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THE TOPOLOGY OF ISOPARAMETRIC SUBMANIFOLDS

WU-YI HSIANG, RICHARD S. PALAIS & CHUU-LIAN TERNG

Abstract

It has been known since a famous paper of Bott and Samelson that,
using Morse theory, the homology and cohomology of certain homoge-
neous spaces can be computed algorithmically from Dynkin diagram and
multiplicity data. L. Conlon and J. Dadok noted that these spaces are
the orbits of the isotropy representations of symmetric spaces. Recently
the theory of isoparametric hypersurfaces has been generalized to a the-
ory of isoparametric submanifolds of arbitrary codimension in Euclidean
space, and these same orbits turn out to be exactly the homogeneous ex-
amples. Even the nonhomogeneous examples have associated to them
Weyl groups with Dynkin diagrams marked with multiplicities. We
extend and simplify the Bott-Samelson method to compute the homol-
ogy and cohomology of isoparametric submanifolds from their marked
Dynkin diagrams.

0. Introduction

In 1958 Bott and Samelson introduced the concept of variational complete-
ness for isometric group actions [5], and developed powerful Morse theoretic
arguments to compute the homology and cohomology of orbits of variationally
complete actions. As already noted in their paper, the isotropy representa-
tions of symmetric spaces (^-representations) are variationally complete, and
from results of L. Conlon [19], [20] an orthogonal representation is variation-
ally complete if and only if there is a linear subspace which meets every orbit
orthogonally. Such representations (called polar by J. Dadok [21] and repre-
sentations admitting sections by Palais and Terng [40]) have been classified
by Dadok, who showed that, at least as far as orbit structure is concerned,
they are exactly the ^-representations. This class of homogeneous spaces in-
cludes all the flag manifolds and Grassmannians, and because of its important
roles in geometry, topology, and representation theory it has been intensively
studied. We shall see below that isoparametric submanifolds and their focal
manifolds are a geometric generalization of these homogeneous spaces.
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A smooth function / on a space form i\Tn+1(c) is called isoparametric if
A/ and |V/|2 are functions of / . It is easily seen that, for a regular value
a, f~1{a) is a hypersurface of N71^1^) having constant principal curvatures;
such hypersurfaces are called isoparametric. The problem of determining all
isoparametric functions is called the "Levi-Civita Problem" [16] and was first
studied by Levi-Civita [33] for R3, B. Segre [42] for Rn+1, and by E. Cartan
[7] for Hn+l and S n + 1 . In a series of papers [7]-[10] in the late 1930's Cartan
was fascinated by the complexity of the spherical case and its mysterious
connections with Lie theory. This subject was then somehow forgotten until it
was revived by a paper of Nomizu [36] and two remarkable papers of Miinzner
[35]. It is easily seen that a principal orbit of an orthogonal representation
with two-dimensional orbit space is isoparametric in the unit sphere. Such
orthogonal representations were classified by Hsiang and Lawson [28]; they
are exactly the isotropy representations of the symmetric spaces of rank two.
However there are also infinitely many families of isoparametric hypersurfaces
in spheres constructed by Ozeki and Takeuchi [37] and Ferus, Karcher and
Miinzner [23], which are not orbits.

The relation between isoparametric hypersurfaces and symmetric spaces
now seems apparent enough that in retrospect it appears surprising that the
master of both fields missed realizing that it pointed to a more general isopara-
metric theory for arbitrary codimensions. Suppose Mn is a principal orbit of
an orthogonal representation p:G —• O(n+fc), and vo is a normal vector to Mn

in v(M)Xo. Then VQ{QXQ) = dgXo(vo), is a well-defined, G-invariant, global
normal vector field on M. It is obvious that the shape operator A$o(gXo)
is orthogonally conjugate to AVo, so the principal curvatures of Mn in the
directions VQ{X) are constant (i.e., independent of x). But in general the G-
equivariant normal field vo is not parallel in the Riemannian sense when Mn is
regarded as a submanifold of Rn+fc. Indeed the condition that G-equivariant
normal fields are Riemannian parallel is equivalent to the condition that p is
polar [40]. Now let G/K be a symmetric space of rank fc, g = £+^P the Cartan
decomposition, and M = Kx a principal orbit of the isotropy representation
of K on ^3. Then T = v(M)x is a maximal abelian subalgebra (Cartan sub-
algebra) in P̂, and M is a codimension k submanifold of 3̂ which satisfies
the following conditions: (i) its normal bundle is flat (because if-equivariant
normal fields are parallel), and (ii) the principal curvatures with respect to
any parallel normal field are constant. Now for any parallel normal field v the
parallel set, Mv = {x + v(x)\x e M}, is a if-orbit. So the parallel foliation,
{Mv}, is just the orbit foliation of K acting on ^}. Moreover the union of the
singular orbits is exactly the focal set of Mn in the sense of Morse theory.
There is a natural Weyl group W acting on T so that ty/K « T/W, and
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the multiplicity nii is defined for each reflection hyperplane k of W to be the
multiplicity of the focal points x e U\{\J I j\i ^ j}. In fact these multiplici-
ties are also the differences in dimension of a principal orbit and subprincipal
orbits of ^3. Motivated by these examples Terng in a recent paper [44] de-
fined a submanifold Mn C Rn+/c to be isoparametric if it satisfied (i) and
(ii) above. Then it was shown in [44] that these general isoparametric sub-
manifolds and their focal manifolds share many of the geometric properties
of orbits of isotropy representations of symmetric spaces. In particular there
is again a Coxeter group and associated multiplicities (in general different
from the homogeneous examples) that generalizes the fundamental structure
of the Weyl group action on a chosen Cartan sublagebra. Indeed, short of
homogeneity itself, almost every general geometric or topological property of
the principal orbits of isotropy representations of symmetric spaces seem to
hold also for these isoparametric submanifolds.

In this paper we prove in particular that the theorems of Bott and Samelson
(and even many of their Morse theoretic techniques), computing the homology
and cohomology structure of these orbits, carry over to the general isopara-
metric case. Lacking G we must replace certain group theoretic methods of
Bott and Samelson (such as the construction of their iterated sphere bun-
dles Ts) by Riemannian geometric substitutes, but surprisingly this seems to
simplify and clarify the argument. As another consequence we are able to gen-
eralize Borel's theorem on the rational cohomology of G/T to isoparametric
submanifolds with even multiplicities.

This paper is organized as follows: in §1 we recall the definitions and basic
properties of isoparametric submanifolds and in §2 we prove an analogue of
the slice representation theorem for polar representations for general isopara-
metric families, and using this slice theorem and a result of Miinzner we prove
that Coxeter groups associated to an isoparametric submanifold are crystallo-
graphic and also give restrictions on their possible marked Dynkin diagrams.
In §3 we obtain explicitly the marked Dynkin diagrams for all homogeneous
isoparametric submanfolds. In §4 we develop the basic Morse theory we need
for the computation of the homology and cohomology of isoparametric sub-
manifolds, and in §§5 and 6 we carry out this computation.

1. Known properties of isoparametric submanifolds

A compact submanifold Mn of Rn+fc is called isoparametric if its normal
bundle v{M) is flat and has trivial holonomy (the latter is in fact automatic),
and if given a parallel section v of ^(M), the principal curvatures of M at x
in the direction v[x) are independent of x. Below we develop some notations
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and state certain properties of M which are proved in [44]. Without loss of
generality, we can assume M is full, i.e., not included in any proper affine
subspace of Rn+fc.

1.1. M is included in a standard sphere of Rn+k. Hence we may assume
that M is contained in the unit sphere centered at the origin in Rn+/c, so
that all the affine normal planes (x + i/(M)x), x G M, are linear subspaces of
Rn+k. Since the holonomy of i/(M) is trivial, for each x, x' in M we have a
canonical parallel translation map T[x,x>:v{M)x —• v(M)x>.

1.2. TM has a canonical splitting as the orthogonal direct sum of p
subbundles E%, each of which is integrable, say of fiber dimension m ,̂ and
has associated to it a canonical parallel normal field V{ (the iih curvature
normal vector). These are related and in fact characterized by the following
fact: the set {Av} of shape operators, v G v{M)x, is a commuting family
of self-adjoint operators on TMX and the E{(x) are the common eigenspaces
with corresponding eigenvalues (v,Vi(x)), i.e., the shape operator Av is given
by YHvivi)id-Ei- These E^s are called the curvature distributions of M and
the m '̂s are called the multiplicities of M.

1.3. The leaf Si(x) of the integrable subbundle E{ through x G M is a
standard mi dimensional sphere in Rn+fc (centered at x + {vi(x)/(vi,Vi))).

1.4. In each affine normal plane x + v(M)x we have p linear hyperplanes
/i(z), • • • ,/p(x); namely l{(x) is the linear hyperplane of x + v(M)x orthog-
onal to the curvature normal V{(x). In fact (x + vo) G ^(x) if and only if
(vo,Vi{x)) = 1. Since the parallel translation Ux,x' is orthogonal and maps
Vi(x) to Vi(z'), it maps ^(x) to ^(z'). Let Y:i/{M) -• Rn+* be the normal
bundle map (i.e., y(v) = z+v for v G ̂ (M)^) and C(F) the set of all singular
points of Y. Then the set T oi focal points of M is by definition Y(C(Y)). T
intersects (x + ^(M)^) in the union of the hyperplanes /i(x), • • • ,/p(z), and

1.5. The reflections i?f of x + v(M)x in the hyperplanes k{x) permute
these hyperplanes; Rf(lj(x)) = lpi^{x) (pl G Sp, the symmetric group on
p elements), and vi(z), • • • , vp(x) spans J/(M)X . Thus the group Wx gener-
ated by these reflections is a finite Coxeter group of rank A:, and we have a
faithful representation p:Wx —• Sp with p{Rf) = pl. The curvature normal
vectors v3 (x) are a root system for Wx. Moreover the parallel translation map
Rx,xr'V{M)x —• i/(M)a;/ conjugates VFX to VFX', so we have associated to M
a well-defined Coxeter group W. The multiplicities rrii are invariant under
W (in the sense that rrii = mp3^). It follows that to an isoparametric sub-
manifold M of codimension k we can associate a well-defined marked Dynkin
diagram with k vertices, namely the Dynkin diagram of W marked with the
multiplicities rrii.
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1.6. The Coxeter group W acts freely on M as a group of diffeomor-
phisms. The reflection Ri of W corresponds to the diffeomorphism <pi of M,
which maps x G M to xf = <Pi(x), where x' is the antipodal point to x on the
sphere S»(x) (the leaf of Ei through x). Moreover <p*{Ej) = -Eyyj.

1.7. Let U be a connected component of the complement of the union of
the hyperplanes U(x) in (x + i/(M)x). Then its closure U is a simplicial cone,
and a fundamental domain or Weyl chamber for Wx, i.e., each Wx orbit meets
U in exactly one point. For each simplex a of U, we define the following:

(a) = the orthogonal complement of V(a) in (x + J / ( M )x),

Wj? = the subgroup of Wx generated by the Rj with j G J(x, a),

Ax = the Weyl chamber containing x.

1.8. Let q G (x+i/(M)x). Then <? is W-regular if and only if q is nonfocal
(i.e., q is not in any Z»(x)). Moreover if q G o then its isotropy subgroup Wx

is equal to Wx.

1.9. Let v be a parallel normal field such that v(xo) = vo and q = Xo+t>o
is a point on a simplex a of a Weyl chamber. Then Mv = {x + v(x)|x G M}
is a smooth (n — m j dimensional submanifold of Rn+fc called the parallel
manifold of M through q, and it is also denoted by Mq. In particular if q
belongs to a (k — l)-simplex o C U then m^ = mt-, and dim(Mg) = n — m^. In
general Mg intersects Rfc = (xo + v{M)XQ) in the Weyl group orbit W q. The
set {Mq\q G AXo} is a singular foliation of Rn+k with R^/VT = AIO as leaf
space. This foliation is called the parallel foliation or isoparametric foliation
defined by M. Moreover the map Tiv: M —• Mv defined by IIv(x) = x + v(x)
is a submersion. If q is W-regular then Mv is isoparametric and Uv is a
diffeomorphism.

1.10. Let i*i, • • • , Ufc be a set of generators of the ring of J^-invariant
polynomials on Rk = (xo + ^(Af)^). Then there is a unique isopara-
metric polynomial map (Cartan polynomial) f:Rn+k —> Rk extending u =
(wi, • • • ,Ufc) on Rfc, and the level sets of / are precisely the parallel manifolds
of M, i.e., the isoparametric foliation defined by M is {f~1(a)\a G Rk}. (A
map / = (/x, • • • , fk) is called isoparametric if A/» and (A/», A/,-) are func-
tions of / and if [V/i, V/j] is a linear combination of V / i , • • • , Vfk for all
z,y.) Hence if v and v; are two parallel normal fields on M such that MVC\MV>
is not empty then Mv = Mv>, i.e., there is a unique manifold Mq parallel to
M through any q in
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1.11. It follows easily from the Gauss equations that the curvature ten-
sor of M can be written in terms of the 2£t-'s and the vt-'s. In fact we have
/\2(TM) = 0 { ^ i A Ej\i < j}, and the Riemann tensor £, the Ricci tensor
Ric, and the scalar curvature R are given as follows:

Ric = y^(^i, H — Vi)idEi, where H =

Since the normal bundle i/(M) is trivial and TM = 0 £ ^ , we have the fol-
lowing formula for the Stiefel-Whitney classes:

1.12. M is called irreducible if it cannot be written as a product of
two lower dimensional isoparametric submanifolds. M is irreducible if and
only if the associated Coxeter group W of M is irreducible and we have the
following decomposition theorem: every isoparametric submanifold can be
written uniquely (except for order) as the product of irreducible ones.

1.13. An orthogonal representation p of a compact Lie group G is called
polar if the normal plane to a principal orbit meets every orbit orthogonally.
It is proved in [40] that the homogeneous isoparametric submanifolds are
precisely the principal orbits of polar representations, and in fact they are
principal orbits of isotropy representations of symmetric spaces (the latter
always being polar). Moreover in this case the normal plane through x is
just the maximal abelian subalgebra through x and the associated Coxeter
groups and Weyl chambers are the standard ones for the symmetric space
[25]. The isoparametric foliation {Mq\q G A^} is the orbit foliation, Ax is the
orbit space, the simplicial decomposition of Ax is just the orbit type decom-
position, and the rrii are the differences of dimensions between principal and
subprincipal orbits. The submersion Uv: Mx —• My, with y = x + v(x), is the
equivariant fibration Ky/Kx —• Kx —• Ky. Hence following the convention
for symmetric spaces, we will say that a full isoparametric submanifold of
codimension k has rank k.

1.14. Many nonhomogeneous isoparametric submanifolds were con-
structed from representations of the Clifford algebra by Ferus, Karcher and
Miinzner (see [23] for details). Let (Po, * • • , Pm) be a "Clifford system" on R2k,
i.e., the P '̂s are symmetric operators on R2k such that PiPj + PjPi = 26ijl.
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And let g: R2k —> R be the degree 4 polynomial

Then M = g~l{c) fl S2k~l is isoparametric for any regular value c of #, with
B2 (dihedral group of 8 elements) as the Coxeter group, with multiplicities
mi = m and rri2 = k — m — 1, and f(x) = ((x,x),g(x)) is an isoparametric
polynomial map for M. Most of these examples are nonhomogeneous.

2. The Slice Theorem and determination of possible m^'s

If V is a polar representation of G, then for any v E V the "slice repre-
sentation" of Gv on the normal plane to Gv at v is also polar [21, Theorem
3]. This allows one to study polar representations inductively. In this section
we will first give an analogue for isoparametric submanifolds of the above
slice representation theorem, which similarly provides an inductive method
for proving many of our results. Using this inductive method and the results
about codimension one isoparametric hypersurfaces in spheres (i.e., rank 2
isoparametric submanifolds) obtained by Miinzner [35] and Abresch [1], we
will prove that the associated Coxeter groups of isoparametric submanifolds
are crystallographic (i.e., Weyl groups) and we will also give some restriction
on their possible multiplicities.

2.1. Slice Theorem. We use the same notations as in 1.7 and 1.9, put
%o = (xo + v(xo)) E a, and let NXo,v denote the fiber of the submersion
UV:M-+MV through xo- Then

(i) NXQiV is an ma-dimensional isoparametric submanifold of the (ra<j+fc)-
dimensional Euclidean space v(Mv)x0. In fact NXOiV C (x0 + rj(xo,a)) and is
of rank (k — dim(a)).

(ii) The normal plane to NXo,v in {xo + r}(xo,<T)) at x0 is (x0 + £(a)), the
associated Coxeter group ofNXQyV is Way and the reflection hyperplanes ofWa

are {lj{xo) n {x0 + £((r))\j e I(xo,a)} with multiplicities rrij.

(iii) Ifv* is another parallel normal field such that (xo + v*(xo)) E a, then
NXo,v = NXQiV*, so we may also denote it by NXQ,G.

(iv) If y E NXOf(T, then V(a) C v(M)y, and the normal plane to NXQ^ at y
in v{Mv)Xo is equal to v{M)y.

(v) ifyeM and (x0 - y) E v(Mv)Xo then (x0 - y) E v(M)y.

(vi) M fl v{Mv)Xo = \J{NXjt<r\xi E W • x 0 } , which has \W\/\Wa\ connected
components, and NXji(r is parallel to NXQi(T in v(Mv)XQ through x\.
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Proof. Let X: M -* Rn+fc be the inclusion map of M. Then Ilv=X + v,
and

(*) dHv = dX + dv =

Since j G /(<r, x) if and only if 1 — (v,Vj) = 0, Hv is submersion. Then the
fiber NXo,v = I I " 1 ^ ) is a submanifold of dimension mG. Now because

T(Mv)a0 = Q{Ej{x)\j is not in J(x,a)},

;(*)li € /(*, a)} 0 i/

for all x G NXOiV, the fixed plane T(Mv)s0 is always normal to NXOyV. Hence
NXo,v C (v(Mv)XQ), and @{2£t|* € 7(xo ,a)} is integrable with NXQiO. as the
leaf through x0 and (iii) and (iv) follow. Moreover because the second funda-
mental form of NXOiV in the direction n G V{a) is zero and the normal bundle
of NXo,v is flat it follows that NXOiV C {xo + rf(xo,<r)). Then (i) and (ii) follow
from equation (*) and the fact that M is isoparametric.

We will prove (v) and (vi) by using 1.10. Since NXo,v is isoparametric in
<;(&) = v(Mv)XQ and y G f(a), there is a parallel normal field u on NXo,v
in $(cr) and x\ in NXQiV such that N = {x + w(x)|x G -/VXOjV} is the parallel
manifold of NXOiV in ((a) through y = x\ + w(xi). By (iv), u(xi) G
henceyGVT-xi and i/(M)Xl = i/(M)y. Since xi G iVXOjV, ( x i - x 0 ) G ̂ (
so xo G v{M)Xl = v(M)y, which implies that (xo — y) G v{M)y. Then (vi)
follows from the fact that y EW - x\ and xi G NXo,v. q.e.d.

Miinzner showed that the number p of distinct principal curvatures of an
isoparametric hypersurface Mn in S71*1 must be 1,2,3,4 or 6. Viewing Mn

as a rank 2 isoparametric submanifold in R n + 2 we can restate his result as
follows:

2.2. Theorem [35]. If Mn C 5 n + 1 C R n + 2 is isoparametric, then the
angle between any two distinct reflection lines of the associated Coxeter group
W on R2 is multiple of ir/p, where p = 1,2,3,4, or 6. Equivalently, W must
be one of the following Coxeter groups: A\^A\ x J4I ,J42, .02J or Gi.

A Coxeter group W is called crystallographic (or a Weyl group) if the angle
between any two of its reflection hyperplanes is TT/P, where p = 1,2,3,4, or 6.
So combining 2.1 and 2.2 we have:

2.3. Corollary. The Coxeter group associated to an isoparametric sub-
manifold is crystallographic.
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Using 1.13 we have
2.4. Corollary. The associated Coxeter group of an irreducible isopara-

metric submanifold must be one of Ak (fc > 1), Bk (k > 2), Dk (k > 4), E6,
E7,ES,F4 orG2.

Next we give some restrictions on the possible multiplicities rrii for various
Weyl groups. The first result of this type, proved by E. Cartan, can be
formulated in our setting as follows:

2.5. Theorem {Cartan). The only possible marked Dynkin diagram for
an isoparametric submanifold with A2 as the associated Coxeter group is

where m € {1,2,4,8}.
Using the delicate cohomology theory developed by Miinzner for isopara-

metric hypersurfaces in spheres, Miinzner and Abresch obtained restrictions
on the ra^'s for the case of B2 and G2.

2.6. Theorem [35], [1]. Suppose Mn C Rn+2 is isoparametric. Then

iS)H
m\ 7722 ^
o=o, mi < m2,

is the marked Dynkin diagram of M, then (rai,ra2) must satisfy one of the
following conditions:

(a) 2k divides (mi + m2 4-1), where 2k = min{2<7|mi < 2a, a G N},
(b) if mi is a power of 2, then 2m\ divides (m2 + 1) or 3mi = 2(m2 + 1),
(ii) if

is the marked Dynkin diagram of M, then mi = m2 G {1,2}.
Suppose Mn C Rn+fc is full and isoparametric with Weyl group W,

{h(xo),-m Jk{%o)}', is a simple root system for W, A is the Weyl cham-
ber of W in v{M)Xo containing x0, and dA C U{Zj(xo)|l < j < k}. Let
a denote the (k — 2)-simplex of A determined by the intersection of two
hyperplanes li{x0) and IJ{XQ), i ^ j . Then by 2.1(ii) NXOi(T is an isopara-
metric submanifold of rank two with Wa as the associated Weyl group, and
h{xo) fl {xo + £(z0,a))i lj(xo) n (xo + £(£o5 <?)) form a simple root system for
WG with multiplicities m* and rrij. Then 2.1, 2.5, and 2.6 will give us some im-
mediate restrictions on the m / s . To obtain further such restrictions we need
the following cohomology theorem, which is a direct algebraic consequence of
Theorem 7.14.

2.7. Theorem. Suppose Mn C R n + 3 is isoparametric with the marked
Dynkin diagram

8 8 8
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and Zi(zo), h{xo), hi^o) form a simple root system for As such that the angle
between l\ and I2 is n/S. Let a be a 1-simplex contained in l\(0:0)0/2(^0)? o,nd
let q € o\ Then the parallel manifold Mq to M through q is simply connected
and its cohomology ring is

JT(M f l ,Z2) = Z2[a]/(a4), deg(a) = 8.

However there is the following theorem of Toda:
2.8. Theorem [43]. There is no simply connected topological space X

such that H*(X, Z2) = Z2[a]/(a4) unless the degree of a is 2 or 4.
2.9. Corollary. There is no isoparametric submanifold with the marked

Dynkin diagram

8 8 8

and hence there is no isoparametric submanifold whose marked Dynkin dia-
gram contains a subdiagram of the above form.

Then it follows from 2.1, 2.4, 2.5, 2.6, and 2.9 that we have:
2.10. Theorem. The possible marked Dynkin diagrams of an irreducible

isoparametric submanifold of codimension k > 3 are as follows:

Ak:

Bk:

m m m m

Tfl\

m e {1,2,4}

mi = 1, 7712 is arbitrary

mi = 2, ra2 = 2, or 2r + 1 (r > 0)
mi = 4, m2 = 1,5, or 4r + 3 (r > 0)
k = 3, mi = 8, m2 = 1,3,7,11, or

Sr + 7 (r > 0)

Ek:

F4:

m
O

7TOi 1712

•3—<? fc = 6,7,8, m e {1,2,4}

mi = 1, m2 € {1,2,4,8}, or

mi = m2 = 2.

2.11. Corollary. If M is irreducible, fc > 2, and all the rrij's are even,
then mi = m2 G {2,4,8}.
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3. Marked Dynkin diagrams
of the homogeneous isoparametric submanifolds

The orbit geometry of the adjoint representation of a compact Lie group G
on its Lie algebra g plays a central role in Lie Theory. The key to the under-
standing of this orbital geometry is the maximal torus theorem of E. Cartan.
Let T be a maximal torus of G, t its Lie algebra (a Cartan subalgebra) and
W = N(T)/T the Weyl group of G. Then (i) the principal orbit type is G/T,
(ii) t is the fixed point set of T in g, and t intersects every G-orbit orthogo-
nally, (iii) g/G « t/W and (W, t) is a crystallographic group. In the setting of
symmetric spaces, the above adjoint representations are special cases of the
isotropy representations of symmetric spaces. Let M = G/K be a symmetric
space, g and £ the Lie algebras of G and K respectively, and 3̂ the orthogo-
nal complement of ^ in g. If a is a maximal abelian subalgebra of g contained
in ^3, then as was already known to Cartan: (i) a intersects all if-orbits in
93 orthogonally, (ii) there is a crystallographic group W = N(a)/Z(a), and
VP/K « a/W. These principal if-orbits in ty are isoparametric and in fact
the only homogeneous isoparametric submanifolds (see 1.13). The general
isoparametric foliation (see 1.9) is a geometrization of these orbital foliations.
As noted in 1.14 there are many examples of non-orbital isoparametric foli-
ations in the rank 2 case [37], [23]. Nevertheless the above orbital foliations
of (if, 93) provide the great majority of known examples and therefore it is
useful to have explicit knowledge of their geometric characteristics, both for
the study of the geometry of isoparametric foliations and for various specific
applications of such foliations [24], [26], [27], [28], [41].

From the well-known classification of symmetric spaces [25], it is easy to
write down explicitly the isotropy representation (if, 3̂) of a symmetric space
G/K. Using 1.13, we note that the Weyl group of the principal if-orbits,
as an isoparametric submanifold, is just the Weyl group of the symmetric
space G/K, and the multiplicities are the differences in dimensions between
a principal orbit and subprincipal orbits in (if, ^3). Hence it is not difficult
to obtain the marked Dynkin diagram for these homogeneous isoparametric
submanifolds. Below we will write down the results of these calculations,
assuming k > 2. For convenience we divide the pairs (G, if) into five families,
which we discuss separately.

3.1. Adjoint orbits. For the adjoint representation of a compact con-
nected Lie group, (G,g), all multiplicities are equal to 2, the principal orbit
type is the flag manifold G/T, and the collection of focal manifolds are exactly
the homogeneous spaces (partial flags) G/C/, where U runs through all conju-
gacy classes of connected, maximal rank subgroups of G with nondiscrete cen-
ter. Let G -» EG -> SG be the universal G-bundle and G/U -* BU -+ BG
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be the associated G/£/-bundle. Then one has the following well-known results
of A. Borel [3] on the rational cohomology of classifying spaces and homoge-
neous spaces:

(i) H*(BG) « H*{BT)W(°\ the ring of VF(G)-invariant polynomials,
which is again a free algebra.

(ii) H*{G/U) « H*{BU)/(H+{BG)) « H*(BT)WM/(H+(BT)WW),
where (H+(BG)) and (H+(BT)W(°)) denote the ideals generated by homo-
geneous elements of positive degree in H*(BG) « H*(BT)W^G\ One of our
goals in this paper is a generalization of these results of Borel to include the
case of the rational cohomology of leaves of isoparametric foliations with even
multiplicities (cf. 6.12 and 6.14). However our technique for proving these
results comes from Riemannian geometry, and is much closer to that of Bott
and Samelson [5], than to that of Borel.

3.2. Uniform multiplicity 1. To each simple compact Lie algebra g,
there exists a unique conjugacy class of involutive automorphisms of g which
maps each root a to —a. The corresponding symmetric space G/K has the
same rank and Weyl group as G. Moreover

dim K = - (dim G - rank G), dim(̂ P) = - (dim G + rank G),

and the principal orbit type of (if, 3̂) is K/Z^ with multiplicities uniformly
equal to 1. We list them as follows:

K

SO(& + 1) ±k{k + 3) S2pk+1-1

SO(2fc + l) S(O(fc)xO(fc + l)) fc(fc-hl)

Sp(fe)

SO(2fc) S(O(fc) x Q(AQ) k2

G2 SO(4) 8 o o

F4 Sp(3) x Sp(l) /Z 2 28 o=>o o o

Ee Sp(4)/Z2 42 i

E7 SU(8)/Z4 70

Spin(16)/Z2 128
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3.3. Ak-type. There are the following two additional cases of orbital
isoparametric foliations with Weyl groups of type A^:

G

SU(2fc + 2)

Ee

K

Sp(fc +

F4

•1)

dim*P

2Jfc2 + 3Jfc

0

26

(1

A 2 -
1

i O

1o o-

'k+1 -1

—o • • • cx=o

«^=o o

The marked Dynkin diagrams of these two cases are respectively:

8 8

The principal orbit type for the first case is Sp(fc + 1)/Sp(l)fc+1 and for the
second is 1<4/Spin(8).

3.4. F4-type. There are the following three additional cases of orbital
isoparametric foliations with Weyl group of type F4:

G

E6

E7

E8

K

SU(6) x Sp(l)/Z2

Spin(12) x Sp(l)/Za

E7 x Sp(l)/Za

dim ̂ 3

40 o

64 o

110 o

1

o

Ci o o

P)
1

o©Ho

o©Ho

where (8)H denotes tensoring over the quaternions. The marked Dynkin dia-
grams of these three cases are respectively:

1

1
0—

1

1

1
—0—

1

2

4
= = X >

8

2

4
—O

8
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And the principal isotropy subgroups H of the above representations (if,
are respectively:

SU(6) >

Spin(12)

E7xl

K

< Sp(l)/Za

x Sp(l)/Z2

1

zl
zl

H

% x T2

xSp(l)3

x Spin(8)

3.5. Bk-type. Finally we list all the additional cases of orbital isopara-
metric foliations whose Weyl groups are of type Bk with k > 6:

K

S0(2/c +
Pk ®R Pk+m

SU(2A; + m) S(U(fc) xU(Hm)) I 1

Sp(2A: + m) Sp(fc) x Sp(A: + m) vk <8>H

SO(4* +

Spin(lO) x U(l)/Z2 C^i JR

E7 EQ x U(l)/Z3 C^i JR

where D(K,%i) denotes the marked Dynkin diagram for the principal if-orbit,
Pk = (O(fc),Rfc), pk = (U(fc),Cfc) and vk = (Sp(fc),H/c) are respectively the
standard representations of O(A), U(fc) and Sp(fc), [*]R denotes the underlying
real representation of the complex representation *, and /\2 and S2 denote
respectively the second exterior and second symmetric products.

3.6. Open problems. If we compare the above results on orbital
isoparametric foliations with the restrictions of Theorem 2.10 on possible
multiplicities of irreducible isoparametric submanifolds of rank k > 3, it is
natural to pose the following problems:
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Problem 1. Is it possible to have an isoparametric foliation on R52 whose
marked Dynkin diagram is of type D4 and with all multiplicities uniformly
equal to 4?

(It would be interesting if such an example does exist, however we expect
that most likely it does not. Of course a negative answer to this problem
would also imply the nonexistence of marked Dynkin diagrams with uniform
multiplicity 4 of Dfc-type, k > 5 or i£fc-type, k — 6,7,8.)

Problem 2. Is it possible to have an isoparametric foliation whose marked
Dynkin diagram is of the type

m 8 8

with m > 1?
Problem 3. Let Mn C Rn+fc be an irreducible isoparametric subman-

ifold with uniform multiplicities. Is it necessarily homogeneous, i.e., is the
associated isoparametric foliation orbital?

If the answer to Problem 3 is affirmative and if the answers to Problems 1
and 2 are both negative, then the remaining fundamental problem would be:

Problem 4. Are the examples of nonhomogeneous irreducible isoparamet-
ric submanifolds of rank k > 3?

So far, all the known examples of nonhomogeneous irreducible isopara-
metric submanifolds are of rank k = 2 (1.14, [23], [37]).

4. Morse theory

Morse theory relates the homology, homotopy, and even the diffeomorphism
type of a smooth manifold X to the critical point structure of certain real
valued functions / : X —• R and it will be our basic tool for studying the ho-
mology structure of isoparametric submanifolds. In this section we will review
briefly the basic concepts of Morse theory, develop appropriate notation, and
recall, mainly without proof, the fundamental theorems (full details can be
found in [34] or [39]). Finally we shall cover some more advanced topics of
Morse theory that we will need later. These are mainly results of Morse [6]
and Bott and Samelson [5], but since they do not seem to be covered ade-
quately in the generality we need, we will give an exposition with reasonably
complete proofs.

X will denote a smooth, compact, Riemannian manifold. The inner product
of u, v £ TXX will be denoted by (u, v). f: X —• IR will denote a smooth real
valued function and V/ its gradient field. A point x is called a critical point
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of / if dfx = 0, or equivalently if V/x = 0; other points of X are called regular
points of / . A real number a is called a regular value of / if /~1(a) consists
entirely of regular points, and otherwise a critical value of / . We write Xa

for the set {x e X|/(x) < a}. The set f~1(a) will be referred to as the level
a (of / ) . If xo is a critical point and u,v are two smooth vector fields on X
near xo then

Since uXo (vf) depends on u only through its value at XQ while vXo (uf) depends
on v only through its value at xo, we have:

4.1. Proposition and Definition. At a critical point XQ of f there is a
well-defined symmetric bilinear form Hess(/)a;0 on TXXo such that if u and v
are smooth vector fields near xo then Hess(/)Xo(i/, v) = uXo(vf). We define a
self-adjoint operator hess(/)Xo on TX.Xo by

Eess{f)Xo(u,v) = (hess(f)XQu,v).

At a critical point xo of / the nullity of / at xo is defined as the dimension
of the kernel of hess(/)Xo, and ind(/)Xo, the index of / at x0, is defined to
be the maximum dimension of a subspace on which Hess(/)o;0 is negative
definite, or equivalently as the sum of the dimensions of the eigenspaces of
hess(/)a;0 corresponding to negative eigenvalues. The critical point xo is called
nondegenerate if Hess(/)Xo is a nondegenerate quadratic form, i.e., if hess(/)Xo

does not have zero in its spectrum.
For our purposes a chart at XQ will mean a diffeomorphism (p of a neigh-

borhood U of the origin in TX^ onto a neighborhood of XQ in X mapping
0 to xo- If xo is a regular point of / then by the implicit function theorem
we can choose <p so that / o (p(u) = /(xo) + dfXo(u); i.e., so that / — /(x0)
is linear in an appropriate coordinate system. It follows that if a is a regular
value of / then Xa is a smooth submanifold with boundary, whose boundary
is just f~l (a), the level a. The starting point of Morse theory is an analogous
canonical form theorem, the Morse Lemma, in the neighborhood of a nonde-
generate critical point xo; namely in this case the chart <p can be chosen so
that / o (p — /(xo) is quadratic, so the second order Taylor expansion has no
remainder. More precisely the Morse Lemma states the existence of a chart
<p at xo such that

fo(p(u) - f{x0) = |Hess(/)Xo(w,w) = (Au,u),

where A = ^hess(f)Xo. Since zero is not in the spectrum of A we can form
the positive operator \A\, its inverse l^l"1, and positive square root
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and clearly

where sgn(A) = |^4|~1^4 and ip is the linear isomorphism j^4| x/2 of
Thus we have

fo<p*(u)-f{x0) = (sgn(a)ti,u),

where <p* is the chart <p o ijj. Now sgn(A) is just equal to P + — P~ where P±

are the orthogonal projections of TXXo on the positive and negative spaces
of / at xo (i.e., the direct sum of the positive (resp. negative) eigenspaces
of hess(/)Xo) and we get the following more convenient form of the Morse
Lemma:

4.2. Morse Lemma. If xo is a nondegenerate critical point of f:X —• R
and P± are the projections on the positive and negative subspaces of f at xo
then there exists a so-called Morse chart <p for f at xo, for which

fcpiu)- f(xo) = \\P+u\\'2 -\\P-Uf.

4.3. Corollary. A nondegenerate critical point is isolated in the set of all
critical points.

We call / : X —• R nondegenerate or a Morse function if all of its critical
points are nondegenerate. Let us denote by C(f) the closed and hence com-
pact set of critical points of / . Then, by the corollary, if / is a Morse function,
C(f) is also discrete and hence is finite.

We now introduce some further fixed notation. Suppose XQ is a nonde-
generate critical point of / of index k at the level c and let Ek denote the
negative subspace of / at XQ. Fix a Morse chart <p: U —• X at XQ, say with
U = {v G TXXo\ \\v\\2 < 6}. Then for e < 6 we define Dk(e) to be the
disk of radius y/e in Ek and dDk(e) its boundary k — 1 sphere. We put
ek(e) = ip(Dk(e)), dek(e) = (p(dDk(e)), and we call ek(e) the descending cell
(of radius y/e) at XQ. By the defining property of a Morse chart,

Xc~£ n ek(e) = dek(e) C dXc~£ = f~l(c - e),

so that X c~ e U ek(e) is homeomorphic to the adjunction space X c~ e U^
Dk{e). As an immediate consequence of these definitions and excision we have
homology isomorphisms (for any coefficients)

H*{EK,Ek - {0}) « H*(Dk{e),dDk{e),dDk(e)) « H+(ek{e),dek{e))

*H*(Xc-£Uek{e),Xc-£).

Thus Hj(Xc~£ U ek(e),Xc~£) is zero for j ^ k and is the coefficient ring
when j = fc, and in the latter case a choice of generator corresponds to a
choice of orientation for the Euclidean space Ek.
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A diffeotopy of X is a one-parameter family {<£>*} of diffeomorphisms of
X, 0 < t < 1, such that (t,x) —> <pt(x) is a smooth map of [0,1] x X into
X, and such that ipt is the identity for t near zero and is <p\ for t near
one. Then {<pt} is characterized by its time dependent vector field <p'(t, x) :=
{d/ds)s=o(pt+s{(p^1{x)), and conversely any time dependent vector field &
on X which vanishes near t = 0 and t = 1 gives rise to a uniquely determined
diffeotopy by solving d/dt((pt(x)) = £t(<Pt{x)) with (po(x) = x. One of the
basic tools of Morse theory is to construct in this way certain diffeotopies
{<pt} with the property that <p'(t,x) = i>{t,x)(—'Vf(p(tiX)), where i/> > 0,
a condition we shall express by saying that <p' is positively proportional to
—V/. This has important consequences: it is equivalent to the condition that
for any x in X the curve t —» <p(t, x), 0 < t < 1, is contained in the positive
time orbit of x under the flow generated by — V / , so in particular {<pt} will
map into itself any subset Xo of X invariant under this positive time flow (in
particular the sets X c and any subset of C(f)). It also follows that f{<p(t, x))
is a nonincreasing function of x.

The following result is fundamental.

4.4. Deformation Theorem. Let f be a smooth real valued function on
a compact Riemannian manifold X and let [a, b] be an interval of real numbers
with a < c < 6;

(a) If there are no critical values of f in [a, b] then there is a diffeomorphism
<p of[a,b] x f-^c) onto / ^ ( [ M ] ) with f{<p{t,x)) = t.

(b) If c is the only critical value of f in [a, b] and U is any neighborhood in
X of the set K of critical points of f at the level c then there is a diffeotopy
{Pt} ofX with (pf positively proportional to — V / such that (p1(X

b — U) C X a .
Moreover ife > 0 then we can suppose thatX.a~£ andX.b+€ are pointwise fixed
under ipt. Finally the same is true with U = 0 if K — 0, i.e., if c is not
actually a critical value of f.

(c) If in addition to the assumptions of(b) K consists of nondegenerate crit-
ical points, then K is a finite set {xi, • • • , xr}, say with indices {A:i, • • • , kr},
and then for e sufficiently small the descending cells eki of radius y/e are dis-
joint and there is a deformation retraction of X6 onto X.c~e Uekl U • • • U ekr.

Proof. See [34] and [38].

We now add some standing notational conventions. The coefficients for
homology and cohomology will be a commutative ring with unit, Z. In ap-
plications R will usually either be 2 (if everything is orientable) or Z2. Given
the assumptions of 4.4(c) above we will denote by [eki, deki] the generator of
Hki(eki,deki', R) determined by some orientation of e*W. Now according to
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4.4(c) we have an excision isomorphism

0 H. {eki, dek> )*HJ XC~£ U (J eki, Xc"
i<r \ i<r

and we have a deformation retraction

and by 4.4(a) (or (b)) another deformation retraction Xc~£ « Xa . Putting
these all together it follows that the inclusion map

\J(ek',deki)C Xc"£u[Jefc',Xc-£ C (X6,Xa)
i<r \ J

induces an isomorphism

and we shall again denote by [eki, deki] the image in #*(X6, Xa) of the above
generators of the Hki(e

ki,deki), so we have:
4.5. Corollary. With the assumptions o/4.4(c), for any coefficient ring

R

ki=k

Now let XQ be a nondegenerate critical point of index k at the level c of
/ : X —* R and let ek denote its descending cell of radius y/e. Following Morse
and Cairns [6] we shall say that XQ is of linking type with respect to R if the
relative homology class [e^de^] in Hk(X.c~£ Uefc,Xc~£; Z) is in the kernel of

d: Hk(X
c~£ U ek, Xc"£; R) - Hk.x(X

c"£; R)

or equivalently, by exactness of the homology sequence for (X.c~£ U efc, Xc~e),
if [ek, dek] is in the image of the projection

£ U ek; R) -> Hk(X
c~£ U ek, Xc"£; «).

If // G Hk{Xc~e U efc;R) is such that y*(/i) = [efc,aefc] we shall call /i (or
any representative) a linking cycle for xo with respect to R. More generally
if X c" e U e ^ C Y C X a n d i: Xc~£ U ê  -• Y is the inclusion map then the
image u(/i) of// in i/*(Y; >?) will also be called a linking cycle for x0. Finally
a Morse function / : X —• R is said to be of linking type with respect to R if
each of its critical points is.
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4.6. Theorem. Assume that c G (a, 6) is the only critical value o / / : X —•
R in the interval [a, b] and that the critical points {xi, • • • , xr} of f at the level
c are all nondegenerate and of linking type with respect to R. If Xi has index
ki and /z* G i/fct(X

6; R) is a linking cycle for X{ with respect to R then

r
II fY&. D\ — 17 (Ya. D\ ff\ {T\ p.,.

Proof Recall from Corollary 4.5 that #*(Xfc, X a ; R) is the direct sum

where e*' is the descending cell of / at Xi of sufficiently small radius. Since
each Xi is of linking type, each [eki, deki] is in the kernel of d: H* (X6, X a ; R) —•
i /* (X a ;£ ) , so that 5 = 0 and the homology exact sequence of the pair
(X 6 ,X a ) becomes

0 -> tf*(Xa; £) - # , ( X 6 ; | /J) - 0 R[ek*,deki] - 0

and moreover, by definition of linking cycle, the map

clearly splits this exact sequence.
4.7. Corollary. / / / : X —• R is a Morse function of linking type with

respect to R and for each x in C(f) fix in i/*(X; R) is a linking cycle for f
with respect to R, then

In particular if R is afield then dimiJfc(X; R) is equal to the number of critical
points of f of index k.

Proof Let c$ < C\ < • • • < cn be the critical points of / in increasing
order and choose ao, • • • , a n +i with â  < Ci < at+i. Then applying 4.6 with
a = a,i,c = Ci, and b = ay+i (and noting that because c$ is the minimum of
/ , X a° = 0 ) , and obvious induction completes the proof.

Given a Morse function / : X —• R we define Ck{f) to be the number of
critical points of / of index k and c(f) = J2k Ck{f) to be the total number of
critical points of / . The minimum of c(f) as / ranges over all Morse functions
/ : X —* R is called the Morse number of X and is denoted by M(X). A Morse
function / : X —• R such that c(f) = M ( / ) is called tight.

4.8. Corollary. A Morse function f: X —• R which is of linking type with
respect to some field of coefficients F is tight.
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Proof. By 4.7 ck(f) = dxmHk(X;F), so c(f) = dim#(X;F) and it will
suffice to show that for any other Morse function g on X Ck{g) > dim Hk(X; F).
But this is precisely the statement of the weak form of the Morse inequalities
[34]. q.e.d.

It is clear from the above that it would be useful to develop criteria for
recognizing when a Morse function is of linking type, which means of course
that we must develop methods for constructing linking cycles. One of the
most powerful techniques for doing this was developed in a well-known paper
of R. Bott and H. Samelson [5].

4.9. Definition. Let xo be a nondegenerate critical point of index k of
/ : X —• R and let (Y, <p) be a pair with Y a compact smooth fc-manifold, and
<p: Y —• X a smooth map. We call (Y,<p) a Bott-Samelson cycle for / at x0

if / = / o tp has a unique and nondegenerate maximum at yo = (p~1(xo). We
call such a pair R-orientable if Y is orientable over £, in which case we denote
by £>*([Y]) e Hk(X, R) the image of the fundamental class [Y] G Hk(Y, R)
determined by some ^-orientation of Y. The critical point xo is said to be of
Bott-Samelson type with respect to R if an £-orientable Bott-Samelson cycle
for / at xo exists, and a Morse function / is said to be of Bott-Samelson type
with respect to R if each of its critical points is.

The fundamental result of Bott and Samelson, which we will prove below,
is that if (Y, (p) is an R-orientable Bott-Samelson cycle for / at xo, then xo
is of linking type with respect to R, and in fact £>*([Y]) is a linking cycle for
/ at xo with respect to R. Put more succinctly, Bott-Samelson type implies
linking type. We shall in fact prove a more general relative version (Theorem
4.19) and we next introduce some appropriate notation. Y will denote a
compact, connected space and Yo a closed subspace. Later we specialize
to the case that (Y, Yo) is a smooth relative A:-manifold, i.e. Y — Yo is a
smooth fc-dimensional manifold, and in the main application Yo = 0 . Xo
will denote a closed subspace of X invariant under the positive time flow
generated by — V/ (in applications it will be either empty, of the form X°, or
a subset of the set C(f) of critical points), and a will denote some element of
the set [(Y, Yo), (X,Xo)] of homotopy classes of maps <p: Y —• X such that
£>(Yo) C Xo. If <p € a we write max(/ o (p) for the maximum of / on the
image of <p and

minimax(/, a) := inf{max(/ o <p)\(p e a}.

We shall also say that a hangs up at the level c to express the fact that
minimax(/, a) = c.

4.10. Minimax Principle. If a e [(Y, Yo), (X,X0)] hangs up at the
level c of f then c must be a critical level of f.
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Proof. Suppose not, so by the Deformation Theorem (4.4(b) with (7 = 0 )
there is a diffeotopy {<pt} carrying X c+ e into Xc~£ and satisfying <£>t(X0) C
Xo. Choose ip G a with max(/ o -0) < c + e, i.e., with im(V>) C Xc+€ : .
Then im(^i o ^) C X c " £ and since ^(Y o ) C X o , <pt(t/>(Y0)) C X o , and
hence (pi o ip E a. But then minimax(/, a) < min(/ o [np1 o ̂ )) < c — e, a
contradiction.

4.11. Definition. If a G [(Y, Y o) , (X,X0)] hangs up at the level c
of / and S C /~ 1 (c) , then we shall say that a hangs up on S if for any
neighborhood U of S in X there is a positive e and a representative <p of a
such that im(<p) C X c " £ U U.

4.12. Proposition. 7 /a /jan^s up at the level c of f and K is the set of
all critical points at the level c then a hangs up on K.

Proof. Similar to 4.10 but with K (and hence U) nonempty in the appli-
cation of 4.4(b).

4.13. Proposition. Let / : X —• R be a Morse function and assume that
a G [(Y, Yo), (X,Xo)] hangs up on the subset S of the level c, where c >
max(/ |Xo). Let {xi,--- ,x s } = S n C(f) and let e% denote the descending
cell of radius y/eatXi. Then for e sufficiently small a has a representative <p
with im(<p) C X.c~£ U e\ U • • • U es. In particular a hangs up on {xi, • • • , xs}.

Proof. For e sufficiently small we have Xo C X c~ e and we can choose a
neighborhood U of S in X with t{ C U and U disjoint from the descending
cells of critical points of / not in S. Since a hangs up on S we can find a
representative <p0 of a with im(^>0) Q X c~£ U (7, and by 4.4(c) we can find a
deformation retraction ijj of X.c+£ onto X.C~£UE, where E is the union of the
descending cells of radius y/e at all the critical points at the level c. Then we
can take <p = i\) o <p0.

4.14. Corollary. If a is nontrivial [i.e. no representative is constant)
then at least one of the critical points in S must have positive index.

Proof. Suppose not, so that et; = X{ for i = 1, • • • , 5, and hence X c~ e U
ei U • • • Ue3 is just the disjoint union of X.c~£ and the discrete set {x\, • • • , xs}.
Since Y is connected and im(£>) C X.c~£ is impossible by choice of c, we must
have im(<£>) C {XJ} for some z, a contradiction, q.e.d.

Henceforth we assume that (Y,Yo) is a smooth, connected relative A;-
manifold. Moreover we assume that it is oriented over our coefficient ring
k (of course if Z is Z2 this is not an extra assumption) and we let [Y, Yo]
denote its fundamental class in i/fc(Y, Yo; Z). Given a in [(Y, Yo), (X,Xo)]
we let a*([Y, Yo]) in i/fc(X,X0; Z) denote <p*([Y, Yo]) for any (p in a.

4.15. Theorem. Let / : X —• R be a Morse function and suppose a G
[(Y, Yo), (X,Xo)] hangs up on the level c of f, where c > max(/ |Xo). If
(Y, Yo) is a smooth, connected relative k-manifold then in fact a hangs up
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on the set of those critical points x of f at the level c where ind(/)x < k. If
a is nontrivial then at least one of these critical points has positive index. In
particular, if k = 1 and a is nontrivial then there is at least one critical point
of index 1 on the level c.

Proof Let {x\, • • • ,x s } be the set of critical points of / at the level c
and let ki = md(f)Xi and eki the descending cell of radius y/e at Xi. We can
suppose e is so small that Xo C X c~ 2 e , and by Theorem 4.13 we can find a
representative p of a with im(<p) C X.c~£ U ekl U • • • U eks. It will suffice to
show that given ki > k we can find <p in a such that p agrees with <p outside
(p~1(eki) and

Now if im(<£>) misses at least one point z of int(efct) this is obvious, for there
is a deformation retraction r: eki — {z} —• deki = eki D X c~ e and we can
simply redefine p to be r o p in p~1(eki) to get (p. On the other hand if
p is smooth in the open set p~1(eki) of the fc-dimensional smooth manifold
Y — Yo , then since ki > A;, by Sard's Theorem im(^>) D (eki — deki) is a set
of measure zero and such a z surely exists. Finally by standard elementary
approximation theory <p is anyway homotopic to a map p which agrees with
p outside eki and is smooth in eki — deki. The final conclusions are immediate
from 4.14. q.e.d.

We will need the following two known special cases of 4.15.
4.16. Theorem. / / / : X —• R is a Morse function and some component

ofX. contains two distinct local minima, XQ and X\, then that component also
contains a critical point of index one. In fact if a is a homotopy class of paths
a. I —• X with <J(0) = xo and cr(l) = X\ then a hangs up on a critical point
of index one.

Proof Take X o = {xo,xi} and suppose f(xo) < f(x\). By the Morse
Lemma we can find a neighborhood U of x\ so that f(x) > / ( z i ) + £ on dU.
Since every a in a must meet dU, max(/ o a) > f(x\) + £, so

sup{/(x)|x G X o } < f{xi) + e < minimax(/, a).

Taking Y = [0,1], Yo = dY = {0,1}, the result now follows from 4.15.
4.17. Theorem. / / X admits a Morse function / : X —• R having no

critical points of index one then each component of X is simply connected.
Proof. Take Y = S 1 , YQ = Xo = 0 in 4.15. If some component of X

were not simply connected we could choose a nontrivial free homotopy class
a in [5X,X] = [(Y, Yo), (X,Xo)], and by 4.15 a must hang up on at least
one critical point of index one.
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4.18. Lemma. Let xo be a nondegenerate critical point of f of index k,
lying on the level c, (Y, Yo) a smooth, connected, relative k-manifold that is
orientable over R, and <p: (Y, Yo) —• (XC,XC~£) a map such that:

(1) (p is smooth on Y — Yo,

(2)im(p)nr1(c) = {x0},
(3) yo = <p~1{xo), and
(4) <p is transversal at yo to the ascending cell of f at XQ.

Then the element £>*([Y,Y0]) of Hk(X
c,Xc-£; R) is equal to ±[ek,dek],

where ek is the descending cell of f at XQ.
Proof. In a Morse chart for / at XQ let Ek denote the descending subspace,

(Ek)± the orthogonal complement of Ek, and P the orthogonal projection of
TXXo onto Ek. Since ker(P) = (Ek)± and {D<p)yo is transversal to (E*)1-
by assumption (4), it follows that P o (Dip)yo is an isomorphism of TYyo

onto Ek, so that by the inverse function theorem P o <p maps a small neigh-
borhood of yo in Y diffeomorphically onto a neighborhood of xo in ek. By
a standard approximation lemma we can C1 approximate (p by a map <p
which is homotopic to <p (rel. Yo), agrees with (p outside a small neighbor-
hood of 2/o? and agrees with P o (p near yo- It then follows from excision
that p*([Y, Yo]) = £>*([Y, Yo]) = ±[ek,dek], the sign depending on whether
P o (D(p)yo preserves or reverses orientation.

4.19. Theorem. Let xo be a nondegenerate critical point of f of index k,
lying on the level c, ek the descending cell of radius y/e atxo, and [efc, dek] the
generator of Hk{Xc~£\Jek

1X
c~£; R). Suppose (Y, Yo) is a smooth, connected

relative k-manifold that is orientable over R and (p: (Y, Yo) —• (X c ,X c~ e) is
smooth on Y — Yo. If f = f ° <P has a unique and nondegenerate maximum
at yo = (p~x{xo) then

where a is the class of tp in [(Y, Yo), (XC,XC~£)] and i is the inclusion of
(Xc-£Uek,Xc~e) in (X c ,X c ~ e ) . In particular ifY0 is empty then a*([Y]) €
i/fc(Xc; R) is a linking cycle for xo with respect to R.

Proof Conditions (l)-(3) of the lemma are trivially satisfied and (4) fol-
lows easily from the nondegeneracy of / at y0.

4.20. Theorem. A Morse function f: X —• R which is of Bott-Samelson
type with respect to a ring R is also of linking type with respect to R. In fact
if for each critical point x of f, (Yx,<px) is an R-orientable Bott-Samelson
cycle for f at x then <pZ{[Yx\) is a linking cycle for f at x with respect to R,
and hence the set of these ^ ( [Y^] ) forms an R-module basis for #*(X; R).
For the case R = Z it follows that i/*(X) = i7*(X; T) is a free abelian group
with one generator ipx{\Yx\) for each critical point x of f, and in particular
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it has no torsion. Finally if f has no critical point of index one then each
component of X is simply-connected.

Proof Recalling the definition of a Bott-Samelson cycle (4.9), this is an
easy consequence of the preceding theorem and Theorems 4.7 and 4.17. q.e.d.

Our main technique for studying the topology of an isoparametric subman-
ifold M of R^ will be to apply the above results to the function fa: M —• R,
where fa{x) = \\\x — a\\2. The beautiful Index Theorem of Morse states that
this is a Morse function as long as a is not a focal point of M. The Index The-
orem moreover gives an algorithm for locating the critical points of fa (and
computing the index at each one) in terms of the basic geometric data of the
submanifold—namely its first and second fundamental forms or equivalently,
its focal point structure. Below we give a brief exposition of this theorem in
a form convenient for our application.

In the following M will denote a smooth submanifold of RN and TM and
v{M) its tangent and normal bundles, both regarded as submanifolds of RN x
RN. The Gauss map of M is the map P: M — L{RN,RN) where L(RN,RN)
denotes the vector space of linear operators on RN and Px is orthogonal
projection of RN into TMX. The connections induced on TM and v(M) from
the flat connection for M x RN will be denoted respectively by DT and Dv\
explicitly, given £ in TMX, a smooth curve a: (—e, e) —> M with </(0) = £ and
a smooth section u(t) of TM (resp. ^(M)) along <7, D^(u) (resp. D^(u)) is
given by /^(^(O)) (resp. P^L(w/(0), where P^~ is the orthogonal projection of
R^ on v(M)x). Since the Gauss map P is a smooth map into a vector space,
it has a well-defined differential

dP:TM-+L(RN,RN).

For v e v(M)x we define AV:TMX -+ R^ to be the linear map Av(£) =
dPx(£)v. Then it is easy to see

4.21. Proposition. Given £ in TMX and VQ in v{M)x let a: {—e,e) —• M
be a smooth curve with &'(0) = £ and let u(t) and v(t) be respectively tangent
and normal vector fields to M along a, with v(0) = vo. Let Pvo denote the
section x-> Px(v0) of TM. Then:

(i) AVo(£) = — Pxv'(0)', hence each AV maps TMx to itself,

(ii)AV0(Z)=Dj(Pv0),

4.22. Proposition. At a critical point x of a smooth function f: M —• R

hess(/)I = DT(Vf).
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Proof. Let X and Y be smooth tangent vector fields near x, so that

Eess(f)x(X,Y) = Xx(Yf) = Xx(Vf,Y)

ai t=o

where a is any smooth curve with a(0) = x and 0"'(O) = X. Since Vfx = 0
the result follows.

Given a in RN define Fa:RN -> R and / / " i R ^ -+ R by F a(x) = | | | x - a | | 2

and Ha(x) = x • a; and let / a and ha be their respective restrictions to M.
We note that (VFa)x = x — a and (Vi/a)a; = a. Now in general given
G:RN -+ R and 0 = G|.M, Vgx = PX(VFX) for x G X, so it follows from a
direct computation that we have:

4.23. Theorem, (i) (Vha)x = Pxa, Zience a: is a critical point of ha if
and only if a is in v(M)x- Moreover in this case hess(ha)x — Aa.

(ii) (Vfa)x = Px(x — a) hence x is a critical point of fa if and only ifx — a
is in i/(M)x- Moreover in this case hess(/ a)x = / 4- A(x_ay

Because the hessian of hv is self-adjoint, we have
4.24. Corollary. For each v in is(M) Av is a self-adjoint operator on

TMX.
In fact Av is the shape operator of M in the normal direction v, and is

related to the second fundamental form of M in RN by

The eigenvalues of Av are the principal curvatures of M at x in the
direction v.

4.25. Proposition. Given e in v(M)x let v(t) = x-\-te. Then, for all real
t, x is a critical point of fv^ with corresponding hessian I — tAe. Thus the
nullity of fv^ at x is just the multiplicity oft'1 as a principal curvature of
M at x in the direction e. In particular fv^ is degenerate at x if and only
if t~l is a principal curvature of M at x in the direction e. If 1 is not such
a principal curvature then x is a nondegenerate critical point of fxJre and its
index is

J2 nullitV °f fv{t) at x.
0<t<l

Proof Taking a = x + te in (ii) of 4.23 gives the first statement, and it
is then immediate that the nullity of fvW at x is just ^{t~l) where /i(A)
denotes the multiplicity of A as an eigenvalue of Ae. On the other hand the
multiplicity of A as an eigenvalue of hess(/x + 6% = / — Ae is clearly //(I — A).
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Since A < 0 if and only if 1 — A > 1 if and only if 1 — A equals t~x for some t
in (0,1), the formula for the index of fx+e at x follows, q.e.d.

We will denote by Y:i/(M) —• RN the exponential map (x,v) -> x + v
of the normal bundle of At. Since T(i/(M))(Xte) is canonically isomorphic to
TMX © v{M)x = RN, DY(X c) can be regarded naturally as a linear operator
on RN.

4.26. Definition. If a = Y(x,e) then a is called nonfocal for At with re-
spect to x if DYj^g) is a linear isomorphism of R^. If m = dim(ker(Z>y)(a;?e))
> 0 then a is called a focal point of multiplicity m for At with respect to x.

4.27. Proposition. For a — Y(x,e), a is a focal for At with respect to x
if and only if x is a degenerate critical point of fa\ in fact the nullity of x as
a critical point of fa is just equal to the multiplicity of a as a focal point of
At with respect to x.

Proof. Let (cr(t),v(t)) be a smooth normal field to At along the smooth
curve a(t) with <r(0) = x and v(0) = e. Then

DY{x,e)(a'(O),v'(O)) = d

•" t=odt

by (i) of 4.21. Taking <r(t) = x and v(t) = e + tv gives that DY^Xy6) on i/(M)x

is the identity map, and hence ker(DY(x^) = ker(l — Ae), which by 4.25 is
the null space of hess(fa)x.

4.28. Morse Index Theorem. / / At is a compact smooth submanifold
o/RN , x G Al, e G v{M)x, anda — x-\-e is nonfocal with respect to x, then x
is a nondegenerate critical point of the "distance function" fa: M -* R, U H
| | |v — a\\2, and in fact the index of x as a critical point fa is just equal to the
number of focal points of M with respect to x on the segment joining x to a,
each counted with its multiplicity.

Proof. Immediate from 4.25 and 4.27.

5. The homology groups of isoparametric submanifolds

In this section we will apply the Morse theory developed in §4 to calculate
the homology groups of isoparametric submanifolds. In particular we will
construct Bott-Samelson cycles (generalized Schubert cycles) for the distance
functions of isoparametric submanifolds.
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5.1. Theorem. LetMn C Rn+/c be isoparametric, a G Rn+fc, andf:M^
R the smooth function defined by f(x) = \\\x - a\\2. Let C(f) denote the set
of critical points of f. Then

(1) x G C(f) if and only if (a - x) G v(M)x,

(2) ifxe C{f) then W • x C C{f),

(3) if x G C(f) then the hessian of f at x is I - X^((a - x), Vi)idEi,

(4) if a is W-regular (or equivalently a nonfocal point of M) then f is a
Morse function and C(f) is a principle orbit ofW. Moreover for x G C(f)
the index of f at x is the sum of the rrtj 's such that the line segment [x, a]
joining x to a meets lj(x),

(5) if xo G C(f) and a G a, where a is a simplex of the boundary of a
Weyl chamber A of i/(M)Xo, then f is a Morse function in the sense of Bott
[4]; more specifically the critical submanifold through XQ is the isoparametric
submanifold NXOi(r, the nullity of f at XQ is ma and the index of f at XQ is
the sum of the rrij 's such that the line segment [xo,a] meets lj(xo) at a point
other than a; and C(f) = {NXi(T\x G W • Xo},

(6) / has a unique local maximum (minimum) value, and the maximum
(minimum) level set of f is connected.

Proof. (1), (2), (3) and the second half of (4) follow from the standard
Morse theory (see §4) and (1.9) easily.

Now suppose x,2/ G C(f) and a is W-regular. Then there are parallel
normal fields t and v on M such that a = x + t(x) = y + v(y). By (1.10) the
parallel manifold Mt is equal to Mv , it is isoparametric, and

u(M)x = u(Mt)a = u(Mv)a = v(M)y.

Hence y G M fl v(M)x. However M fl v(M)x = W • x, so y G W • x, which
proves the first part of (4).

If v is a parallel normal field on M and a = xo + v(xo) G o is W-singular,
then it follows from (2.1) that we have NXiT C C( / ) , if x is in W • xo and r is
open in V(a). Conversely if y G C(f) then there is a parallel normal field v1

on M such that y + v'(y) = a. So Mv> = M a , and there is x\ in W • xo such
that a = Xi + */(xi). Hence Y belongs to 7VXli<T, which proves (5). Then (6)
is a consequence of (4) and (5).

5.2. Theorem. Let Mn be an isoparametric submanifold ofRn+k and xo
a critical point of f as in (5.1), where a = Xo + v(xo) is W-regular for some
parallel normal field v on M. Suppose

(t>, Vr) > ( « , V r _ i ) > ' • • > (V, Vi) > 1 > (V , V r + 1 ) >'">(V, Vp).
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Then

(1) (&{Ej(xo)\i < r} is the negative space of f at x0,
(2) (Nr,ur) is an Z-orientiable BottSamelson cycle at Xo for f, where

Nr = {{yi,-' ,2/r)|yi e S i (x o ) ,y2 € 5 2 ( t / i ) , - - - ,2/r € 5 r ( y r _ i ) } , ur:Nr ->

M 25 defined by ur(yi,- • • ,y r) = yr, and Si(x) is the leaf of Ei through x,
and R = Z if all rrii > 1, and R = Z2 otherwise.

Proof (1) follows from 5.1(3). For (2) it suffices to prove the following
three statements:

(&) 2/0 = 0&or • • 1 £0) is ^ e u n ^ c l u e maximum point of f our.
(b) d(iir)j/0

 m a P s T(Nr)yo isomorphically onto the negative space of / at
x0.

(c) If all rrii > 1, then (iVr,ur) is Z-orientable.
To see (b) we note that N = Nr is contained in the product of r copies of

M, TNyo = ©{F; | i < r} , where F< = (0, • • • , ^ ( ^ 0 ) , • • • ,0) is contained in
© { T M c J i < r} , and d(ur)yo maps F^ isomorphically onto Ei(xo).

The homotopy exact sequence for the fibrations implies that if the fiber
and the base of a fibration are simply connected then the total space is also
simply connected. Hence by induction the iterated sphere bundle Nr is simply
connected, which proves (c).

Statement (a) follows from the lemma below.
5.3. Lemma. We use the same notation as in 5.2. Then for any q =

(2/1 r ' ' >2/r) in Nr there is a continuous piecewise smooth geodesic aq in Rn+k

joining a to yr such that the length of aq is \\XQ — a\\, and aq is smooth if and
only if q = (x0 , ••• , z 0 ) .

Proof. Let [xy] denote the line segment joining x and y in Rn + f c . Then

[ax0] = [azi] U [ziz2] U • • • U [zrx0],

where Z{ € li(x0) n [xoa\. Let â  = (y* + v(j/<)), and Zj{%) G lj(yi) n [yiflt], so
^i(l) = ^1. Since yi e S,-(j/j-i), ^-(i - 1) = ^ ( j ) . Then

aq = [a^i] U [^(1)^2(1)] U [22(2),23(2)] U • • • U [s r(r),y r]

satisfies the properties of the lemma.
5.4. Theorem. Let Mn be an isoparametric submanifold ofRn+k with W

and {rrii} the associated Weyl group and multiplicities. Choose any point a
in Rn+* that is nonfocal for M and define f: M - • R by f[x) = \\\x- a\\2.

(1) / / all the multiplicities rrii are greater than 1, then M is simply con-
nected, H*(M, Z) has no torsion, the rank ofHi(M, Z) is the number of critical
points of f of index i (which can be computed directly from the marked Dynkin
diagram of M as stated in Theorem 5.1(4)), and the rank of H+(M, Z) is \W\,
the order W.
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(2) In any case dim H{(M, Z2) is the number of the critical points of f of
index i and dimH*{M, Z2) = \W\.

A compact submanifold of the Euclidean space is tight (resp. taut) if every
nondegenerate height (distance) function is tight. We refer to [17], [15], [12]
and [32] for detailed study of tight and taut embeddings. As a consequence
of 5.4 we have

5.5. Corollary. A compact isoparametric submanifold is spherically tight,
so it is taut.

5.6. Remark. For Mn c 5 n + 1 C Rn+2, Theorem 5.4 was proved by
Miinzner in [35], and Corollary 5.5 was proved by Cecil and Ryan in [14].

Using 2.1(vi) and an argument similar to that in 5.4, we obtain:
5.7. Theorem. Suppose Mn C Rn+k is isoparametric, v is a parallel

normal field on M, and XQ = xo -f v{xo) is in a, where a is a simplex of the
boundary of the Weyl chamber AXo. Let Mx* be the (focal) parallel manifold
to M, through £Q, o, a W-regular point, and XQ a critical point of f: Mx+ —• IR
where f(x) = \\\x - a\\2. Then

(i)(x*0-a)ev(Mx*)x*,

(ii) the set of critical points of f is the W-orbit of XQ,

(iii) if q is a critical point of f on Mx*, then md(f)q = YHmj\j is n°t z n

I [a, a) and [aq] meets lj(a)},
(iv) if all rrij > 1 for j not in /(a, a), then Mx* is simply connected,

H+(MX*,Z) has no torsion and its rank is \W\/\Wa\,

(v) in any case the dimension of H*(MX*,Z2) is \W\/\Wa\.
5.8. Corollary. Every parallel manifold of an isoparametric submanifold

(including focal manifolds) is taut.
5.9. Remark. As noted in 1.13, homogeneous isoparametric submanifolds

and their focal manifolds are just the orbits of the isotropy representations
of symmetric spaces. These orbits are precisely the so-called i?-spaces of
Kobayashi and Takeuchi [31]. For these homogeneous spaces Theorems 5.4
and 5.7 were proved by Bott and Samelson [5], and their corollaries were
proved by Kobayashi and Takeuchi [31].

6. The cohomology ring of isoparametric submanifolds

In this section we determine the ring structure of H*(M, R) for an irre-
ducible isoparametric submanifold M with k > 2. We will adopt the following
convention for JZ: if all rrii are even (i.e. mi = 7722 = /i E {2,4,8}) then R = Z
while if some rrii is odd then R = Z2. Note that this implies H*(M,R) is
commutative.
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Suppose Mn C Rn+k is isoparametric, E\, • • • ,E v are its curvature distri-
butions, xo G M, and a is a VT-regular point in the Weyl chamber AXo. Let U
be the Weyl chamber of the associated Weyl group W on v(M)XQ containing
—xo, and x\ G UC\M. Then x\ is the maximum point of the distance function
f(x) = 7}\\x — a\\2. If (iV,u) is a Bott-Samelson cycle for / at x\ (e.g. that
constructed in Theorem 5.2), then u: N —• M is a map of degree 1. Therefore:

6.1. Proposition. The map u*:H*(M,R) - • H*(N,R) is an injective
ring homomorphism and the image of u* is an additive direct summand of
H*(N,R).

We note that N is an iterated sphere bundle, so its cohomology can be
obtained from the Gysin sequence. First we will study the cohomology of the
following iterated sphere bundles: let Sj(x) denote the leaf (sphere) of the
curvature distribution E{ through x, and for r < p define

),--- ,t/r eSr(yr-i)},

TTr-i'.Nr —*• Nr-i is the natural projection map

{yir- ,Vr) -* {yir- .2/r-i),

ftps'- Np -^ Nr is the projection

Then N\ = S\(xo) and 7rr_i is a fibration with the Sr(yr-i) as fibers, so 7Vr

is an iterated sphere bundle. By the Gysin sequence we have

H*(Nr, Z) = <_!(#•(#,-!, R)) 0 & • K-lWiNr-u «)),

where f r |Sr(j/r-i) is a generator of Hrrir{Sr{yr-i), k). To simplify nota-
tion we will just write fr for the pull back ?r*>r(£»•)• Then it follows by in-
duction that H*(Nr,R) is a free module, generated by £ i , - - - , £ r and
{&i • & 2 ' ' ' &j |1 ^ z'i < ' ' " < V ^ r a n d i < r } forms an ,2-module base for
H*(Nr, JZ). To determine the relation among the ^ ' s we need only express
f ? in terms of the above basis. We first recall the diffeomorphism <Pi of M
defined by: <Pi(x) is the antipodal point of x in the sphere Si(x). Then <pi
induces a diflFeomorphism Jpi on Ni by

Piiiyir- ,yi)) = {yir- ,Vi{yi)), and T T J - I O ^ =TTJ-I.

Let a ,̂ i < r, be the homology class determined by the cycle

{(yi» * * * >yr)bi = • • • = 2/t-i = xo, and yi = - • • = yr e Si(x0)}.

Then a i , • • • , a r forms a basis for Hmi (Nr, JZ)®Hm2 (Nr, Z). Then the ^ ' s can
be chosen as the dual basis for Hmi (Nr, Z)®Hm2{Nr, Z) so that ^(a/) = % .
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6.2. Lemma. For j <r there exist (3rj G R such that
(i) (^ r)*(a i) = dj + prjar for j < r,

(ii)(^r) = -er + E i < rAi&.
Proof For j < r, since a i , • • • , a r forms a base for

is a linear combination of a i , • • • , a r in iVr with coefficients in R. Because
7rr_i o Tpr = 7rr_i, we have

(7rr_i)*(^r)*(aj) = (7rr_i )„,(<*,) in JVr_i.

So

(<pr)*(aj) = a, + Prjdr for some /?n G R.

Since (^ r)*(€r)(ai) = ^ ( ( ^ r ) * ^ ) ) = &; , and (^ r)*(£ r)(a r) = Cr((^r)*(«r))
= — 1 we have (ii).

6.3. Lemma. H*(N9,R) = £[£i,--- ,ta]/I, where I is the ideal gener-
ated by

Moreover ifmr ^ m^ then /3rj = 0, and ifmr = m^ ^Aen /?rj is the intersection
number of {Jpr)*(aj) and the Poincare dual of fr in Nr.

Proof Because 7rr_i olpr = 7rr_i we have r G (?!>_i)*(H*(Nr, R)) if and
only if r is invariant under (^pr)*. Since (^ r )

2 = id and (—l)mr = 1 in R, we
have

foner .#(&))=^(f r) . er = &•??(&).
Let v = ^r • ̂ J ( f r ) . Then there is u in H*{Nr-i, R) such that v = < _ i ( ^ ) .
We claim that v = 0. To see this we note that sr_i(2/i, • • • ,yr-i) =
(2/1? •* »2/r-i, 2/r-i) is a cross section of the sphere bundle 7rr-i:Nr —• JVr_i,
i.e., 7Tr_i o s r_1 = id, and s*_i(£r) = 0. Hence

This proves that t; = 0, i.e., & - £ J < r / ? r j ^ ^ = 0. q.e.d.
In the following we will determine /3^ in terms of the geometry of M.
6.4. Lemma. Let bi denote the homology class of the sphere SI(XQ). Then
(i) (<Pi)*{bj) = sgn(l - 2(vi,Vj)/\\vi\\2)bpi(j), where p:W -+ Sp is the rep-

resentation as in 1.5,
(ii) there are fiij in R such that (<Pi)*{bj) = bj + fiijbi, and in particular if

nti ^ rrij then (3ij = 0.
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Proof. Let X denote the position map of Mn in Rn+A\ Then <pi = X +
2^/IKII2 and d<pi{E3) = sgn(l - 2(vi,v3)/\\vi\\2)(Epi{j)), which proves (i).
Next we define

^2 = {{yi,yj)\yi e Si(xo),y3 e S3(yi)},

TT: N2 - • M, where T T ( ( ^ , y3)) = y3,

a% = {(yi,yi)\yi £ Si{xo)}, aj = {(xo,2/y)l2/> £ S3(xo)}.

then 7r(at) = b{ and 7r(aj) = 6̂  and the lemma follows from 6.2(i). q.e.d.
Therefore we have the following generalization of a theorem of Bott and

Samelson:
6.5. Theorem. Let Mn be isoparametric in Un+k, W its Weyl group, b{

the homology class of the leaf Si (x) through x of the curvature distribution
Ei, and {N,u) the Bott-Samelson cycle at the maximum point x$ for f(x) =
| | |x — a\\2. Suppose we arrange the indices so that

N = {(?/i? *' ' >2/p)|2/i € S i ( £ 0 ) , 2/2 £ #2(2/1), • • • , | / p E Sp(yp-i)},

and u:N —• M is defined by w((j/i, • • • ,yp)) = yp. Then
(i) there are (3ij in k such that {<Pi)*{b3) = bj + fajbi,

(ii) H*(M,Z) is a subring and an additive direct summand of the ring
A = £[£1, * • • , €P]/I, where I is the ideal generated by

rjtrtj, r<p.

In the following we will assume that M is irreducible with k > 1 and all the
ra^'s are even, i.e., mi = m2 = n G {2,4,8}. To determine the ring structure
of ff*(M, Q) more explicitly we need the following well-known fact:

6.6. Theorem. Suppose G is a finite group acting freely on M. Then

(ii) x(Af/G) = \{M)I\G\, where \ denote the Euler characteristic.
Then it follows from Theorem 5.4(1) that x(-W) = |W| a n d w e n a v e

6.7. Corollary. Suppose Mn C Rn+fc is an irreducible isoparametric
submanifold with even multiplicities, and W is the associated Weyl group.
Then IP{M, Q) w = 0 for all i > 0.

The following is a known result for Weyl groups that follows easily from
Borel's theorem on the cohomology of G/T:

6.8. Proposition. Suppose W is a rank k Weyl group acting on Rk. Then
(i) the dimension o /Q[xi , -" >3*]/(Q+[zi>"" ,xk])w is \W\, the order of

the group W, where (Q+[xi, • • • ,Xk])w is the ideal generated by the noncon-
stant W-invariant homogeneous polynomials ofRk,



456 WU-YI HSIANG, RICHARD S. PALAIS k CHUU-LIAN TERNG

(ii) dim(Q[x1, • • • ,xk]
w'/(q+[Xl, • • • >*k])W) = \W\/\Wa\, where Wa is the

isotropy subgroup of a in Rk.
Suppose XQ is the maximum point of / a , AXo and I(xo,AXo) =

{i(l),-«- ,i(k)} as in 1.7. Then the homology classes b^ (representing
Si(j)(xo)) is the Bott-Samelson cycle at the critical point <pi(j)(xo) of fXo.
Hence 6i(i),- t# A(fc) f ° r m a se^ °f generators of H^M,Z). Therefore W
induces a group homomorphism a:W —• GL(fc, Z), where a(^») = Bi, the
matrix of <pi* on H^M, Z) relative to the basis &t(i)> *' • A(fc)-

6.9. Lemma, a: W —• GL(fc, Z) as injective.
Proof. Since W and a(W) are Weyl groups, which are determined by the

generators and relations, a is injective provided it is injective when restricted
to any rank 2 Weyl subgroup of W. But every rank 2 Weyl subgroup corre-
sponds to some (fc — 2)-simplex of a Weyl chamber of W. Hence by the Slice
Theorem 2.1, it suffices to prove this lemma for k = 2, i.e., W = Dg (the
dihedral group of order 2#), where g = 2,3,4, or 6. Recall that the ordering
of the reflection hyperplanes U has been set in 6.5. So /(xo, A ^ ) = {1,#}.
It follows from 6.4(1) that we have {<Pi)*{bg) = 62? and (<£>i)*(&i) = —62. So
61,62 form a basis for H^(M, Z). Using 6.4 again, we have

D \ab-l -a
= B = \

where a = /?i2 and b = #21 • Note that B / id, so if a is not injective then we
have g = 4 or 6, 1 < o(B) < g and o(£) is a divisor of #, where o(B) denotes
the order of B. Therefore we have either o(B) = 2, or o(B) = 3 and g = 6.
In each case we will derive a contradiction as follows:

(i) o{B) = 2. Since det(JB) = 1 and o(B) = 2, we have tr(JB) = - 2 = a&-2.
Hence ab = 0, and

"-[V-0.] - - [ - . ' ^
JB2 = 1 implies that J5 must be —1, i.e. a = b = 0. So a(<p) is a diagonal
matrix for all <p in IV, all f3rj = 0, and the ideal I in 6.5 is generated by
tf = 0 for t < ».

Let Wo denote the kernel of a. Then by 6.6(ii) we have x(M/W0) =
\W\/\W0\ = 4, and H*{M/W0, Q) = / P ( M , Q)^ 0 has dimension 4. Let uuu>2

be the basis for i /^(M,Q) dual to 61,62- Then UI,UJ<2 are M^o-invariant and
hence dim(/f / i(M,Q) lVo) = 2 It is obvious that u)\ Au2 is VF0-invariant. And
it follows from the fact that I is generated by £? = 0 for i < g that CJI A u2
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is nonzero. So dim(if2 ' i(M,Q) iyo) > 1. But

dim{H°{M,Q)Wo) = dim{Hg»{M,Q)w°) = 1,

which implies x(M/Wo) > 5 a contradiction.

(ii) o(B) = 3, and g = 6. Since B3 = / , ab-2 = tr(B) = 2COS(2TT/3) = - 1 ,
so ab = 1. But a and 6 are integers so we may assume a = b = 1. Next we
use 6.4(i) and (ii) to express 6̂ , i > 2, as a linear combination of 61,62 with
integer coefficients as follows:

{<Pi)*{b2) = b6 = b1 + 62,

(P2M&1) = -63 = 61+62,
(£>i)*(63) = 65 = (£>i)*(-6i - 62) = 61 - (61 + 62) = -6 2 ,
(<P2)*(66) = 64 = dp2)+(61 + 62) = 61,
(^3)*(fti) = -65 = 62 = 61 + /?3i63 = 61 + /?3i(-6i - 62).

Since 61,62 are linearly independent, the last equation gives a contradiction.
6.10. Corollary. With the notations as in 6.4, fajfiji = 4cos20^, where

0ij is the angle between li and lj, i.e., ifv\, • • • ,Vk is a simple root system for
W then (fiij) is a Cartan matrix ofW.

6.11. Corollary. The ring structure of H*(M, Q) depends only on W
and /i (= mi = 7712). Moreover if^(M,Q) generates H*(M,Q).

Proof. Suppose v\, • • • , Vk is a simple root system for VF, so that (y?j )* (fy)
= bj 4- /3ij6i, where (/3ij) is the Cartan matrix of VF, and there exist integers
Oimi which depend only on W and (ftj) such that

6m =

Let wi, • • • ,wjb be the dual basis of 61, • • • , bk in H^(M^ Z), i.e., 0^(6^) =
Then

m>k

These discussions imply that the ring A defined in 6.5 and its subring gener-
ated by wi, • • • ,o;fc depend only on W and /i. Now let G be a compact con-
nected Lie group which has W as its Weyl group and T as a maximal torus.
Then G/T is isoparametric in g. By a theorem of Borel [3] H2(G/T,Q) gen-
erates if*(G/T,Q), hence the subring generated by wi, • • • , w/t has dimension
\W\, which is the dimension of if*(M, Q). q.e.d.

Therefore we have the following generalization of the Borel theorem to
isoparametric submanifolds:

6.12. Theorem. Let Mn C Rw+/c be an irreducible isoparametric sub-
manifold with even multiplicities, W is its associated Weyl group, E\, • • ,EP
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the curvature distributions, andvi,-- ,vp the curvature normals of M. Sup-
pose vi, • • • ,Vk forms a simple root system for W', and Ti denotes the Euler
class of the vector bundle Ei on M. Then

H* (M, Q) = Q[n, • • • , 7*]/<Q+ [n, • • • , rk\
w).

Proof Using 6.8, it suffices to prove that T I , - - - , rjt form a basis of
# " ( M , Q ) , i.e., det(fy) ? 0, where Ti = Ej< f c *»iwi- W e h a v e V*M) = ' ^
But we also have

so {Uj) = (ft,), which is a rank k Cartan matrix (because of 6.9). Hence
detltij) ^ 0. q.e.d.

By a theorem of Chevalley [18] the ring of VT-invariant polynomials on Rk

is a polynomial ring with k homogeneous generators tzi, • • • , u^.
6.13. Corollary. The Poincare polynomial of M is

where the d{ are the degrees of the generators iei, • • • , Uk of R[xi, • • • , Xk]w •
Suppose a = xo + v(xo) G <7, where a is a simplex of the boundary of

the Weyl chamber AXo. Then for any (p G Wa we have nv o <p = nv. Hence
7rJ(ff*(Mo,Q)) C H*{M,Q)W°. Then it follows from 5.7(iv) and 6.8 that
these two vector spaces have the same dimension, hence they are equal. There-
fore we have

6.14. Theorem. JT(Ma,Q) = Q[r1? • • • , r f c]^/(Q+[n, • • • ,rk]
w).
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