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PERTURBATIVE SEMES AND THE
MODULI SPACE OF RIEMANN SURFACES

R. C. PENNER

Introduction

In this paper, we use some techniques from quantum field theory to compute
quantities related to symmetry groups of pairs (F,G), where F is a surface and
G is a spine of F. As a consequence of our computation, we derive a certain
cohomological invariant of the mapping class group MC* of homotopy classes
of orientation-preserving homeomorphisms of the genus g surface with s
points removed. This invariant, the virtual Euler characteristic χ^MC^ of MC*,
is defined as follows. If A is a group which contains a torsion-free subgroup B
of finite index and every such subgroup has finitely generated integral
homology, then we define

XvA=χB/[A:B],

where xB denotes the usual Euler characteristic of B. (It is an exercise to
check that χυA is independent of the choice of B.) We will find that

*!(2g)!

for s ^ 1, g > 0, and 2g - 2 + s > 0, where B2g denotes the 2gth Bernoulli
number.

This result is proved by Harer and Zagier [5] using computational techniques
(rediscovered in [5]) which are related to the perturbative series of quantum
field theory (see [2] and §2 below). Herein, we apply a variant of the full
perturbative series machine to capture the equivariant combinatorics of certain
cell decompositions of foliated fiber bundles over various Teichmuller spaces.
In contrast, [5] begins with cell decompositions of the Teichmuller spaces
themselves, and only part of the perturbative series machinery is applicable in
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this setting. Thus, our treatment of the combinatorics is more direct than that
in [5].

§1 introduces the category of objects which we will investigate and poses a
general counting problem which we solve in subsequent sections. We also recall
some work from [6] which explains the connection between our counting
problem and the motivating problem of computing χvMCs

g. §2 develops some
material which allows us to reformulate our counting problem in terms of
integrals over the hermitian matrices; insofar as §2 represents an extension of
the usual perturbative series/Feynman diagram technique from physics and
for completeness, we give a reasonably self-contained account. In §3, we
compute the integrals developed in §2 using orthogonal polynomials and
generating functions; this is the heart of the paper. The computation is quite
delicate and has a life of its own; indeed it is surprising that we obtain a closed
form solution to our counting problem as an asymptotic series. It is also
noteworthy that the technique of perturbative series from particle physics so
effectively captures the combinatorics of the bundle over Teichmϋller space
described in [6].

It is a pleasure to thank Jϋrg Frόhlich for introducing me to perturbative
series and for his encouragement and enthusiasm; I similarly thank Charlie
Epstein for his unflagging interest. Further, I acknowledge useful discussions
with Elliot Lieb, Matt Visser, Scott Yost, and Don Zagier.

1. Fat graphs and Teichmuller space

By a graph G we mean simply a one-dimensional CW-complex, so that G
consists of vertices and open edges. The boundary of an edge may consist of a
single vertex, and two distinct edges may have the same vertices. An edge of
the first barycentric subdivision of G is called a half-edge of G. The valence of
a vertex υ is the number of half-edges incident on it, and we say v is k-valent if
this number is k. We stipulate throughout this paper that each vertex of G is at
least tri-valent.

A fattening of G is a specification of cyclic order on the half-edges of G
incident on υ for each vertex v of G, and a graph together with a fattening is
called a fat graph. (The terminology "embedded graph" occurs in the litera-
ture.) In practice, we may specify a fat graph by drawing a planar projection of
a graph embedded in space: a neighborhood of the vertex set is required to be
embedded in the plane, and the collection of half-edges incident on a vertex
inherits a cyclic (say counter-clockwise) order from the orientation of the
plane; away from the vertices, we introduce under/over crossings. See Figure
1.1 for several examples and notice that the first two examples correspond to
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distinct fattenings of a common underlying graph. It is easy to see that any fat
graph may be so represented.

A fat graph G determines an oriented surface F(G) with spine G c F(G)
(i.e., the inclusion is a homotopy equivalence) as follows. Suppose G is
represented by a planar projection and let N denote a regular neighborhood of
the vertex set in the plane. N inherits an orientation from that of the plane,
and if e is an edge of G, then we attach a band to N between the endpoints of
e preserving orientation to construct the surface F(G). Several examples are
given in Figure 1.2. A marking on G is a marking (in the sense of Riemann
surfaces) on F(G).

FIGURE 1.1

FIGURE 1.2

Suppose that e is an edge of a fat graph with endpoints wλ Φ w2. We define
another fat graph G' whose underlying graph arises from that of G by
collapsing the edge e and coalescing the vertices wι and w2 to form a vertex w'
of G' as in Figure 1.3. The cyclic order on half-edges incident on w' is defined
in the natural way by combining the cyclic orders about wλ and w2. We say Gf

arises from G by a Whitehead collapse. Notice that F(G) is homeomorphic to
F(G'), and a marking on G induces a marking on G'.
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G1

FIGURE 1.3

A morphism /: Gλ -> G2 of underlying graphs (i.e., a map on the sets of
edges and of vertices preserving the graph structure) is a morphism of fat
graphs if / preserves the cyclic ordering on half-edges about each vertex. It is
readily seen that a morphism /: Gλ -> G2 of fat graphs corresponds to a
homotopy class of (orientation-preserving) continuous maps of pairs
(FiG^GJ -> (F(G2\G2). Two marked fat graphs F/ -> F(GX) and F£ ->
F(G2) are (marked) isomorphic if there is an isomorphism (F(Gι)9G1) ->
(F(G2), G2) of fat graphs so that the diagram

commutes up to homotopy.
Let [G] denote the isomorphism class of the fat graph G and let T[G] denote

the automorphism group. We also define several numerical invariants of fat
graphs. Let

S[G] = * {boundary components of F(G)},
VΛG] = #{/c-valent vertices of G),

so υι = v2 = 0 by assumption. For instance, the invariants of the fat graphs in
Figure 1.1 are υ3 = 2 in all three examples with s = 3,1,3, respectively. Notice
that the topological type of F(G) is uniquely determined by these invariants;
indeed the Euler characteristic is

and the genus of F(G) is

g[G] = \[4 - 2s[G]+Σ(k - 2)vk[G]).

Finally, we introduce the total valence V[G] = Σkvk[G] for convenience and
remark that
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In this work, we compute the following generating function for orders of
automorphism groups of fat graphs:

[G] so that G
is connected

and-2χ(G) = /

The argument / determines the Euler characteristic of contributing fat graphs,
and for each /, Φc(/, N) is a rational polynomial in N. Notice that Φc(/, N)
= 0 for / odd. The computation proceeds in two main steps occupying §§2
and 3, respectively. The first step involves the technique of perturbative series
from quantum field theory (see [2] for instance), and the second involves a
rather delicate computation with generating functions and orthogonal poly-
nomials. In the remainder of this section, we briefly sketch some material from
[6], which uncovers the motivation from Teichmϋller theory for studying
ΦC(/,JV).

Let MCJ denote the (full) mapping class group (see [3]) of F* corresponding
to isotopy classes of orientation-preserving diffeomorphisms of F* (which may
permute the punctures), and let SΓ£ denote the Teichmϋller space (see [1]) of
F* corresponding to the space of marked conformal classes of complete
finite-area metrics of constant curvature -1 on F*. We assume that 2g — 2 4- s
> 0, so that within each marked conformal class, there is a canonical Poincare
metric on F*. We define 3Γ* t 0 ^ e t n e Cartesian product of SΓ^ and the
space of horocycles (for the Poincare metric) on Fg

5, one horocycle about each
puncture. The "decorated Teichmϋller space" 3Γ£ *s homeomorphic to 2Γ£ X
Rs

+ (where R + = { / e R : t> 0}), and MC* acts on ^ by the action on
horocycles of the representative diffeomorphism which respects the Poincare
metrics. The fibration 2Γ£ -> 3Γ£ is mapping class group equivariant, and
there is a canonical section.

Let M denote Minkowski three-space, so that M is a real vector space of
dimension three with a bilinear pairing ( , ) which admits a basis (e0, ex, e2)
so that (eh βj) = 0 if i Φ j and -(e0, e0) = (ex, eγ) = (e2, e2) = 1- The sheet

H = { O G M : (υ,υ) = -1 and (v,e0) < 0}

of the hyperboloid inherits a Riemannian metric from the pairing and gives a
model for the hyperbolic plane. We homeomorphically identify the positive
light-cone

L + = { u e M : <u,u> = 0and<e,eo> < 0}
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with the space of horocycles in the hyperbolic plane (with the geometric
topology) by letting w e L+ correspond to the horocycle {v e H: (w,v) =
-1}. The group of linear isomorphisms of M preserving the form, the orienta-
tion on M, and the sheet H is denoted SO+(1,2); this group corresponds to the
Mδbius group of orientation-preserving isometries of the hyperbolic plane.

A point of $~s gives rise to an isomorphism

where Γ is a discrete group defined up to conjugacy in SO+(1,2) and the point
in 3Γ£ is represented by H/Γ. A specification of horocycles on Fs

g gives rise
to a Γ-invariant set 3ft c L+ via the correspondence above between L+ and
the space of horocycles. (Explicitly, choose a parabolic γz e Γ corresponding to
the /th puncture, let zi e L+ be fixed by γz and correspond to the chosen
horocycle about the ith puncture, i = 1, , s, and let 38 = Uz Γzz.) Since the
horocycles may be chosen to be disjointly embedded in F*, the origin in M is
never an accumulation point of 38\ since the set of eigenvectors (rays) of
hyperbolic elements of Γ is dense in L+, it follows that 38 is discrete in L+

itself. Thus, a point f e 3Γ£ gives rise to a discrete group Γ < SO+(1,2) and
a Γ-invariant discrete set 3ft c L. Let K be the euclidean closed convex hull of
^ in M; since Γ acts linearly, K is a Γ-invariant convex body. A pair of
distinct points in L+ gives rise to an arc in F* connecting punctures: the plane
in M through the origin containing the pair of points intersects H in a geodesic
which projects to such an arc in F* = H/Γ. It turns out that the edges of dK
inside L + correspond to a disjointly embedded (finite) family Δ(f) of such
arcs in F*, none of which is homotopic into a puncture and no two of which
are parallel, so that components of F£ - Δ(f) are contractible (Theorem 4.5 of
[6]). We regard Δ(f) as defined only up to isotopy and call such a decomposi-
tion of F* an "ideal cell decomposition."

Having associated Δ(Γ) to Γ e jh9 consider the decomposition # of 2Γ£
consisting of all

C(Δ) = { Γ G / ; : A ( f ) c A }

as Δ ranges over the ideal cell decomposition of F£. One of the main results
from [6] (Theorem 5.5) is that # is an MC^-invariant cell decomposition of 3Γ£
itself. Moreover, the isotropy group of C(Δ) in MC* is isomorphic to the
topological symmetry group of the pair (i7^, Δ).

Now, the dual of an ideal cell decomposition of F^ is a spine of F*, which
corresponds to some marked fat graph G with F(G) = F£; moreover, all such
marked fat graphs arise in this way. Notice that if marked fat graphs G and G'
correspond to ideal cell compositions Δ c Δ' of Fs respectively, then G arises
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from G' by Whitehead collapses. The dual of the decomposition # of 2Γg

itself is an MC^-equivariant spine Σ*, and Σs

g is contractible since 3Γg is.

Furthermore, the MC*-stabilizer of a cell in Σs

g is isomoφhic to the automor-

phism group of the corresponding fat graph. Σs

g is MC*-equivariantly isomor-

phic to the fat graph complex @g defined as follows. @g has one cell for each

isomorphism class of marked fat graph [G] with G homotopy equivalent to Fg,

and the dimension of the cell corresponding to [G] is Σk(k - 3)υk[G]. The cell

for [G] is a face of the cell for [G'] if G' arises from G by Whitehead collapses.

* acts on ^g by change of marking.

Theorem 1.1. We have the equality

that I=4g-

Proof. It follows from the remarks above that M C | acts cellularly on Σg

with finite isotropy groups, and 9£ is contractible. Since MC* is virtually

torsion free, Proposition 4 of [4] therefore asserts that

Y M C S = y (^P

Xv g b
where σ/\ i = 19— ,up9 is an enumeration of certain of the /^-dimensional

cells of ^ g

s, one representative cell for each MC^-orbit, and Γ(σ^) denotes the

isotropy subgroup of of in MCg. Since the isotropy group of of is isomoφhic

to the fat graph automoφhism group of the corresponding fat graph,

Σk(k - 3)υk[G] = F[G]mod2, and / = -2χG = 4g - 4 + 2s9 the result fol-

lows, q.e.d.

This theorem gives a motivation for the study of the functions Φc(/, N).

2. Perturbative series

Consider the vector space JίfN of N by N hermitian matrices which

supports the adjoint representation of the N by N unitary matrices <%N

9 where

U:H -> UHU~\ UeWN, H e <%N.

We recall that any H ^3^Ή is <% ̂ -equivalent to a diagonal matrix, and 3t?N

supports the ^ ^-invariant product

dM(H) = Π d
i = l

of Lebesgue measures, where H —
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Suppose v3, , υκ is a sequence of nonnegative integers, and set 0 = υx =
V2 = υκ+ι = υκ+2 = ' *' f°Γ convenience. We define

k=i

where tr denotes the trace and μN = 2N/2πN2/2. Notice that Pϋ3,...,0κ(N) = 0

unless Σkkυk is even. Our main result for this section is

Theorem 2.1. Pv t..%υ (N) is a polynomial in N with no constant term. In

fact, we have the equality

3 κ

[G] so that

vk[G]-υk

fork = l,2, -

We emphasize that the sum extends over all such fat graph classes, not

necessarily connected.

Proof. Adopting the convention that all indices k run from 1 to A' and all

indices / (possibly with sub- and superscripts) from 1 to N9 we have

• Π Σ Π Hiii{Hl{li • • • //
k {{it):μ-l,---.υk 7 = 1 A 1

dM(H)e-u"2/2Σ Π H,J J HJ J H,J J ,
1 /• "*

where (*) denotes the collection of multi-indices,

with each iμ

vk running from 1 to N. The first equality follows from the

definition of trace, the second upon taking i^th powers, and the third from

pulling the product past the sum.

We will call a collection of indices of the form
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occurring in a term of (*) a "cycle of length λ:," so each term in (*) consists of
vk cycles of length k for k = 1, , K. Such a cycle contributes a factor

to the integrand, and we associate the set

of pairs of indices to each cycle σ.
We introduce the notation

for the Gaussian moment of remark that (1) = 1 (see Lemmas 3.2 and 3.3
below), and recall the following fundamental result.

Wick's Lemma {see [2, §2]). (H^H^^ Htjn) vanishes for n odd and
equals

Σ Π <H,jHlβk)
partitions of partition

{1, ,n} elements {ot,β}

n/1 doubletons

for n even. Furthermore, (HabHcd) = δadδbc.

Using this notation, we may write

ίik\υk κ ) TG(*) partionsof partition
Uσ e τS(σ)into e l ^ e , n t s . Λ X

doubletons {(^^)^(^^)}

Each term in the sum corresponding to τ e (*) and a partition ^ o f U σ e τ 5 ' ( σ )
into doubletons contributions either 0 or 1; let xT(&*) denote this contribution.

We wish to associate a fat graph (together with some extra structure) to each
term (T, @) in the sum. Begin with vk copies of a standard neighborhood in
the plane of a λ>valent vertex; label the vertices 1, , vk for k = 3, , K.
The boundary of each such neighborhood is naturally decomposed in k
"sectors" and k "stubs," which we linearly order by labelling 1,2, , k (see
Figure 2.1(a)). Given a cycle σy = (i{k, i

J

2k, JJ

kk) of length k in T, we assign
the integers i{k,- , i{k G (1, , Λ̂ } to the sectors about the y'th vertex in
order; we then assign the labels of adjacent sectors to each stub. Furthermore,
the orientation of the plane induces an orientation on the neighborhoods so
that to each stub is associated one "outgoing" index and one "incoming"
index (see Figure 2.1(b)). The cycle of indices σy thus induces a labelling on the
stubs about the yth vertex, where each stub is labelled by an ordered pair of
integers from {1, , iV}.
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stub

stub

stub

(a)

FIGURE 2.1

(b)

Now, if an element of 9 consists of a pair of elements of ΌσerS(σ), then
we attach an orientation-preserving band between the corresponding stubs.
Doing this for each pair (of pairs) in & yields a fat graph G(&). Moreover,
the rath sector about the jth λ -valent vertex is labelled with the integer ij

mk. A
fat graph with an assignment of integers from 1, , N to the sectors about
each vertex together with a linear ordering on the fc-valent vertices, k =
3, , K, and a linear ordering on the sectors about each vertex is said to be
N-labelled, so that G(&) is 1-labelled by construction and inherits an N-
labelling from T.

Since (HahHcd) = δadδbc, the JV-labelling on G(&) must be constant on
sectors corresponding to the same boundary component of F[G(έP)] in order
for xτ(&>) Φ 0. Thus, we find that

• π Λ ^ Σ Σ χΛ&)
Lίk\uk'* ) τG(*) partitions^

- \ Σ i
* *k\"k'K ) partitions &

Let us be quite explicit about the index set in this last sum. For fixed
ϋ3>#"'»ϋ*> w e arrange vk "standard" A>valent vertices in the plane in a
"standard" way, so that there is an induced 1-labelling on any fat graph with
this vertex set. An element of the index set is a partition 9 into doubletons of
the half-edges emanating from these vertices, which in turn specifies a fat
graph G(&>). There are thus

- 3)
k } V k n k

terms in this sum. By way of example, we enumerate the 15 1-labelled fat
graphs in the index set in case v3 = 2 in Figure 2.2.
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FIGURE 2.2

Let p[G] be the number of appearances of the isomorphism class [G] of
unlabelled fat graphs in this index set. For instance, the three fat graph classes
with υ3 = 2 illustrated in Figure 1.1 have p[G] = 3,3,9 and #Γ[G] = 6,6,2,
respectively. T[G] acts without fixed points on the set of 1-labellings on the fat
graph G, and, even though the action is not transitive, each orbit type occurs
once in our index set. Evidently, we have

= # (l-labellings on a fat graph G with υk[G] = υk, k = 1, , K },

and it follows that

T
l h \ υ k K ) [Gjwith

s[G]

as desired.

[G] with
vk[C\^vk

* - l , 2 ,

3. The asymptotic series

Define Φ(I,N) exactly as we defined Φc.(/, N) in §1 but summing over all
(not necessarily connected) fat graph classes with -2χ(G) = /. Theorem 2.1
has the following immediate consequence.
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Corollary 3.1. We have the equalities

Σ{k-2)υk = I

dM(H)U

The index set "Σ(k - 2)vk = I" means that we sum over all tuples { υk}f of
nonnegative integers with Σk(k — 2)vk = / and υλ = v2 = 0. It is our intent to
numerically evaluate these integrals in closed form by developing a generating
function in a nonnegative real variable t, which converges for t > 0 and whose
asymptotic series at 0 has coefficients given by Φ( J, N).

In preparation for this approach, we begin by manipulating the expression
Φ(I,N) itself and recall

Lemma 3.2 (see Appendix 2 of [2]). Iff is a <%N-invariant function on J^N,
then

f
(2π)

where A = (Λ y) is the diagonal matrix with Λ/y = λ δ^ , /, j = 1, , N, dλn

denotes Lebesgue measure, and tiN = 2NπN(N+l)/2/n"=ιp\.
The factor Π^yίλ, — λy) which one picks up from the Jacobian here is

sometimes called the "Weil factor." Integrating even very simple functions
against this Weil factor is a substantial task; our next result describes a special
case of such a computation.

As a prefatory note, we recall (see [7], for instance) that if μ is a measure
defined on R, then the "monic orthogonal polynomials for μ" are the poly-
nomials kn(x) = xn + with jRkn(x)kmdμ(x) = 0 for n Φ m. Such poly-
nomials exist and are unique provided the moments jRxndμ(x) exist and are
finite for n = 0,1, . A simple inductive argument then shows that the
coefficient of kt(x) in xkn(x) vanishes for i < n — 2, so the orthogonal
polynomials for μ satisfy a three-term recursion

K + \(X) = (X + an)kn(x) ~ Pnkn-\(X)

for certain scalars an, pn, n > 0 (with k_x = 0).
Lemma 3.3 (see [2, pp. 123-124] for instance). Suppose μ is a measure on

R whose moments μn = fRxndμ(x) exist and are finite for n > 0. // the
three-term recursion for the monic orthogonal polynomials of μ is as above, then

ή
iΦj
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Proof. Expanding the square root of the Weil factor as a Vandermonde

determinant, the integral in the lemma admits the expression

for any family { pn}n>0 of monic polynomials with degree pn = n; indeed, for

p{x) = xn this is just the Vandermonde determinant, and the general result

follows by linearity. For pn = kn, the determinant computation is diagonalized,

and we find

n + 1(x)xkn(x)dμ(x)

= ( dμ(x)kn(x)[kn+2(x) - an+1kn+1(x) + pn+1kn(x)]
JR

= Pn+i( k2

n(x)dμ{x). q.e.d.
JR

In particular, with dμ(x) = e~x /2dx we find the monic Hermite polynomials

hn (see [7, pp. 101 ff.]) with recursion hn+1 = xhn- nhn_ι and μ0 = JΪΪΓ, so

Φ(0, N) = 1. Lemma 3.3 will prove to be our main CQmputational tool once

the problem is appropriately set up.

Corollary 3.1 and Lemma 3.2 give

Σ(k-2)vk = I

where p k = L?_1xf,

kPk}JRN k L k J

and

Now we reindex, replacing the (ordered) tuple υ39- , υκ with the (unordered)

multi-index

λ = l l , 2 2, KK- 2 K- 2,

v3 v4 υκ
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so that |λ| = Σk(k - 2)υk and υk = mk_2 = #{(k - 2)'s in λ}. Thus, we
have

,N) = vN Σ ίNHλdL,
\\\i R

where

ίN
\\\~i R

and we write " |λ | = / " to mean the sum over all multi-indices λ with |λ| = /.
We seek the generating function

Z(t,N)= Σ Φ(/,Λ00Vr)',

but (as we will see) it does not converge. Instead, we truncate spatially and
take

where ΦM(I, N) = vNΣιM=IJB»HλdL and B» = {x e R :̂ \x\ < M). As be-
fore, ΦM(I, N) = 0 for / odd, so ZM(/, N) is real-valued and single-valued
wherever it converges.

Lemma 3.4. ZM(t, N) converges absolutely for 0 < t < M~4(eN)~2.
Proof. For fixed λ, on B^ we have the estimate

k

Furthermore, if Σjyj converges absolutely, then

(t) ΣΠ0

so in particular ΣλΠk(mk\)~ι < ef. Thus,

ί HxdL{ift)'
JnN

dLNWe't"2

JnN

|λ|=/ °M

and the claim follows by the root rest, q.e.d.
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Now, we find

|λ|-7

k

N

/ = !

using Lemma 3.4 and another application of (f), where

k>0

χk+2{ift)k

k + 2
\dx

= exp— log — - ixyft dx
t [ 1 - ixy/t J

= (1 - ixft)'rle-ix/^dx

= -ift{et)~r\-zYrXe-zdz, for z = -{ixft - 1).

Now, let us take the limit of the functions ZM(t, N) which are analytic in a
shrinking neighborhood of zero:

Z(t,N)= lim ZM(t,N)
Λ/->oo

where the integral is improper in the sense above. We wish to apply Lemma 3.3
and must find the orthogonal polynomials for μ,(x), t > 0, on R. To this end,



50 R. C. PENNER

we have

Lemma 3.5. Ifq(x) is analytic and t > 0, then

L « ) '

/V00/ (see HankeΓs description of the gamma function [8, pp. 244-246]).

q{{ix4~t-\)/t)dμt(x) = -ift{et)-r

" f"1) ί
/R+

-r^ΓfrVo
Corollary 3.6. If μo(t) denotes the zeroeth moment of the measure μt for

t > 0, then

We define a collection of polynomials for t > 0,

where l"(y) is the «th monic Laguerre polynomial, which is orthogonal for the

measure yae~y dy. We have

Corollary 3.7. {kn t} is a collection of monic polynomials, which are orthogo-

nal for dμn t > 0, and satisfy the recursion relation

. The usual Laguerre polynomials L"(z) (see pp. 96-97 of [7]) are

normalized by /0°°e~zzaL^L^dz = T(a + l)(n+a)8nm and the coefficient of zn

in L"(z) has sign (-1)". The L"(z) satisfy a recursion

(n + ϊ)L n+1(z) = (-z + 2n + a + l)L«(z) - ( « + a)LΛ

n.^z),

and LJ(z) = (-l)nzn/n! + Oίz""1). Thus, /^(z) has recursion

C + 1 (*) = (z - 2« - α - l)/«(z) - n(n + ̂ / " ^ ( z ) ,

so the A:M r(x) have the asserted recursion, are monic by construction, and

orthogonal for dμt(x) by Lemma 3.5.

Theorem 3.8. As a formal power series, Z(t,N) agrees with the asymptotic

series at 0 of
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Proof. Apply Lemma 3.3 to the measure μt for t > 0 using Corollaries 3.6
and 3.7. q.e.d.

We relate logZ(ί, N) to the generating function ΦC(I,N) (introduced
in §1) for connected fat graphs. If G is a fat graph of components G =
LIf= 1O c copies of Gc), then

#Γ[G]=ΓTK!(#Γ[(?C])<\

A standard generating function analysis (see [2, p. 115] for instance) then gives
the following formal equality:

Λ0= Σ Φe(2I9N)(-t)r.

We have arrived at the main result of the paper.
Theorem 3.9. Fix J > 1, g > 0 with 2g - 2 + s > 0. We have

Proof. Taking the logarithm of the expression in Theorem 3.8, invoking
Stirling's formula, and expanding log(l — pt) in a power series, we im-
mediately get

Using the standard formula

p = \

it follows that

logZ(t,N) =

2 + , L

Ί \2k - 1 2k
k l

00
NJ +2

j + 2)

proving the theorem.
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Corollary 3.10. // MC^ denotes the mapping class group of the genus g

surface, g > 1, with no punctures, then

x MC° = B l

Proof. Suppose * - > Λ - > i ? - > C - > * i s a short exact sequence of groups,

where B is virtually torsion free and A, C satisfy condition VFP of [4] (A

satisfies VFP if it contains a finite index subgroup D so that the trivial

Z[Z>]-module Z admits a finite resolution by finitely generated projective

Z[D]-modules); Corollary 2 to Theorem 4 of [4] gives χυB = (χvA)(χυC).

Applying this observation to the short exact sequence * -> irxF£ -> MC* -*

MC° -> * yields the result.

Remarks. (1) The behavior of virtual Euler characteristic with respect to

short exact sequences described above allows a consistency check on our

computations. Namely, χ^MC*, s Φ 1, can be derived from χ^MC* using

various short exact sequences; the results so obtained are in agreement with

Theorem 3.9.

(2) We mention that our formula for χυMCs

g, s > 1, differs from that in [5]

by the factor \/s\. This is because [5] considers not the full mapping class

group, but the subgroup of mapping classes which fix the punctures.

We close by mentioning several related open problems. It would perhaps be

interesting to compute the "partition function" Z(t,N) for classical groups

other than 3fN. The techniques in this paper should also apply to the

computation of an analogous generating function for orders of symmetry

groups of graphs (not fat graphs). Furthermore, one would like to know the

number of cells of various codimensions in the cell decomposition of Jy, and

it is possible that an extension of the method herein to the setting of

non-Gaussian measures would yield such a generating function. Finally, the

techniques of this paper together with the "λ-length" coordinatization of J™

in [6] give a reasonable description of a fundamental domain for the action of

MC* on tΓg

s. One should thus, be able to integate over the moduli space using

these ideas. In particular, the Weil-Petersson mass of moduli space seems a

promising such computation.
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