A CONSTRUCTION OF STABLE BUNDLES ON AN ALGEBRAIC SURFACE

DAVID GIESEKER

1. Let X be a smooth projective algebraic surface over \mathbf{C} and let H be an ample divisor on X. We recall that a bundle \mathscr{E} of rank two and $c_{1}(\mathscr{E})=0$ is H-stable (in the sense of Mumford-Takemoto) if whenever \mathscr{L} is a line bundle on X which admits a nonzero map to \mathscr{E}, then we have $\left(c_{1}(\mathscr{L}) \cdot H\right)<0$. In this paper, we will consider the problem of constructing stable bundles \mathscr{E} on X of rank two with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E})$ a prescribed number. From work of Donaldson [1], this question is a special case of the following: When does a principal $\operatorname{SU}(2)$ bundle on a four dimensional Riemannian manifold admit an irreducible self dual connection? In this guise, the problem has been studied by Taubes [4]. There has also been some work on higher dimensional manifolds by Uhlenbeck and Yau. The basic goal is to give conditions on the topology of X so that stable bundles \mathscr{E} of the type considered exist with $c_{2}(\mathscr{E})$ a given integer. The topological invariant of interest here is $h^{0}(X, \mathcal{O}(K))$, the number of holomorphic two forms on X. Throughout the paper, we will use h^{0} as an abbreviation for $h^{0}(X, \mathcal{O}(K))$. $[r]$ is the greatest integer in r.

Theorem 1.1. If $n \geqslant 4\left(\left[h^{0} / 2\right]+1\right)$, then there is an H-stable bundle \mathscr{E} on X of rank two with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E})=n$.

Theorem 1.2. If $h^{0}>1000$ and $n>(3 / 2) h^{0}+6$, then there is an H-stable bundle \mathscr{E} on X of rank two with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E})=n$.

We note that Taubes constructs bundles of the above type for $n \geqslant(8 / 3) h^{0}$ +2 . Our methods are modeled on Taubes' methods, namely both methods are degeneration theoretic. My main motivation for this paper was to see Taubes' argument is an algebro-geometric setting. Actually, the argument we will use is somewhat different than Taubes'.

One's first idea in attacking this problem is to construct a torsion free coherent H-stable sheaf \mathscr{F} on X and to prove that \mathscr{F} can be deformed to a locally free sheaf. However, we have adopted a different but related approach
which we now describe. Let C be a smooth curve which will function as a parameter space for our deformation and let $P \in C$. Let $Z_{1}=X \times C$. Pick $x_{1}, \cdots, x_{k} \in X$ and blow up $x_{i} \times P$ in Z_{1} to obtain a threefold Z. D will denote the proper transform of $X \times P$ and D_{1}, \cdots, D_{k} will be the new exceptional divisors introduced by blowing up. Each D_{i} is isomorphic to \mathbf{P}^{2}. Let $\tilde{D}=D+\sum D_{i}$ and choose $v_{i}=\left(\alpha_{i}, \beta_{i}\right) \in \mathbf{C}^{2}-\{(0,0)\}$. We assume that v_{i} span \mathbf{C}^{2}. For each i, we define a map

$$
\phi_{i}: \mathcal{O}_{Z}^{2} \rightarrow \mathcal{O}_{D_{i}}
$$

by

$$
\phi_{i}(a, b)=a \alpha_{i}+b \beta_{i} .
$$

Let $\phi: \mathcal{O}_{Z}^{2} \rightarrow \oplus_{i} \mathcal{O}_{D_{i}}$ be $\oplus_{i} \phi_{i}$. Let $\mathscr{E}^{\prime}=\operatorname{Ker} \phi$. Thus (a, b) is a section of \mathscr{E}^{\prime} over an open V if $a \alpha_{i}+b \beta_{i}$ vanishes on each $D_{i} \cap V$. Note that on some neighborhood U_{i} of $D_{i}, \mathscr{E}^{\prime}$ is a direct sum $\left(\mathcal{O} \oplus \mathcal{O}\left(-D_{i}\right)\right)_{U_{i}}$. In particular, $\mathscr{E}_{D_{i}}^{\prime} \cong \mathcal{O}_{D_{i}} \oplus \mathcal{O}_{D_{i}}(1)$, since the ideal sheaf $\mathscr{I}_{D_{i}}$ of D_{i} is isomorphic to $\mathcal{O}_{D_{i}}(1)$ when restricted to D_{i}.

Here is our basic strategy: Let $\mathscr{E}_{2}=\mathscr{E}_{2 D}^{\prime}$. (Here $2 D$ is the scheme defined by \mathscr{I}_{D}^{2} and $\mathscr{E}_{2 D}^{\prime}=\mathscr{E}^{\prime} \otimes_{\mathcal{O}_{7}}\left(\mathcal{O}_{Z} / \mathscr{I}_{D}^{2}\right.$.) Thus \mathscr{E}_{2} is a sheaf of locally free modules over $\mathcal{O}_{Z} / \mathscr{I}_{D}^{2}$.) We will analyze the obstructions to extending \mathscr{E}_{2} to a sheaf of locally free modules over $3 D$, then to $2 D+\tilde{D}$ and then to $2 D+2 \tilde{D}, 2 D+3 \tilde{D}$, etc.

We first study how to extend \mathscr{E}_{2} to a sheaf of modules \mathscr{E}_{3} locally free on $3 D . D_{j}$ is just \mathbf{P}^{2} and $D \cap D_{j}$ is a line L_{j} in $\mathbf{P}^{2}, 3 D \cap D_{j}$ is just the scheme $3 L_{j} \subseteq \mathbf{P}^{2}$.

Definition 1.3. A sheaf \mathscr{F} of locally free $\mathscr{O}_{3 L}$ modules is nondegenerate if \mathscr{F} satisfies the following conditions
a) $\wedge^{2} \mathscr{F} \cong \mathcal{O}_{3 L}(1)$.
b) There is not a quotient $\mathscr{F} \rightarrow Q \rightarrow 0$ so that Q is an invertible sheaf of $\mathcal{O}_{3 L}$ modules and $Q_{L} \cong \mathcal{O}_{L}$.

The existence of nondegenerate \mathscr{E}_{3} is studied by deformation theory in $\S 2$. Assume that \mathscr{E}_{3} satisfies our nondegeneracy condition on $3 L_{j}$. We show that $\left(\mathscr{E}_{3}\right)_{3 L}$, can be extended to a stable vector bundle \mathscr{F}_{j} on $\mathbf{P}^{2}=D_{j}$ with $c_{1}\left(\mathscr{F}_{j}\right)=1$ and $c_{2}\left(\mathscr{F}_{j}\right)=2$. The construction of the \mathscr{F}_{j} 's given in $\S 6$ is the following: Take lines L given by $x=0$ and L^{\prime} given by $y=0$, where x and y are affine coordinates on $\mathbf{A}^{2} \subseteq \mathbf{P}^{2}$. Construct a surjective map $\Phi: \mathcal{O}_{\mathbf{P}^{2}}^{2} \rightarrow \mathcal{O}_{L^{\prime}}(2)$ by

$$
\Phi(a, b)=a+b y^{2}
$$

and let \mathscr{F}^{\vee} be the kernel of Φ. Then $c_{1}(\mathscr{F})=1$ and $c_{2}(\mathscr{F})=2$. Using the nondegeneracy condition on \mathscr{E}_{3} we show that if $L=D \cap D_{j} \subseteq \mathbf{P}^{2}$, then we can choose the line L^{\prime} so that the above construction gives a suitable extension.

By gluing \mathscr{E}^{\prime} and \mathscr{F}_{j} together, we can construct a bundle \mathscr{G} on $2 D+\tilde{D}$. Let $\mathscr{G}_{0}=\mathscr{G}_{\tilde{D}}$. Next we study the problem of extending \mathscr{G}_{0} to a bundle on $2 D+2 \tilde{D}$, and then to $2 D+3 \tilde{D}$, etc. in $\S 2$. In each case, the obstruction to making such an extension is in

$$
\begin{equation*}
H^{2}\left(\tilde{D}, \operatorname{End}^{0}\left(\mathscr{G}_{0}\right) \otimes \mathscr{I}_{2 D}\right) . \tag{1.3.1}
\end{equation*}
$$

Here $\operatorname{End}^{0}(\mathscr{E})$ is the sheaf of endomorphisms of \mathscr{E} with trace zero. We suppose we have chosen the x_{i} 's and v_{i} 's so that (1.3.1) is zero. We can use Grothendieck's Quot scheme [3] in $\S 5$ to show that \mathscr{G}_{0} can be extended to a bundle \mathscr{E} on Z. (A minor technical point: We may have to base extend C.) We then can show using a standard semicontinuity argument that for generic $s \in C$, the bundle \mathscr{E}_{s} is H-stable, $c_{2}\left(\mathscr{E}_{s}\right)=2 n$ and $c_{1}\left(\mathscr{E}_{s}\right)=0$.

We are thus left with the problem of finding conditions on the x_{i} and v_{i} and n so that nondegenerate extensions \mathscr{E}_{3} exist and so that \mathscr{G}_{0} can be lifted back to larger and larger infinitesimal neighborhoods of \tilde{D}. Let us consider the problem of showing that (1.3.1) is zero. Let $\mathscr{E}=\mathscr{G}_{0} \otimes \mathcal{O}_{D}$. We wish to first establish conditons under which

$$
\begin{equation*}
H^{2}\left(D, \operatorname{End}^{0}(\mathscr{E}) \otimes \mathcal{O}(-2 D)\right)=0 \tag{1.3.2}
\end{equation*}
$$

Let $E \subseteq D$ be the divisor $\sum E_{i}$, where $E_{i}=D \cap D_{i}$. The E_{i} are exceptional curves of the first kind on D. By Serre duality we need to show that

$$
V=H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K_{X}-E\right)\right)
$$

is zero. Now \mathscr{E} is a subsheaf of \mathscr{O}_{D}^{2}, and it is isomorphic to \mathcal{O}_{D}^{2} away from the E_{i} 's. It follows easily from Hartog's theorem that any $s \in V$ can be represented by a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are holomorphic two forms on X. Further, the condition $s \in V$ implies linear relations between the values of these two forms and their derivatives at x_{i}. For instance, if $v_{i}=(1,0)$, then d must vanish at x_{i} and b must vanish twice at x_{i}, i.e., $b \in H^{0}\left(X, \mathcal{O}(K) \otimes m_{x_{i}}^{2}\right)$. At each x_{i}, the condition $s \in V$ should impose four conditions, one for the vanishing of d and three for the vanishing of b and its two partials. (Locally, we can think of b as a function.) However, these $4 k$ conditions may not be independent conditions. To see the problem, let W be a subspace of $H^{0}(X, \mathcal{O}(K))$ and let W_{x} be the subspace consisting of points $b \in W$ so that b and its two partial derivatives
vanish at x. Assuming $\operatorname{dim} W \geqslant 4$, we can easily see $d_{x}=\operatorname{codim}_{W} W_{x} \geqslant 2$. However if (z, w) are local coordinates at x, all the sections in W could be locally functions of z, in which case, $d_{x}=2$ for x generic. The weak estimate $d_{x} \geqslant 2$ is all that is needed to establish Theorem 1.1. This situation can actually occur for elliptic surfaces. Specifically, if C is a curve of genus g and E is an elliptic curve, then $d_{x}=2$ for $X=C \times E$ and $W=H^{0}\left(K_{X}\right)$.

To establish Theorem 1.2, we note that if $d_{x}=2$ for x generic, then the linear system defined by W must map X to a curve $C \subseteq \mathbf{P}(W)$. (Of course, there may be base points.) If the dimension of W is large, we can find a hyperplane H_{1} on $\mathbf{P}(W)$ which has high order contact with C at some generic point. The inverse image of H_{1} in X is contained in an effective canonical divisor E which has a component of high multiplicity. $\S 4$ gives a construction of stable bundles whenever there are many canonical curves C on the surface which contain components of high order. This construction enables us to establish the existence of stable bundles with small c_{2} if $d_{x}=2$ for x generic if we begin with a large $h^{0}\left(K_{X}\right)$. Our construction also shows that for each $\varepsilon>0$, then if $d \gg 0$, there are stable bundles \mathscr{E} on hypersurfaces X of degree d in \mathbf{P}^{3} with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E}) \leqslant \varepsilon h^{0}\left(K_{X}\right)$. This stands in contrast to a result in [1] that for a generic Riemannian metric on X, the existence of a self dual connection on a principal $\mathrm{SU}(2)$ bundle $P \rightarrow M$ requires $c_{2}(P) \geqslant$ $3 / 8\left(b-+1-\operatorname{dim} H_{D R}^{1}\right)$. Evidently, the Kähler class on a hypersurface is not generic in the above sense. (If Q is the intersection matrix on H_{2}, $b_{-}=1 / 2($ rank signature $Q)$) $\S 7$ contains the proof of Theorems 1.1 and 1.2.
2. Let Z be a smooth threefold, D a divisor with components D_{0}, \cdots, D_{n} which are smooth. We assume D_{i} intersect transversally and that there are no triple intersections. Let \mathscr{E} be a locally free sheaf of rank two on $\sum n_{i} D_{i}$, i.e., \mathscr{E} is a sheaf of locally free $\mathscr{O}_{z} /\left(\sum n_{i} D_{i}\right)$ modules. We assume there is a line bundle \mathscr{L} on Z so that the restriction of \mathscr{L} to $\sum n_{i} D_{i}$ is $\Lambda^{2} \mathscr{E}$. Choose a k and let

$$
m_{i}= \begin{cases}n_{i}+1 & \text { for } i \leqslant k, \\ n_{i} & \text { for } i>k .\end{cases}
$$

We suppose $n_{i}>0$ if $i \leqslant k$. We wish to study conditions under which \mathscr{E} can be extended to a sheaf of locally free modules over $\sum m_{i} D_{i}$. Let $D^{\prime}=\sum_{i=0}^{k} D_{i}$.

Proposition 2.1. Suppose

$$
H^{2}\left(D^{\prime}, \operatorname{End}^{0}(\mathscr{E}) \otimes \mathscr{O}_{D^{\prime}}\left(-\sum n_{i} D_{i}\right)\right)=0
$$

where $\operatorname{End}^{0}(\mathscr{E})$ is the sheaf of endomorphisms of trace zero. Then \mathscr{E} can be extended to a bundle \mathscr{E}^{\prime} on $\left(\sum n_{i} D_{i}+D^{\prime}\right)$ so that \mathscr{L} restricts to $\operatorname{det} \mathscr{E}^{\prime}$.

Proof. The proof uses standard ideas on deformation theory which we review. Find affine opens $U_{\alpha} \subseteq Z$ which cover D so that on each U_{α}, we can find a free bundle of rank two \mathscr{E}_{α} on $\left(\sum n_{i} D_{i}+D^{\prime}\right) \cap U_{\alpha}$ which restricts to \mathscr{E}
on $\left(\sum n_{i} D_{i}\right) \cap U_{\alpha}$. Let $\phi_{\alpha \beta}$ be isomorphisms of \mathscr{E}_{β} with \mathscr{E}_{α} over $U_{\alpha} \cap U_{\beta}$ which extend the identity map on \mathscr{E} when restricted to $U_{\alpha} \cap U_{\beta} \cap\left(\sum n_{i} D_{i}\right)$. Let

$$
\psi_{\alpha \beta \gamma}=\operatorname{Id}-\phi_{\alpha \gamma} \circ \phi_{\gamma \beta} \circ \phi_{\beta \alpha} .
$$

Now $\psi_{\alpha \beta \gamma}$ is an endomorphism of \mathscr{E}_{α} over $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}=U_{\alpha \beta \gamma}$. Actually $\psi_{\alpha \beta \gamma}$ is a map of \mathscr{E}_{α} to $\mathscr{E}_{\alpha} \cdot \mathcal{O}\left(-\sum n_{i} D_{i}\right)=\mathscr{E}_{D^{\prime}} \otimes \mathcal{O}_{Z}\left(-\sum n_{i} D_{i}\right)$ on $U_{\alpha \beta \gamma}$. So we can regard $\psi_{\alpha \beta \gamma}$ as a section of $\operatorname{End}(\mathscr{E})\left(-\sum n_{i} D_{i}\right) \otimes \mathcal{O}_{D^{\prime}}$. We claim $\left\{\psi_{\alpha \beta \gamma}\right\}=\psi$ is a cocycle and so defines an element

$$
\bar{\psi} \in H^{2}\left(D^{\prime}, \operatorname{End}(\mathscr{E})\left(-\sum n_{i} D_{i}\right)\right) .
$$

It suffices to check $d \psi=0$ locally. Let U be an open so that $\mathscr{E}_{\alpha}, \mathscr{E}_{\beta}$ and \mathscr{E}_{γ} are all restrictions of a bundle \mathscr{F} on $\sum m_{i} D_{i} \cap U$. Then we can write $\phi_{\alpha \beta}=$ Id $+\tilde{\phi}_{\alpha \beta}$, where $\tilde{\phi}_{\alpha \beta}$ are sections of $\mathscr{F}_{D} \otimes \mathcal{O}\left(\mathscr{E}\left(-n_{i} D_{i}\right)\right)$ over U. One checks that $d \tilde{\phi}=\psi$, and hence $d \psi=0$.

We next claim that $\bar{\psi}=0$. Indeed, let us look first at

$$
\operatorname{Tr} \bar{\psi} \in H^{2}\left(D^{\prime}, \mathcal{O}_{D^{\prime}}\left(-\sum n_{i} D_{i}\right)\right)
$$

$\operatorname{Tr} \bar{\psi}$ is just the obstruction to extending det \mathscr{E} to a line bundle on $\sum m_{i} D_{i}$. But we are given that such an extension is possible, so the obstruction is zero. More precisely, we can assume that we have $\xi_{\alpha}: \operatorname{det} \underset{\mathscr{E}_{\alpha}}{\sim} \mathscr{L}$ on U_{α} so that ξ_{α} is the identity on $\sum n_{i} D_{i}$:

$$
\xi_{\alpha} \circ \operatorname{det} \phi_{\alpha \beta} \circ \xi_{\beta}^{-1}=\mathrm{Id}+\lambda_{\alpha \beta}^{\prime} .
$$

Thus

$$
\operatorname{det} \phi_{\alpha \beta}=k_{\alpha \beta}+\lambda_{\alpha \beta},
$$

where $k_{\alpha \beta}=\xi_{\alpha}^{-1} \circ \xi_{\beta}$ is a coboundary and $\lambda_{\alpha \beta}$ is zero on $\sum n_{i} D_{i}$.

$$
\operatorname{Tr} \psi_{\alpha \beta \gamma}=2-\operatorname{Tr}\left(\phi_{\alpha \gamma} \phi_{\gamma \beta} \phi_{\beta \alpha}\right) .
$$

But a local computation shows that

$$
\operatorname{Tr}\left(\phi_{\alpha \gamma} \phi_{\gamma \beta} \phi_{\beta \alpha}\right)=1+\operatorname{det} \phi_{\alpha \gamma} \operatorname{det} \phi_{\gamma \beta} \operatorname{det} \phi_{\beta \alpha}=2+\left(\lambda_{\alpha \gamma}+\lambda_{\gamma \beta}+\lambda_{\beta \alpha}\right) .
$$

So

$$
\operatorname{Tr} \psi=d \lambda
$$

So since the kernel of

$$
\operatorname{Tr}: H^{2}\left(D^{\prime},\left(\operatorname{End} \mathscr{E}_{D^{\prime}}\right)\left(-\sum n_{i} D_{i}\right)\right) \rightarrow H^{2}\left(D^{\prime}, \mathcal{O}_{D^{\prime}}\left(-\sum n_{i} D_{i}\right)\right)
$$

is $H^{2}\left(D^{\prime}, \operatorname{End}^{0}\left(\mathscr{E}_{D^{\prime}}\right)\left(-\sum n_{i} D_{i}\right)\right)=0$, we see that

$$
\psi_{\alpha \beta \gamma}=d\left(\zeta_{\alpha \beta}\right)
$$

where

$$
\zeta_{\alpha \beta}: \mathscr{E}_{\beta} \rightarrow \mathscr{E}_{\alpha} \cdot \mathcal{O}\left(\sum-n_{i} D_{i}\right)
$$

Let

$$
\phi_{\alpha \beta}^{\prime}=\phi_{\alpha \beta}+\zeta_{\alpha \beta} .
$$

The $\phi_{\alpha \beta}^{\prime}$ satisfies the cocycle condition and provides a lifting of \mathscr{E} to $\sum m_{i} D_{i}$.
Now $\mathscr{M}=\operatorname{det} \mathscr{E} \otimes \mathscr{L}^{-1}$ is a line bundle which is trivial on $\sum n_{i} D_{i}$. Thus we can choose a local trivialization and present \mathscr{M} as an element of $\left\{\eta_{\alpha \beta}\right\}$ of $H^{1}\left(\mathcal{O}^{*}\right)$, where $\eta_{\alpha \beta}$ reduces to 1 on $\sum n_{i} D_{i}$. Let \mathscr{M}^{\prime} be given by

$$
\eta_{\alpha \beta}^{\prime}=\frac{1}{2}\left(1+\eta_{\alpha \beta}\right) .
$$

Then $\left(\mathscr{M}^{\prime}\right)^{\otimes 2}$ is isomorphic to \mathscr{M}, and so $\operatorname{det}\left(\mathscr{E} \otimes \mathscr{M}^{\prime}\right) \cong \mathscr{L}$.
We next consider the following situation: $n_{0}=2$ and all the other n_{i} 's are zero and $m_{0}=3$ with all the other m_{i} 's zero. Thus we have a bundle \mathscr{E}_{2} on $2 D_{0}$ and we wish to study the extensions of \mathscr{E}_{2} to $3 D_{0}$. We assume that such extension \mathscr{E}_{3}^{\prime} exists. Let \mathscr{E}_{3} be any other extension of \mathscr{E}_{2} to $3 D_{0}$. Then on a suitable open cover $\left\{U_{\alpha}\right\}$ of $3 D_{0}$ we choose isomorphism $\phi_{\alpha}: \mathscr{E}_{3} \rightarrow \mathscr{E}_{3}^{\prime}$ defined over U_{α} extending the identity on $U_{\alpha} \cap 2 D_{0}$. The one cocycle $\psi=\left\{\psi_{\alpha \beta}\right\}$

$$
\psi_{\alpha \beta}=\operatorname{Id}-\phi_{\beta}^{-1} \phi_{\alpha} \in H^{1}\left(D_{0}, \operatorname{End}(\mathscr{E})\left(-2 D_{0}\right)\right)
$$

classifies such extensions, where $\mathscr{E}=\mathscr{E}_{2} \otimes \mathcal{O}_{D_{0}}$.
Suppose we have a quotient Q_{3}^{\prime} of $\mathscr{E}_{3}^{\prime \prime}$ over $3 D_{0} \cap D_{j}$ for some $j>0$. (If D_{0} is locally defined by $x=0$ and D_{j} is defined by $y=0,3 D_{0} \cap D_{j}$ is defined by the equations $x^{3}=y=0$ as a scheme. Thus Q_{3}^{\prime} is an invertible module over $\mathcal{O}_{z} /\left(x^{3}, y\right)$.) Let Q_{2} be the induced quotient of \mathscr{E}_{2}. Our question is: Given \mathscr{E}_{3} (or equivalently ψ), when does Q_{2} lift to an invertible quotient of Q_{3} of \mathscr{E}_{3} over $3 D_{0} \cap D_{j}$? Let Q be the induced quotient of $\mathscr{F}=\mathscr{E}_{2} \otimes \mathcal{O}_{D_{0} \cap D_{j}}$ and let L be the kernel:

$$
\begin{equation*}
0 \rightarrow L \rightarrow \mathscr{F} \rightarrow Q \rightarrow 0 \tag{2.2}
\end{equation*}
$$

There is a natural map from

$$
\Phi: \text { End } \mathscr{E}\left(-2 D_{0}\right) \rightarrow \operatorname{Hom}(L, Q)\left(-2 D_{0}\right)
$$

since an endomorphism of \mathscr{E} gives an endomorphism of \mathscr{F} and hence a map from L to Q.

Lemma (2.3). If Q_{2} lifts to an invertible quotient Q_{3} of \mathscr{E}_{3} over $3 D_{0} \cap D_{j}$, then $\Phi\left(\psi_{\alpha \beta}\right)=0$ in $H^{1}\left(D_{0} \cap D_{j}, \operatorname{Hom}(L, Q)\left(-2 D_{0}\right)\right)$.

Proof. If Q_{2} lifts to Q_{3}, we can take the ϕ_{α} to map Q_{3} to Q_{3}^{\prime}. Then $\Phi\left(\psi_{\alpha \beta}\right)=0$.

Lemma (2.4). If Q_{2} always lifts for any choice of \mathscr{E}_{3} and the exact sequence (2.2) splits, then the kernel of the natural map

$$
H^{2}\left(D_{0}, \operatorname{End}(\mathscr{E})\left(-2 D_{0}-D_{j}\right)\right) \rightarrow H^{2}\left(D_{0}, \operatorname{End}(\mathscr{E})\left(-2 D_{0}\right)\right)
$$

has dimension $\geqslant h^{1}\left(L^{\vee} \otimes Q\left(-2 D_{0}\right)\right)$.
Proof. This follows from the long exact sequence associated to

$$
\begin{aligned}
0 & \rightarrow \operatorname{End}(\mathscr{E})\left(-2 D_{0}-D_{j}\right) \rightarrow \operatorname{End}(\mathscr{E})\left(-2 D_{0}\right) \\
& \rightarrow(\operatorname{End} \mathscr{E})\left(-2 D_{0}\right) \otimes \mathscr{O}_{D_{0} \cap D_{j}} \rightarrow 0
\end{aligned}
$$

Corollary 2.5. Suppose that for each $j,\left(\mathscr{E}_{3}^{\prime}\right)_{D_{0} \cap D_{j}}=Q_{j} \oplus L_{j}$ and that Q_{j} lifts to an invertible quotient of $\left(\mathscr{E}_{3}^{\prime}\right)_{3 D_{0} \cap D_{j}}$. Suppose further that

$$
h^{2}\left(D_{0}, \operatorname{End}^{0}(\mathscr{E})\left(-2 D_{0}\right)\right)=0
$$

and

$$
h^{2}\left(D_{0}, \operatorname{End}^{0}(\mathscr{E})\left(-2 D_{0}-D_{j}\right)\right)<h^{1}\left(D_{0} \cap D_{j}, Q_{j} \otimes L_{j}^{\vee}\left(-2 D_{0}\right)\right) .
$$

Then we can find an extension \mathscr{E}_{3} of \mathscr{E}_{2} to $3 D_{0}$ so that the quotient Q_{j} does not lift to an invertible quotient of $\left(\mathscr{E}_{3}\right)_{3 D_{0} \cap D_{j}}$ for any j and $\operatorname{det} \mathscr{E}_{3}^{\prime} \cong \operatorname{det} \mathscr{E}_{3}$.

Proof. We have to show there is $\alpha \in H^{1}\left(D_{0}, \operatorname{End}(\mathscr{E})\left(-2 D_{0}\right)\right)$ which has nonzero image in $H^{1}\left(D_{0} \cap D_{j},\left(L_{j}^{\vee} \otimes Q_{j}\right)\left(-2 D_{0}\right)\right)$ where $\left(\mathscr{E}_{3}\right)_{D_{0} \cap D_{j}}=Q_{j} \oplus$ L_{j}. Lemma 2.4 shows that such an α_{j} exists for each j. Some linear combination of the α_{j} works as α, since the field is infinite.

Remark. We will be interested in applying the results of this section in the case Z is the variety constructed in $\S 1 . D_{i}$ is the divisor D_{i} of the introduction for $i \geqslant 1$ and D_{0} is D, the blow up of X. The \mathscr{E}_{3}^{\prime} will be $\mathscr{E}_{3 D}^{\prime}$ of $\S 1$ and Q_{j} is $\mathcal{O}_{E_{j}}$. Thus $Q_{j} \otimes L_{j}^{\vee}\left(-2 D_{0}\right)$ has degree -3 on E_{j}. So

$$
h^{1}\left(Q_{j} \otimes L_{j}^{\vee}\left(-2 D_{0}\right)\right)=2
$$

3. Let X be the algebraic surface of $\S 1$ and let P_{1}, \cdots, P_{k} be points of X in general position. Let D be blow up of X at $P_{1}, \cdots, P_{k} . E_{1}, \cdots, E_{k}$ will denote the exceptional divisors. Let $E=\Sigma E_{i}$. At each point P_{i}, choose

$$
v_{i}=\binom{\alpha_{i}}{\beta_{i}} \in \mathbf{C}^{2}-\{(0,0)\} .
$$

We produce a new vector bundle \mathscr{E} on D by the following construction: For each E_{i}, consider the map

$$
\phi_{i}(f, g)=\alpha_{i} \bar{f}+\beta_{i} \bar{g}
$$

from \mathcal{O}_{D}^{2} to $\mathcal{O}_{E_{i}}$, where \bar{f} is the restriction of a local section f of \mathcal{O}_{D} to $\mathcal{O}_{E_{i}}$. Let $\phi=\oplus_{i} \phi_{i}$, so

$$
\phi: \mathcal{O}_{D}^{2} \rightarrow \bigoplus_{i} \mathcal{O}_{E_{i}} .
$$

Thus \mathscr{E} is the subsheaf of \mathcal{O}_{D}^{2} whose local sections consist of pairs of functions (f, g) with $\alpha_{i} f+\beta_{i} g$ vanishing on E_{i}. We seek conditions on the P_{i} and v_{i} so that

$$
\begin{equation*}
h^{2}\left(D, \operatorname{End}^{0}(\mathscr{E})(2 E)\right)=0 \tag{3.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{2}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(2 E-E_{i}\right)\right) \leqslant 1 \tag{3.1.2}
\end{equation*}
$$

for all i. Let K_{D} be the canonical divisor on D. We have

$$
K_{D}=K_{X}+E
$$

where K_{X} denotes the pull back of the canonical bundle of X. It suffices to show that

$$
V=H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K_{X}-E\right)\right)=0
$$

and that for

$$
W_{i}=H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K_{X}-E+E_{i}\right)\right)
$$

we have $\operatorname{dim} W_{i} \leqslant 1$.
First, notice that

$$
H^{0}\left(D-E, \operatorname{End}^{0}(\mathscr{E})\left(K_{X}\right)\right)=H^{0}\left(X-\left(\cup x_{i}\right), \mathcal{O}(K)^{3}\right)=H^{0}\left(X, \mathcal{O}(K)^{3}\right)
$$

Thus any sections of V or W_{i} can be represented as a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are in $H^{0}\left(D, \mathcal{O}\left(K_{X}\right)\right)$ and $\operatorname{Tr} A=0$.
We analyze the conditions on a, b, c, d for s to be in V. Suppose $\beta_{i}=1$. We claim that $s_{1}=a-\alpha_{i} b$ and $s_{2}=c-\alpha_{i} d$ vanish at least once on E_{i}, and that $s_{3}=b \alpha_{i}^{2}+(d-a) \alpha_{i}-c$ vanishes twice on E_{i}. Note that $\left(1,-\alpha_{i}\right)$ is a section of \mathscr{E} near E_{i}, since $\phi_{i}\left(1,-\alpha_{i}\right)=(0,0)$. Thus

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{-\alpha_{i}}
$$

must be a section of $\mathscr{E}\left(-E_{i}+K_{X}\right)$. In particular, it is a section of $\mathscr{O}_{D}^{2}\left(-E_{i}+K_{X}\right)$ in a neighborhood of E_{i}. Thus s_{1} and s_{2} have the required properties. Further, ($\left.a-\alpha_{i} b, c-\alpha_{i} d\right)$ must be in the kernel of the natural map of $\mathcal{O}_{D}^{2}\left(K_{X}-E_{i}\right)$ to $\mathcal{O}_{E_{i}}\left(K_{X}-E_{i}\right)$, i.e., s_{3} must vanish on E_{i} as a section of $\mathcal{O}_{D}\left(K_{X}-E_{i}\right)$, i.e., it vanishes twice on E_{i} as a section of $\mathcal{O}_{D}\left(K_{X}\right)$. If $\beta_{i}=0$, the corresponding conditions are that d vanishes at least once on E_{i} and b vanishes at least twice on E_{i}.

Proposition 3.2. Let $n=\left[h^{0} / 2\right]+1$ and $k=2 n$. Let $v_{i}=(1,0)$ for $i=$ $1, \cdots, n$ and $v_{i}=(0,1)$ for $i=n+1, \cdots, k$. If the P_{i} are chosen generically, then (3.1.1) and (3.1.2) are satisfied.

Proof. Let $V_{i}=H^{0}\left(D, \mathcal{O}\left(K\left(-2 E_{1} \cdots-2 E_{i}\right)\right)\right)$. We claim that as long as $\operatorname{dim} V_{i} \geqslant 2$, the codimension of V_{i+1} in V_{i} must be at least two. Indeed, let s_{1} and s_{2} be two independent sections of V_{i}. Then $f=s_{1} / s_{2}$ is a nonconstant meromorphic function, so we can choose P_{i+1} so that $s_{2}\left(P_{i+1}\right) \neq 0$ and $(d f)_{P_{i+1}} \neq 0$. Then

$$
s^{\prime}=s_{1}-\frac{s_{1}\left(P_{i+1}\right)}{s_{2}\left(P_{i+1}\right)} s_{2}
$$

vanishes exactly once on E_{i+1}, so no nontrivial linear combinations of s_{2} and s^{\prime} are in V_{i+1}. Thus our claim is established. In particular, $V_{n}=0$.

Let

$$
s=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and suppose $s \in H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})(K-E)\right)$. Since $V_{n}=0$, we have $b=c=0$. Since $k \geqslant h^{0}$, and the P_{i} are generic, $a-d$ is zero since $a-d$ vanishes at the P_{i}. We have $a+d=0$, since the matrix is traceless. So $s=0$.

Suppose $s, t \in H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K-E+E_{k}\right)\right)$ are linearly independent. Let

$$
t=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)
$$

Since $c, c_{1} \in V_{n-1}$ are linearly dependent, we can assume that $c_{1}=0$ by replacing t by a linear combination of s and t. As before $b_{1}=0$ and then $a_{1}=d_{1}=0$. So (3.1.2) is satisfied.

Proposition 3.3. Suppose $V \subseteq H^{0}\left(X, K_{X}\right)$ has dimension $\geqslant 21$. Then either
i) for generic $x \in X$, the natural map from V to $H^{0}\left(X, \mathcal{O}(K) / m_{x}^{2} \cdot \mathcal{O}(K)\right)$ is onto, or
ii) for a generic point $x \in X$ there is a curve D so that $20 D+E=K$ where E is effective.

Proof. Let $\mathscr{F} \subseteq \mathcal{O}\left(K_{X}\right)$ be the subsheaf generated by the sections in V and let z_{1}, \cdots, z_{r} be the points at which \mathscr{F} is not invertible and let $X^{\prime}=X-$ $\left\{x_{1}, \cdots, x_{r}\right\}$. The linear system V then defines a map Φ of X^{\prime} to $\mathbf{P}(V)$. If $\overline{\Phi\left(X^{\prime}\right)}$ is a surface, then (i) holds. Otherwise, $\overline{\Phi\left(X^{\prime}\right)}$ is a curve $\subseteq \mathbf{P}(V)$ not contained in a hyperplane. If $x \in \Phi\left(X^{\prime}\right)$ is a generic point, we can find a hyperplane H which has contact 20 or more with $\overline{\Phi\left(X^{\prime}\right)}$ at x. Let $D=\Phi^{-1}(H)$. Then (ii) is valid.

For the rest of the section, we will assume that there are no canonical divisors on X with components of multiplicity 20 passing through a generic x, so case i) of Proposition 3.3 always holds. In particular, by choosing the x_{i} 's generically we can assume that

$$
\begin{equation*}
h^{0}\left(D, \mathcal{O}\left(K_{X}-\sum^{l} 2 E_{i}\right)\right)=h^{0}-3 l \tag{3.3.1}
\end{equation*}
$$

as long as $h^{0}-3 l \geqslant 18$. We define integers k_{1}, k_{2}, k_{3} by

$$
\begin{gathered}
k_{1}=\left[\frac{5}{16} h^{0}\right]+1, k_{2}=\left[\frac{5}{8} h^{0}\right]-\left[\frac{5}{16} h^{0}\right], \\
k_{3}=2 h^{0}-3\left(\left[\frac{5}{8} h^{0}\right]\right) .
\end{gathered}
$$

Let $v_{i}=\binom{1}{0}$ for $i=1$ to $k_{1}, v_{i}=\binom{0}{1}$ for $i=k_{1}+1$ to $k_{2}+k_{1}$ and $v_{i}=\binom{\alpha_{i}}{1}$ for $i=k_{2}+k_{1}+1$ to $k_{1}+k_{2}+k_{3}$.

Proposition 3.4. If the x_{i} and α_{i} are generic and $h^{0} \geqslant 1000$, then $h^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K-E+E_{j}\right)\right)=0$ for any j.

Proof. We will treat the case $j=1$ first. Let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be an element of $H^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(-E+K+E_{1}\right)\right.$. Then b vanishes twice on E_{i} for $1<i \leqslant k_{1}$ and c vanishes twice on E_{i} for $k_{1}<i \leqslant k_{1}+k_{2}$. On the other hand, we have $\alpha_{i}^{2} b+c$ vanishes on E_{i} for $k_{1}+k_{2}<i$. Notice that if $W \subseteq \oplus^{2} H^{0}\left(X, K_{X}\right)$ is any nonzero subspace, then the condition $\alpha_{i}^{2} b=-c$ is nontrivial for some α_{i}, i.e., there is a pair $(b, c) \in W$ violating the condition. Hence if $k_{3} \geqslant \operatorname{dim} W$, the conditions $\alpha_{i}^{2} b=-c$ at k_{3} points implies $b=c=0$. In our case

$$
W=H^{0}\left(D, \mathcal{O}\left(K-2 \sum_{i=2}^{k_{1}} E_{i}\right)\right) \oplus H^{0}\left(D, \mathcal{O}\left(K-2 \sum_{i=k_{1}+1}^{k_{2}} E_{i}\right)\right),
$$

so if

$$
\begin{equation*}
k_{3} \geqslant h^{0}\left(D, \mathcal{O}\left(K-2 \sum_{i=2}^{k_{1}} E_{i}\right)\right)+h^{0}\left(D, \mathcal{O}\left(K-2 \sum_{i=k_{1}+1}^{k_{2}} E_{i}\right)\right), \tag{3.3.2}
\end{equation*}
$$

then any (b, c) satisfying the conditions $\alpha_{i}^{2} b=-c$ is zero. On the other hand,

$$
h^{0}-3 k_{i} \geqslant 18 \quad \text { for } i=1,2
$$

since $h^{0} \geqslant 1000$ and $k_{i} \leqslant\left[(5 / 16) h^{0}\right]+1$. So (3.3.1) shows that (3.3.2) is valid using our definition of k_{3}.

If $e=a-d$, then e vanishes twice on E_{i} for $i>k_{2}+k_{1}$ and once at the $k_{1}+k_{2}-1$ curves E_{i} where $1<i \leqslant k_{1}+k_{2}$. Now

$$
k_{3} \leqslant 2 h^{0}-\frac{15}{8} h^{0} \leqslant \frac{1}{8} h^{0} .
$$

So $h^{0}-3 k_{3} \geqslant 18$. So (3.3.1) shows that

$$
h^{0}\left(D, \mathcal{O}\left(K-\sum_{i=k_{1}+k_{2}+1}^{k_{1}+k_{2}+k_{3}} 2 E_{i}\right)\right)=h^{0}-3 k_{3}
$$

and since

$$
k_{1}+k_{2}-1 \geqslant h^{0}-3 k_{3}
$$

by elementary algebra, we see that $e=a-d=0$. Hence $a=d=0$.
The cases where $j>1$ can be treated similarly.
4. In this section we consider a construction of stable bundles which is useful if there are curves of low genus on X. We begin with a well-known lemma.

Lemma 4.1. Let C be a reduced and irreducible curve of arithmetic genus g in X. Let \mathscr{M} be a line bundle of degrees $\geqslant 3 g$. Then \mathscr{M} is generated by its global sections.

Proof. Let $x \in C$. Let π : $\tilde{C} \rightarrow C$ be the normalization of C. The image of $\pi^{*}\left(m_{x}\right)$ in $\mathcal{O}_{\tilde{C}}$ is a sheaf of ideals \mathscr{I}. We claim $\operatorname{deg} \mathscr{I} \geqslant-(g+1)$. Indeed, if \mathscr{L} is a line bundle of very large degree on C and $\tilde{\mathscr{L}}=\pi^{*}(\mathscr{L})$

$$
\begin{aligned}
1+\operatorname{deg}(\mathscr{I} \otimes \tilde{\mathscr{L}}) & \geqslant h^{0}(\tilde{C}, \mathscr{I} \otimes \tilde{\mathscr{L}}) \geqslant h^{0}\left(C, m_{x} \otimes \mathscr{L}\right) \\
& \geqslant h^{0}(C, \mathscr{L})-1 \geqslant \operatorname{deg} \mathscr{L}-g .
\end{aligned}
$$

Since $\operatorname{deg}(\mathscr{I} \otimes \tilde{\mathscr{L}})=\operatorname{deg} \mathscr{I}+\operatorname{deg} \mathscr{L}$, we have established our claim.
Note that \mathscr{M} is generated by global sections if $h^{1}\left(m_{x} \otimes \mathscr{M}\right)=0$ for all $x \in C$. If \mathscr{M} is not generated by global sections, Serre duality shows we have a nonzero map from $m_{x} \otimes \mathscr{M}$ to ω_{C}, where ω_{C} is the sheaf of dualizing differentials on C. This in turn gives a nonzero map for $\mathscr{I} \otimes \tilde{M}$ to $\tilde{\omega}_{C}$. Since $\operatorname{deg} \mathscr{M} \geqslant 3 g$, such a map is necessarily zero.

To construct our bundle, we suppose we are given two distinct algebraically equivalent curves C and C^{\prime} of arithmetic genus g. We suppose C and C^{\prime} are reduced and irreducible and $C \cdot K \geqslant 0$. Select divisors F and F^{\prime} on C and C^{\prime} respectively so that the points of F and F^{\prime} are smooth points of C and C^{\prime} and the support of F and F^{\prime} is disjoint from $C \cap C^{\prime}$. We suppose the degrees of F and F^{\prime} are $\geqslant 3 g$. We first construct a surjective map

$$
\Phi: \mathcal{O}_{X}(C) \oplus \mathcal{O}_{X}\left(C^{\prime}\right) \rightarrow \mathcal{O}_{C}(C+F)
$$

Indeed such a map is given by a pair $\left(s, s^{\prime}\right)$, where s is a section of $\mathcal{O}_{C}(F)$ and s^{\prime} is a section of $\mathscr{O}_{C}\left(F+C-C^{\prime}\right)$. Since both these line bundles are generated by global sections by Lemma 4.1, taking s, s^{\prime} generic produces a surjective $\operatorname{map} \Phi$. We can similarly construct a surjective map

$$
\Phi^{\prime}: \mathcal{O}_{X}(C) \oplus \mathcal{O}_{X}\left(C^{\prime}\right) \rightarrow \mathcal{O}_{C^{\prime}}\left(C^{\prime}+F^{\prime}\right)
$$

given by sections t of $\mathcal{O}_{C^{\prime}}\left(C^{\prime}-C+F^{\prime}\right)$ and t^{\prime} of $\mathcal{O}_{C^{\prime}}\left(F^{\prime}\right)$. At a given point P of $C \cap C^{\prime}$, we can choose $s(P)=0$ and $t^{\prime}(P)=0$. Thus

$$
\Psi=\Phi \oplus \Phi^{\prime}: \mathcal{O}_{X}(C) \oplus \mathcal{O}_{X}\left(C^{\prime}\right) \rightarrow \mathcal{O}_{C}(C+F) \oplus \mathcal{O}_{C^{\prime}}\left(C^{\prime}+F^{\prime}\right)
$$

is onto at P. Since we are free to choose s, t^{\prime} generically, we can assume that Ψ is surjective. Let $\mathscr{E}=\operatorname{Ker} \Psi$. We compute $c_{2}(\mathscr{E})$.

$$
\begin{gather*}
\chi(\mathscr{E})=-c_{2}(\mathscr{E})+2 \chi\left(\mathcal{O}_{X}\right), \tag{4.1.1}\\
\chi\left(\mathcal{O}(C) \oplus \mathscr{O}\left(C^{\prime}\right)\right)=C^{2}-C \cdot K+2 \chi\left(\mathcal{O}_{X}\right), \tag{4.1.2}\\
\chi\left(\mathcal{O}_{C}(C+F)\right)=\operatorname{deg} F-\frac{1}{2}\left(C^{2}-C \cdot K\right), \tag{4.1.3}\\
\chi\left(\mathcal{O}_{C^{\prime}}\left(C^{\prime}+F^{\prime}\right)\right)=\operatorname{deg} F^{\prime}-\frac{1}{2}\left(C^{2}-C \cdot K\right), \tag{4.1.4}
\end{gather*}
$$

so

$$
c_{2}(\mathscr{E})=\operatorname{deg} F+\operatorname{deg} F^{\prime} \geqslant 6 g .
$$

Let $\mathscr{E}\left(s, s^{\prime}, t, t^{\prime}\right)$ be the bundle \mathscr{E} we have constructed. Let us check the stability of such $\mathscr{E}\left(s, s^{\prime}, t, t^{\prime}\right)$ if $s, s^{\prime}, t, t^{\prime}$ are chosen generically. First, if $\mathscr{E}\left(s, s^{\prime}, t, t^{\prime}\right)$ is not H-stable for generic $s, s^{\prime}, t, t^{\prime}$, there is a line bundle \mathscr{M} mapping to $\mathcal{O}(C) \oplus \mathcal{O}\left(C^{\prime}\right)$ so that $\Phi(\mathscr{M})=0, \Phi^{\prime}(\mathscr{M})=0$ and $\left(c_{1}(\mathscr{M}) \cdot H\right)$ $\geqslant 0$. By a standard semicontinuity argument (see §5) such an \mathscr{M} would have to exist for all $s, s^{\prime}, t, t^{\prime}$. In particular, take $s^{\prime}=t=0$. Say the map of \mathscr{M} to $\mathcal{O}(C)$ is nontrivial. The map of \mathscr{M} to $\mathcal{O}(C)$ would have to vanish on C. Hence \mathscr{M} would map to \mathcal{O}. Since $\left(c_{1}(\mathscr{M}) \cdot H\right) \geqslant 0$, this implies that $\mathscr{M}=\mathcal{O}$. By our semicontinuity argument, we can assume that the generic $\mathscr{E}\left(s, s^{\prime}, t, t^{\prime}\right)$ is destabilized by a line bundle algebraically equivalent to zero. Since $2 g-2=$ $C(C+K)$ and $C \cdot K \geqslant 0$, we see that $\operatorname{deg} F \geqslant 3 g>C^{2}$. Now the kernel \mathscr{L}_{1} of the map $\Phi_{\text {| }}$

$$
\Phi_{\mid C}: \mathcal{O}_{C}(C) \oplus \mathcal{O}_{C}\left(C^{\prime}\right) \rightarrow \mathcal{O}_{C}(C+F)
$$

is a line bundle on C of degree $C^{2}-\operatorname{deg} F<0$. Hence the map of \mathscr{M}_{C} to \mathscr{L}_{1} is zero since \mathscr{M} has degree zero on C. So the map Ψ of \mathscr{M} to $\mathcal{O}(C) \oplus \mathcal{O}\left(C^{\prime}\right)$ vanishes on C. Similarly Ψ vanishes on C^{\prime}. So \mathscr{M} maps to $\mathcal{O}\left(-C^{\prime}\right) \oplus \mathcal{O}(-C)$, which contradicts the $\left(c_{1}(\mathscr{M}) \cdot H\right) \geqslant 0$. We have established.

Proposition 4.2. If $n \geqslant 6 \mathrm{~g}$, there is a stable bundle \mathscr{E} of rank two with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E})=n$.

We remark that this Proposition establishes Theorem 1.2 unless X is of general type. Indeed if $h^{0}>1000$ and X is not of general type, then X must be elliptic. Thus we can apply the above theory when C and C^{\prime} are elliptic.

Suppose that X is a surface of general type which has no exceptional curves of the first kind and that there are effective divisors E and E^{\prime} so that $20 C+E$ and $20 C^{\prime}+E^{\prime}$ are canonical divisors.

Proposition 4.3. Suppose $h^{0} \geqslant 1000$ and $n \geqslant(3 / 2) h^{0}$. Then there is a stable bundle \mathscr{E} on X with $c_{1}(\mathscr{E})=0, c_{2}(\mathscr{E})=n$.

Proof. We have Noether's formula

$$
1-h^{1}(\mathcal{O})+h^{2}(\mathcal{O})=\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(K^{2}+c_{2}(T)\right)
$$

where T is the tangent bundle. We have $h^{2}(\mathcal{O})=h^{0}(K)$, and the Miyoka-Yau inequality

$$
3 c_{2}(T) \geqslant K^{2} .
$$

Combining these, we obtain

$$
h^{0}(K) \geqslant \frac{1}{9} K^{2}-1
$$

Let us compute an estimate for the genus of C.

$$
2 g-2=C(K+C)
$$

We have

$$
0 \leqslant 20(C \cdot K) \leqslant K^{2}
$$

since $K \cdot E \geqslant 0$. Also

$$
K^{2} \cdot C^{2} \leqslant(C \cdot K)^{2} \leqslant \frac{1}{(20)^{2}}\left(K^{2}\right)^{2}
$$

So

$$
C^{2} \leqslant \frac{1}{400} K^{2} .
$$

Thus

$$
\begin{gathered}
2 g-2 \leqslant\left(\frac{1}{20}+\frac{1}{400}\right) K^{2} \\
2 g-2 \leqslant\left(\frac{1}{20}+\frac{1}{400}\right)\left(9 h^{0}(K)+1\right)
\end{gathered}
$$

Since $h^{0}(K) \geqslant 1000$, then

$$
6 g \leqslant \frac{3}{2} h^{0}(K),
$$

and the Proposition follows by Proposition 4.2.

Suppose X is a smooth hypersurface of degree d in \mathbf{P}^{3} and that H is just a hyperplane section. Let C and C^{\prime} also be hyperplane sections. Then the genus g of C is $\frac{1}{2}(d-1)(d-2)$, since C is a plane curve of degree d. On the other hand, we have

$$
h^{0}(X, \mathcal{O}(K))=\binom{d-1}{3}=\frac{1}{6}(d-1)(d-2)(d-3) .
$$

So there are stable bundles on X with $c_{1}(E)=0$ and $c_{2}(E)=n$, as long as $n>3(d-1)(d-2)$ and $d \geqslant 3$.
5. We retain the notation of $\S 1$. Let \mathscr{E} be a bundle on \tilde{D}. We suppose that \mathscr{E}_{D} is a subsheaf of $\mathcal{O}_{D} \oplus \mathcal{O}_{D}$ and that $H^{0}\left(D, \mathscr{E}_{D}\right)=0$. We further assume that $\Lambda^{2} \mathscr{E}$ is isomorphic to $\mathscr{O}_{\bar{D}}\left(+\sum n_{i} D_{i}\right)$ for some appropriate $n_{i} \in \mathbf{Z}$.

Our main object in this section is to establish:
Lemma 5.1. Suppose that for each n, \mathscr{E} can be extended to a bundle on $n \tilde{D}$. Then we can find a stable bundle \mathscr{F} on X with $c_{1}(\mathscr{F})=0, c_{2}(\mathscr{F})=c_{2}(\mathscr{E})$.

Proof. Let \mathscr{L} be a very ample line bundle on Z so that $H^{i}(\mathscr{L} \otimes \mathscr{E})=0$ for $i>0$ and $\mathscr{L} \otimes \mathscr{E}$ is generated by global sections. Let

$$
P(n)=\chi\left(\mathscr{E} \otimes \mathscr{L}^{n+1}\right)
$$

Let $N=h^{0}(\mathscr{E} \otimes \mathscr{L})$. Let $Q \rightarrow C$ be Grothendieck's Quot scheme. Thus there is a coherent sheaf \mathscr{G} on $Q \times{ }_{C} Z$ which is flat over Q and such that the Euler-Poincaré Polynomial of \mathscr{G} over each closed point in Q is P and there is a given surjective map $\pi: \mathcal{O}^{N} \rightarrow \mathscr{G}$. Further π and \mathscr{G} are universal with respect to these properties. In particular, choose a basis of $H^{0}(\mathscr{E} \otimes \mathscr{L})$. This choice determines a surjection $\mathcal{O}_{\tilde{D}}^{N} \rightarrow \mathscr{E} \otimes \mathscr{L}$. Let q be the corresponding closed point in Q.

Let t be a uniformizing parameter at $P \in C$. By shrinking C, we may assume that t vanishes only at P. We claim t does not vanish identically on $Q_{\text {red }}$ in any neighborhood of q. Suppose not. Then for some n, t^{n} would vanish identically on Q near q since Q is a finite type over C. This means that we cannot lift the inclusion of $m P$ into C to a map of $m P$ to Q if $m>n$. But \mathscr{E} can be extended to a bundle \mathscr{E}_{m} on $m \tilde{D}$ and since $h^{i}(\mathscr{E} \otimes \mathscr{L})=0$, the sections of $\mathscr{E} \otimes \mathscr{L}$ extend to $\mathscr{E}_{m} \otimes \mathscr{L}$. But $m P \times{ }_{C} Z=m \tilde{D}$. So the universal property of the Quot scheme gives a lifting of $m P$ to Q. So our claim is established.

In particular, we can find a reduced curve C^{\prime} in Q passing through q so that t does not vanish identically on C^{\prime}. Let $Z^{\prime}=Z \times{ }_{C} C^{\prime}$. For $s \in C^{\prime}$, let Z_{s}^{\prime} be the fiber of Z^{\prime} over s. There is a coherent \mathscr{F} on Z^{\prime} so that $\mathscr{F}_{q}=\mathscr{F} \otimes \mathcal{O}_{Z_{4}^{\prime}}$ is our original \mathscr{E}. (Note $Z_{q}^{\prime} \cong \tilde{D}$.) By shrinking C^{\prime}, we may assume \mathscr{F} is locally free and that $q \in C^{\prime}$ is the only point mapping to P. Note det \mathscr{F}_{r} is
algebraically equivalent to zero for $r \neq q$ since $\operatorname{det} \mathscr{F}_{q}$ is a sheaf of ideals. Thus $c_{1}\left(\mathscr{F}_{r}\right)=0$. Let H be an ample line bundle on X and suppose that \mathscr{F}_{r} is not H-stable for an infinite number of $r \in C^{\prime} . H$ stability is an open condition, so \mathscr{F}_{r} must be H unstable for an uncountable number of s. Since there are only a countable number of line bundles mod algebraic equivalence, we can select a connected component A of the Picard group of X so that for an infinite number of $r \in C^{\prime}$, there is an L_{r} in A with $h^{0}\left(L_{r} \otimes \mathscr{F}_{r}\right) \neq 0$ and $\left(c_{1}\left(L_{r}\right) \cdot H\right) \leqslant 0$. The set $T \subseteq A \times\left(C^{\prime}-q\right)$ consisting of points (L, r) so that $h^{0}\left(L \otimes \mathscr{F}_{r}\right) \neq 0$ is closed and has infinite image in C^{\prime}. There is a curve $C^{\prime \prime} \subseteq T$ which has infinite image in C^{\prime}. Let $\overline{C^{\prime \prime}}$ be the closure of $C^{\prime \prime}$. Then $\overline{C^{\prime \prime}}$ maps onto C^{\prime}. Replacing C^{\prime} by $\overline{C^{\prime \prime}}$, we see that we can assume that there is a line bundle \mathscr{M} on $X \times C^{\prime}$ so that $h^{0}\left(\mathscr{M}_{r} \otimes \mathscr{F}_{r}\right) \neq 0$ for $r \neq q$. We can pull back \mathscr{M} to a line bundle again denoted by \mathscr{M} on Z^{\prime}. (This Z^{\prime} is the fiber product of the original Z^{\prime} by the base extensions we have made.) Thus \mathscr{M}_{q} is trivial on the exceptional divisors D_{i} and $c_{1}\left(\mathscr{M}_{D}\right) \cdot H \leqslant 0$ on D. But semicontinuity, there is a nonzero section s of $\mathscr{M}_{q} \otimes \mathscr{E}$. We claim this is impossible. First, s must vanish on D. Since $\mathscr{E}_{D} \subseteq \mathcal{O} \oplus \mathcal{O}$, s would give a section of $\left(\mathscr{M}_{q} \oplus \mathscr{M}_{q}\right)_{D}$. Since $\left(c_{1}\left(\mathscr{M}_{q}\right) \cdot H\right) \leqslant 0,\left.\mathscr{M}_{q}\right|_{D} \cong \mathcal{O}_{D}$. So \mathscr{E}_{D} would have a section, which contradicts our assumptions. Consider s on each $D_{i} . s$ vanishes on $D \cap D_{i}$, which is a line in $D_{i}=\mathbf{P}^{2}$. So s is a section of $\mathscr{F}_{i}(-1)$. But \mathscr{F}_{i} is stable and $c_{1}\left(\mathscr{F}_{i}\right)=1$. So s vanishes on D_{i}, and hence s vanishes.

Our bundle $\mathscr{F}_{r}, r \in C^{\prime}$ must be H-stable for all but finitely many r. Since there are only a countable number of ample divisors mod algebraic equivalence, an infinite number of those \mathscr{F}_{r} must be H-stable for any H.
6. In this section, we consider vector bundles on \mathbf{P}^{2}. Let L be a line in \mathbf{P}^{2} and let \mathscr{E}_{3} be a bundle on $3 L$ so that $\mathscr{E}_{2}=\mathscr{E}_{3} \otimes \mathcal{O}_{2 L}$ is isomorphic to $(\mathcal{O} \oplus \mathcal{O}(1))_{2 L}$ and $\operatorname{det} \mathscr{E}_{3} \cong(\mathcal{O}(1))_{3 L}$. We suppose that if \mathscr{L} is an invertible sheaf on $3 L$ of degree -1 , then $h^{0}\left(\mathscr{E}_{3} \otimes \mathscr{L}\right)=0$ (Such an \mathscr{L} need not be $\left.\mathcal{O}_{3 L}(-1).\right)$

Proposition 6.1. There is a stable bundle \mathscr{G} on \mathbf{P}^{2} so that $\mathscr{G}_{3 L} \cong \mathscr{E}_{3}$ and $c_{2}(\mathscr{G})=2$.

Proof. There is an exact sequence

$$
0 \rightarrow \mathscr{E}_{1}(-2) \rightarrow \mathscr{E}_{3} \rightarrow \mathscr{E}_{2} \rightarrow 0
$$

where $\mathscr{E}_{1}=\left(\mathscr{E}_{3}\right)_{L}$. Since $h^{1}\left(\mathscr{E}_{1}(-2)\right)=1$, and $h^{0}\left(\mathscr{E}_{2}\right)=4$, we see that at least 3 independent sections of \mathscr{E}_{2} lift to \mathscr{E}_{3}. We claim there are two sections s and t of $H^{0}\left(\mathscr{E}_{3}\right)$ so that $s \wedge t$ maps to a nonzero element of $H^{0}\left(\wedge^{2} \mathscr{E}_{1}\right)$. Let s_{1} and s_{2} be two sections of \mathscr{E}_{3} which map to independent sections of $H^{0}\left(\mathscr{E}_{1}\right) .\left(s_{1}\right.$ and s_{2} exist, since the kernel of the map from $H^{0}\left(\mathscr{E}_{2}\right)$ to $H^{0}\left(\mathscr{E}_{1}\right)$ has dimension 1.) If $s_{1} \wedge s_{2}=0$, they both must be sections of the subbundle
$\mathcal{O}_{L}(1) \subseteq \mathscr{E}_{1}$. Since s_{1} and s_{2} map to zero in the quotient \mathscr{O}_{L} of \mathscr{E}_{1}, they must map to zero in the quotient $\mathcal{O}_{2 L}$ of \mathscr{E}_{2}, since $H^{0}\left(\mathcal{O}_{L}\right)=H^{0}\left(\mathcal{O}_{2 L}\right)$. So $s_{1} \wedge s_{2}$ maps to zero in $H^{0}\left(\operatorname{det} \mathscr{E}_{2}\right)$. But $H^{0}\left(\operatorname{deg} \mathscr{E}_{2}\right)=H^{0}\left(\operatorname{deg} \mathscr{E}_{3}\right)$, so s_{1} and s_{2} would be dependent in \mathscr{E}_{3}. But s_{1} and s_{2} generate $\mathscr{O}_{L}(1)$. So if \mathscr{L} is the line bundle generated by s_{1} and s_{2}, \mathscr{L} would have degree 1 . This contradicts our original assumption. So s_{1} and s_{2} generate \mathscr{E}_{3} at a generic point.

We use s_{1} and s_{2} to define a map from $\mathscr{O}_{3 L} \oplus \mathcal{O}_{3 L}$ to \mathscr{E}_{3}. Dualizing we have a map $\Phi: \mathscr{E}_{3}{ }^{\vee} \rightarrow \mathcal{O}_{3 L} \oplus \mathscr{O}_{3 L}$. We can choose Φ so that the induced map of \mathscr{E}_{2}^{\vee} to $\mathcal{O}_{2 L} \oplus \mathcal{O}_{2 L}$ maps the unique section of \mathscr{E}_{2}^{\vee} to $(1,0) . \wedge^{2} \Phi$ is a map from $\mathcal{O}_{3 L}(-1)$ to $\mathcal{O}_{3 L}$, and so is represented by a section of $H^{0}\left(\mathcal{O}_{3 L}(1)\right)=$ $H^{0}\left(\mathbf{P}^{2}, \mathcal{O}(1)\right)$. Thus there is a line L^{\prime} so that $\wedge^{2} \Phi$ vanishes on L^{\prime}. We can choose affine coordinates on \mathbf{P}^{2} so that L is given by $y=0$ and L^{\prime} by $x=0$. Locally around $(0,0)$, we can find a section $(1, g(x, y))$ of $\mathcal{O}_{3 L} \oplus \mathcal{O}_{3 L}$ which is in the image of Φ. Note that $g(0, y)$ can be represented as a polynomial $G(y)$ of degree $\leqslant 2$. Define a map

$$
\Phi^{\prime}: \mathcal{O}_{\mathbf{P}^{2}} \oplus \mathcal{O}_{\mathbf{P}^{2}} \rightarrow \mathcal{O}_{L^{\prime}}(2)
$$

by $\Phi^{\prime}(h, l)=-G(y) h+l$, where we regard $H^{0}\left(\mathcal{O}_{L^{\prime}}(2)\right)$ as the polynomials in y of degree $\leqslant 2 . l$ is then a polynomial of degree zero. We claim Φ^{\prime} is onto. Indeed $\Phi^{\prime}(1,0)=-G(y)$. But g maps to zero in $\mathcal{O}_{2 L}$, so $G(y) \equiv 0 \bmod \left(y^{2}\right)$. Hence G has degree 2 and Φ^{\prime} is onto.

Thus $\operatorname{Ker} \Phi^{\prime}=\mathscr{F}$ is locally free. Note that $\mathscr{F}_{3 L} \supseteq \mathscr{E}_{3 L}^{\vee}$ since on $L^{\prime} \cap 3 L$, the image of any other section of $\mathscr{E}_{3 L}^{\vee}$ is dependent on $(1, g)$. Both $\mathscr{F}_{3 L}$ and $\mathscr{E}_{3 L}^{\vee}$ have determinant $\mathcal{O}(-1)$, so they must be isomorphic, since there is a map between them which is an isomorphism at a generic point.

We claim \mathscr{F} is stable. If \mathscr{F} were not stable, $\mathscr{F}(k)$ would have a section which vanished only at a finite number of points for some $k \leqslant 0$. In particular, we would have a section s of $\mathscr{E}_{3 L}^{v}(k)$. Such an s would give a nonzero solution of $\left(\mathcal{O}_{L} \oplus \mathcal{O}_{L}(-1)(k)\right.$. Thus $k=0$. Further s is nowhere vanishing and so defines a subbundle of degree 0 of $\mathscr{E}_{3 L}^{\vee}$, which contradicts our original assumption. We let $\mathscr{G}=\mathscr{F}$. One checks $c_{2}(\mathscr{G})=2$.
7. We continue with the notation of $\S 1$. We will now establish Theorem 1.1 and Theorem 1.2. Let us first turn to Theorem 1.1. Suppose $k \geqslant 2\left(\left[h^{0} / 2\right]+1\right)$. Proposition 3.2 shows that with appropriate choice of x_{i} and v_{i}, we have

$$
\begin{gather*}
h^{2}\left(D, \operatorname{End}^{0}\left(\mathscr{E}_{2} \otimes \mathscr{O}_{D}\right)(-2 D)\right)=0 \tag{7.1.1}\\
h^{2}\left(D, \operatorname{End}^{0}\left(\mathscr{E}_{2} \otimes \mathscr{O}_{D}\right)\left(-2 D-E_{i}\right)\right) \leqslant 1 \tag{7.1.2}
\end{gather*}
$$

The remark at the end of $\S 2$ shows that we can find an extension of \mathscr{E}_{3} of \mathscr{E}_{2} to $3 D$ which is nondegenerate over each E_{j}.

Using §6 we can then construct \mathscr{F}_{j} on D_{j} so that $\left(\mathscr{F}_{j}\right)_{3 D \cap D_{j}}$ is isomorphic to $\left(\mathscr{E}_{3}\right)_{3 D \cap D_{j}}$ and $c_{1}\left(\mathscr{F}_{j}\right)=1, c_{2}\left(\mathscr{F}_{j}\right)=2$. Consequently, we can construct \mathscr{G}_{0} on $2 D+\tilde{D}$ which restricts to \mathscr{F}_{j} on D_{j} and restricts to \mathscr{E}_{3} and $3 D$. We now show that

$$
\begin{equation*}
h^{2}\left(\tilde{D}, \operatorname{End}^{0}\left(\mathscr{G}_{0}\right)(-2 D)\right)=0 \tag{7.1.3}
\end{equation*}
$$

Let ω be the dualizing sheaf of \tilde{D}. Then $\omega_{D_{j}} \cong \mathcal{O}_{D_{j}}(-2)$ and $\omega_{D}=\mathcal{O}\left(K_{X}+2 E\right)$. Suppose

$$
s \in H^{0}\left(\tilde{D}, \operatorname{End}^{0}\left(\mathscr{G}_{0}\right)(+2 D) \otimes \omega\right)
$$

If we show $s=0$, (7.1.3) follows by Serre duality. First, s restricts to section s_{j} of $\operatorname{End}^{0}\left(\mathscr{G}_{0}\right) \otimes \omega \otimes \mathcal{O}_{D_{j}}(2 D)$. But $\omega \otimes \mathcal{O}_{D_{j}}(2 D) \cong \mathcal{O}_{D_{j}}$. Since \mathscr{F}_{j} are stable, $H^{0}\left(D_{j}, \operatorname{End}^{0}\left(\mathscr{F}_{j}\right)\right)=0$. Thus each s_{j} is zero, and s is actually a section of $H^{0}\left(D, \operatorname{End}^{0}\left(\mathscr{G}_{0}\right) \otimes \omega\left(2 D-\Sigma E_{j}\right)\right)$ which is

$$
\begin{equation*}
H^{0}\left(D, \operatorname{End}^{0}\left(\mathscr{G}_{0}\right) \otimes K_{D}(2 D)\right) \tag{7.1.4}
\end{equation*}
$$

By (7.1.1) and Serre duality on D, (7.1.4) is zero, so $s=0$. By the results of $\S 2$ \mathscr{G}_{0} can be lifted to arbitrary large infinitesimal neighborhoods of D_{0}. After a suitable base extension, $\S 5$ shows that \mathscr{G}_{0} can be lifted to Z. Thus Theorem 1.1 is established as n is even. We even see that the bundle \mathscr{E} constructed satisfies $h^{2}\left(X, \operatorname{End}^{0}(\mathscr{E})\right)=0$. The theorem follows for odd n by the following:

Lemma 7.2. Let \mathscr{E} be an H-stable bundle on X with $c_{1}(\mathscr{E})=0$ and $h^{2}\left(X, \operatorname{End}^{0}(\mathscr{E})\right)=0$. Then for any $n \geqslant c_{2}(\mathscr{E})$, there is an H-stable bundle \mathscr{E}^{\prime} with $c_{2}\left(\mathscr{E}^{\prime}\right)=n, c_{1}\left(\mathscr{E}^{\prime}\right)=0$ and $h^{2}\left(X, \operatorname{End}^{0}\left(\mathscr{E}^{\prime}\right)\right)=0$.

Proof. We construct the variety Z of $\S 1$ with $k=1$. Let $\mathscr{E}=\mathscr{E}_{D}^{\prime}$. $\mathscr{E}_{E_{1}}$ is $\mathcal{O} \oplus \mathcal{O}(1)$. There is a stable bundle \mathscr{F}_{1} on $D_{1}=\mathbf{P}^{2}$ which is isomorphic to $\mathcal{O}_{E_{1}} \oplus \mathcal{O}_{E_{1}}(1)$ when restricted to the line E_{1} and with $c_{2}\left(\mathscr{F}_{1}\right)=1$. We can then produce a bundle \mathscr{G} on \tilde{D} by gluing \mathscr{F}_{1} to \mathscr{E}. Suppose $s \in H^{0}\left(X, \operatorname{End}^{0}(\mathscr{G})\right.$ $\otimes \omega)$. We claim $s=0 . \omega_{D_{1}}$ is $\mathcal{O}(-2)$, so s must vanish on D_{1}. Thus s is a section of $H^{0}\left(D, \operatorname{End}^{0}(\mathscr{G}) \otimes \mathcal{O}\left(K_{D}\right)\right)$. If $s \neq 0$, we would get a nonzero section of $H^{0}\left(X, \operatorname{End}^{0}(\mathscr{E}) \otimes \mathcal{O}\left(K_{X}\right)\right)$. Arguing as before, we can produce an H-stable \mathscr{F} on X with $c_{2}(\mathscr{F})=c_{2}(\mathscr{E})+1$ and $h^{2}\left(X, \operatorname{End}^{0}(\mathscr{F})\right)=0$.

Next we establish Theorem 1.2. If $k-1=k_{1}+k_{2}+k_{3}$ in the notation of §3, then $h^{0}\left(D, \operatorname{End}^{0}(\mathscr{E})\left(K-E+E_{i}\right)\right)=0$. Arguing as before, we can construct an H-stable \mathscr{E} with

$$
c_{2}(\mathscr{E})=2\left(k_{1}+k_{2}+k_{3}+1\right)
$$

i.e.,

$$
c_{2}(\mathscr{E})=4\left(h^{0}-\left[\frac{5}{8} h^{0}\right]\right)+2
$$

with the property that $h^{2}\left(X, \operatorname{End}^{0}(\mathscr{G})\right)=0$. Theorem 1.2 follows as before.

References

[1] S. K. Donaldson, Anti-self-dual Yang-Mills connections on complex algebraic surfaces and stable bundles, Proc. London Math. Soc. 50 (1985) 1-26.
[2] D. Freed, M. Freedman \& K. Uhlenbeck, Instantons and four manifolds, MSRI Publications, New York, Spring 1985.
[3] A. Grothendieck, Techniques de construction et Théorèms d'existance en géométrie algébrique IV: Les schémas de Hilbert, Semenaire Bourbaki, 221, W. A. Benjamin, 1966.
[4] C. Taubes, Self-dual connections on 4-manifolds with indefinite intersection matrix, J. Differential Geometry 19 (1984) 517-560.

University of California, Los Angeles

