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APPLICATION OF THE
SELBERG TRACE FORMULA TO THE

RIEMANN-ROCH THEOREM

GARTH WARNER

1. Introduction

The Riemanri-Roch theorem is one of the foundational results in the theory
of Riemann surfaces. Many proofs of this theorem are known, some tradi-
tional, others less so. The objective of this note is to give a proof in the latter
vein, the primary tool being the Selberg trace formula.

Thus let X be a compact Riemann surface of genus g > 1. Then we may
write X = Γ \ D, D the open unit disk, Γ a discrete, strictly hyperbolic,
cocompact subgroup of H = G/{±/}, G = SU(1,1). When applied to auto-
morphic forms on Γ, the Riemann-Roch theorem and the Selberg trace
formula say about the same thing. Consequently, it should not come as too
much of a surprise that the one can be derived from the other.

For us, it will be convenient to regard the Riemann-Roch theorem as a
statement about holomorphic line bundles on X. In turn, to get this into a
group-theoretic context, it is necessary to use the language of automorphy
factors. Once this transcription has been accomplished, it is technically
simplest to pass to the (g - l)-fold covering group of G. Since the irreducible
unitary representations of the universal covering group G of G have been
classified, no difficulty is encountered in doing so. Applying now the Selberg
trace formula to suitable coefficients or quasi-coefficients then leads easily to
the Riemann-Roch theorem.

It will be clear that what is said here can be said more generally. Neverthe-
less, we shall stay the course and not take up these side issues, interesting as
they may be. Let us say only that Shimura [25] has proved a Riemann-Roch
theorem for the traces of the Hecke operators. Agreeing to place ourselves in
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the setting of [28] (hence, in particular, automorphic forms become inter-
twining operators), the techniques utilized in this note allow one to recover
those results with very little additional effort. In fact, associated with a pair
(D, D*) of rational divisors on X, satisfying certain standard assumptions, is a
pair (A(D), A(D*)) of spaces of automorphic forms on X. The Riemann-Roch
theorem is then an expression for the difference

dim(A(D)) - dim(A(D*)).

If now ζ is in the commensurator of Γ and if H(TξΓ) is the corresponding
Hecke operator, then, proceeding geometrically, Shimura [25] explicitly
evaluated

tτ(H(nT)\A(D)) - tτ{H(TζΓ)*\A(D*))

in terms of the data at hand. On the other hand, using the Selberg trace
formula, this difference can also be interpreted as a finite sum of orbital
integrals, these being computable entities, as their Fourier transforms are
known. And, of course, when all is said and done, the two approaches yield the
same final results.

2. Irreducible unitary representations

of the universal covering group of SU(1,1)

Denote by G the universal covering group of G = SU(1,1). Then the
irreducible unitary representations of G were classified infinitesimally by
Pukanszky [21] and realized globally by Sally [23]. They fall into several series,
as follows.

Principal series. The representations 7r(σ, v) in this series are indexed by two
parameters σ and v, where

-1/2 < σ < 1/2, v e / T R ,

excluding the pair (1/2,0). Call Θσ v the corresponding character.
Complementary series. The representations 7r(σ, v) in this series are indexed

by two parameters σ and v, where

-1/2 < σ < 1/2, 0 < v < 1/2 - |σ|.

Call Θσ v the corresponding character.
Discrete series. The representations π(τ) in this series are indexed by a

parameter T, where

T > 1/2, r < -1/2.

Call Θτ the corresponding character.
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Pseudo discrete series. The representations ττ(τ) in this series are indexed by
a parameter T, where

0 < T < 1/2, 0 > T > -1/2.

Call Θτ the corresponding character.
Limit of discrete series. The representations τr( + l/2) in this series are the

two irreducible constituents of ττ(l/2,0). Call Θ ± 1 / 2 the corresponding char-
acter.

The list is then completed by adjoining the trivial one-dimensional represen-
tation 7r(0) with the character Θo.

Of the above, the elements of the complementary series and the pseudo
discrete series, together with ττ(O) are nontempered.

In passing, we mention that one can then define the τr(σ, v) for all real σ
and all complex v. Of course, in terms of the characters, there is an equality

Moreover, the various embeddings at points of reducibility can be determined
in the usual way (cf. Molchanov [14] and Sally [24]).

In the sequel, we shall need to deal primarily with the π(τ), the principal
and complementary series playing virtually no role at all. Because of this, it
will be best to consider the 7r(τ) in a little more detail.

Since Θτ = Θ_τ for T > 0, the representation conjugate to 7r(τ) is π(-τ).
Accordingly, there is no loss of generality in taking T nonnegative. Let D be
the open unit disk in C. Then, VT ̂  0, Sally [23] introduced a certain Hubert
space Hτ(Ό) of holomorphic functions in D and realized ττ(τ) on Hr(Ό) as a
multiplier representation. To be specific, it is necessary to describe G.

Thus, starting with

'a β"

J «.
set

Ω = β/a, ω = arg(α),

where ω is defined mod2w. Plainly, |Ω| < 1 and

« = ,e " , , β =
A-|Ω|2

Consequently, G can be parametrized by the (Ω, ω), namely

G= {(Ω,ω): | Ω | < 1,-w < ω < ?r}.



26 GARTH WARNER

The same parameters serve to describe G, the only difference being that
distinct ω give rise to distinct elements of G, i.e.,

G = {(Ω,ω): | Ω | < l , - o o < ω < + o o } .

The canonical projection p: G -> G is the map

p(Ώ,ω) = (Ω,ω(mod2ττ))

and has for its kernel the discrete, central subgroup {(0,2nπ): n e Z}.
The group G operates on D by linear fractional transformations, hence, by

projection, so does G:

That being, consider now the function

7(τ:?): G

defined by the rule

Then J(τ) is a multiplier in that

j(τ: (Ω',ω')(Ω",ω"),ζ) = /(

And, using J(τ), one can realize π(τ) on #T(D) by putting

ir(τ)(Ω,ω)/(τ) = / ( τ : (Ω,ω)"1,?)/((Ω,ω)"'

Let Gn be the covering group of G of degree «. Then

Gn = {(Ω,ω): |Ω|< 1, -nπ < ω < nπ)

and there is a commutative triangle:

G-
i

The τr(τ) which drop to Gn correspond to the τ e (2M)"1 N. Suppose that
T = m/2n. We then have:

(1) m > 2n => τr(τ) is in the discrete series and is integrable.
(2) n < m < 2n => τr(τ) is in the discrete series but is not integrable.
(3) m = n => 77(τ) is in the limit of the discrete series.
(4) m = 1,2,..., n - 1 => ττ(τ) is in the pseudo discrete series.
(5) m = 0 => π(τ) is the trivial one-dimensional representation.
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3. Parametrization of the line bundles on X

Let I be a compact Riemann surface of genus g > 1. Then, by the
uniformization theorem, X = Γ \ D, where Γ is a discrete, strictly hyperbolic,
cocompact subgroup of H = G/{±I). Owing to a classical theorem of
Petersson [19], Γ can be lifted to G in the sense that there is an injective
morphism /: Γ -> G such that it, followed by the canonical projection G -> H,
is the identity on Γ. This has been reproved by Patterson [16] who then goes on
to show that Γ can actually be lifted to i/2(g_1}, the covering group of H of
degree 2(g - 1). Since H2(g_1) can be identified with Gg_l9 we can and will
assume that Γ sits inside Gg_v

Recall now that by definition, a factor of automorphy for Γ is a function

/: Γ x D - > C X

such that Vγ e Γ, 7(γ, ?): D -> C x is holomorphic and satisfies the condition

The automorphy factors for Γ form a group under multiplication. Further-

more,

Pic( X) = group of holomorphic line bundles on X

_ group of automorphy factors for Γ
group of trivial automorphy factors for Γ '

an automorphy factor being termed trivial if

"'*' h{ξ) '

h a holomorphic function on D without zeros. In fact, attached to every / is a
holomorphic line bundle on X:

£ft = Γ \ D X C,

where

γ •(?,*) = (γ ?,/(γ,?)*)
Equivalent automorphy factors give rise to isomorphic line bundles and, as is
well known (cf. Gunning [9]), every ££e Pic( X) is of the form oSP, for some /.
It is clear that the space of holomorphic cross sections for JSf7 can be identified
with the holomorphic functions /: D -> C such that

Agreeing to write 7(τ) = l//(τ), let χ £ f , the unitary character group of
Γ. Then
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is an automorphy factor for Γ, thus determines a holomorphic line bundle on
X, call it ^(χ,k), the Chern class of which is exactly k itself. In particular,
1(1: γ, ξ) is the canonical automorphy factor, thereby determining the canoni-
cal bundle

Lemma 3.1. Given a holomorphic line bundle S£ on X, there exists a unique
pair (χ,k) such that ££ is isomorphic to £P(χ,k).

(Up to language and notation, this is due to Gunning [6].)
So, the J£(χ,k) exhaust the elements of Pic(X). Naturally, on abstract

grounds,

P i c ( * ) ~ f X Z,

and this is reflected in the relations

X(χ\ k')X(χ", k") = Se{χ'χ", k> + k"), JSP(χ, A:)"1 = Jί?(χ, -k).

Bear in mind too that f ~ Jac(Λ').

With K = fc/2(g - l),put

Then the Riemann-Roch theorem asserts that

o ( χ , κ ) - o ( χ , l - κ ) = (2ιc

In a word, our objective is to prove this using representation-theoretic tech-

niques (cf. infra.)

4. Deduction of the Riemann-Roch theorem
For the sake of simplicity, we shall henceforth write G in place of Gg_x.

With this understanding, let χ e f and denote by L2(T \ G\ χ) the represen-
tation space for Indp(χ). Then the Selberg trace formula says that for any
a e (^7l(G), the L1 Schwartz space of Harish-Chandra, the operator LΓ^G.χ(a)
is trace class, its trace being on the one hand

ΣΛm(χ9π)θw(a)9

77-eG

and on the other hand

Σ x(γ)vol(Γγ\Gγ) / a(χ-*
{γ}r JG\G

Here, we use the customary notation of the subject (cf. [15]), which can
therefore remain unexplained. Note that the function

m: f X G-+N

(χ,ττ) -> m(χ,ir)
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possesses the symmetries

m(χ,v) = m(χ,ττ), m(χ,ir) = m(χ,π).

Suppose now that D is equipped with the G-invariant Riemannian structure

in which it has curvature - 1 . Then the volume of X = Γ \ D is 4π(g - 1).

Assigning to Γ counting measure then determines a Haar measure on G by the

requirement of compatibility

τ
In terms of the Iwasawa decomposition G = K A N, this determination is

the same as the specification

/ f(x)dc(x)= f Γ Γ f(θ,t,Oe'dθdtdξ,
JG JK J-oo •'-oo

where vol(i^)= 1.
Put

Then, for \k\ > g - 1, d(κ) is just the formal degree of the discrete series

representation π(κ) (in the agreed to normalization of the Haar measure on

G).

Turning to our proof of the Riemann-Roch theorem, recall first that for

K > 0,

o ( χ , κ ) = m(χ,τr(/c)),

this by the duality theorem (cf. Mackey [12] or Maurin and Maurin [13]). Next,

observe that there is no loss of generality in taking K > 0 throughout. For if

the contention has been established for K ̂  0, then K < 0 => 1 - K > 0, so,

switching the roles of χ and χ,

o ( χ , l - K) - o ( χ , l - ( 1 - K)) = (2(1 -K)- l ) ( g - 1)

or still

as desired. Of course it is automatic that for negative K,

k < 0 being the Chern class of J^(χ, k).

It will be convenient to distinguish three cases.

(1) k > 2(g - 1). In this situation, π(κ) is integrable. Therefore one can

proceed as in Langlands [11], feeding into the Selberg trace formula a coeffi-

cient

aκ(x) = d{κ){π{κ)(x)υκ,υκ) ,
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υκ a normalized AΓ-finite function in HK(Ό). Thanks to the Schur orthogonality
relations,

1 if 77 =

But, in view of the Selberg principle, all the orbital integrals

M7 γ \G * y

vanish except for the one corresponding to γ = 1. Consequently, we end up
with the equality

that is,

which is the Riemann-Roch theorem in this case.
To make further progress, we need a lemma.
Lemma 4.1. Let g — 1 < k < 2(g - 1). Then there exists a K-finite aκ e

CC°°(G) such that for every tempered π,

ifπ = π(κ),

i/77 Φ 77(κ).

(For k in the indicated range, 77(/c) is square integrable but not integrable.
Thus, aκ is a quasi-coefficient for π(κ). As for the lemma, it is a special case of
a general result due to Clozel and Delorme [2] (applicable even though, strictly
speaking, G is not linear). In our particular setting, it can also be deduced by
an easy extension of the classical methods of Ehrenpreis and Mautner [3].)

(2) 0 < k < g - 1 or g - 1 < k < 2(g - 1). By symmetry, it will evidently
be enough to look at the k in the range g - 1 < k ^ 2(g — 1) (since 0 < /c <
1/2 => 1/2 < 1 — K < 1). Take now aκ per the lemma and insert it into the
Selberg trace formula. Then, of necessity,

θ .(α.) = 0

for all 77 e G with the exception of

77 = 77(κ), 77 = π(κ — 1 ) .

Tacitly, an obvious continuation argument vis-a-vis the links has been invoked
(cf. [22]). The connection between π(κ) and π(κ — 1) is exhibited by the
reducibility of the principal series representation π(κ,κ - 1/2), giving the
character identities

θ«-i,«-i/2 = Θκ + &κ_λ (1/2 < JC < 1),

θo.1/2 = Θ i + θ-i + Θo ( κ = 1 )
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Evaluating at ακ, we conclude that

0 = θ.(α.) + © ^ ( α j (1/2 < κ < l ) .

Because Γ is strictly hyperbolic, the Fourier transform of the orbital integral

a κ ( χ - ι y x ) d C Λ G ( x ) ( y Φ l )
Gγ\G

admits an expansion in terms of the characters of the principal series, hence
must vanish. Accordingly, all that remains is the equality

m(χM*)) ~ *n(xM* ~ 1)) = «κ(l)vol(Γ\G).

By the Plancherel theorem for G, ακ(l) = d(κ) and, as before,

But m(χ, π(κ)) = o(χ, K), so, to finish up, we have only to note that

m(χ,π(κ - 1)) = m(χ, π{κ - 1) ) = m(χ,ττ(l - *)),

the term on the right being precisely o(χ, 1 — K).
A similar, albeit slightly simpler argument will serve to complete the

discussion.
(3) k = g — 1. The contention is that

o( X , l/2) = o(χ,l/2)

or, what amounts to the same, that

or still

This is familiar. Indeed, it is well known (and follows from what is said in
Clozel and Delorme [2] or Ehrenpreis and Mautner [3]) that one can find a
A-finite function α 0 e C™(G) such that for every tempered π,

+ 1 if 77 = ττ( + l / 2 ) ,

{0 if πΦir(±l/2),

so, by linking, Θ w (α 0 ) = 0 for all nontempered TΓ too. Our assertion is thus
immediate.

5. Some remarks on the multiplicites

The calculation of the multiplicity m(χ, 7r(κ)) is an important problem that
is not yet completely solved. A few words on this subject thus seem to be in
order.
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We can and will assume that /c is nonnegative. Then

1 > K > 1/2 =* m(χMκ)) > (2κ

The two extreme possibilities in the range 0 < K < 1 are actually direct since

i f X = ! '
i f χ φ L

The crucial case is therefore when 0 < K < 1, i.e., in terms of the Chern class,
whenO < A: < 2(g - 1).

This puts us square into the realm of special line bundles (or divisors). For
an introduction to this circle of ideas, the reader is referred to Griffiths [5]; a
systematic treatment can be found in Arbarello et al. [1] (the diagram on p. 205
of this reference is especially illuminating). The theory, as has been developed
by the geometers, can be carried over to f via its identification with the
Jacobian of X. Naturally, the fact that f is a complex analytic manifold is
decisive here and essentially controls the situation (as one would expect, in
view of Torelli's theorem).

Thus, let 0 < k < g - 1 and denote by f k the set of all χ such that
«£?(χ,A:) admits a nontrivial holomorphic cross section or, equivalently, such
that m(χ,π(κ)) is positive. Then it turns out that tk is a /:-dimensional
irreducible complex analytic subvariety of f, possibly with singularities (ex-
cept when k = 1). At the nonsingular points of f̂ , m(χ, π(κ)) = 1, but on the
singular locus, m(χ,π(κ))> 1. The complement f - fk is an open dense set
of full measure so, generically, m(χ,τr(/c)) = 0. Still, m(χ,ττ(κ)) will be
positive whenever χ e f h hence nontempered representations will assuredly
occur in L 2 ( Γ \ G; χ). Passing to conjugates, we see that for g - 1 < k <
2(g - 1),

again, generically. Furthermore, in both cases, a priori upper bounds are
provided by Clifford's theorem and its variants in that

m(xM«)) < ί*/2] + 1 (0 < k < 2(g - 1))
with the usual improvement on the right of X is not hyperelliptic.

To close, let us consider one simple example.

Take x of order 2(g - 1), k = 1. Then
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Suppose now that

Then <£?(χ, 1) is isomorphic to a point bundle and, in addition, such a point
must be a Weierstrass point for which 2g - 1 is a gap. Because the number of
Weierstrass points is finite, this forces an ex ante restriction on the possible
occurrence of π(l/2(g - 1)) in L 2 (Γ\G; χ). In this connection, recall that
on a hyperelliptic surface, the gap sequence at a Weierstrass point has the form
1,2, ,2g — 1 and that there are, altogether, 2(g 4- 1) Weierstrass points.
The other side of the coin is a normal surface. Such a surface has g3 - g
Weierstrass points, the map sequence at a Weierstrass point having the
form l, , g - l , g + l. Accordingly, if g > 2 and X is normal, then
^(Kg ~ 1)) cannot occur in L 2 (Γ\G; χ). Letting χ = 1, this means that
π(l - Kg - 1)) m u s t occur in L2(Γ \ G) with multiplicity g - 2. This repre-
sentation is square integrable but not integrable. Nevertheless, its multiplicity
has the form (2/c — l)(g - 1), the same as its integrable counterparts, yet the
parameter value is to the left of κ = 1 and the multiplicity of 7r(l) in
L2(Γ \ G) is always g and not g - 1.
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