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HARMONIC SEQUENCES AND HARMONIC
MAPS OF SURFACES

INTO COMPLEX GRASSMANN MANIFOLDS

JON G. WOLFSON

Introduction

Let G(k, n) be the Grassmann manifold of all /c-dimensional subspaces C*
in complex space Cn or, what is the same, all the (k — l)-dimensional
protective spaces CPk~ι in projective space CP"" 1 . G(k,n) has a canonical
Kahler metric. We will study the harmonic maps of a Riemann surface M into
G(k, n). In particular we will describe all the harmonic maps of the two-sphere
S2 into G(k,n) in terms of holomorphic data and all the harmonic maps of
the torus T2 into G(k,n) in terms of holomorphic data and degree zero
harmonic maps. This work completes (and extends) the program for studying
harmonic maps of S2 into G(k, n), first stated by the author and S. S. Chern
in [4] and partially completed in [5]. The harmonic maps ofS 2 -»G(l,/i) =
CP"~ι were first determined by Din and Zakrzewski ([6], also see [7] and [11]).
The harmonic maps S2 -> G(2,4) were determined by Ramanathan [9] and the
harmonic maps S2 -> G(2,n) were determined by the author and Chern [5].
Using techniques completely different from those of the papers cited above
Uhlenbeck studied the harmonic maps of S2 into the unitary group U(n) [10].
In the course of the study she gave a description of the harmonic maps of S2

into G(k, n) by embedding G(k,n) totally geodesically in U(n). The descrip-
tion given in this paper is quite different from Uhlenbeck's and works
intrinsically with G(k,n).

The fundamental object of study in this paper is the transforms of a
harmonic map of a surface M into G(k,n). To define the 3-transform (or
3-transform) consider a map /: M -» G(k, /?), when M is an oriented Rieman-
nian surface. We write the Riemannian metric of M as ds^ = φφ, where φ is a
complex-valued one-form, defined up to a factor of absolute value 1. This form
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φ defines a complex structure on M. For J C E M the space f(x) has an

orthogonal space f(x)L of dimension n - k. We denote by [f(x)] and

ίf(χ)±] their corresponding projective spaces, of dimensions k — 1 and n — k

- 1, respectively. For a vector Z{x) e f(χ) the orthogonal projection of 3Z

in f(x) -1 is multiple of φ, and hence, by cancelling out φ, defines a point of

f(x)± . This defines a projective collineation 3 : [f(x)] -> [/(*) -1], to be called

a fundamental collineation. The mapping defined by sending J C G M to the

image of [f(x)] under 3 is called the d-transform. Similarly, we define the

d-transform.

If the map f:M -> G(k,n) is harmonic then its 3-transform and 3-

transform are also harmonic. Note that a fundamental collineation 3 (resp. 3)

may degenerate or may be zero. If it is zero then the map is antiholomorphic

(resp. holomorphic). If it degenerates then the 3-transform (resp. 3-transform)

is a harmonic map M -> G(l,n) where I < k.

By successive applications of the 3-transform (or 3-transform) we can

construct a sequence of harmonic maps

called a harmonic sequence. If any of the fundamental collineations of the

sequence degenerates then the sequence associates to / a harmonic map

g:M -> G(l,n), I < k. In §4 we will show that when M has genus zero the

harmonic map / can be recovered from g by iterating a construction called

returning. Each returning is essentially a choice of a holomorphic subbundle of

a holomorphic bundle over M. In §5 we describe a construction different then

returning, called extending, which effects the reconstruction of / from g for a

surface M of any genus. Each extending, like each returning, is a choice of a

holomorphic subbundle.

In §3 we will derive an inequality relating the energy of / to the degree of /,

the genus of M and the singularities of the fundamental collineations of the

harmonic sequence generated by /. When the genus of M is zero or when the

genus of M is one and the degree of / is nonzero this inequality implies that

one of the fundamental collineations must be degenerate.

Combining the results of §§3 and 4 and using induction we can prove.

Theorem 1. Let f: S2 -> G(k, n) be a harmonic map. Then f can be con-

structed from holomorphic or antiholomorphic curves S2 -> G(/,«), where 1 < /

< k, using the 3 and 3 transforms and returnings.
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Combining the results of §§3 and 5 and using induction we have

Theorem 2. Let f: M -» G(k, n) be a harmonic map, where M is a surface

of genus one. Then f can be constructed using the 3 and 8 transforms and

extendings from either:

(1) A holomorphic or antiholomorphic curve M2 -> G(l, n), 1 < / < k, or

(2) A degree zero harmonic map M2 -+ G(l, n ) , 1 < / < / : .

In fact the statement of Theorem 2 can be made even stronger; see Theorem

5.2. Theorem 2, with (2) deleted, holds when M is a surface of genus zero; see

Theorem 5.1.

The inequality in §3 should with more careful analysis yield much interesting

information about harmonic maps and harmonic sequences in G(k, n).

It is a pleasure to thank R. Bryant and D. Burghelea for some interesting

conversations. This paper was written while the author was visiting the

Max-Planck Institute fur Mathematik, Bonn, West Germany; I am indebted to

the Institute for its support.

§1. Geometry of G(k,n)

We equip Cn with the standard Hermitian inner product, so that, for Z,

W<ΞC\

(1.1) Z = ( z 1 , . . , z J , ^ = ( w 1 , . ,wJ,

we have

(i.2) (Z,W) = Σ^A = Σ^A-

Throughout this paper we will agree on the following ranges of indices

(1.3)

1 < Λ , J9, C, , < Λ , 1 < α, j8, γ, ••• <fc, k + 1 < i, j , h, < n.

We shall use the summation convention, and the convention

(1-4) zA = zA,iAB = tAB>Qte-

A frame consists of an ordered set of n linearly independent vectors ZA, so

that

(1.5) Zx A ••• ΛZnΦ 0.

It is called unitary, if

(1.6) (ZA,ZB) = 8A-B.

The space of unitary frames can be identified with the unitary group U(n).

Writing

(1.7) dZA = ωAΈZB9
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the ωAg are the Maurer-Cartan forms of U(n). They are skew-Hermitian, i.e.,

we have

(1.8) »ΛB+<*BΛ=0'

Taking the exterior derivative of (1.7), we get the Maurer-Cartan equations of

U(n):

(1.9) dωAβ = ωAcΛ ωCβ.

An element Ck of G(k, n) can be defined by the multivector Zλ Λ Λ Zk

Φ 0, defined up to a factor. The vectors Zα and their orthogonal vectors Z, are

defined up to a transformation of U(k) and U(n — k), respectively, so that

G(k,n) has a G-structure, with G = U(k) X U(n - k). In particular, the form

(1.10) ds2 = ωaιω-ai

is a positive Hermitian form on G(k, n\ and defines an Hermitian metric. Its

Kahler form is

(1.11) Ω ^

By using (1.9) it can be immediately verified that Ω is closed, so that the metric

ds2 is Kahlerian.

§2. Harmonic maps of surfaces

Let M be an oriented Riemannian surface and let f\M -> G(k,n) be a

smooth map. Denote the Riemannian metric on M by ds% = φ φ, where φ is

a complex valued one-form (φ is defined up to a complex factor of absolute

value one). Choose a field of unitary frames ZA (as in §1) so that Zα span

/(JC), x G M. Then

The energy of the map / is by definition,

£ ( / ) = /* t r(/*Λ 2 )Jvol

where ds2 is the metric on G(k,n) and the trace is taken with respect to the

metric on M. By (2.1) and (1.10) this becomes

(2.2)

A map which is a critical point of the energy functional is called harmonic.
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The pullback of the Kahler form Ω by the map / defines an integral

cohomology class [/*Ω] e H2(M; Z). Evaluating this class on the fundamen-

tal homology class of M yields an integer [/*Ω]([M]) called the degree of /.

The degree of / can be computed from (1.11) and (2.1) as follows:

deg/= / /*Ω = £±-[ Σ (<>aiΨ + MO Λ(αδ,φ +b-aiφ)
(2.3) JM 2 W 3M '

A map / : M -> G(/c, n) induces over M a vector bundle V with fibers f(x),

x G M. In terms of our frames ZA a local section Z of V can be written

(2.4) Z = i«Za

where the ξa are complex-valued functions on M. The bundle V is a sub-

bundle of the trivial rank n bundle MX Cn. As such it inherits (by restriction)

a hermitian connection V. We denote the (0,1) part of the connection by

V(0?1). The (0,2) part of the curvature of V vanishes because M is a Riemann

surface. Thus

(2.5) ( v(°' 1>) 2 = 0.

But (2.5) is the integrability condition for a holomorphic structure on V which

satisfies

V ( ( U ) = 3 .

Thus by the Newlander-Nirenberg theorem V has the structure of a holomor-

phic bundle. Clearly the same argument shows that any subbundle of the

trivial bundle M x C " is equipped with a natural holomorphic structure. In

the sequel when such bundles arise we will consider them equipped with this

holomorphic structure. In particular the bundle W, whose fiber at x e M is

the (n — k) plane f{x)x orthogonal to f(x) in Cw, has a holomorphic

structure. A local section Z of W can be written using our frame ZA as

Z = η'Zj where the if are complex valued functions on M.

Let Γ ( 1 0 ) (resp. Γ ( ( U )) be the cotangent bundle on M of type (1,0) (resp.

type (0,1)). Its sections can be written as fφ (resp. fφ) where / is a function

on M. Define the mappings

(2.6) 3 : V -> W ® Γ ( 1 '0 ) 3 : V -+ W ® T(0Λ)

by

d(ξaZa) = έ X Z,- 0 φ 3(€"ZJ = Fb^Zi 0 φ.

In [5] the following theorem is proved.
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Theorem 2.1. Let f.M -> G(k,n) be a smooth map, then the following

conditions are equivalent:

(i) f is harmonic,

(ii) 3 is a holomorphic bundle map,

(iii) 3 is an antiholomorphic bundle map.

Suppose now that / is a harmonic map. By Theorem 2.1 the image of 3 is

itself a holomorphic bundle which we denote Vx ® Γ ( 1 0 ) . Although 3 is not a

well-defined bundle map from V to Vx it induces a well-defined projective

bundle map from the projectivization [V] of V to the projectivization [VJ of Vv

This map and its analogue for 3 are called the fundamental collineations of /.

By abuse of notation we will denote these projective bundle maps by 3 and 3.

[VJ is a projective subbundle of M X P/ I~1(C). Denote its projective rank by

kλ- \. We define the 3 transform of /

(2.7) 3/:M-> G(kl9n)

by 9/(jc) = [V1]JC(= 3 [/(*)]), J C E M . The 3 transform, 3/, is defined simi-

larly.

Theorem 2.2. Letf: M -> G(k, n) be a harmonic map. Then

(i) The 3 and 3 transforms, 3/ and 3/, of f are harmonic maps.

(ii) If kλ = k, the map 3(3/) is f itself. In fact if Z, spans f(x), Zσ,

σ = k + 1,- - -,2k, spans df(x) and A is the matrix representation of 3 with

respect to these frames then -A is the matrix representation of 3 with respect to

the same frames. In this sense 3 and 3 are "inverse" transforms.

Proof. See [5].

Repeating the constructions of Theorem 2.2 we get two sequences of

harmonic maps

/ ( / ) / Λ

whose image spaces are connected by fundamental collineations. Such se-

quences are called harmonic sequences. When the kp's are equal we can

combine the sequences into one:

9 8 8

• • • / - 2 ^ / - l ^ / θ ? / l ••••
8 8 8

By construction two consecutive spaces [fp(x)] and [fp + \(x)\ x ^ M, of a

harmonic sequence are orthogonal. Moreover, denoting by V̂  the bundle over

M induced by f , for each p there is a holomorphic bundle map

(2.8) Y^V.ΘΓ^
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and an antiholomorphic bundle map

(2.9) v^VxβΓ^.

Example. Let f:M -> G(l, n + 1) = CPn be a holomoφhic map. Classi-

cally there is associated to / a unitary framing {Zo, , Zrt} of Cw such that

Z o Zk span the A:th osculating space of /. This framing is called the Frenet

frame of the curve. Analytically each element of the Frenet frame satisfies

(2.10) dZp = -ap_λψZp_λ + ωp-pZp + apφZp + ι .

Moreover each Zp defines a line bundle over M, or, what is the same, a map

M -> CPn. These line bundles (or maps) form a harmonic sequence. The 3

fundamental collineations are given by the scalars ap, the 3 fundamental

collineations by the scalars ap_v This sequence has length at most n + 1 and

ends in an antiholomorphic curve M -> CP", the polar curve of /. For more

details see [11].

In the remainder of this paper we will adopt the convention that capital

Roman letters (eg. L, V, W, etc.) will denote rank / complex subbundles of the

trivial bundle M x C " and their associated maps M -> G(/,«). We will freely

identify these two corresponding objects.

§3. Harmonic sequences

In this section we discuss some of the geometry of harmonic sequences over

a Riemann surface and, in particular, over the two-sphere and the torus. We

begin with the simplest case, the harmonic sequences of maps M -> G(l, n) =

C P " " 1 . Let

(3.1) L 0 - L ^ L 2 - ••• ->L,-> •••

be a harmonic sequence where each Lp is a map M -> G(l, n) or, what is the

same, a rank one vector bundle (a line bundle) over M. We have seen that the

map 9̂  is a holomoφhic bundle map:

(3.2) L , - L , + 1 β Γ " «

where Γ ( 1 0 ) is the holomoφhic cotangent bundle of M. dP has only isolated

zeroes. The number of zeroes of 3 ,̂ counted according to multiplicity, is called

the ramification index of 3̂  and will be denoted r(dp). The following formula

is well known [8]

(3.3a) cι{Lp+1®T^) = cι(Lp) + r(dp)
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OΓ

(3.3b) Cl(Lp+ι) = C l (L,) + r(3,) - (2g - 2)

where cι is the Chern number of the line bundle and g is the genus of M.

On the other hand the Chern class of the line bundle Lp can be computed as

follows. Choose a unitary framing {Z1? , Zn] of Cn adapted so that span

{Zp_x} = Lp_ι, span {Zp} = Lp and span {Zp+1} = Lp+ι. (To choose such a

frame requires the additional assumption that the map Lp is conformal.

However, the result to follow does not depend on this assumption. When we

discuss the general case we will not make this assumption.) (3.1) and harmon-

icity give

p-2

n

+ ap_ιΨZp+()φZp+1+ Σ (
T=/7 + 2

(3.4) dZp = -ap^Zp_x + ωp-pZp + apφZp+1

p-2

+( )φZp_1-apφZp

where ap_l9 and ap are functions representing the 3 and 3 fundamental

collineation of Lp ωpp is the connection 1-form of the bundle Lp. The

curvature of Lp can then be computed from the Maurer-Cartan equations of

£/(/!):

dωpp = {-ap_&) A(ap_^) +(apφ) Λ(-apφ)

= ( |^_i | 2-|^ | 2)φ Λ φ.

Thus

(3.6) Cι(Lp) = j

Note that from (3.4) it is immediate that the only (0,1) form among the

cofraining of dZp+ι is ωp+1 p = -apφ. Applying the above reasoning to Lp+1

we get

(3.7) c1(L / ) + 1) = ^ - / ( | α p | 2 - | α ί ) + 1 | 2 ) φ Λ φ ,
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for some function ap+ι representing the 3 fundamental collineation of Lp+ι. It

follows that

Σ c^L,) = Σ f^(Lo) +

Theorem 3.1. Let (3.1) 6e α harmonic sequence for the map L o : M -> G(l, n)

wλere M ΛαΛ1 gewî s g αwd /Λ̂  ramification index of dp is r(dp). Then for any s

(s + ΐ)Cι(L0) + Σ ^Σ r{dq) -(g - l)s(s + 1)

(3.10) P = 1 «=° λ

< - energy(L0).

Proof. The energy of Lo is iSM(\a-ι\2 "•" lαol2)φ Λ Ψ Moreover \ao\ = 0 if
and only if L o is antiholomoφhic, (equivalently a0 = 0 if and only if 30 = 0).

Corollary 3.2. When g = 0 the harmonic sequence (3.1) must terminate.

Suppose g = 0 and that L, is the last element of the harmonic sequence

(3.1). Then Lt:M -> G(l,«) is an antiholomoφhic map. The construction of

the harmonic sequence of a holomoφhic or antiholomoφhic curve in C P " " 1

is precisely the classical construction of the curve's Frenet frame. Hence L o is

an element of the Frenet frame of L, and we have proved the result of

Din-Zakrzewski [6]. (For this version of this theorem see [11].)

Applying to the above considerations to the harmonic sequence

a a a a
(3.1a) <-L_,«- •• ^ - L . ^ L o .

It follows that

- - energy (Lo) < - ^ / ^ |ao|
2<P Λ φ

(3.11) < ( J + l )c 1 (L 0 )- Σ ' Σ

(g-l)s(s
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Proposition 3.3. When g = 1 and degL 0 < 0 then the harmonic sequence

(3.1) must terminate. When g = 1 and degL 0 > 0 or when g = 0 then the

harmonic sequence (3.1a) must terminate.

Proof. degL 0 is the degree of the map L o : :M -> CPn~ι. As degL 0 =

-cλ(L0) the first statement follows from (3.10) and the second statement

follows from (3.11).

Thus when g = 1 and deg L o Φ 0 there is a terminal element to the left or

the right of the harmonic sequence

8 8 8

(3.12) ••• - L . ^ L o - L , - •..

Suppose, without loss of generality, that L_,, / > 0, is the terminal element.

Then L_,:M -> CPnl is a holomorphic curve and the harmonic map L o

occurs as an element of the Frenet frame of L_ r This result is due to Eells and

Wood [7]. Their proof is different from the one given here.

We remark that if a harmonic sequence (3.12) terminates in one direction

then it must terminate in the other direction and it contains at most n

elements. This is an immediate consequence of the construction of the Frenet

frame of a holomorphic or antiholomorphic curve in CPnl.

We now turn to the general case of a harmonic sequence

(3.13) V 0 4 V l - l ••• ^ V , 4 •••

8 v 8 , 8 0

(3.13a) « 1 V _ , ••• ^ V ^ V o

where each V̂  is a map M -> G(k,n) or a rank k vector bundle over M. We

would like to find conditions under which one of the 3 or 3 fundamental

collineations degenerates, that is, has rank less than k.

We can change the sequence (3.13) into a sequence of line bundles by taking

the k th exterior power of each bundle

det80 det8, det8v_,

(3.14) Λ*V0 -» A% -• Λ * V 2 ^ . . -4 Λ*V,-> •••.

In (3.14) the map det dp is a holomorphic bundle map

det8_

(3.15) Λ*V, - AkVp+ι®(T^)k.

Formula (3.3) can be written

(3.16) c.fA'V,^) = c^Λ'V,) + r(deta,) - k(2g - 2).

We remark that (3.16) is a "Plucker formula" for harmonic maps M -> G(k, n).
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The Chern number c1(Λ
A:V/,) can be computed as follows: First, it is an

elementary and basic fact of λ>plane bundles that if the connection form of V̂
is given by (πaβ\ 1 < α, β < k, then the connection form of Λ̂ V̂  is given by

(3.17)

To compute cλ(Vp) we adapt a unitary framing { Zx Zn} of Cn to the map
Vp as in §1, that is the vectors Zα span Vp, where 1 < α, /? < k. Then we have

AnΨ

-Ά/p-'Bpφ

where π is a k X k skew-hermitian matrix of 1-forms and Ap and Bp are
k X (n — k) matrices of functions. In fact in the notation of §2

Bpφ = (ωβ/),

= (bαι).

mp is the connection 1-form of V . By the Maurer-Cartan equations, the
curvature of V̂  is

dmp -πpΛπp= {-ApΆp + Bp'Bp)φ A φ.

Thus

(3.18)

Recall that the energy of the map M -> G{k,n) determined by V is given

by

(3.19)

We define the holomoφhic or θ energy of V̂  by

(3.20)
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Similarly the antiholomorphic or 9 energy of Vp is by definition

(3.21)

Thus

(3.22)

and

(3-23)

Now consider the 3-transform of Vp9 namely Vp+V We have, by the above
argument

(3.24) '.(V,+i)-7fi(W-ϊ%+1)

where dp+1 and dp+ι are the 3 and 3 transforms, respectively, of V/7+1. Recall
Theorem 2.2(ii). It is an immediate consequence of this result that

(3.25) E(\+1) = E(dp).

Thus

(3.26) ^ ^

Hence we have

(3.27) £ ,( ,) \{\)
p = 0

Theorem 3.4. // (3.13) (resp. 3.13a) is a harmonic sequence for the map
Vo: M —* G(k,n) where M has genus g and if none of the fundamental collinea-
tions of (3.13) {resp. 3.13a) degenerates then for any s

s p-1

{s + l)cx(V0) + Σ Σ KdetθJ - k(g - l)s(s + 1)

(3.28) ' - 1 * - 0

(resp., - ^ l ( ( ) )
(3.29) , , _ ! _ x

= {s + l)Cl(\0) - Σ Σ r{dctd_q) + k{g - l)s(s + 1)1.
7=1 9 = 0 /
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Proof. To prove (3.28) combine (3.16) and (3.27). To prove (3.29) modify

the above arguments to the harmonic sequence (3.13a).

Remark. By (2.3), (3.17) and (3.18)

(3.30) φ p ) = cλ(\kyp) = -deg(V,)

where deg(V ) is the degree of the map M -> G(k,n) induced by V Conse-

quently the inequalities (3.28) and (3.29) relate the degree of a harmonic map

Vp: M -> G(k, n) to its energy.

Corollary 3.5. // g = 0 or if g = 1 and cλ(y0) > 0 (resp. cτ(V0) < 0) then

the harmonic sequence (3.13) {resp. (3.13a)) must have a degenerate 9 {resp. 3)

fundamental collineation.

Using (3.30) we have

Theorem 3.6. Suppose that V 0 :M -> G{k9n) is a harmonic map and that

M has genus g. If g = 0 or if g = 1 and deg Vo Φ 0 then the harmonic sequence

generated by by Vo has a degenerate fundamental collineation.

Remark. In fact we have proved more than is stated in Theorem 3.6. If M

has genus 1 and Vo is a harmonic map M -> G{k,n) then the harmonic

sequence generated by Vo must have a degenerate fundamental collineation if

any of the 9 and 9 transforms of Vo have nonzero degree. This means that the

only harmonic sequences over the torus that we cannot prove have a degener-

ate fundamental collineation are those such that every map in the sequence has

degree zero. Note that by (3.16) every fundamental collineation of such a

sequence has ramification index zero. In CPn every nonsuperminimal minimal

torus belongs to such a sequence. (For details see [11].) In particular, the

Clifford torus in CP2 generates a cyclic harmonic sequence consisting of three

maps all of degree zero.

Let f:S2 -» G{k,n) be a harmonic map. Denote the /?th 9 (resp., 9)

transform of / by fp, (resp. f_p) so that fp+ι = dfp, p = 0,1,2, (resp.,

f_p-ι = 3/-^, p = 0,1,2, ). By applying Corollary 3.5 repeatedly we can

associate two sequences of pairs of integers to / as follows: Let lσ be the

length of the 3 harmonic sequence from / to the σth map of the sequence with

a degenerate 9 fundamental collineation. In other words, /, is the first map in

the 9 harmonic sequence of / to have a degenerate 9 fundamental collineation,

// is the second such map and so on. Set kσ = rank9/o, so that if 9/o Φ 0 the 9

transform of / v / / + 1 , is a map S2 -* G{kσ, n). Clearly lσ < / σ + 1 , kσ+ι < kσ

< k and 1 < σ < k. The sequence of pairs

(3.31) { (/ i ,* i ) , (/ 2 ,*2) , ,(/ τ,0)}

is uniquely associated to /. Note that the map flr: S2 -» G{kτ_v n) is antiho-

lomorphic. The same consideration applied to the 9 harmonic sequence of /

leads to a similar sequence again uniquely associated to /.



174 JON G. WOLFSON

Question. Is there a relation between these sequences and Uhlenbeck's

uniton number of / as defined in [10]? If so, what is it?

It is also possible to associate a sequence similar to (3.31) to a harmonic map

f .M -> G(k,n) where M has genus one. We leave the details to the reader.

§4. Turning and harmonic maps of the two-sphere

In this section we study the degenerate harmonic maps, that is, the harmonic

maps one of whose fundamental collineations is degenerate. For use later we

order the Grassmann manifolds as follows. We say G(l,n) is "smaller" than

G(k, n) if I <k.
Let Vo be a harmonic map M -> G(k,n) regarded as a rank k bundle.

Suppose that the 3 fundamental collineation is singular of rank / where

0 < / < k. Let Wo denote the harmonic map M -> G(l,n) determined by the

image of 3. Then we have

(4.1) V0Λ\V0.

The vector bundle Vo decomposes as the orthogonal direct sum of the rank

(k — /) bundle ker3 and the rank/ bundle W_x = (kQτd)±. W_x describes a

harmonic map M -> G(/, n). In fact W_x is the 3-transform of Wo. Let W_2

denote the 3-transform of W_x. Define the bundle V1 by

Note that in general W_2 and ker 3 are not orthogonal. However we have

Lemma 4.1. V1 is a vector bundle {i.e. V1 has constant rank).

To prove the lemma we need the following proposition which will be used

implicitly in §5

Proposition 4.2. (1) The bundle ker 3 is a holomorphic subbundle of Vo.

(2) The bundle W_x is an antiholomorphic subbundle of Vo.

Proof. Because ker 3 Θ W_x = Vo the two statements in the proposition are

equivalent. We will prove the first statement. Choose a unitary framing

{ Zl9 , Zn } of Cn adapted so that Z σ span ker 3 and Zr span W_1? where the

indices have the ranges

1 < σ, T < Jfc - /, k - I + 1 < r, s < k, k + 1 < i, j < n.

Then aσi = 0 and the matrix (ari) has rank /. Since Vo is harmonic, it follows

from Theorem 2.1 in [5] that

ωσfari = 0 modφ.
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This implies that

ωσf Ξ= 0 modφ.

Hence

dZσ = 0 mod Z τ , Z / ? φ.

Proof of the lemma. Let 3 V denote the 3 fundamental collineation of Vo

and 3 V (W_x) denote the image of W_x under 3 V . Then

V1 = 3 V o (W_ 1 )θker8.

Since W_x is an antiholomoφhic subbundle, the map 3 V restricted to W_x can

be regarded as an antiholomoφhic map. Thus 3 V (W_x) has constant rank.

Theorem 4.3. The bundle V1 gives a harmonic map M -> G(kv n) where

kλ <; k. If kλ = k then the ^-transform of V1 is W_x and

(4.2) V1 Λ w_x £ Wo
9

is a harmonic sequence. Ifkλ<k then the d-transform of V1 lies inside W_x.

Proof. Left to the reader

The construction of (4.2) is called turning. This construction generalizes the

construction of the same name described in [5].

Remarks. (1) If kx > / then "generically" the 3-transform of V1 is W_x and

similarly if kλ < / the 3-transform of W_x is "generically" V1. For this reason

we call a turning regular if

(a) The 3-transform of V1 is W_x when kx > /.

(b) The 3-transform of W_x is V1 when kx < /.

Theorem 4.3 says that if kx = k then the turning is regular.

(2) It is interesting (and important) to determine how to reverse the

operation of turning , that is, how to recover the map Vo from the map V1. V1

is a holomoφhic rank kγ bundle over M where by construction kλ > (k — I).

Choose an antiholomoφhic rank (k — I) subbundle B of V1. Then the bundle

B θ W_x has rank k and its 3-transform is Wo. For appropriate choice of B

this bundle will be Vo. This operation is called returning. Note that when the

turning is regular, the returning depends on V1 and the choice of B alone

(because in this case W_x is determined by V1). Whereas when the turning is

not regular the returning depends on V1, the choice of B, and Vf_λ.

It is clear that the construction of turning can be iterated to construct the

sequence

(4.3) V ' Λ w _ , - W _ ί + 1 « - ••• «-W0.
a 9 9
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Suppose that Vs is a rank ks bundle where ks< k and that each Vσ, σ < s,

constructed before Vs is a rank k bundle. If the final turning is regular then Vo

can be constructed from Vs by a sequence of returnings. If the final turning is

not regular then Vo can be constructed from Vs and W_5 through a sequence of

returnings. In both cases note that the harmonic map Vo: M -> G(k,n) can be

constructed, by returnings, from harmonic maps of M into smaller Grassmann

manifolds. In the nongeneric (that is, the not regular) case more data (namely,

W_5) is required to reconstruct Vo.

Theorem 4.4. Let Vo be a harmonic map M -> G(k,n). Let Wo denote the

3 transform of Vo and suppose that Wo is a bundle of rank /, / < k. If M has

genus zero or if M has genus one and the map Wo has positive degree then Vo can

be constructed by returnings from maps of M into smaller Grassmann manifolds.

Proof. The hypothesis on M insure that the 9 harmonic sequence of Wo

must contain a singular 3 fundamental collineation. This in turn insures that

some Vs has rank strictly less than k.

By combining Theorem 3.6 and Theorem 4.4 we have

Theorem 4.5. // M has 'genus zero then any harmonic map M -* G(k,n)

can be constructed from either

(1) a holomorphic or antiholomorphic curve M -> G(k, n) using the 3 or 3

transforms, or

(2) one, or possibly two, harmonic maps M —> G(khn) / = 1,2, where

ki < k\ using the 3 and 3 transforms and using returnings.
Now by induction, we have

Corollary 4.6. // M has genus zero then any harmonic map M -> G(k, n)

can be constructed from holomorphic or antiholomorphic curves M —» G(/, n\

1 < / < /c, using the 3 and 3 transforms and returnings.

We remark that turning and returning can be formulated for the case of a

harmonic map Vo with degenerate 3 fundamental collineation. We leave this to

the reader.

§5 Extending and harmonic maps of the two-sphere and the torus

We begin by describing another technique which, like returning, reconstructs

a harmonic map from its degenerate 3-transform (or 3-transform).

Using the same notation as in §4 we let Vo denote a harmonic map

M -» G(k,n) with degenerate 3 fundamental collineation and Wo denote the

3 transform of Vo, so that Wo is a harmonic map M -> G (/,«), 0 < / < k. By a

result of [5] the map W^ determined by the space orthogonal to Wo is also
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harmonic. Wo

± is a holomorphic vector bundle over M. Let W_x denote the

3 transform of Wo. W_x is a rank / antiholomorphic subbundle of Wo

± . Now

choose an antiholomorphic rank k subbundle V of Wo

± satisfying the condi-

tion that W_x is an antiholomorphic subbundle of V. A straightforward local

computation shows that the map M -> G{k,n) defined by V is harmonic.

Moreover, for appropriate choice of V we have V = Vo. This operation is

called extending. (The bundle V "extends" the bundle W_x.)

Suppose Vo has a degenerate 3 fundamental collineation and Uo denotes its

3 transform. Let Uλ denote the 3 transform of Uo. Then to "extend" Uι we

choose a rank k holomorphic subbundle V of UJ- satisfying the condition that

\Jι is a holomorphic subbundle of V. Again V describes a harmonic map

M -> G(k, n) and for appropriate choice of V we have V = Vo.

We have

Theorem 5.1. // M has genus zero then any harmonic map M -> G(k, n)

can be constructed from one holomorphic {or one antiholomorphic) curve M ->

G(/, «), 1 < / < k, using the 3 and 3 transforms and extendings.

Proof. Apply Theorem 3.6 repeatedly.

We can also use extending to give the following description of the space of

harmonic maps of the torus into G(k,n).

Theorem 5.2. A harmonic map of a surface M of genus one into G(k, n) can

be constructed using the 3 and 3 transforms and extendings from either

(1) a holomorphic or antiholomorphic curve M -> G{l,n)\ < / < k or

(2) a degree zero harmonic map M -> G(/, w), 1 < / < / : .

In fact in case (2) the degree zero map can be taken to be an element of a

harmonic sequence consisting only of degree zero harmonic maps.

Proof. Apply Theorem 3.6 repeatedly.
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