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Introduction

This is the first of two papers which will describe and apply a new index
theorem for elliptic operators on certain noncompact manifolds. This main
result (Theorem 8.2) computes a real-valued index for operators of Dirac type
on noncompact manifolds of "bounded geometry." In the sequel (Part II),
several applications of this result will be given.

Let D be a linear elliptic differential operator on a compact manifold M. Its
kernel is then a finite-dimensional vector space of smooth functions, and one
may try to compute the dimension of this space. This dimension depends
rather sensitively on Z), but the quantity

Ind(D) = dim(kerZ)) - dim(cokerZ))

is a homotopy invariant of D, and the Atiyah-Singer index theorem [8], [4]
calculates it from topological data.

Many analysts have produced generalizations of the index theorem to
noncompact manifolds of various sorts, and these have been related to such
diverse fields as the study of scalar curvature [23], number theory [5], represen-
tation theory [7], and the geometry of foliations [15]. Borrowing some terms
from the theory of von Neumann algebras, we can roughly classify these results
into three "types." Those of type I are nearest to the classical case. One
imposes conditions sufficient to force the operator under consideration to be
Fredholm in the usual sense, and the index is typically given by a formula
similar to the usual one but with added correction terms. Under this heading
could be included the T/-invariant of Atiyah, Patodi, and Singer [6], the relative
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index theorem described by Gromov and Lawson [23], and the result of [24].

For the type II theorems the operator is no longer Fredholm in the usual sense,

but the index can nevertheless be interpreted as a real number by some kind of

"averaging" or "renormalization" procedure. An early example was the index

theorem for almost-periodic Toeplitz operators (Coburn, Douglas, Schaeffer,

and Singer [13]), where the "averaging procedure" is in fact the Bohr mean

value operator on almost-periodic functions; some other examples are the

index theorems for coverings (Atiyah [3]; cf. Cheeger and Gromov [10]), for

measured foliations (Connes [14]), and for homogeneous spaces of Lie groups

(Connes and Moscovici [17]). Finally there are the type III theorems, where

there is no averaging procedure and the index must be interpreted in a new

way; the only example known to the author is the general index theorem for

foliations (Connes and Skandalis [18]).

The theorem presented in this paper is of type II. Its basic structure may be

set out diagrammatically as follows:

_ „ . . ind Abstract index
hlhptic operator • / , , . „ , λΓ Γ (algebraic A-theory)

I dimτJ
Differential form »» D

(cohomology)

This sort of structure is spelt out explicitly in [15], and is in fact implicit in all

the theorems of type II mentioned above.

We work on manifolds of bounded geometry—roughly speaking, of positive

injectivity radius and bounded curvature; and on such manifolds we consider

elliptic operators that are also of bounded geometry in a suitable sense. It is

also necessary to impose some growth conditions on the solutions of elliptic

equations, and in common with most other writers we work in the Hubert

space L2.

On a manifold of bounded geometry it is natural to consider the cohomol-

ogy of uniformly bounded differential forms. Using the Chern-Weil homomor-

phism we can make sense of the index class of an elliptic operator of bounded

geometry as an element of this cohomology, and this defines the arrow I of the

diagram above.

We can define on our manifold an algebra <%_O0 of uniformly smoothing

operators, which as the name suggests are smoothing operators subject to

certain uniform decay conditions. It turns out that an elliptic operator of

bounded geometry has a parametrix modulo °U_^ and its abstract index can

therefore be defined as an element of the algebraic #-theory group K(<%_O0).
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So far no averaging procedure has made its appearance. To obtain one we

follow an idea introduced by Ahlfors [1], who defined a regular exhaustion of a

noncompact manifold M to be an increasing sequence (Λf7) of smoothly

bounded open subsets of M with the property that NoM^M^/Wo^M^ -> 0 as

/ -> oo. A functional m on bounded top-dimensional forms on M can then be

defined as the limit of the averaging functionals over the M, ; the regular

exhaustibility condition ensures that ^ passes to cohomology. Not all mani-

folds are regularly exhaustible; regular exhaustibility is an analogue for mani-

folds of amenability for groups (cf. Brooks [9]).

The elements of the algebra °U_O0 are represented by uniformly bounded

smoothing kernels. Therefore, given a regular exhaustion, we can define a

functional τ on (%_O0 by averaging kernels along the diagonal. The key point

(Theorem 6.7) is that this functional is a trace, and therefore induces a

dimension-homomoφhismdimτ: K(<%_00) -> R.

Our main theorem (Theorem 8.2) now says simply that the diagram com-

mutes: dim τ(Int D) = (l(D), m). To bring this down to earth we will briefly

consider the example of the Riemann-Roch theorem in the plane, making use

of the results of the sequel.

To obtain a type II Riemann-Roch theorem on C, we define a divisor on C

to be a finite formal linear combination of discrete subsets Γ of C, where the

separation between the points of each Γ is bounded below. It is possible to say

what it means for a meromorphic function to be Insubordinate to such a

divisor: it must be subordinate in the usual sense and square-integrable with

respect to a standard weight function. When does such a divisor have non-

trivial meromorphic functions /^-subordinate to it?

It follows from Atiyah's index theorem for coverings [3] that if Γ is a lattice

in C then the divisor [Γ] has meromorphic functions ZAsubordinate to it.

(Notice that one obvious candidate—an elliptic function with poles on

Γ—certainly is not square-integrable.) Using his index theorem for foliations,

Connes [15] showed that if I\ and Γ2 are lattices in C with density (I\) >

density (Γ2), then there are meromorphic functions L2-subordinate to [ΓJ -

[z + Γ2] for almost all translations z. In the sequel to this paper (Part II) it will

be shown that there are meromorphic functions ZΛsubordinate to any divisor

of " uniformly positive" density. The theorem requires no periodic or almost-

periodic structure, and consequently a much wider variety of divisors and

deformations can be allowed.

Acknowledgement. I am indebted to Sir Michael Atiyah, Alain Connes, and

Glenys Luke for helpful conversations and advice. In particular it will be clear

to the reader that the theorem proved here is closely related to the results of [3]

and [14]. The precise connections will be traced in Part II. I also thank the
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should like to thank Carolyn Macqueen who translated [1] for me.

1. Dirac-type operators

When applying the Atiyah-Singer index theorem, one is usually interested

only in elliptic operators related to some kind of geometrical structure, such as

the de Rham, Dolbeault, or Dirac operators. It is well known that these may be

subsumed under the title of "generalized Dirac operators"; in this paper we

will restrict our attention to such operators. Here we review a few necessary

facts about their analysis. More information may be found in [23].

Let M be a Riemannian manifold, and let CliffC(M) be the complexified

Clifford algebra bundle of M. Recall that Cliff C(M) is equipped with a natural

connection extending the Riemannian connection on TM, characterized by the

relation

for smooth sections φx and φ2 °f Cliff C (M).

Now suppose that S is a bundle of left modules over the bundle of algebras

Cliff ( ( M ) . We will say that S is a Clifford bundle over M if it is equipped with

a hermitian metric and compatible connection such that:

(i) For each unit vector e belonging to TX(M), the module multiplication

e: Sx -» Sx is an isometry;

(ii) For all smooth sections φ of CliffC(M) and s of S, the compatibility

relation V(φs) = φVs + (Vφ)s is satisfied.

If in addition S is equipped with an involution η anticommuting with the

Clifford action of tangent vectors, then it will be called a graded Clifford

bundle.

On a Clifford bundle S there is a natural first-order differential operator

D = Ds called the Dirac operator. This is defined by the composition

T(S) -* T(T*M β> S) -> T(TM ® S) -> Γ(S).

Here the first arrow is given by the connection, the second by the metric, and

the third by the Clifford module structure. In an orthonormal basis {ev- -,en}

for TXM, one may write

If S is graded, then D is also graded: it interchanges sections of the positive

and negative eigenbundles of η. It is known (cf. [23]) that this definition



AN INDEX THEOREM ON OPEN MANIFOLDS. I 91

encompasses all the "geometrical" operators to which the index theorem is

usually applied.

Let ( , > denote the L2 inner product on sections of S. Then

(1.1) Lemma. The Dirac operator is formally self-adjoint; any two smooth

sections sx and s2 of S, one of which is compactly supported, satisfy

(Dsι,s2) = (s1,Ds2).

One can therefore ask about the possible self-adjoint extensions of D as an

unbounded operator on L2(S).

(1.2) Theorem. // the manifold M is complete, then D is essentially self-

adjoint.

Thus, for any bounded Borel function / on R, the (bounded) operator f(D)

is uniquely defined by the spectral theorem. In particular, the one-parameter

group eitD is defined. The following property of this group will be of great

importance.

(1.3) Theorem {unit propagation speed). Let s be a compactly supported

smooth section of S. Let x be a point of M. Then eιtDs is smooth and compactly

supported, and eitDs(x) = 0 for \t\ < distance (x, support (s)).

Proofs of (1.2) and (1.3) may be found for example in [12]; cf. also [32].

Finally, we will need the Weitzenbock formula for the Dirac operator. Let

Ω: Λ 2 Γ*M -> End(S) denote the curvature operator of the connection on S,

and let R e End(S).be the operator described in an orthonormal basis {e,}

by

Rs = iΣeiefi{ei Λ ej)s-

Then one has

(1.4) Lemma. For any smooth section s of S,

D2s = V*Vs + Rs.

2. Bounded geometry

This section will summarize some of the analytical properties of Dirac

operators on noncompact manifolds. We are interested in uniform estimates,

and to get these we need conditions of "bounded geometry" (cf. [10], [11],

[20]).

(2.1) Definition. Let M be a complete Riemannian manifold. It will be

said to have bounded geometry if

(i) M has positive injectivity radius, and

(ii) The curvature tensor of M is uniformly bounded, as are all its covariant

derivatives.
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A Clifford bundle S over M will be said to have bounded geometry if
(iii) The curvature tensor of S is uniformly bounded, as are all its covariant

derivatives.
Examples. Any compact manifold has bounded geometry; more generally,

any manifold arising as a leaf in a foliation of a compact manifold, or as an
unramified covering of a compact manifold, has bounded geometry. A com-
pactly supported perturbation—for example, a connected sum—preserves
bounded geometry. Any noncompact manifold of bounded geometry has
infinite volume.

Now let M be a complete ^-dimensional Riemannian manifold. Recall that
a normal coordinate system near m e M is a coordinate chart near m defined
by a choice of orthonormal frame for TmM together with a restriction of the
corresponding exponential map expm: Rw -> M to some neighborhood B of the
origin on which it is a diffeomorphism. This coordinate system gives rise to a
framing of the tangent bundle near m, but this framing may not be orthonor-
mal. To measure its derivation from orthonormality we define the distortion of
the coordinate system to be the supremum of

Max(sup|(expJ*X|, sup|(expJ*X| )

as X ranges over unit vector fields on B.
(2.2) Lemma. Suppose that M is a Riemannian n-manifold of bounded

geometry. Then there is a ball B with center 0 in Rn such that:
(i) B is the domain of a normal coordinate system at every point m of M;

(ii) the distortion of the normal coordinate system on B is bounded indepen-
dently ofm.

Proof. This is an easy consequence of the Rauch comparison theorem [28,
volume II, p. 76].

(2.3) Remark. If M is oriented, it also follows from the comparison
theorem that the volume of a ball of radius r in M is at most equal to the
volume of a ball of radius r in a hyperbolic space of constant curvature
everywhere less than that of M.

In normal coordinates, the connection on a Riemannian manifold can be
expressed by Christoffel symbols Tfj. Bounded geometry translates into a
uniform boundedness condition on these Christoffel symbols:

(2.4) Proposition. A Riemannian n-manifold M has bounded geometry if and
only if there is a ball B with center 0 in Rw such that

(i) B is the domain of a normal coordinate system at every point m of M;
(ii) the Christoffel symbols of M, considered as a family of smooth functions

parametrized by indices /, j , and k and by a point m of M, lie in a bounded
subset of the Frechet space C°°(B).
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For the proof, one can integrate the well-known differential equations

expressing the curvature in terms of the connection coefficients, [4, Appendix].

Such a ball B will be called a good coordinate ball.

Suppose now that S is a Clifford bundle over M. If we choose an orthonor-

mal frame for S at a point m of M, then we may extend it to a framing for S

on the domain of a normal coordinate system near m by parallel translation

along radial geodesies. Such a framing is called synchronous; we will also speak

loosely of "normal coordinates" for S. With respect to such a framing, the

connection on S may be expressed in terms of Christoffel symbols Γ^.

(2.5) Proposition. Let M be a manifold of bounded geometry. A Clifford

bundle S over M has bounded geometry if and only if there is a good coordinate

ball B such that the Christoffel symbols for S lie in a bounded subset ofC°°(B).

Proof. Similar to (2.4).

Where appropriate, the term "good coordinate ball" will be taken to include

this condition also.

For the rest of this section, M will be a Riemannian ^-manifold of bounded

geometry and S a Clifford bundle of bounded geometry over it, with corre-

sponding Dirac operator D.

(2.6) Definition. Let k be a nonnegative integer. The Soboleυ space Wk(S)

is the completion of CC°°(S) in the norm

\s\\k = tf+\\Ds\\ί+...+\\D'<s\\L)ι/2.

For negative A:, Wk(S) is the dual space of W k(S), regarded as a space of

distributional sections of S. Also, W°°(S) = ΠWk(S) and IV'°°(S) =

ΌWk(S); W°°(S) is equipped with the obvious Frechet topology, and W~°°(S)

is equipped with the weak topology that it inherits as the dual of W0C(S).

(2.7) Definition. Let r be a nonnegative integer. The uniform Cr space

UC'(S) is the Banach space of all Cr sections s of S such that the norm

||, = sup{|vΓi

is finite, where the supremum is taken over all m e M and all collections

ϋ t , , υq (0 < q < r) of unit tangent vectors at m. Also, (7C°°(S) will denote

the Frechet spaceΠ UCr(S).

(2.8) Proposition (Sobolev embedding). The Frechet space W°°(S) is con-

tinuously included in UC°°(S).

Proof. This follows, as on a compact manifold, from the elliptic estimate

for D. Since by (2.4) the coefficients and ellipticity constant of D written in

local coordinates in a good ball are uniformly bounded, the norms of the local

Sobolev embeddings are also uniformly bounded, which gives the result.
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(2.9) Proposition. A continuous linear operator from W~°°(S) to WCO(S) is

represented by a smoothing kernel which is uniformly bounded, as are all its

covariant derivatives. The map

L(W-°°(S),W0O(S)) -> UCCO(S H S)

which associates its kernel to such an operator is continuous (where

L(W~CO(S), W00^)) is equipped with the topology of bounded convergence).

Proof. Similar.

Let ^ ( R ) denote the Frechet space of rapidly decaying functions on R, that

is the space of continuous functions / such that for each k

\f(x)\^ck(ι+\χ\yk,
with the best constants Ck as seminorms. Clearly the usual Schwartz space

Sf(R) is continuously included in ̂ ( R ) .

(2.10) Proposition. Let f <Ξ 5?(R). Then the operator f(D) (defined by the

spectral theorem) is represented by a smoothing kernel which is uniformly

bounded, as are all its covariant derivatives. The map

#(R) -> UC°°(S El S)

which associates its kernel to such an operator is continuous.

Proof. Immediate.

In the analytical proof of the index theorem on compact manifolds [4], a

crucial part is played by an asymptotic expansion for the fundamental solution

of the "heat equation" ds/dt + D2s = 0. We shall need the analogous expan-

sion on a noncompact manifold of bounded geometry.

(2.11) Proposition. Let M, S, and D be as above, with M oriented. Then the

operator e~tD is represented by a uniformly bounded smoothing kernel kt(x, y),

and there is an asymptotic expansion

where the Ψk are smooth sections of End(S) <8>Λ" T*M, locally computable in

terms of the curvatures of M and S and their covariant derivatives. Moreover, the

remainder terms implicit in the asymptotic expansion are uniformly bounded in x.

The proof is essentially the same as the classical one on compact manifolds,

for which see Gilkey [21].

If S has a grading η, we define the index-form l(D) to be the «-form

Trace(ηΨrt). It is a local invariant of the Clifford bundle structure, and so the

calculations of it made in [4] for the case of a compact manifold remain valid.

These calculations show that for all the classical operators the index-form

corresponds under the Chern-Weil homomorphism to the top-dimensional part

of the index class

U td(TM ® C)
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which appears in the Atiyah-Singer index formula [8]. Here D is considered as

an elliptic operator between the + 1 and -1 eigenbundles of the grading η.

3. Bounded Chern-Weil theory

In this section we discuss the Chern-Weil theory of noncompact manifolds

of bounded geometry. Similar ideas are developed further in [27].

Let M be a complete, oriented Riemannian manifold, and let Ω^ denote the

Banach space of /?-forms on M which are bounded in the norm

\\a\\= sup{\a(x)\ + \da(x)\: x e M).

Then there is a complex of Banach spaces and continuous linear maps:

(3.1) Definition. The β-cohomology groups of M are defined to be the

groups

We shall mostly be concerned with the top-dimensional β-cohomology

group; but it is convenient to consider the others as well.

(3.2) Definition [31]. The manifold M is closed at infinity if for any

continuous function λ on M such that 0 < ^ " 1 < λ < A ^ f o r some constant

AT, the form λ vol gives rise to a nontrivial cohomology class in Hg(M).

(3.3) Definition. A fundamental class for M is a positive linear functional

m\ Ω^ -> R such that (vol, m) Φ 0 and m ° d = 0.

It follows from the Hahn-Banach theorem that M has a fundamental class if

and only if it is closed at infinity.

(3.4) Examples. A compact manifold is closed at infinity, and its β-

cohomology coincides with the ordinary cohomology. Euclidean «-space is

closed at infinity. However, hyperbolic Ai-space is not closed at infinity, for its

volume form is the exterior derivative of a bounded (n — l)-form.

We will now review some of the basic concepts of Chern-Weil theory, as set

out in [28, §XII]. Let G b e a compact Lie group with Lie algebra y. Let I(G)

denote the graded subalgebra of the symmetric algebra on ^ * consisting of

mappings /: # X # X X# -> R which are invariant under the adjoint

action of G. Let P be a principal G-bundle over a manifold M, and let Rg

denote right translation by g on P.
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(3.5) Lemma. Let a be an arbitrary p-form on P. If a is horizontal and

R*a = a VgEG,

then a is the pull-back to P of a uniquely determined p-form α # on M.

Proof. [28, vol. II, p. 294].

Suppose now that P is equipped with a connection; this is described by a

^valued 1-form ω of the adjoint type on P. Its curvature is the exterior

covariant derivative Ω = Dω, which is a horizontal 2-form of the adjoint type.

Let / e IP(G). Given differential forms α l 5 , ap on P9 with values in ^, one

may construct a form f(al9 —,<xp) with values in R, by a straightforward

antisymmetrization procedure. If the forms av- ,ap are of the adjoint type,

then f{av' - -,ap) will be invariant under right translation; if in addition the

forms av , ap are horizontal, then / ( α l 5 , ap) will by (3.5) be the pull-back

of a form on M.

(3.6) Theorem (Chern-Weil). Let P be a principal bundle over M with

structural group G\ let f <= Ik(G). Then:

(i) For any connection ω in P with curvature Ω, the 2k-form /(Ω, ,Ω) #

on M is closed;

(ii) For a fixed Ω, the map f -> /(Ω, ,Ω) # is a homomorphism of I(G)

into the algebra of differential forms on M\

(iii) Suppose that ω0 and ωx are two connections on M, ωt = (1 - /)ω0 + tωλ,

Ω; the curvature of ω,. Then

/ ( Ω 0 , - , Ω 0 ) * - / ( Ω 1 , ,Ω,) # = ί / Φ # ,

where

Φ = k f f ( ω x - ω o , Ω , , ••• ,Ω,) A .
•'[0,1]

PAΌC/. [28, loc.cit., pp. 293-297].

Notice that the difference ωλ - ω0 of two connections is a horizontal 1-form

of the adjoint type.

Suppose further that M is equipped with a Riemannian metric. Let π denote

the projection of the principal bundle P onto M, and equip # with an inner

product. A horizontal p-ίoxm a of the adjoint type will be called bounded if

there is a constant C such that

| « ( * i A ••• Λ Λ ^ I ^ φ Λ ^ Λ ••• Λ h p ) \ .

Here the norm on the left is given by the inner product on y and that on the

right by the Riemannian metric.
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(3.7) Definition. We will say that a connection on P has bounded curvature

if its curvature form is bounded in the sense described above. If ω0 and ωx are

connections with bounded curvature, and ωx — ω0 is bounded, we will say that

ω 0 and ωλ are boundedly equivalent.

Now one has the following version of the Chern-Weil theorem.

(3.8) Theorem. Let P be a principal G-bundle over the Riemannian manifold

M. Then for any connection of bounded curvature Ω on P, there is a ring

homomorphism I(G) —> Hβ(M) defined by f —> [/(Ω, ,Ω)#]. Moreover, this

homomorphism depends only on the bounded equivalence class of the connection.

Proof. Immediate from (3.6).

From the standard presentations of Chern-Weil theory one knows in fact

that for any compact Lie group G, I(G) is isomorphic to the real cohomology

of the classifying space of G. In particular, for G = SO(«), the ring I(G) is

generated by the Pontrjagin and Euler classes.

Now let M be an oriented Riemannian manifold of bounded geometry.

Associated to the tangent bundle is the principal SO(«)-bundle of oriented

orthonormal frames on M, and the Levi-Civita connection on this bundle

clearly has bounded curvature. Thus the Pontrjagin and Euler classes of M are

defined as elements of Hj£(M). Similarly, if S is a (Clifford) bundle of

bounded geometry on M, then its Chern classes are defined as elements of

Hj£{M). In particular the index form I(D) for a classical Dirac operator D is

an element of Hβ(M).

Let /: M -> M' be a smooth map between Riemannian manifolds. One

says that / has bounded dilatation if there is a constant C such that \f+υ\ < C\v\

for all v e TM. Such an / induces a map on β-cohomology. If / is a

diffeomorphism, and both / and f~ι have bounded dilatation, then / is called

a quasi-isometry\ and it induces an isomorphism on β-cohomology. Finally, /

is called a strict quasi-isometry if it is a quasi-isometry and the Levi-Civita

connection on M is equivalent in the sense of (3.7) to the pull-back of the

Levi-Civita connection on M'. Notice that if M is a compact manifold, a leaf

in a foliation of a compact manifold, or a covering of a compact manifold,

then it has a Riemannian metric of bounded geometry that is unique up to

strict quasi-isometry.

(3.9) Lemma. Let M and Mr be Riemannian manifolds of bounded geometry,

with /: M -> M' a strict quasi-isometry. Let m be a fundamental class for M,

and let σ be an element ofHjf(M'). Then for any SO characteristic class c,

Proof. Obvious.
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4. Abstract indices

Let A be an algebra with unit over some field /, and let B be an ideal in A.
Abstractly, an "elliptic operator" is an element of A which is invertible
modulo the algebra B of "lower order terms"; for example, A could be the
algebra of bounded operators on the L2 space of a compact manifold, and B
could be the ideal of compact or of smoothing operators. Such an elliptic
operator defines an element of the algebraic K-theory group Kλ(A/B\ and its
index is defined to be the element of K(B) = K0(B) corresponding to this
under the connecting homomorphism of the long exact sequence in algebraic
ΛΓ-theory.

A slightly more general concept of "abstract elliptic operator" will in fact be
needed, which would correspond classically to the extension to operators not
on functions but on sections of vector-bundles. Let M and N be finite
protective right Λ-modules, and let P: M -> N be an Λ-linear map. It will be
called abstractly elliptic if there is a "parametrix" Q: N -> M such that

Im(βP - 1) c M ® B, lm(PQ - l ) c i V ® 5 ;

equivalently, P is abstractly elliptic if it becomes an isomorphism on tensoring
with A/B.

Form the Cartesian square of algebra homomorphisms

C > A
I I
A >A/B

where C is the double of A along B [29, §4]. Correspondingly, let the
C-module X be the product of M and N over the isomorphism P Θ (A/B).
By the results of [29, §2], X is a finite projective C-module and so gives rise to
an element of K(C). Now there is a split short exact sequence

so that K(C) ^ K(B) θ K(A); we define Ind(P) to be the K{B) component
of the class [X] in K(C). Notice that this definition is natural in the sense that
if /: A -» A' is a homomorphism mapping B into B\ then Ind(/+JP) =

A /-linear functional T on B is called a trace if ^(b^) = τ(62ί>i) for all bl9

b2 in B. For a projective Λ-module M, let EndB(M) denote the algebra of
A -linear endomorphisms of M that map M to M ® B. Then T extends to a
trace on End^M): if M - Ar is free, then EndB(M) is isomorphic to the
matrix algebra Matr(l?), and T may be extended by tensoring (over /) with
the usual trace on Mat r(/); a general M may be embedded in a free module.
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The trace r may be extended to the algebra B+, obtained by adjunction of a
unit to B, if one sets τ(l) = 0. It is well known that the trace on idempotents
of Mat(i? + ) passes to equivalence classes and therefore extends to a "dimen-
sion homomorphism" dimτ: K(B) -> /.

(4.1) Lemma. If P is an abstract elliptic operator with parametrix Q, then

dimτ(IndP) = τ(l - QP)2 - τ(l - PQ)2.

This result is certainly known, and the particular case where T is the
ordinary Hilbert-space trace is proven, for example, in [25, Lemma 7.1]; but
the author has not found this version in print.

Proof. We do the special case M = N = A; then P and Q are elements of
A. Let R be the element

(2-PQ)P PQ-l

i-QP Q

of Mat2(y4). It is invertible, its inverse being

Q i-QP 1
PQ-l (2-PQ)p[

and it is equal modulo B to

P 0
0 Q

The construction of [29, §2] shows that the module X is described by the
projection (π, RπR~ι) in Mat2(C), where m e Mat2(^4) is the projection onto
the first factor. A calculation shows that

(1 - QP)2

and the result follows.
This formula reduces to the more familiar one

if T enjoys the additional property that τ{ab) = τ(ba) for all a in A and b
in B.

We record for future reference the following well-known fact.
(4.2) Lemma. The inclusion ofB in Matr(B) by the top left corner induces an

isomorphism between K{B) and K(Matr(B)).
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5. Uniform operators

Let M be an oriented, connected, noncompact Riemannian manifold of
bounded geometry. The following notation will be used without further com-
ment:

d(x, xf) is the distance between points x, x' e Λf;
B(x, r) is the open ball with center x and radius r;
B\x,r) is the closure of B(x, r);
?cn + (K,r) is the closure of U{B(x,r): x e K}\
?en(K, r) is the closure of M\ Pen + (M\ K, r).

("Pen" is an abbreviation for "penumbra.") The following geometrical fact
will be important both here and in the sequel.

(5.1) Proposition. There are monotone increasing functions Vo and Vx:

R + -> R + such that

(i) V0(r) -> oo as r -> oo;

(ii) Vx(r)^> 0 asr -+0;

(iii)K0(r)>0Vr>0;
(iv) V0(r) < Vol B(x, r) < Vx(r) Vx e M.
Proof. Straightforward from (2.2) and (2.3).
Let S be a Clifford bundle on M. Recall (2.8) that Wk(S) is the kxh global

Sobolev space of sections of S, with norm || \\k. If L is a subset of M, then
||/||A. L will denote the infimum of {||g||*: g ^ ^^(S), g = / on a neighbor-
hood of L}. It is clear that || ||* L is a continuous seminorm on Wk.

Let S and £ ' be Clifford bundles over M, and let A be an operator
mapping Wk(S) to H^S'). We will say that A maps W* to Wι quasilocally if
there is a function μ: R + -^ R+ such that μ(A*)-»Oasr->oo and such that
for each K c M and each w e ^^(5) supported within Â ,

μ will be called a dominating function for Λ.
We will also speak of quasilocal operators in case one or both of the bundles

S and S' are trivial. To do this, regard the trivial bundle M X Ck as a sub-
bundle of the Clifford bundle Λ*Γ*M Θ C*.

(5.2) Proposition. //Λ /mz/λs Wk to Wι quasilocally, and B maps Wι to Wm

quasilocally, then BA maps Wk to Wm quasilocally.
Proof. Let μA and μB be dominating functions for A and B respectively,

and let u^Wk be supported within K. Let L = Λf\ Pen + (Λ:, r/2). By
definition, there is g ^ Wι coinciding with Au on L and such that HgH, ̂
2μA(r/2)\\u\\k. Therefore

-f ||5(^W ~ g) lU.ΛΛPcn ' <*,r)

2μ,(r/2) + μ,(r/2)( |M| |+ 2μA{r/2)))\\u\\k.
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The expression enclosed within the outer brackets is a dominating function for

BΛ.

(5.3) Definition. An operator A: CC°°(S) -> C°°(S') is called a WII/WW

operator of order < A: if for each r it has a continuous extension to a

quasilocal operator from Wr(S) to »"-*(S") If 5 = S", the collection of

uniform operators of order < k will be denoted <%k(S), or °ttk(M) in case S

is a 1-dimensional trivial bundle.

It is clear that the uniform operators on a bundle S form a filtered algebra

), in which the uniform operators of order -oo form an ideal <%_O0(S) =

(5.4) Proposition. Let A e Qί_OQ(M) be a uniform operator of order -oo

acting on functions on M. Then A is represented by a uniformly bounded

smoothing kernel k(x, y):

Au(x) = j k(x, y)u(y) vol(>>).

Moreover there is a function v = v(r) tending to zero as r -> oo such that

f \k(x,y)\2 vol(y)<v(r); f \k(y ,x) |2 vol(^) < v(r).

Proof. By (2.9), A is a smoothing operator with uniformly bounded kernel.

Now, let ελ. denote the Dirac mass at x; from (2.8), there is k such that εx

belongs to W~k(M) with norm bounded by some constant C independent of

x. Since A maps W~k(M) quasilocally to W°(M), there is a dominating

function μ such that

\k(y,x)\2 - vol(>0 = M ε J |
M\B(x,r)

Since A maps H^°(M) quasilocally to W°°(M), which is continuously included

in ί/C°°(M), there is a dominating function μr such that for all square-

integrable u on M supported outwith B(x, r),

k(x,y)u(y)vol(y) < μ'(r)\\u\\0.

This implies that

j^χr)\k(x,y)\2 vol(y)<(μ'(r))2.

The proof is completed.
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The space S"2(R) of symbols of order < m on R is defined to be the
subspace of C°°(R) consisting of functions / satisfying estimates of the form

Notice that ^(R) = ΓΊSm(R). Sm(R) is a Frechet space, with the best constants
Ck as seminorms.

(5.5) Theorem. Let S be a Clifford bundle on the manifold M of bounded
geometry with Dirac operator D. Let / e Sm(R). Then the operator f(D)
(defined via the spectral theorem) is a uniform operator on S of order < m.

Proof. We use the ideas of [11]. Recall that if / e ^(R), then /(£>) is given
by the Fourier integral

In the general case / e Sm(R), let g e CC°°(R) with g(0) = 1. Let fε(x) =
f(x)g(εx). As ε -> 0, the functions fε form a bounded subset of Sm(R), as
follows directly from Liebniz' rule. Let s be an element of Wk(S). Then as
ε -> 0, fε(D)s tends to a limit in Wk~ms, which limit is f(D)s as defined by
the spectral theorem. This is a simple consequence of the dominated conver-
gence theorem.

Now choose h e CC°°(R) supported with [-1,1] and identically equal to one
on [- i | ] . Let hr(t) = h(t/r) and let fεr = (^"ιhr)*fε; here JF" 1 is the
inverse Fourier transform and * denotes convolution.

Suppose that s is an element of Wk(S) supported within a set K. Then
fe r(D)s is supported within Pen + (#, r). To see this, write

Because of the unit propagation speed property (1.3), eitDs is supported within
Pen + (Ar, r) for all / e [-r, r]. Since supp(/zr) c [-/% /*], the assertion follows.

Therefore,

The right-hand expression is equal to the norm of

±ffc(t)(l-hr(t))e"Dsdt

in the space Wk~m(S). There is no loss of generality in supposing that m < 0.
Thus one has to estimate the Wk norms of expressions
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for 0 < / < -m. By definition, these are equal to

^ jΪXΦ - hr{t)){-id/dt)'{e"Ds)dt.

Integrating by parts / times, one gets

±f (id/dt)Vt{t){\-hAt))\e»DsA.

Since eιtD is a unitary operator, this finally gives

<l|ί||* L
/

* ) / \(d/dt)ι[fε(t)(i -hr(t))]\dλ.

Now the functions fε form a bounded subset of .Sm(R). In particular, there is a

constant C independent of ε such that \f}J)(x)\ < C(l + | * | ) ~ 2 for some

j > 2. Therefore

so that | / ε (/) | < 4C|/ |" 7 . Moreover, the functions xιfε(x) form a bounded

subset of S W + /(R), so the same reasoning may be applied to them to show that

So by Liebniz' rule

±f\(d/dt)'[ft(t)(l-h,(t))]\Λ^O as.-oo,

and the convergence is uniform in ε. So put

(5.6) μ(r) = sup Σ { ^ / \(d/dt)U(Φ ~ MO)] |ώ

which tends to zero as r -> oo we have shown that

Since \\(fe(D) - f(D))s\\k_m -> 0 as ε -> 0, the result follows.

Remark. In the sequel we will make use of the explicit formula (5.6) for

μ(r) derived above.

6. Regular exhaustions

As before, let M be a noncompact, oriented, connected Riemannian mani-

fold of bounded geometry. Let (Λ/,) be an increasing sequence of compact

subsets of M, whose union is M.
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(6.1) Definition. The sequence (ΛQ is said to be a regular exhaustion of M
if for each r > 0 the quotient

Vol(Pen+(M,, r))/Vol(Pen-(M,., r))

tends to the limit 1 as i -> oo.
Of course, it then follows automatically that the quotients

Vol(Pen + (M,, r))/Vol(M,), Vol(MfO/V°l(Pen~(M«> r))

also tend to 1 as / -> oo.
This sort of definition appears to be due originally to Ahlfors [1]. More

recently, several authors have considered related ideas, for example [9], [27],
[30], [31].

Example. Let Xt be the ball of radius i in R". It is easy to see that the
sequence (Λ̂ ,) is a regular exhaustion.

This example can be generalized. Suppose that there is a point x o i n M such
that for all p > 0,

( 0 , r ) ) - > 0 adr->oo;

then one says that M has subexponential growth.
(6.2) Proposition. // M has subexponential growth, then it has a regular

exhaustion.
Proof. Let Bj = B(x0, j) and let ε > 0 and an integer r be given. We

claim that there are infinitely many indices j for which

( ( / , ) ) / ( ( 5 / . , r ) ) < 1 + ε.

For suppose the contrary; then for all sufficiently large j ,

Vol{Bj+r) > (1 + ε)Vol(Pen-(2?,,r)) > (1 + e)Vol(5,_Γ),

which implies that Vol(J5y) grows exponentially in j , a contradiction. Hence
one can choose by an inductive procedure a subsequence (Mt) of the (Bj) such
that

Vol(Pen+(M/,/))/Vol(Pen-(M/.,/)) < 1 + \/i.

Clearly, (Mf.) is a regular exhaustion.
These regular exhaustions are related to the "fundamental classes" intro-

duced in §3. To see this we need good bump functions on M.
(6.3) Lemma. Let L be a subset of M. Given any ε > 0, there is a smooth

function φ on M with values in [0,1] such that:
(i) φ = 1 on L;

(ii) φ = 0 outwith Pen+(L,l/ε);
(iii) |Vφ| < 2ε.
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Proof. Take φ to be a smooth approximation to the Lipschitz function

x —> max{0,1 — edist(x, L)}.

Recall from §3 that Ω^(M) denotes the Banach space of bounded w-forms

on M. An element m of the dual of Ω^(M) will be said to be associated to a

regular exhaustion (M,) of M if for each bounded rt-form a

lim inf
/->oo

= o.

(6.4) Proposition. There exist functionals associated with every regular ex-

haustion.

Proof. Let (M f ) be a regular exhaustion of M, and let mt be the corre-

sponding functional on Ω^ defined by

These functionals belong to the unit ball of the dual of the Banach space Ω ,̂

which is compact in the weak-star topology by the Banach-Alaoglu theorem

[33, Chapter V, Appendix, Theorem 1.1]. Take m to be a weak-star limit point

of the infinite set { mx;}.

(6.5) Proposition. Any functional associated with a regular exhaustion is a

fundamental class in the sense of (3.3).

Proof. Let m be associated to a regular exhaustion (M,), and let β be a

bounded (n — l)-form. One must show that (m, dβ) = 0.

For each set Mi9 let φ, be a function on M satisfying the conditions of

Lemma 6.3 for L = Mi and ε = 1. Clearly, for any bounded H-form a

ί a - ί (Vol(Pen+(M,,l)) -

and so

Thus it suffices to show that

One may integrate by parts to obtain

f φidβ =
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Since supp(Jφ,) c closure(Pen+(M,, 1)\ Af, ), this implies that

2(Vol(Penfφ.dβ

and the desired result follows.
Remark. Since Ωjg(M) is not separable unless M is compact, the appeal

made above to the Banach-Alaoglu theorem involves the full strength of the
axiom of choice.

Some important examples of regularly exhaustible manifolds arise from
coverings. Let X be a compact oriented manifold, and let M be a Galois
covering of X with Galois group Γ. If Γ is amenable, we will say that M is an
amenable covering of X.

(6.6) Proposition. Suppose that M is an amenable covering of a compact
manifold X, equipped with any Riemannian structure pulled back from X. Then
M has a regular exhaustion with associated fundamental class m such that for any
top-dimensional form a on X,

I a = (m, π*α)
Jx

where π\ M —> X is the covering projection.
Proof (cf. [9]). We will need to make use of Folner's theorem (see [22]).

This gives a necessary and sufficient condition for Γ to be amenable, namely
that for each ε > 0 and each finite subset Σ of Γ there should be a finite
subset E of Γ such that

Card(£ Π yE) > {\ - ε)Card(£) Vγ e Σ.

Let F be a fundamental domain for the action of Γ on M. Now for
r = 1,2, let Σ r be the finite subset of Γ consisting of those γ such that
dist(/\ yF) < r. Let Er be the finite subset of Γ given by Fθlner's thoerem
such that Card(£ r Π yEr) > (1 - ε)Card(£"r) Vγ e Σ r, where ε =
l/(/-Card(Σr)). Finally, let Mr = U{yF: y e Er). We claim that (Mr) is a
regular exhaustion of M.

To see this, assume without loss of generality that Vol(F) = 1; then
Vol(Mr) = Card(£r). But also,

Mr\ P e n ( M r , r ) c U{yF: y e £ r,3δ e Σ r s.t. γδ"1 € Er).

So,

(M r , r ) )< £ Card(E r\δ~ ιE r)

<(l/r)Card(£ r ) .
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Similarly, Vol(Pen+(Mr, r)\Mr) < (l/r)Card(£ r). Therefore

(Vol(Pen + (M r,r)) - Vol(Pen~(Mr, r)))/Vol(Mr) < 2/r.

The claim follows.
Let m be a fundamental class on M associated to the regular exhaustion

(M r). Since each of the sets Mr is a union of translates of the fundamental
domain F,

1M -V -V JxVol

Returning now to the general case, let m be a fundamental class on a
manifold M of bounded geometry associated to a regular exhaustion (M, ).
Recall from (5.4) that any operator Λ belonging to the algebra <%_O0(M) is
represented by a uniformly bounded smoothing kernel k, so that

Au(x) = j k(x, y)u(y) vol(j>)

The rt-form α: x -> A:(x, JC)VOI(JC) is therefore bounded. We define
{m, α), so that τ becomes a linear functional on <%_O0{M).

(6.7) Theorem. The functional τ thus defined is a trace on the algebra

Proof. Let Ax and A2 belong to (%_O0(M), with corresponding kernels kx

and k2. Let ε > 0 be given.
By (5.4), one can choose r > 0 so large that

ί \k/(x,y)\ v o l ( ^ ) < ε , f \k(y,x)\ vol(>>) < ε
JM\B{x,r) JM\B(x,r)

for 7 = 1,2 and all J C G M . From (5.1), there is an upper bound V for the
volume of any ball of radius r in M. Also, by definition of a regular
exhaustion, the inequality

(Vol(Pen + (M,.,r)) - VolίPen-ίM^r^/VolίM,.)

<ε/(F.(sup|/c 1 |).(sup|/c 2 |))

must hold for all sufficiently large /.

Let k be the kernel of AXA2 - A2AX\ that is,

k(x,z)= f (kι(x,y)k2(y,z)-k2(x,y)kι(y,z))vo\(y).

Therefore, j M k(x, JC)VOI(JC) is equal to

f f (k1(x,y)k2(y,x)-k2(x,y)kι(y,x))-y/ol(x)wl(y).
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where the double integral is taken over the range {x e M^y e M). The
absolute value of the double integral will be estimated by dividing this range
into three parts:

(i) Over the range {x G M, , y e M,} the integral vanishes by symmetry.
(ii) Over the range {x G AT,., >> G M\Mi9 dist(.x, >>) < r} both JC and ^

belong to Pen+(M,, r)\Pen~(Mf., r). For fixed x, the modulus of the integral
with respect to y is bounded by 2Fsup|fc1|sup|A:2l Thus the modulus of the
double integral over this range is bounded by

2Ksup|^1 |sup|^2 |(Vol(Pen+(M /,r))-Vol(Pen-(M /,r)))

and, as remarked above, this is less than 2εVol(M/) for sufficiently large /.
(iii) Over the range {x G Mi9 y G M\Mi9 dist(;c, y) > r} it follows from

the Cauchy-Schwarz inequality and the definition of r that the modulus of the
integral with respect to y is less than 2ε, so that the modulus of the double
integral over this range is bounded by 2εVol(M/).

Thus we have shown that for sufficiently large /,

f k(x,x)>Vo\(x) 4εVol(M/).

But ε is arbitrary, and

liminf(l/VolM,) τ{AιA2- A2Aι)- f k(x,x)-vo\(x) = 0.

It follows that τ(AιA2 — A2Aι) = 0, as required.
Notice that an analogous functional T can be defined on the algebra

Φ.ooίS) for any Clifford bundle S by the formula

τ(A) = m(x -> Ύτk(x,x))

where Tr denotes the pointwise trace on sections of S ® S. In fact an argument
analogous to the previous one shows that this T is also a trace, but this will not
be needed.

7. Good embedding

It will be shown next that the index of the Dirac operator of a Clifford
bundle on a manifold M of bounded geometry belongs to K(<W_O0(M)). To do
this it is necessary to embed the Clifford bundle in a trivial bundle in a good
way. We will make use of a simple fact from graph theory to obtain such
embeddings:
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(7.1) Lemma. Let G be a {possibly infinite) graph which has finite vertex

degree k {that is, at most k edges meet at any one vertex). Then the vertices of G

may be colored using k + 1 colors in such a way that no two vertices of the same

color are joined by an edge.

Proof. Left to the reader.

Recall that the order of a covering of a topological space is the least integer

k such that the intersection of any {k + 1) distinct sets of the covering is

empty; if there is no such k, one says that the covering has infinite order.

(7.2) Lemma. For any r > 0, the manifold M has a covering by open balls

B{Xj, r) of radius r, \..άch is such that for any s ^ r the covering of M by balls

B{xn s) has finite order.

Proof. Choose a covering of M by open balls B{x^ r) in such a way that

distinct centers ( c,) are separated by a distance of at least r\ such coverings

may easily be constructed by induction. The balls B{x(, r/3) are then pairwise

disjoint. If a point x belongs to B{xt, s), then B(xi9r/3) c B{x,s + r/3).

Now let Vo and Vγ be the functions defined in Proposition 5.1. The volume of

a ball of radius r/3 is at least V0{r/3), and the volume of a ball of radius

s + r/3 is at most Vx{s + r/3). Thus a point x can belong to at most

Vx{s + r/3)/V0{r/3) of the balls B(xh s), which is what was required.

(7.3) Lemma. For any r > 0, the manifold M has a finite covering by open

sets, each of which is a disjoint union of balls of radius r whose centers are

separated by a distance of at least 4r.

Proof. From a covering {B(xt, r)} satisfying the conditions of (7.2), con-

struct a graph G as follows: the vertices of G correspond to the points JC, , and

two vertices are linked by an edge if and only if the corresponding points are

separated by a distance of less than 4r. By (7.2), the covering {B{xh 4r)} of M

has finite order, which implies that G has finite vertex-degree. Color the

vertices of G with finitely many colors according to (7.1). If \Jι denotes the

union of all the B{x^ r) for which the vertex corresponding to x, is colored /,

then the covering {Uι} satisfies the required conditions.

Let So and Sλ be (Clifford) bundles of bounded geometry on M, and let i:

So -> Sx be an isometric inclusion. (Note that i is not assumed to be a

module-homomorphism. We are using the Clifford bundle structure here

merely as a crutch to define Sobolev spaces and hence uniform operators.)

There is a natural orthogonal projection TΓ: SX -> So which is a left inverse for

i. The inclusion i will be called good if both i and π are uniform operators of

order < 0.

Recall that ^.^{S) is an ideal in the algebra <%(S). We shall be interested

in abstract elliptic operators (in the sense of §4) relative to this ideal. Recall

that such an operator has an index in K((W_0O(S)).
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Now suppose that i: So -> Sx is a good inclusion. Then the map L*: p -

is a homomoφhism of algebras ^ ^ ( S Ό ) -> ^. .^(SΊ), and so induces a

homomorphism (which will also be denoted t*) from K((%_O0(S0)) to

(7.4) Proposition. Let P be an abstract elliptic operator on So. Then

**(Ind P) G K((%_o0(Sι)) is independent of the good inclusion 1.

Proof. Let P: M -> N be an abstract elliptic operator between finite

projective ^(S^-modules. For brevity, write A for the algebra ^(S^. Then

ι*P is abstractly elliptic between the ^-modules M ® u Λ and N Φ^ Λ. By

naturality, ^ ( I n d P ) = lnά(ι+P) in K^^Si))- Now let 1' be another good

inclusion, with corresponding projection π'. Then there is a commutative

diagram

M<8> yl • # £ > ^

1 1

* * f *
in which the horizontal arrows are the maps ι*P, L'*P and the vertical arrows

are isomorphisms given by x Θ a -> x Θ IVΛ. (The inverse isomorphisms are

given by JC ® α -> x Θ iw'έi.) Thus Ind(t^P) = Ind(ι#P).

(7.5) Proposition. ^4«j; Clifford bundle S of bounded geometry has a good

inclusion in a trivial bundle.

Sketch of Proof. If B c M is a good coordinate ball of radius r, then using

normal coordinates we may construct on B an isomorphism of S\B with a

trivial bundle B X Ck. This isomorphism and its inverse are by (2.4) and (2.5)

uniform operators of order 0. So, by (7.3) we can find a finite covering of M

by open sets that are unions of such balls B, over each of which S is uniformly

isomorphic to a Λ -dimensional trivial bundle. Now by taking the direct sum

and using a partition of unity (as in the analogous construction for compact

manifolds, cf. [26, Chapter 3, §5]) we can obtain a good inclusion of S in an

mλ>dimensional trivial bundle.

Let P be an abstractly elliptic operator on S. By (7.5) there exists a good

inclusion L of S in a trivial bundle T, and ι*(Ind P) e K{όl/_O0(T)) is indepen-

dent of the choice of 1. However, K(W_O0(T)) is isomorphic to K(<W_O0(M)) by

(4.2), so that we obtain a well-defined element, also denoted Ind(P), of

Now, let D be the Dirac operator on the Clifford bundle S, equipped with a

grading 17.

(7.6) Lemma. The operator D is abstractly elliptic between the ^(S)-modules

given by the eigenprojections (1 + η)/2 and (1 — η)/2.

(These modules are of course the "positive and negative spin-spaces.")
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Proof. Let φ be a compactly supported smooth function on R equal to one
in a neighborhood of zero. Let ψ(x) = (1 - φ(x2))/χ2. Then ψ belongs to the
symbol class S~2(R), so that ψ(Z>) e ^_ 2(S) by (5.5). Hence Z)ψ(D) G

). Now consider the equation

By (5.5), φ(D2) is a uniform operator of order -oo, and it commutes with η.
Moreover, Dφ(D) anticommutes with η. It follows that Dψ(D) is a parame-
trix for D.

The Dirac operator D therefore has an index Ind(D) in K(<%_O0(M)).

8. The main theorem

Let M and S be of bounded geometry, η a grading, and D the Dirac
operator. Suppose that M admits a regular exhaustion with corresponding
fundamental class m and trace T on <%_o0(M). In the previous section we have
defined the index Ind(D) in ^ ( ^ . ^ ( M ) ) . But the results of §4 show that
there is a dimension homomorphism dimτ: K((%_O0(M)) -> R. We must now
compute dimτ(Ind D).

(8.1) Proposition. Let f be any Schwartz-class function on R+ with fφ) = 1.

(The definition of T on ^ .^(S) was given at the end of §6.)
Proof. First consider the special case /(λ) = φ(λ)2, φ being a function of

the sort considered in (7.6) above. Then the result follows from (4.1); the only
thing to be checked is that the abstract extension of T to the projective
modules (1 4- η)/2 and (1 - τj)/2 described in §4 is the same as the concrete
extension of τ to W.^iS) described at the end of §6. Next, suppose that
/(λ) = φ(λ) 2, where φ is now any smooth function of compact support with
φ(0) = 1. Then φ may be approximated smoothly by a sequence φj of
functions of fixed compact support that are equal to one in a neighborhood of
zero. By (2.10), the Schwartz kernels of φj(D2)2 tend uniformly to the
Schwartz kernel of f(D2) as j -> oo. So

τ(ηf{D2)) = \imτ(ηφj(D2)2) = dimτ(IndZ>).

We deduce by linearity and continuity the more general formula

τ(ηφ(D2)2) = φ(0)2dimτ(lndD)

valid for any smooth φ of compact support. Since the linear span of {φ2:
φ G CC°°(R)} is dense in ^(R), the general result follows by (2.10).
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Now take / ( λ ) = e~tλ, and apply the asymptotic expansion theorem (2.11).

This gives the asymptotic expansion as / -> 0

dimτ(Indί) + ) ~Σt(k~n)/2(M'nk)>'»)-

Since the left-hand side is independent of t, only the constant term can appear

on the right-hand side. By definition, Tr(τj*) is the index form I(D), so that we

have completed the proof of

(8.2) Index Theorem. Let M be a Riemannian manifold and S a graded

Clifford bundle on M, both with bounded geometry. Let D be the Dirac operator

of S. Let m be a fundamental class for M associated to a regular exhaustion, and

let T be the corresponding trace on the algebra of uniform operators of order -oo.

Then D is abstractly elliptic on S, and

dimτ(IndZ))= <I(/)),«>

where l(D) is the usual integrand in the Anyah-Singer formula for D.

Remarks, (a) The index-form I(D) is given by a characteristic class formula,

and is therefore an element of the β-cohomology group Hg(M). Thus the

right-hand side of the formula is cohomological in nature. In particular (see

3.8) the index remains unchanged under strict quasi-isometry of the metric

on M.

(b) We could have reached this formula a little more quickly had we been

prepared to construct Ind(D) as an element of K(W_o0(S)) rather than of

K((%_O0(λf)). The apparatus of "good embedding" would then have been

unnecessary. However we preferred to show how K(Qί_OQ{M)) is a " universal"

receptacle for indices of elliptic operators. This prepares the way for the

possible application of more advanced A^-theoretic techniques, such as the

cyclic cohomology theory of A. Connes [16].
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