrically a quotient S3 X51 R2 for any metrics on S3 and R2, since in
such a quotient, d$ must be a Killing field, implying G# — 0.

Before proceeding to the proof of the theorem, we include for future ref-
erence some results that are valid for any 4-dimensional manifold M in the
context of 1.2(b). AT, Y will denote a local oriented orthonormal basis of vector
fields on 5, as well as their horizontal lifts, /z := [XG)/G and A := {YG)/G
are the principal curvatures of the fibers of ?r: M —* S in directions X and Y
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respectively. Then straightforward computations yield

Vxdr = VdrX = 0;

, + \
VYd# = Vd,Y = \d#-

Vdrd# = Vd,dr = G-1Grd#;

Va r3 r = 0;

Va,d* = G-lG*d* - GGrdr - G2ixX - G2XY.

These equalities in turn imply

2R{X,dr)Y = R{X,Y)dT = fG~l

G~\VXX - XX)G + \

= ~G~ Grr'i

(2.3) (R(d#,X)X,Y) = -±

(R(d#,Y)Y,X) = \{{Yf)G2 + 3fG(YG)};

{R{dr,df>)d#,X) = -GdrXG;

(R{dr,d*),d*,Y) = -GdTYG;

(R(X, d#)d*, Y) = G(VXY - XY)G;

Kx,y=Ks-\f
2G2.

Proof of 2.1. It is not hard to see that the only planes of zero cur-
vature in the G-metric are those spanned by dr and a horizontal vector.
Thus, by choosing e small enough, we need only consider expressions of
the form (R{U, V)V, U), where U = X + ctdr + 0d*, V = dr + ̂ X + 6Y +

, a,/?, 7, <S, f e R.
Then

(R(U, V)V, U) = 62KX,Y + (/?7 - tf&Kxf. + (/36)2G2KY^

+ (/3- a$)2G2Khbei + 2% - fa)(R{d4,X)X, Y)

+ 36{0-a<){R{X,Y)dr,dit)

- as)(R(dr,

4, Y) + 2062{R(d#, Y)Y, X).

Set xi := 6, x? := /? — af, £3 := ̂ 7 —f, X4 := @8. Then the above expression
is a quadratic function of x = (xi,X2,13,0:4), which by repeated use of (2.3)
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can be written as Qi(x) + e ^ f f l j where the matrix of Qi is

3r/(l + r2)2 0 0
3r/(l + r2)2 3r2/(l + r2)3 0 0

0 0 r4 / ( l + r2)2 0
0 0 0 r4 /( l +

Qi is positive definite for r / 0, since the upper left corner matrix has positive
trace and determinant. Let 6 > 0 be a lower bound for the eigenvalues of
Qi on C := suppft. The hypotheses on h imply that there is an rj > 0
such that |Q2(z)| < v\\x\\2 on C for all e say, less than 1. Choose 0 < e <
min{e/77,l}. Then (Qi + eQ2){x) > Qi{x) - e\Q2{x)\ > 0. Thus the G-
metric has nonnegative curvature. Uniform boundedness in e is crucial here,
and the reader may want to compare this construction with the one given in
[1]. q.e.d.

The associated bundle construction in [2] shows that any R2-bundle over
Sn admits a metric of nonnegative curvature. Actually, a somewhat stronger
result is true:

Theorem 2.4. Let S denote the n-sphere together with some metric of
positive curvature, and let n: E —• S be a 2-dimensional vector bundle over
S. Then there exists a family of metrics of nonnegative curvature on E, each
of which has soul isometric to S, with totally geodesic fibers.

Proof. For n > 2, E is a trivial bundle (cf. [8]), and one then takes
the isometric product S x P2, where P2 is R2 together with any metric of
nonnegative curvature. Assume then that n = 2 and that E is nontrivial. By
the classification theorem of bundles over spheres, every vector bundle over the
2-sphere is orientable (cf. [8]). Choose an orientation of E. As before, given
a Riemannian connection on E with curvature tensor R, the corresponding
curvature form fi will be identified with foj where uo is the volume form of 5,
and / : S -+ R is given locally by / = n{X,Y)(U,JU), X,Y local oriented
orthonormal vector fields on S, U local section of E with ||J7|| = 1.

Fix any Riemannian connection on E, and let fi denote its curvature form.

and fi = cu). c ^ 0 since E is nontrivial.
We claim there exists a Riemannian connection V on E with curvature

form = fi. To see this, notice that / s(fi - fi) = 0, so that fi = fl + dG, for
some 1-form 0 on S.

Now define V by VXU = VXU + S{X)JU, XeXS, Ue TE, where J is
the canonical complex structure on E. J is parallel with respect to V, and
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it is easily verified that V is a Riemannian connection. If R is the curvature
tensor of V, then

R{X, Y)U = Vx(VyU + S{Y)JU) - Vy (VXU + S{X)JU) - V[XiY]U

= R{X, Y)U + G{X)JVYU + VX(6(F) JU)

+ e(x )e(F) JU - e{Y)jvxu - vy (e(x) JU)
- e{Y)e{x)ju - e([x, Y])JU

= R(X, Y)U + d6(X, Y) JU

Thus the curvature form of V is fi. Now choose a Riemannian connection V
as above, so that Q = cu. Given u e E, let Au denote the canonical vector
space isomorphism between the fiber through u and its tangent space at u.
One has the vector fields dr, d# on E — S given by

dr\u = Auu/\\u\\, d#\u = AuJu, ueE-S.

Next define a Riemannian metric on E as follows: TT: E —• S is to be
a Riemannian submersion, where the horizontal subspaces are those deter-
mined by the connection V, and the metric on the fibers is taken to be
dr2 + G2dtf2, with G := er/{e2 + r2)1/2 for some fixed e > 0 satisfying
e2 < (4/Sc2)mmK3 (Ks = sectional curvature of S). Notice that replacing
the connection V by V, VXU := VXU + dh{X)JU, for h: S -• R, changes
the horizontal distribution and therefore the metric, even though the curva-
ture form remains unchanged. Thus Q = cu actually determines a family of
metrics on E. A standard argument shows that (2.2) and (2.3) remain valid,
with G as above, / = c, /i = A = 0. In particular, the fibers of E are totally
geodesic. To see that E has nonnegative curvature, consider u,w E Eq. If
q e E - S, then there exist local basic X, y, {X, Y} oriented orthonormal,
such that

Simplifying and grouping terms,

(R{u,w)w,u) = (r)6)2KXyY

where the right side is evaluated at q.
Thus (R(u,w)w,u) = <9(r/(5,/?0 - ac,/?7 - rtf,/?<5), where Q: R4 -+ R is

the quadratic function with matrix

A =

KX,Y
(R(X,Y)dr,

0
0

§(R(X,Y)dr,
G2Kdrtda

0
0

d«)

(

0
0

0

0
0
0

G2K
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Now Kx,d# = Ky,d# = \c2G2 > 0, so A is positive definite iff its upper left
corner

\Ks-\c
2G2 \cGG

[ \cGGr -GGrr,

is positive definite. But Kg - \c2G2 > Ks - \c2e2 > 0 by choice of e, while
-GGrr = Se2G2/{e2 + r2)2 > 0. Thus the trace of B is positive. Finally,

detB / 3 c V r 2 \ 3g2 9 c2g6

G2
_ / 3 c
" V 4 £ 2 4 ( e 2 + r 2 ) 3

Therefore B is positive definite, and (R(u, w)w, u) > 0. It is worth mentioning
that the only nontrivial solutions for (R(u,w)w,u) = 0 are span{*/, w} =
span{horizontal vector, 9 r}.

When q E S, one replaces <9r,dtf by an orthonormal basis of S^~. The
matrix A then becomes

Ks

fc
0
0

§c

0
0

0 0
0 0
0 0
0 0

which again is nonnegative.
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