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ON THE DIFFEOMORPHISM TYPES
OF CERTAIN ALGEBRAIC SURFACES. II

ROBERT FRIEDMAN & JOHN W. MORGAN

0. Introduction

In Part I of this paper [6], we studied the differential topology of certain
algebraic surfaces via a new invariant introduced by S. Donaldson. The com-
putation of this invariant was based on the description of moduli spaces of
stable vector bundles over the surfaces in question (cf. [6, III, §1]). The pur-
pose of this paper is to supply the proofs of these descriptions. These proofs
are largely independent of Part I. The results in this paper are generaliza-
tions of results Donaldson [4] established for a particular surface (S(2,3) in
our notation).

The surfaces we shall be concerned with here are Dolgachev surfaces and
their blowups. A Dolgachev surface may be defined to be a nonrational,
simply connected elliptic surface with b% = 1. An equivalent definition is the
following: A Dolgachev surface is a complex surface S, with a holomorphic
map 7T: S —• P1, such that the general fiber of n is a smooth elliptic curve / , n
has exactly two multiple fibers Fp and Fq of multiplicities p and q respectively
with g.c.d.(p,q) — 1, pg(S) = 0, and bi(S) — 0. Such an S is necessarily
an algebraic surface. For more details on Dolgachev surfaces we refer to
Dolgachev's paper [2] and to Part I, especially the introduction and I, §3.
Our main goal here is to describe the moduli space of L-stable rank-2 vector
bundles with c\ = 0 and C2 = 1 over "generic" Dolgachev surfaces and their
blowups, where L is a suitable ample line bundle in an appropriate sense (2.4).
The main results are Theorem 3.9, Theorem 4.4, and Corollary 5.9.

The contents of this paper are as follows. §1 is an introductory section
on vector bundles aimed at nonexperts. It contains little that is new. We
review the notion of stability and describe some of the techniques involved in
analyzing rank-2 bundles on a complex surface. In §2, we collect some of the
technical results about Dolgachev surfaces that will be used later and so deal
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with the case c2 < 0. This case is important for handling blown up Dolgachev
surfaces.

§§3 and 4 discuss the crucial case c2 = 1. The moduli space for such bundles
is described set-theoretically in §3 and as a scheme in §4. Our results here are
somewhat incomplete, as we are able to describe the full scheme structure only
in the case when the Dolgachev surface has a multiple fiber of multiplicity 2.
These results have also been obtained independently by Okonek and Van de
Ven [12] by methods very similar to ours.

The results of §§2-4 are the first case of the general problem of classifying
vector bundles on simply connected elliptic surfaces. This problem has been
analyzed by the first author. However, the general situation (when c2 is large
compared to pg) is very different from the results described here.

In §5, we study the general problem of comparing stable bundles on a blown
up surface with stable bundles on the original surface. With a view toward
future applications (and at no cost in additional length), we have tried to
state and prove our results in rather full generality. In the case of interest to
Part I, blown up Dolgachev surfaces and c2 = 1, we show that for appropriate
choice of ample line bundle, the moduli space of stable bundles on the blowup
can be identified with the moduli space of bundles on the original surface
via pullback. Such a result is not true for general surfaces or general choice
of c2, but the relationship between stable bundles on the blown up surface
and on the original surface can be analyzed in much greater detail. However,
we shall refrain from doing so in this paper. All of these results have gauge
theory analogues: if M is a Riemannian 4-manifold, then one can compare the
moduli space of anti-self-dual connections on M and on M # CP with an
appropriate choice of metric. The appropriate gauge theory has been worked
out by Taubes and Donaldson,1 in unpublished results, and would also suffice
for the applications to Part I of this paper.

Notation and conventions. The notation and conventions of Part I (es-
sentially just standard conventions of algebraic geometry) remain in force. In
particular, if V is a holomorphic vector bundle, then V denotes its sheaf of sec-
tions. In addition, we recall the following notation and facts about Dolgachev
surfaces from Part I:

(0.1) We shall always denote by S — S(p,q) a Dolgachev surface with
multiple fibers of multiplicities p and g, g.c.d.(p, q) = 1. The associated elliptic
fibration (which is uniquely determined by S) will be denoted n: S —• P1. We
call S generic if all fibers of n are irreducible. We shall always assume that

1 Added in proof. For Donaldson's work see §IV of Connections, cohomology and the inter-
section forms of 4-manifolds, J. Differential Geometry 24 (1986) 275-341.
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the multiple fibers are smooth, and denote them by Fp and Fq respectively.
A general fiber of n is denoted / . Thus pFv = qFq = f as divisor classes.

(0.2) The order of divisibility of [/] in #2(S;Z) is exactly pq. In other
words, there is a primitive cohomology class K G H2(S',Z) with pqK = [/].
We shall also use K to denote the line bundle uniquely determined by /c.

(0.3) The line bundle (fs{Fp)\ FP on the smooth elliptic curve Fp is a torsion
line bundle in Pic(Fp) whose order is exactly p. Of course, a similar statement
holds for Fq.

1. Generalities on vector bundles
Throughout this section Y is a smooth algebraic surface and V is a holo-

morphic (or equivalently algebraic) rank-2 vector bundle over Y. We collect
some standard facts. General references for this material are [8] or [11].

We fix an ample line bundle L on Y. Recall [15], [11] that V is L-stable
(resp. L-semistable) if for all sub-line bundles (p: F —• V we have

c1(F)-c1{L)<c1(V)'C1{L)/2 (resp. < Cl(V)

Hence, if ci(V) = 0, then V is L-stable (resp. L-semistable) if and only if for
all sub-line bundles <£>: F —• V, we have

< 0 (resp. < 0).

There are various notions of stability in the literature; the one above is
sometimes called Mumford-Takemoto stability.

The usefulness of restricting attention to stable bundles, from the point of
view of algebraic geometry, is that they naturally form an algebraic variety
(or, more precisely, a scheme). Moreover, the local structure of this scheme
can, in theory, be calculated.

Definition 1.1. If V is a holomorphic vector bundle, let End V be the
sheaf of endomorphisms of V: End 7 = V(8> V v , where Vv = dual of V\ we
set sl(V) = ker(tr: EndV —• <fs) where tr is the naturally defined trace map.
Hence there is an exact sequence of bundles (or locally free sheaves)

0 -> sl{V) -• EndV -> &s -> 0.

The vector space H°(End V) = End V is the space of globally defined
endomorphisms of V. The following is a standard fact.

Lemma 1.2 ([11, p. 172]). IfV is stable with respect to some ample line
bundle, every global endomorphism of V is multiplication by a scalar. Equiv-
alently,

H°{EndV) = {A • Id | A E C}, i.e., H°(sl(V)) = 0. q.e.d.
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Given a holomorphic vector bundle V with H°(sl(V)) — 0, there exists a
local universal deformation of the vector bundle V over Y. This consists of
the germ of an analytic space (Z, z) and of a vector bundle "V over Y x (Z, z),
together with an isomorphism

T'\Yx{z} = V.

The germ (Z, z) is universal in an appropriate sense (i.e. it represents a
functor). Intuitively, (Z, z) parametrizes all small deformations of the bundle
V keeping the determinant bundle detF fixed. Moreover, it can be "calcu-
lated" in the following sense [5, §9, especially 9.7]:

(1.3) The Zariski tangent space of Z at z, Tz,z, is naturally H1^^)).
Moreover, there exists a convergent power series $ near 0 £ H1(sl(V)), with
values in H2(sl(V)), such that, as germs of analytic spaces

Hence, if H2(sl(V)) = 0, then Z is smooth at z of dimension /i1(s/(y)).
The following lemma applies to all the surfaces discussed in this paper:
Lemma 1.4. / / HX{0Y) and H2(&y) are zero, then H\End V) =

H^sliV)), i > 1.
Proof. Immediate from the definition of sl(V) and the associated coho-

mology sequence.
Lemma 1.5. If V is a rank-2 holomorphic bundle over the surface Y, then

(a) X(V) = |[Cl(V) • (a(V) - Ky)) - c2(V) + 2X^v),
(b) X(EndV)=4X(&Y) + cl(V)-4c2(V),

where x denotes the holomorphic Euler characteristic.
Proof. This is a very special case of the Hirzebruch-Riemann-Roch

theorem [1], [9].
Lemma 1.6. There is a canonical isomorphism Vv = V (8) (detV)"1,

where V is a rank-2 bundle and detF = /\2V. In particular, if detV is
trivial, then Vw = V. (In general, of course, ci(detF) = C\{V).)

Proof. The pairing V ® V —• /\2 V — det V is perfect, q.e.d.
(1.7) We briefly review some facts about Chern classes of coherent sheaves.

Given a coherent sheaf & on a smooth project ive variety, there is a theory of
Chern classes Ci(^~), which satisfy appropriate analogues of the usual proper-
ties of Chern classes (e.g. Whitney product formula). In addition they satisfy:

(1.8) (a) If Z is a codimension-2 subscheme of the algebraic surface Y and
Iz is its ideal sheaf, then

C2(Iz) = KZ), t h e length of Z,
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where by definition

l(Z) = dim H°(ffiz) = dimH°{0Y/Iz)-

(b) For a divisor F on Y, we have ci(0y(F) <8> Iz) = F.
(1.9) We will need to know something about the local nature of sub-line

bundles of a rank-2 vector bundle. If <p: 0y(F) —> V is a sub-line bundle,
then for every y G Y, there is an open set U containing y and trivialization
of 0y (F) and V over U so that locally

is given by <p(l) — (/,#), with / and g in 0\j. We separate into two cases
Case 1. / and g are relatively prime. Then

{0u
where Iz is the ideal sheaf of the subscheme Z defined by {/ = g = 0}. This
is just local algebra: if 0y^ is the local ring of Y at y, then 0yiV — C{zi, 22}
is the ring of convergent power series in two variables, and is a UFD. It is
then easy to check that the map

defined by ̂ ((a, 6)) = —ga + /&, is surjective with kernel limp.
Case 2. / and g are not relatively prime. Then, again because &Y,y is a

UFD, there exists (locally) a g.c.d. h of f and g. Let / ' = f/h, g' = g/h, so
that / ' and g' are relatively prime. One sees easily that (0\j ®0u)l\m.ip has
A-torsion. Moreover, if D is the divisor {h — 0}, then <p has an extension to
a map

defined by <p(l/h) = (f',g')- (Recall that (I/ft) is a generating section for
0u{D).) We can now apply the analysis of Case 1 with (/', g') replacing (/, g).
If Z1 is the scheme defined by {/' = g' = 0}, then we have an exact sequence:

0 -> 0V {D) -^^u^^u^ Iz> - 0.
As a straightforward application of (1.9), we shall analyze rank-2 bundles

which are L-semistable but not L-stable. The following proposition will not,
however, be used in the sequel.

Proposition 1.10. Let L be an ample divisor on the surface Y, and let
V be a rank-2 bundle on Y with c\(V) = 0. Suppose that V is L-semistable
but not L-stable. Then exactly one of the following holds:

(a) There exists a unique destabilizing sub-line bundle 0y{F) —• V, and V
is given as an extension

0 -• 0y(F) -> V -> 0Y[rF)Iz -+ 0,
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where Z is a 0-dimensional local complete intersection subscheme.
(b) V = 0Y{F) ®<fy{-F), where 2F # 0 in PicY, and the subbundles

<fy(F), (9y(—F) are the unique destabilizing sub-line bundles.
(c) V = ^Y(F) ®&y(F), where 2F = 0 in PicY. Every destabilizing sub-

line bundle ofV is isomorphic to &y(F), and the set of all such is identified
with the set of lines in Hornby (F), V) £* C2.

Proof. First we show that there is an exact sequence for V as in (a).
Let <p: &y(F) —* V be a destabilizing sub-line bundle. Since V is semi-

stable, LF = 0. Suppose that <p does not have torsion-free cokernel. Then by
Case 2 of (1.9) there exists an extension of (p to <p: ffy {D + F) —• V, where D
is an effective nonzero divisor. But then L- (D + F) = LD > 0, contradicting
the L-semistability of V. Thus, <p has torsion-free cokernel, which must locally
be of the form Iz as in Case 1 of (1.9). Therefore, as ci(V) = 0, V is given
as an extension

0 -+ @Y{F) -+ V -> &Y(-F)IZ -> 0.

Now suppose that we are not in case (a), and let @y (G) —• V be a destabi-
lizing sub-line bundle. If the map ffy(G) - • V factors through ^y(F), then
F - G = D is an effective divisor or zero. Since L • G = L F = 0, L • D = 0;
so that D = 0 and F = G. If ^y (G) is a different sub-line bundle, then the
induced map <fy{G) —• ^y {-F)IZ is nonzero. Thus, there exists an effective
divisor D linearly equivalent to -F - G and containing Z in its support. But
LD = L- (-F - G) = 0, so that £> = 0 and G = -F. Consequently, Z = 0.
Clearly, the natural map (9y{F) ®&y(—F) -» V is an isomorphism.

If F ^ -F in Pic Y, then 2F ^ 0. In this case,

Hornby(F), V) = ffo(^e^y(-2F)) s #°(^y) 0 i / ° (^y ( -2F) ) .

Note that #°(<?y(-2F)) = 0, as any effective divisor D in | - 2F\ has
L - D = 0 and hence cannot exist. Thus Hom(^fy(F), V) is one-dimensional,
corresponding to the given map (fy(F) —• V, and a similar argument works
for &Y(-F). This completes the analysis for (b); (c) is similar.

Remark 1.11. (a) In all cases, c2{V) = -F2 + l(Z). Since L • F = 0,
where L is an ample divisor, F2 < 0 and F 2 = 0 if and only if F is numerically
equivalent to zero, i.e. [F] = 0 in H2(Y\ R). Equivalent^, F 2 = 0 if and only
if the bundle @y{F) 0 &y(-F) is flat. Since l(Z) > 0 and /(Z) = 0 if and
only if Z = 0 , we have shown that c2(V) > 0, with equality if and only if V
is given as an extension

4 V - • ^ y ( - F ) -> 0,

with @y(F) a flat line bundle. Thus, in this case V itself is an extension of
two flat bundles (and is identified with the flat bundle @y{F)®<fY(-F) in an
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appropriate compactification of the moduli space of stable bundles; see [7]).
This is the analogue of Donaldson's result [3] for stable V: if V is L-stable for
some ample L and ci(V) = 0, then c2(V) > 0, with equality if and only if V
is flat.

(b) Fix c2(V) = c2. Then associated to each properly L-semistable V with
d (V) = 0 and C2 (V) = c2 is a divisor F , well denned up to sign with L-F = 0
and —F2 < c2. Hence, if F is not numerically equivalent to zero, then the
class of L lies in a wall Wa in the hyperbolic space associated to the real
Neron-Severi group NS(Y) 0 R C fl^yjR) C H2{Y',R), where a = Cl(F)
and a2 = F2 > — c2. These walls define a cell structure on the ample cone of
NS(F) <g> R which is the algebro-geometric analogue of the chamber structure
studied in II. 1 of Part I.

In particular, if Hi(Y;Z) = 0 and L is sufficiently general, then the only
potential destabilizing sub-line bundle we need to consider in studying L-
semistable bundles V with rank 2, C\{V) = 0 and c2(V) < c2 is $y itself, and
every nontrivial such V is uniquely described as an extension

0 - • 0Y - • V -> Iz -+ 0.

2. Vector bundles over Dolgachev surfaces

In this section we gather some technical preliminaries on stable rank-2
bundles with c\ — 0 over Dolgachev surfaces, and show that there are none
with c2 = 0. The case of main interest, c2 = 1, will be treated in the next
section.

(2.1) Throughout this section and the next two, S = S(p,q) shall always
denote a generic Dolgachev surface (0.1).

The following is a straightforward computation.
Lemma 2.2.

(a) Ks

= f-Fp-Fq = (pq-p- q){l/pq)f

= {PQ-P-Q)K-

(b) 2Ks = (p-2)Fp + (q-2)Fq.

(c)

Lemma 2.3. (a) 7/0 < a < p - 1, 0 < /? < q - 1, and c > 0, the natural
map H°(cf) —• H°(aFp 4- j3Fq + cf) is an isomorphism. In other words, with
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a, 0 and c as above, Fp is a fixed component with multiplicity a in the linear
series \aFp -f 0Fq + cf\, and similarly for Fq.

(b) Hl(aFp + 0Fq) = 0 if \a\ < p - 1, \/3\ < q - 1, and at least one of a,
0 is nonnegative.

(c) d\mHx{aFp + 0Fq) = 1 for -p < a < - 1 and -q < 0 < - 1 .
(d) dimH\aFp + 0Fq + f) = 1 for 0 < a < p - 1 and 0 < /9 < q - 1.
Proo/. (a) Clearly any divisor in the linear series \aFp + /3Fq + cf\ is

supported in the fibers of TT. Thus the fixed part of \aFp + /3Fq + c/ | is of the
form a'Fp + (3fFq, where 0 < a' < a, 0 < /?' < /?. Moreover, if D denotes the
movingpartof |aFp + /9Ffl + c/|, then^ s(Z?)|F p = ^ F p and^5(P) |F < ? =^F q .
But 0s{*Fp + l3Fq + cf)\Fp =<?s(aFp)\Fp. tt <?3{<*Fp)\Fp = d?s(a'Fp)\Fp,
where 0<a'<a<p— 1, then a = a' by (0.3) and similarly for Fq. Hence,
the fixed component of \aFp + /3Fg + cf\ is just aFp + (3Fq.

(b) By Serre duality, H1 {(?Fp{aFp)) is dual to H°{(?Fp{-aFp)). By (0.3)
this is zero for \a\ < p - 1, a / 0. Similarly . f f 0 ^ (/?i^)) = 0 if \/3\ < q - 1
and /? ̂  0. To prove (b), we induct on |a| + |/?|. If a = /? = 0, then (b) is
equivalent to the statement that H1 (#§) = 0.

Next, without loss of generality, we may assume that a > 0. If a > 1,
consider the sequence

0 - <?5((a - 1)FP + /?Ffl) - ^ s K + f3Fq) - , ^F p(aFp) - , 0.

By induction, if1 ((a — 1)FP + /3Fq) = 0, and we have shown above that
Hx{@Fp{pLFp]) = 0. Hence Hl{aFp + (3Fq) = 0 as well. If a = 0, (3 < 0, then
we consider the sequence

0 - <fs(/?Fg) - <?s((/?+ 1)F,) - <?Fq((0+l)Fq) - 0.

If /? = — 1, this sequence yields

l\\ W\ II
C - ^ C 0

so that Hx(-Fq) = 0. tt-q < 0 < - 1 , then H°(<?Fq((/3 + 1)FJ) = 0. Thus,
^(pFq) C ff 1(()9 + l)i^), and this last is zero by induction.

(c) This is proved by a very similar induction.
(d) By Serre duality, H1(aFp+0Fq+f) is dual to H1(Ks-aFp-0Fq-f) =

Hl{-{a + l)Fp - (0+l)Fq). Thus (d) follows from (c).
Lemma 2.4. There does not exist a rank-2 bundle V on S with ci(V) = 0

and C2{V) < 0 which is stable with respect to an ample divisor L.
Proof. Let L be an ample divisor on 5 and let V be L-stable, with

Cl(V) = 0. Then, by Donaldson's results [3], c2(V) > 0 and c2{V) = 0 only
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if V is flat. Since S is simply connected, V would have to be trivial, i.e.
V = ^ 5 0 ^ 5 , but the trivial bundle is clearly not staWe.

Remark. An easy argument using (1.10) shows that the only L-semistable
bundle V as above is the trivial bundle.

Next we begin the analysis of stable bundles V with C2 = 1.
Definition 2.5. A line bundle L on S is suitable if there exists an ample

line bundle LQ on S and an integer n > (LQ • Ks)/(pq — p — q) such that
L = L0 + nKs.

Proposition 2.6. Let L be a suitable line bundle on S, and let V be an
L-stable rank-2 bundle on S with c\(V) = 0 and C2{V) = 1. Then there is an
exact sequence

0 -> &s(D -Ks)-+V^ @s(Ks - D)mx - 0,

where mx is the maximal ideal sheaf of some point x G S,

D = aFp + bFq, a ,6>0, (a + l)q + (b + l)p < pq.

Proof. By the Riemann-Roch formula (1.5)(a), x(V) = - l + 2x(^s) = 1,
so that h°(V) + h2(V) > 1. If h°(V) > 1, then V has a section, and hence
there is a nonzero map &s —> V. As ci(c?s) = 0, V is then not L-stable
for any L. Thus h°(V) = 0, h2(V) > 1. By Serre duality, this is equivalent
to h°(V (8) Ks) > 1. By (1.6), Vy = V. Hence there is a nonzero map
&s{—Ks) -^ V. By (1.9), there is an effective divisor D such that this map
extends to a map <fs{D — Ks) —• V with a torsion-free cokernel. Since
Ci(V) — 0, there is an exact sequence

0 -> ̂ s(£> - Ks) -> V - ^5(/fs - D) / z - 0,

where Z is a codimension-2 subscheme and Iz its ideal sheaf.
By the stability of F, we have L - (D — Ks) < 0. Next, we use
Lemma 2.7. If L is a suitable line bundle, and if D is an effective divisor

such that L • (D - Ks) < 0, then D = aFp + bFq with a, b > 0 and (a + 1)<? +
(b+l)p < pq. Moreover, L-(D-Ks) < 0, i.e., the inequality is automatically
strict.

Proof. We have

0 > L - {D - Ks) = (Lo + nKs) - {D - Ks) = Lo - D + n{Ks - D) - (Ks • Lo).

Suppose that Ks • D > 0. Since Ks = {pq — p — q)x> and /c • D is an integer,

{Ks -D)>pq-p-q. But then
Lo • £> + n(tf5 ' 0 ) ~ {Ks

= Lo • £> + (Lo • Ks) - (Lo Ks) = LO'D>0.
The last inequality contradicts the first.
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Hence Ks • D < 0, and therefore / • D < 0. Since / moves in a base point
free pencil, D is supported in the fibers of TT. As 5 is generic, all fibers of ir
are irreducible. Hence D must be a positive combination of (reductions of)
fibers of TT. Hence D = aFp + bFq + c/ for some nonnegative integers a, 6, c.
Then

D - ZTs = {aq + ftp + cpq -(pq-p- q))n
= ((a + l)q + (b + l)p - p<? H- cpg)/c.

Since L • /c > 0, it follows that c = 0 and (a + 1)<? + (b + l)p < pq. Suppose
equality holds. Then p\ (a + 1), as g.c.d.(p,<?) = 1. Hence (a + 1)<? > pq, so
that (b + l)p < 0. This is absurd. Thus, (a + l)q H- (6 -f l)p < P<7, and

L - ( 2 ? - / r s ) = ((a + l )g+(6+l )p-OT)- (L- /c )<0 . q.e.d.

Returning to the proof of (2.6), we see that it suffices to show that Iz = mx

for some x G S. But

Since D and Ks are rational multiples of / , (D - Ks)
2 = 0. Thus, l(Z) = 1.

Hence Z is a reduced point a: and /^ = m I (

3. The case c<2 — 1

Let *S = S(p, ̂ ) be a generic Dolgachev surface, and let L be a suitable line
bundle over S.

Condition 3.1. (a) D = aFp + 6Fg where a, 6 > 0 and (a + l)g + (6+l)p <

We shall be concerned with exact sequences of the form:

0 - ^ S ( P - /f5) - V ^ ^ ( / r 5 " ^ ) ^ x - 0

where £) satisfies (3.1)(a), a; E S, mx is the maximal ideal sheaf of x, and V
is locally free.

By (2.6), if V is a rank-2 L-stable bundle with ci(V) = 0 and c2(F) = 1,
then there exists an extension of the form (3.1)(b) whose middle term is V.
We study a converse problem: when, for fixed D and x, there is an exact
sequence as in (3.1)(b).

Lemma 3.2. Fix D as in (3.1)(a) and x G S. There exists an extension
V as in (3.1)(b) if and only if x is in the base locus of&s&Ks - ID).

Proof The extensions of @s{Ks ~ D)mx by @s{D - Ks) are classified
by a global Ext1 [8, p. 725]. For our purposes, it suffices to know that there
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is an exact sequence:

0 -> H\Hom{<?s{Ks - D)mx,0s{D - Ks)))

^&siKs - D)mx,0s{D - KS))

Furthermore,

Hom{0s(Ks ~ D)mx,0s(D - Ks)) = Hom{@s{Ks - D),0s(P - Ks))

(3.3) ^

where the first isomorphism is induced by the inclusion mx C <fs [8, p. 690].
Also, Extl(@s(Ks ~ D)rnx,@s(D - Ks)) = Cx, a skyscraper sheaf with

stalk C supported at x [8, p. 690]. Hence

&s(Ks - D)mx^s{D - Ks))) = C.

A class a € Ext1 defines a locally free extension if and only if the projection
of a to H°(Extl) = C is nonzero [8, pp. 723-724].

The map

Ext V s ( # s ~ D)mx,d?s(D - Ks))

- H°{Extl(d?s(Ks - D)mx,d?s(D - Ks)))

is dual (via Serre duality) to the map

H°{CX) -2+ Hl{@s{Ks - D)mx 0&S{D - Ks)
w 0 Ks)

where d is the coboundary map in the cohomology long exact sequence asso-
ciated to

0 -> &s{ZKs - 2D)mx - . &S{ZKS -2D)->Cx^0

[8, p. 729]. By duality, then, there is an extension as in (3.1)(b) if and only if
d is injective, or, equivalently, if and only if the map H°(&s{3Ks — ID)) —•
H°(CX) = C is zero, i.e. if and only if every section of ̂ (3 /Cs — 2D) vanishes
at x, if and only if x is in the base locus of ̂ s(3-Ks - 2D). q.e.d.

We proceed to calculate this base locus.
Lemma 3.4. Let D be as in (3.1)(a). Then the base locus B of3Ks - 2D

satisfies:
(a) B = FPUFqifa^(p- 3)/2 and b?(q- 3)/2;
(b) B = Fpifa?{p- 3)/2 and b={q- 3)/2;
(c) B = Fqifa = (p- 3)/2 and b / {q - 3)/2
(d) B = 0 ifa = (p- 3)/2 and b = {q- 3)/2.
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Proof. By (2.2), 3KS - 2D = (p - 3 - 2a)Fp + {q - 3 - 2b)Fq + f.
Thus, (3.4) is immediate if a < (p - 3)/2 and 6 < (q - 3)/2, by (2.3)(a). If
a > (p - 3)/2 and b < (q - 3)/2, we may write

(p - 3 - 2a)Fp + (q - 3 - 2b)Fq + f = (2p - 3 - 2a)Fp + (g - 3 - 26)Fg.

Since a < p—2 by (3.1)(a), this case follows from (2.3)(a). A similar argument
handles the case a < (p—3)/2, 6 > (q—S)/2. Finally, since a and b are integers,
g.c.d.(p, q) = 1, and (a+l)g+(6+l)p < pg, we cannot have both a > (p—3)/2
and b> (q - 3)/2. q.e.d.

Lemmas 3.3 and 3.4 give a characterization, in terms of D and x, of when
an extension as in (3.1) (b) exists. We turn now to the question of uniqueness.
It will be convenient to introduce the following technical condition:

Assumption 3.5. D is a divisor satisfying (3.1)(a), x is contained in the
base locus of 3KS - 2£>, and H°(<?S{2KS - 2D)mx) = 0.

Lemma 3.6. (a) If D satisfies (3.1)(a) and x e Fv (resp. x G Fq), then
D and x satisfy (3.5) if and only if either a> (p - 3)/2 or both b> (q- 2)/2
and a < (p - 3)/2 {resp. either b > (q - 3)/2 or both a > (p - 2)/2 and
b<(q-3)/2).

Now suppose that D and x satisfy (3.5).
(b) There is an extension V as in (3.1) (b) and the corresponding extension

class is unique modC*, i.e. the extension is essentially unique up to isomor-
phism.

(c) The map @s{D — Ks) —> V is unique mod scalars.
(d) / /V is also written as an extension

0 - d?s(D -KS)^V^ @s(Ks - D)mx, -> 0,

then x' = x.
Proof, (a) Assume (as we may by symmetry) that x G Fp. By (2.2),

2KS - 2D = (p - 2 - 2a)Fp + {q-2- 2b)Fq.

Thus, H°(<fs{2Ks - 2D)mx) = 0 if and only if either p - 2 - 2a < 0 or
q - 2 - 26 < 0, i.e. if and only if either a > (p - 3)/2 or 6 > (q - 2)/2. From
(3.1)(a), if b > (q- 2)/2, then a < (p - 3)/2, and (a) follows, in view of
(3.4) (a) and (b).

(b) The existence of V is an immediate consequence of (3.2). To prove
uniqueness, by (3.3) and the proof of (3.2), it suffices to show that
H1(2D - 2Ks) = 0. Since D and x satisfy (3.5), and by (a), we may write

2D - 2KS = (2a + 2 - p)Fp + (26 + 2 - g)Ffl,

where either 2a + 2 - p > 0 or (26 + 2 - g) > 0, and \2a + 2 - p\ < p - 1,
|26 + 2 - 4 < q - 1. By (2.3)(b), H1 {2D - 2KS) = 0.
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(c) We compute YLom(@s(D-Ks), V) = H°(Y ®@S{KS-D)). From the
exact sequence

0 - &s -> V®(?s{Ks - Z?) - #s{2Ks - 2D)mx -> 0,

Assumption 3.5 implies that H°(V 0 &s{Ks - Z?)) = C, and hence (c).
(d) This follows immediately from (c) and the fact that x is the unique

point of S at which V/^s(Z? — Ks) is n°t locally free, q.e.d.
Next, we show that we can modify the divisor D to arrange (3.5).
Lemma 3.7. Let D satisfy (3.1)(a) and V be given by (3.1)(b). Then

there exists a divisor D', an x' G S, and an exact sequence

0 -> ffs[p -KS)^V^ &s{Ks - D')mx, - 0,

such that D' and x1 satisfy (3.5).
Proof. By symmetry, we may assume that x G Fp. Thus, by (3.4),

a jz (p - 3)/2. If D and x do not satisfy (3.5), then by (3.6)(a) we have
a<(p- 3)/2 and b < {q - 2)/2. Set ~DX = D + Fp. Tensoring (3.1)(b) with
&s{Ks — Di), we obtain

0 -> ^s(-Fp) ^ V 0&s{Ks ~ D±) -• ^5(2iCs - 21? - Fp)mx -> 0.

Since H°{-Fp) = Hx{-Fp) = 0, by (2.3), we have

H°{V 0@s{Ks - Dx)) = H°{&s{2Ks -2D- Fp)mx).

But 2KS -2D-FP = rFp + sFg, r > 1, s > 0, by (2.2)(b). Clearly, then,

H°{&s{2Ks -2D- Fp)mx) £ 0.

Thus, there is a nonzero map <fs{D\ —Ks) —• V. Enlarge D\ to D\ to insure
a torsion-free cokernel. By (2.7), D\ must be of the form a\Fp + b\Fq, with
a\ > a and b\ > b and we have an exact sequence

0 - ^ (Z?! - KS) -+ V -^ ^ s ( ^ s - D{)mXl ^ 0.

If D\ does not satisfy H°((fs{2Ks — 2Di)mXl) = 0, this process may be
repeated. Since a + b strictly increases at each stage and a and b are bounded,
after a finite number of repetitions we produce D' and x' satisfying (3.5).
q.e.d.

We turn now to the issue of stability.
Lemma 3.8. Let D and x satisfy (3.5), and let V be given by the extension

(3.1)(b). Suppose that x G Fp (resp. x G Fq). Then V is not L-stable if and
only if {a + 2)q + (b + l)p < pq {resp. (a + l)q + (6 + 2)p < pg).

Proo/. We begin by establishing the following.
Claim. If V is given by (3.1)(b), then V is not L-stable if and only if there

exists integers c,d > 0, such that, if C = cFp + dFq and F = Ks - D - C,
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we have
(a) x G support of C;
(b) (a + c + l)q + (6 + d + l)p < pg;
(c) the natural nonzero map #s{F) —• &s{Ks ~ D)mx, which exists by

(a), can be lifted to a map &s(F) —* V.
Proo/ 0/ the Claim. First suppose that c, d satisfying (a)-(c) exist. As

L • F = L • (X5 - £> - C) = {pq - {a + c + l)q - (b + d + l)p)(L • /c) > 0,

V is clearly not L-stable. Conversely, suppose that V is not L-stable, and let
&s(F) be a sub-line bundle of V such that L • F > 0.

If the composite map <fs{F) —»(fs{Ks — D)mx were zero, there would be
an induced nonzero map ^s(F) —>< (̂Z) — if5). But then F would be of the
form D - Ks - C for some effective C, so that L - F < L - {D - Ks) < 0,
contradicting the choice of F. Thus, the map <fs{F) —» <fs{Ks — D)mx is
nonzero, so that F = ifs — D — C, where C is an effective divisor and x is
in the support of C. Applying (2.7) to the divisor D + C, we see that C is
of the form cFp + dFg where c and d satisfy (b). Finally, (c) is automatic by
construction.

Proof of 3.8. Suppose by symmetry that x G Fp. Clearly, there ex-
ist c, d > 0 satisfying (a) and (b) of the claim, if and only if (a + 2)q +
(6 + l)p < pq. It therefore suffices to prove that, if D and x satisfy (3.5)
and c, d satisfy (a) and (b) then (c) holds. The obstruction to lifting the map
tfs(F) = &s{Ks -D-C)-+ &s{Ks ~ D)mx to a map 0s{JF) -> V lies in
H1{2D-2KS + C). Write

ID - 2KS + C = (2a + 2 + c - p)Fp + (26 + 2 + d - q)Fq = rFp + sFq,

say. The inequalities (3.6)(a) and (b) of the claim easily yield \r\ < p — 1,
|s| < g -1 , and either r or s is > 0 . By (2.3)(b), Hl(2D-2Ks+C) = 0. q.e.d.

We may summarize our results as follows,
Theorem 3.9. Let D and x satisfy (3.5), where D = aFp+bFq and x e Fp.
(a) There is an extension V as in (3.1)(b) which is L-stable if and only if

(i) either a> (p - 3)/2 or both b > (q - 2)/2 and a < (p - 3)/2, and

(ii) {a + 2)q + {b+l)p>pq.
(b) With V as above, there exists an exact sequence

Z)' = a'Fp + fc'Fg/ st/c/i £/ia£ D' and x' also satisfy (3.5), if and only if
(a', b') = (a, 6) or a < p — 3 and (a', &') = (p — 3 — a, q — 2 — b). In this case
x1 G Fp as well.

Analogous statements hold if x G Fq.
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Proof. Part (a) is immediate from (3.6) (a) and (3.8). To prove (b) we
need the following:

Claim 3.10. Let F be a divisor such that

V ) / 0 and H°{^s{2Ks - D - F)mx) = 0.

Then D — F is effective.
Proof of (3.10). We have an exact sequence

0 -> H°{D - F) -+ H °(V ®@s(Ks - F)) -> H°{&S{2KS -D- F)mx).

By hypothesis the second term is nonzero and the third is 0. Thus,
H°(D - F) ^ 0, i.e., D - F is effective.

Now we prove the "if" direction in part (b). Set a' = p—3 — a, b1 = q — 2 — b,
and£>' = a'Fp+VFg. We have Hom(^5(£>'-#<?), V) = i
and an exact sequence

0 ( )
- H°{^s{2Ks -D- D')mx) -+H\D- D').

One easily verifies that Df, a1', and 6' satisfy (3.1)(a), (3.6)(a), and (3.9)(a).
Moreover, if D—D' = rFp+sFq, one verifies that one of r, s is > 0 and the other
is < 0, and that \r\ < p - 1 , \s\ < q-1. It follows that HX{D-D') = 0, and that
D-D' is not effective. Thus, a nonzero section of i / 0 ( ^ s ( 2 X s - J D - J D / ) m x ) =
H°{&s{Fp)mx) lifts to a nonzero homomorphism <£>: <fs{Df — Ks) —• V.

Next, we claim that <p has torsion-free cokernel. If <p vanishes along a
nonzero divisor J90, then there is an induced map <p: <fs{Df + Do — Ks) —> V.
Hence, by (2.7), Do = aoFp + boFq, where ao,6o > 0, as V is stable. Since
D — D' is not effective, D — D' — Do is also not effective. It follows from
(3.10) that H°{(?s{2Ks -D-D1 - D0)mx) £ 0. But 2KS-D-D'-DO =
(l—ao)Fp — boFq so that ao, bo are zero. This contradicts the fact that Do ^ 0.
The contradiction establishes that (p has torsion-free cokernel.

Now suppose that x1 is defined by the exact sequence

0 -> 0s\p -Ks)-+Y ^ d?s{Ks - D')mx> -> 0.

By the symmetry between D and D', it follows that, if D / £)',

-D- D')mx,) = H°(@s{Fp)mx,) / 0.

Thus, x1 eFp.
Finally, we must prove the "only if" direction of part (b). Suppose that

there is an exact sequence

0 -> ffis{D" -KS)^V^ <?s(Ks - D")mx» - 0,
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where D" and x" also satisfies (3.5). We have an exact sequence

0 -+ H°{D - D") -> H°(V ®@s{Ks - D")) -> H°{^S{KS -D- D")mx).

If ip is in the image of H°(D — D"), then D — D" is effective. It follows easily
that tp factors through the natural inclusion &s{D" - Ks) Q @s{D - Ks).
As ijj has torsion-free cokernel, D" = D in this case.

Thus, we may suppose that the image of ij) in H°(&s{2Ks -D- D")mx)
is nonzero. Setting D" = a"Fv + b"Fq, we have

2KS - D - D" = [p - 2 - a - a")F -p+{q-2-b- b")Fq.

As H°(<fs{2Ks - D - D")mx) / 0, a" < p - 3 - a = a' and b" < q -
2 — 6 = b'. Therefore, D' — D" is effective. So there is an inclusion
&s{D" - Ks) C &s(D' - Ks). If JO — D" is not effective, H°{D - D") = 0,

and d i m i 7 ° ( V ® &s(Ks - D")) = dim J^0 {<?s{2Ks - D - D")mx) = 1.

Since the inclusion @s{P" — Ks) C $s{P' — Ks) already gives a nonzero
element of H°(V <g>(fs{Ks — D")), tp factors through this inclusion. As ij) has
torsion-free cokernel, D" = Df in this case. In the remaining case, D = D"
and D1 - D" are effective. It follows that a" < min(a,a') < (p - 3)/2 and
b" < min(6, V) < {q-2)/2. By (3.6)(a), D" and x" do not satisfy (3.5). Thus,
if D" and x" satisfy (3.5), either D" = D or D" = Df, proving (3.9).

Corollary 3.11. (a) Every L-stable rank-2 vector bundle V over S(2,q) =
S with c\(V) = 0 , C2(V) = 1 is an extension as in (3.1)(b), of the form

0 -> &s(bFq -KS)^V^ 0s{Ks - bFq)mx -+ 0,

where x E F2 and 0 < b < (q — 3)/2; moreover V is uniquely determined by b
and x.

(b) Every L-stable rank-2 bundle V over S(3,q) = S with c\ = 0, c<i = I,
is an extension of the form (3.1)(b), with D = aF3 + bFq, and either

(i) (a, b) = (1, b), 0 < b < [q/S] - 1 and x G F 3 , or
(ii) (a, b) = (1, to/3] - 1) or (a, b) = (0, [2<?/3] - 1), and xeFq.

In case (i), V is uniquely determined by b and x. In case (ii), either choice
of (a, b) leads to the same set of bundles, and, having chosen (a, 6), V is
uniquely determined by x.

Remark 3.12. We can be more precise about the connection between
the bundles corresponding to (a, b) and (a;,6;)» m ^n e notation of (3.9)(b). If
a < p—3, then i/°(V<8>&s{Ks)) has dimension 2. Identifying sections modC*
gives a family of maps &s{—Ks) —• V parametrized by P 1 . Two points of
this P 1 correspond to maps vanishing along D and D', respectively. The
remaining C* consists of maps vanishing along a divisor D" = a"Fp + b"Fq,
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where a" = min(a, a') and b" = min(6, b'). There is thus a 1-parameter family
(indexed by C*) of ways to describe V as an extension

(*) 0 - <?S(D" -KS)^V^ @s{Ks - D")mx» - 0,

where in fact x" is independent of the particular extension. To account for
these, note that by (2.3)(c), H1{2Df/ - 2KS) = C. By the discussion of (3.3),
the set of all locally free extensions (*) as above, mod scalars, is a principal
homogeneous space over H1{2D" — 2Ks). A calculation with Yoneda pairing
shows that exactly one such extension is unstable, and so does not yield V.
The remaining C* precisely compensates for the nonuniqueness of the map

4. Construction of the moduli space

In this section we construct the moduli space of L-stable rank-2 bundles V
over S = S(p, q) with C\ (V) = 0 and C2(V) = 1 and discuss its local structure.
We keep the notation of the preceding sections.

(4.1) Construction of the moduli space. Let (a, b) be a pair of integers
satisfying the hypotheses of (3.9)a). We shall construct a universal bundle
^a,5),P over S x Fp.

Notation, rj = (fs{Fv)\ FP> Recall by (0.3) that rj is a torsion line bundle
of order exactly p;

Pi is the projection of S x Fp to the ith factor (i — 1 or 2);

j : Fp —• 5 and i = (j\ Id): Fp —• S x Fp are the inclusions;

A = i(Fp) C S x Fp is the image of Fp\ and

/A is the ideal sheaf of A in S x Fp.

Theorem 4.2. Given D — aFp + bFq, where a and b satisfy the hypotheses
o/(3.9)(a), there is a unique bundle ̂ (a,b),p over S xFp which is an extension
of the form

0 - p\0s{D - Ks)®P*2v®{p-2a-3) - 3W),P - PV?S{K8 ~ D)IA - 0.

Proof We use the analogue of the Ext sequence of (3.2) in this situation.
The set of such extensions is classified by

Ext1 (pl<?s(Ks
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There is an exact sequence

0
I

- Ks)

which, for convenience of notation, we denote 0 —• A\ —» A2 —* A3. By a
straightforward local calculation, Extl(I&,&sxFv) — i* detTV, where TV is the
normal bundle of the map i. As TFp, the tangent bundle of Fp, is trivial, we
have

det N = det( tT5 x F p) 0 T " 1 = det(j*Ts 0TF p)

= det(j*T5) = normal bundle of Fp in 5 = rj.

Thus

Thus, there is an everywhere nonvanishing section of Ext1 (i.e., A3 = C),
which in fact was the reason for twisting by ^ 2 3 )

By Serre duality, a is dual to the map

d: Hl(0Fp) -> H2{

which is the coboundary map arising from the short exact sequence

0 -> p\&s{ZKs - 2D) 0 p^a-fr- 2*- 3 ) 0 7A

- , p;^s(3/C5 - 2D) 0 p ^ 0 - ( p - 2 a " 3 ) -^ ^ A - 0.

By the Runneth formula, ff1(pj^s(3/f5 - 2J0) ®p^®-( p - 2 a - 3 ) ) = 0, since,
as r/ is of order p and degree 0, Hl(Fp, r}®~(p~2a~3)) = 0 for all i. Hence 9 is
injective and a surjective. Thus, there exists an extension 2̂ a,6),p> which is
moreover locally free since the local extension class is everywhere nonvanish-
ing. Finally, we check the uniqueness of ^a,6),p-

By the Runneth formula and local algebra,

l ®(p-2a-V) = 0.
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Therefore, by the exact sequence for Ext, A<i is one-dimensional, and the
corresponding nontrivial extension 2*(a,6),p is unique. This concludes the proof
of (4.2). q.e.d.

Continuing with the construction of the moduli space, let Ip be the set
of pairs (a, b) satisfying the hypotheses of (3.9)(a), modulo the equivalence
relation (a, 6) ~ (p - 3 - a, q - 2 - b) if a < p - 3. For each (a, b) E /p , we
obtain ^[a,6),p -^ S x Fp. Performing the same construction with the roles of
p and q reversed (i.e. for Iq) we obtain

] j Q and F - ^ S x l .

Proposition 4.3. VJl is the normalization o/9Jlred, where Tt is the fine
moduli space classifying L-stable rank-2 bundles V over S with c\(V) = 0,
c2(V) = 1 {see [10]).

Proof. If we tensor the exact sequence in (4.2) by &p-i(xy x G Fp, we
obtain the exact sequence

&s(D - KS) ± ^a,6),Pl P*Hx) -> &s(Ks - D)IA 0 <?p-i{x) -+ 0.

Since the map i on the left-hand side is injective at a generic point of S and
@s{P — Ks) is torsion free, i is an injection. A straightforward calculation
shows that / A ®^V-^IX\ — mx- Thus, restricting ^[a,b),p to p^x{x) yields
the sequence (3.1)(b). By the universal property of 9tt, there is an induced
morphism /i: 9Jt —• 9Jt, which by construction is a bijection on geometric
points. Thus, \x identifies 9JI with the normalization of 9Jtred.

Theorem 4.4. Le£ S = S(p,q) be a generic Dolgachev surface, and let
L be a suitable line bundle over S. The moduli space 9JI of L-stable rank-2
vector bundles V with ci(V) = 0 and c^iy) = 1 is compact. Each component
o/9Jlred is identified either with Fp or Fq. If a component (9J^)red 0/9Jtred

 Z5

identified with Fp (resp. Fq), and % is the restriction of the universal bundle
over S xWl to S x (SDTi)red, then /i» = (pi)*c2(^) is Poincare dual to [Fp]
(resp. [Fq]). Lastly, if p — 2, then Wl is reduced and consists of (q — l ) /2
components each identified with F%.

Proof. By (4.3) the normalization 9Jt of 9Jtred is identified with a disjoint
union of copies of Fp and Fq. Let OTi be an Fp-component of Wl. Let % be
as in the statement of (4.4). Since ci(ry) = 0, ci(2^) = 0 as well. Hence, in
the notation of (4.2),

Thus, (pi)*(c2(^)) = (Pl).[A] = [Fp].
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Lastly, if p = 2, then by (4.3) M consists of (q - l)/2 components each
identified with Fq. Thus, to complete the proof of Theorem 4.4, we need only
show that Wl is smooth if p = 2. This will be an immediate consequence of
Lemma 4.5 and Theorem 4.6(b). q.e.d.

Next, we discuss the local structure of the fine moduli space. Let V corre-
spond to the point v G 9Jt.

Lemma 4.5. Wl is smooth at v if and only if H2 (EndV) = 0.
Proof We know that dimOJt = 1 and that dimif°(EndF) = 1 by (1.2).

Moreover
h°(EndV) - h^EndV) + h2{EndV) = 0,

by (1.5). Thus 9Jt is smooth at v if and only if /^(EndV) = 1 if and only if
h2{EndV)=0.

Theorem 4.6. Let D and x satisfy (3.9)(a), and let V be as in (3.1)(b),
with x G Fp.

(a) h2{EndV) < 2 and h2(EndV) < 1 if a = p - 2 or if p is even and
a = p/2-2.

(b) H2(EndV) =0 if and only ifp = 2.
Proof. Since End V = V ® Vv is self-dual, h2 (End V) = h° (End V 0 Ks).

We have the exact sequence

0 -+ &S{P) ® V -> EndV ®Ks-> @s(2Ks - D)mx ® V -> 0,

and therefore the corresponding sequence

(*) 0 -> H°{&S{D) 0 V) -> i/°(Endy (8)XS)

^ H°{&s{2Ks - D)mx 0 V).

Claim 4.7. (a) dimi/°(^s(£>) ® V) = 0 if p is even and a = p/2- 1, and
dim#0(^s(Z}) ® V) = 1 otherwise.

(b) dimH°(<fs(2Ks - D)mx ® V) = 0 if a = p - 2 or if p is even and
a = p/2- 2, and dimH0(^>

s{2Ks - D)mx ® V) = 1 otherwise.
Proof that (4.7) implies (4.6). The proof of (a) and the "if" direction of

(b) are clear, using the exact sequence (*) and (3.11)(a). For the "only if"
direction of (b), assume that H2(EndV) = 0. This assumption is independent
of how V is written as an extension (3.1)(b). By assumption, D and x satisfy
(3.5). If a ^ p - 2, by (3.9) (b) possibly after replacing (a, b) by (p - 3 - a,
q — 2 — 6), we may assume that a < (p — 3)/2 < p/2 — 1. Using (4.7)(a) and
the sequence (*), we have h°{EndV ® Ks) > 1. This shows that a — p — 2,
and, by (4.7) (a) again, a — p/2 — 1. Hence p = 2.

Proo/ 0/ (4.7)(a). We start with the exact sequence

0 - ^s(2£> - Ks) -> ^S(D) ® V -> d?s(Ks)mx - 0.
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Since H°(<?s{Ks)mx) Q H°(^S(KS)) = 0,

V) = H°{(?s{2D - Ks)).

As 2D - Ks = (2a - p + \)FV + (26 - q + l)Fq + / , iJ°(2D - Ks) = 0 if
and only if 2a - p + 1 < 0 and 26 - <? + 1 < 0. But since D and x satisfy
(3.5), by (3.6)(a) either a > (p - 3)/2 or 6 > (q - 2)/2. Therefore, as there
are no integers 6 with (q - 2)/2 < 6 < (? - l)/2, if H°{2D - Ks) = 0,
then (p — 3)/2 < a < (p — l)/2. Since a is an integer, p must be even and
a = p/2 — 1. Moreover, by (3.1)(a), at least one of 2a — p + 1 and 26 — q + 1
is negative, so that in all cases dimH°(2D — Ks) < 1. This proves (a).

Proof of (4.7)(b). We have an inclusion H°{@s{1Ks ~ D)mx ® V) C
— D) <S> V). Moreover, there is an exact sequence

0 - @s{Ks) -> ^s(2tfs - Z?) ® V ^ ^ ( 3 ^ 5 - 2D)mx - . 0.

As H°{KS) =Hl{Ks) =
Since x is in the base locus of 3KS - 2D, H0{<fs{3Ks ~ 2D)mx) / 0. In
fact, SKS - 2D = (2p - 3 - 2a)Fp -f (g - 3 - 26)Fg if a > (p - 3)/2 and
3KS - 2D = (p - 3 - 2a)Fp + {2q - 3 - 2b)Fq if 6 > (g - 2)/2. In either
case, we write ZKs — 2D — rFp + sFq with r > 1, s > 0. Hence,

dimH°{&s{ZKs - 2D)mx) = 1.

and therefore &mHQ(@s(2Ks - D) ® V) = 1.
To complete the proof of (4.7) (b), we must determine when a nonzero

section a of ^s(2#s - 2?) ® V lies in i7°(^5(2Ks - Z^raz ® V), i.e. when <r
vanishes at x G Fp. Let TT: H°{^S{2KS - D) (8) V -> i/°(^5(3X s - 2D)mx)
be the natural projection. Choose local coordinates 21,22 n e a r ^ so that Fp

is defined by {z\ = 0}. This choice trivializes &s{D) near x, and we choose
trivializations of V and Ks as well. Then the exact sequence

0 -> ^ 5 ( t f 5 ) - ^5(2^5 - D ) ^ V - > &s{ZKs - 2D)mx -> 0

is given locally in some open set U containing x by

0 _> ̂  - ^ ^ e ^ jea, m x _ 0.

For appropriate choices, we may further assume that <pi (1) = (21,22),
^(fid) = zif — 2i<7, and TT(O-)(2I,22) = 2[ • u, where w is a unit in &u,x-
Hence a = (0, —z]^1 • u) mod(2i, 22). In particular, cr does not vanish at x if
and only if r = 1. But r = 2p - 3 - 2a if a > (p - 3)/2 and r = p - 3 - 2a
if a < (p - 3)/2. Hence, H°{^s{2Ks - D)mx ® V) = 0 if a = p - 2 or if
a = p/2 - 2, and H°{^S{2KS - D)mx 0 V) - H°{0S{2KS - Z?) ® V) =

a;) = C otherwise.
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5. Stable bundles on blowups

We will use the following notation throughout this section: p: Y —• Y is
the blowup of the smooth algebraic surface Y at x, and E is the exceptional
fiber p~l(x). We identify a divisor D onY with p*D onY. Every divisor D
on Y is linearly equivalent to D + aE, where the linear equivalence class of the
divisor D onY and the integer a G 2 are uniquely determined by D. If L is
any ample divisor on Y, set L = LN = iVX - 22. For some JV0 = iV0(L, x) > 0
and for all N > No, LN is ample. Finally, V will always denote a rank-2
bundle on Y with c\ {V) = 0.

The following lemma is well known,
Lemma 5.1. (a) If n > 0, then p*(?y(nE) = &Y.
(b) If n < 0, say n = —a, Men p±@y{nE) — m%.
Proposition 5.2. For a rank-2 bundle V onY with ci(V) = 0, the fol-

lowing are equivalent:
(a) V = p*V for some bundle V onY.
(b) p* V is locally free.
Proof that (a) => (b). Suppose that V = p*V. We have the projection

formula /?*V = p*p*V = V 0 p*<̂ y = V. Thus, p*V is locally free.
Proa/ Mâ  (b) => (a). Suppose that V = /9*V is locally free. There is a

generically injective map

which is the identity outside of E. Moreover, since Y — {x} = Y — E,
V\{Y - {x}) s F|(Y - £ ) , and ci(F) = 0, we have Cl(V) = 0. Thus,
ci(p*V) = 0 as well, i.e. /\2 p*V = (?y = /\* V. The induced map f\2ip:
/ \ 2 p* V —• /\2 V is consequently constant. Since it is nonzero, it is everywhere
nonvanishing, so that ip: p*V -^ V. q.e.d.

Let F be a rank-2 bundle on Y with a(V) = 0. Set V = (p*V)vv; it is
a locally free rank-2 sheaf on Y, corresponding to the vector bundle V with
d(V) = 0. Define the sheaf Q by the following exact sequence:

0-> p*V-+V-> Q-> 0.

Clearly, Q is supported at x.
Lemma 5.3. We have

V*V) > 0.

Thus, ifV ^ p*V, then c2(V) < c2{V).
Proof. Clearly, C2(p*V) — C2(V) = l(Q). To calculate C2(p*V), we use

the Grothendieck-Riemann-Roch formula [1]: ch(piV) -Td(Y) = ^^((chV) •
Td(Y)). Recalling that p.(V) = [p«V] - [#V*V] in K0{Y), the Grothendieck
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group of coherent sheaves in Y, and that ch is additive, we get

) - ch(i?V*V) = p*[{chV) • Td(Y)) • Td(Y)-\

Expanding the right-hand side and using the fact that c\{Y) + c2(Y) =
12x(0y) = 12x(^y) = c\{Y) + c2(Y), we get 2 - c2(p*V) - c2{R1p.V) -
2 - c2{V). Thus c2{V) - c2{p*Y) = /(#V*V), so that c2(V) - c2{V) =
l(Q) + /(i?V*V). In particular, c2(F) < c^F), and, if equality holds, then
l(Q) = 0, i.e., V = p*V. By (5.2)(b), this is equivalent to V = p*V. q.e.d.

Note. It is easy to give a proof of (5.3) which does not involve the
Grothendieck-Riemann-Roch theorem.

Remark 5.4. There is a more precise result. By the Grothendieck theorem
on vector bundles over P1 [11, p. 22] and the hypothesis that ci(V) = 0,
V| E =• &E(k) 0 @E{—k) f°r some nonnegative integer k. One can show that

k < c2{V) - c2(V) <k2.

In particular, if k = 0, then V = /9*V and hence V = p*V. This is a result
first proved by Schwarzenberger [14, Theorem 5, p. 613].

The following is the main result of this section.

Theorem 5.5. Let V be a rank-2 bundle on Y with ci(V) = 0. Set V =
(/9*V)VV. Fix an ample divisor L on Y, and fix

N > max(N0(L, z), (2c2{V) + 2)1'2).

(a) IfV is L-stable, then V is LN-stable.

(b) IfV is LN-stable, then V is L-semistable.

(c) IfV is Ln-stable and V is not L-stable, then there exists a divisor F on
Y with L • F = 0 and a nonzero map @y (F) -» V with torsion-free cokernel
such that every meromorphic section of Hom(/9*^fy(F), V) which is regular
away from E has a pole along E of order > 1.

(d) IfV = p*V, then V is L^-stable if and only ifV is L-stable.

(e) IfV is LN-stable, ifH^Y; Z) = 0 and ifc2{V) = 1, then V is actually
L-stable.

Proof We divide the proof into two steps.

Step I. Suppose that V is stable. To prove (a), we must show that V is
Z^-stable. Let <?y{F) —• V be a sub-line bundle. We can write F = p*F+aE
for a unique a el. First suppose that a < 0, say a = -n , n > 0. From (5.1)
and the projection formula, we get a sequence of injections

ffiy{F)m!i -> p*V - V.
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Taking double duals, we get a map &y {F) —• V. As V is L-stable, L • F < 0.
But then LN • F = {NL - E) - {F + aE) = N{L • F) + a < 0 as well. This
completes the proof of Step I when a < 0.

We may therefore suppose that a > 0. For F = p*F + aE, we are given a
nonzero map $y (F) —• V, and we wish to show that L^F = N(L-F)+a < 0.
Without loss of generality, we may assume that V/<fy(F) is torsion-free.
Hence we have an exact sequence

0 "- <fy (F) -• V -* &y(-F)IW ~+ 0.

Thus, c2{V) = -(F)2 + l(W) = -F2 + a 2 + l(W) > -F2 + a2. From the
natural map (fy(p*F) —• V 0 &y(—aE), we get a nonzero map £fy(JF) —•
p*(V ® ̂ ( - a J 5 ) ) C V. As V/^y(F) is torsion-free, V/^y(F) is torsion-
free except possibly at x, and so (by (1.9)) everywhere. Thus, we have an
exact sequence

0 -> ̂ y (F) -> V -+ ̂ ( - F ) / z -> 0.

It follows that c2{V) = -F 2 +/ (Z) . Finally, by the stability of V, LF < - 1 .
First suppose that F2 < 0. As a2 + (-F2) < c2{V), we get a2 < c2(V).

Thus, since N > (2c2(V) + 2)1/2, N > (2a2 + 2)1/2 > a. It follows that
N{L • F) + o < -N + a < - a + a < 0.

To handle the case where F 2 > 0, we use:
Lemma 5.6. We have {F2){L2) < {L • F)2.
Proof. This is an easy consequence of the Hodge index theorem, q.e.d.
Returning to the proof of Step I, note that if a < {2c2(V) + 2)1/2, we must

have
N(L - F) + a < -N + a < -a + a < 0.

We may therefore assume that a2 > 2c2(V) + 2. Since L • F < 0 and L2 is a
positive integer, by (5.6) we have

L-F<-(F2)1/2.

On the other hand, F2 > a2 — c2(V) > a2/2, by our assumption. Thus,
L • F < —(a/>/2), and N > \/2 by construction, so that

N{L • F) + a < - a + a < 0.

It follows that F is Z^-stable, concluding the proof of Step I.
Step II. We now analyze the case where V is Z^-stable. Let @y(F) be a

sub-line bundle of V. Thus, on Y, we are given a section of Hornby {p*F), V)
over Y — E. In turn, this yields a meromorphic section of Hornby (p*F), V)
which is regular away from 22, and hence a nonzero map <fy(p*F + a£) —• V
for some ae.T.
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If a > 0, then, as V, is Zjv-stable,

LN • (F + aE) = N(L • F) + a < 0,

and thus L • F < 0. Thus we may as well assume that a < 0, say a = — n and
n > 0. In checking for stability, we may always take V/^y(F) torsion-free.
Hence Y /(fy {F ~ nE) is torsion-free except along F. By taking n as small as
possible, we may assume that V/^y (F — nE) is torsion-free along E as well.
Thus, there is an extension

0 — @y{F - nE) — V — ̂ y(n£ - F)IW — 0,

where I\y is the ideal sheaf of some 0-dimensional subscheme W of Y. Set
c = 62(10. Then c = - F 2 + n2-h/(VF), i.e., F 2 = n 2 + /(H^)-c. By (5.6) (as
L2 is a positive integer)

(L • F)2 > F 2 = n2 + 1{W) -c>n2 - c.

From the stability of V, we also have

{NL - E) • (F - nJE)-= AT(L • F) - n < 0.

Thus, {L-F)< n/N and (L • F)2 >n2-c.
Now suppose that V is not stable, and let (fy (F) be a destabilizing sub-line

bundle, i.e. L • F > 0. If L • F > 1, then n > iV, so that n2 > iV2 > 2c + 2.
We have n2 - c < {L • F)2 < n2/iV2, so that

c > n2{l - 1/N2) > \n2, i.e. n2 < 2c,

a contradiction. Thus, (L • F) = 0, so that V is semistable. In addition, we
have shown that the meromorphic map <fy(p*F) —• V has a pole of order
precisely n > 0 along £*. This establishes (b) and (c) of (5.5), and (d) is clear
from (c) and (a) (or by a simple direct argument using (a)).

Finally, we must prove (e). Thus, suppose that C2(V) = 1 and that V is not
L-stable. The proof of (b) and (c) shows that there exists a sub-line bundle
@y (F) —• V with L - F = 0 and exact sequences

0 -> &Y{F) -+V^ &Y{-F)IZ -> 0,

0 -> 09 (F - nE) -* V -• @y ( - F + n£)Jiv -^0, n > 0.

Since V is not L-stable, V # p*V by (d). It follows from (5.3) that c2{V) <
c2(V) - 1 = 0. Hence - F 2 < 0. By the Hodge index theorem, F 2 < 0, and
so F 2 = L • F = 0, and F is numerically equivalent to 0. As Hi(Y', Z) = 0, F
is in fact 0. Hence V is given by an exact sequence

0 -> 09(-nE) — V -+ 0y(nE)Iw -• 0,
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where n > 1. But 1 = c2{V) = n2 + l(W), so that n = 1 and l(W) = 0, i.e.
W = 0 . We have a long exact cohomology sequence

H°(Y;V)

From the sequence 0 - • ffy^-E) ^ (fy ^ &E -+ 0 and the fact that
Hl(&y) = 0 by our assumption on F , if1 ( ^ . (-!£)) = 0. But then a nonzero
section in H°(<fy(E)) lifts to a nonzero section of V, i.e., a nonzero map
(fy —• V. This contradicts the stability of V. q.e.d.

Remark 5.7. The exceptional cases in (5.5)(c) really do arise, and can be
more precisely analyzed. In the typical case where every destabilizing sub-line
bundle of a semistable V is @y (cf. Remark (1.11) (b)), the stable bundles V
on Y such that V is only L-semistable will all be described as extensions

0 -> @y{-nE) -> V -> 0~r(nE)Iz -> 0

for appropriate n > 0 and Z.
Similarly, \iH\{Y\ Z) / 0, there exist Zjv-stable bundles V with C2{V) = 1,

such that V is just L-semistable. These will all be of the form

0 -> @y (p*F - E) -* V -+ &y (-p*F + E)^>0,

where F is a nontrivial divisor on Y numerically equivalent to 0, and where
the extension does not split.

Finally, we apply our results to the Dolgachev surfaces and to blowups of
P2 . First, we need a result on the local structure of the moduli spaces, which
essentially says that they are locally isomorphic (with multiplicities) at points
corresponding to V respectively p*V.

Lemma 5.8. Let V be a vector bundle on Y and V = p*V. Let Defy be
the functor from Artinian local C-algebras to sets defined by the deformation
functor ofV (cf [13]), and let Defy be similarly defined in terms ofV. Then
Defy and Defy, are naturally isomorphic.

Proof. Let R be an Artinian local C-algebra. Given a deformation "V
of V over Spec i?, i.e. a vector bundle over Y x Spec R which restricts to V
over the closed fiber, we define ^ = ( p x Id)*7^. It is a deformation of V
over Speci?. Conversely, given a deformation 2^ of V, set ^ = (px Id)*2^.
By (5.2) and Nakayama's lemma, ^ is locally free and gives a deformation
of V over Spec R. Finally, these constructions are easily seen to be mutual
inverses.

Corollary 5.9. Let S = S(p,q) be a generic Dolgachev surface and L a
suitable line bundle on S. Let p: S —• S be the blowup of S at r distinct
points. Let E\, • • • ,Er be the exceptional curves on S. Then there exist pos-
itive integers N and rrti, 1 < i < r, with rrii/N arbitrarily small, 1 < i < r,
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and such that, if we set

2 = 1

(a) L is ample on Y.
(b) The moduli space 9Jt of L-stable rank-2 vector bundles on S with c\ = 0

and C2 = 1 is isomorphic as a scheme to 9JI, the moduli space of L-stable
rank-2 vector bundles on S with c\ — 0 and c<2 = 1. This isomorphism is
induced by p*.

(c) The universal bundle 7^ over S x 9Jt is the pull-back via (p x id) of the
universal bundle "V over S x Wl.

More precisely, we may take L to be of the form

Nr(- • - {N2(N1L -EJ-Et)--')- Er,

for any integers Nr > 7Vr_i > > Nx > 0.
Proof There is a natural map SDt —• 3DT, which exists by the universal

property of 9ft, and is defined on closed points by the correspondence V —•
p*V. This map is a bijection for appropriate choice of the A ,̂ by (5.5)(a) and
(e) and (2.5). It is an isomorphism of schemes by (5.8). The statement about
universal bundles is then clear by construction, q.e.d.

Corollary 5.10. Let X be the blowup of P2 at n points. Then, for an
appropriate ample line bundle on X, the moduli space of stable rank-2 bundles
V on X with c\ = 0 , C2 < 1, is empty. If in addition —Kx is effective this
statement is true for every ample line bundle.

Proof. We prove the second statement first. By the Riemann-Roch
theorem, as in the proof of (2.6), if ci(V) — 0 and C2(V) < 1, there is a
nonzero map

As — Kx is linearly equivalent to an effective divisor, L • (—Kx) > 0 for every
ample L, hence V cannot be stable. The second statement then implies the
first, by (5.5)(e), since -KP2 = &P2(3H) is effective.
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