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COMPLETE SURFACES
OF FINITE TOTAL CURVATURE

BRIAN WHITE

Dedicated to S. S. Chern and Robert Osserman

Let M be a connected oriented two-dimensional surface immersed in R" and

complete with respect to the induced Riemannian metric. Let K(x) and B(x)

denote the sectional curvature and the second fundamental form, respectively,

of M at x. In this paper we give simple proofs of the following theorems.

Theorem 1. // j M \K~\ is finite, then M is of finite topological type, i.e. M is

homeomorphic to M\{pv- , pk), where M is a compact surface.

Theorem 2. If jM\B\2 is finite, then fMK is an integral multiple of 2 π (or of

4π in case n = 3).

Theorem 3. If f \B\2 is finite and if M is nonpositiυely curved with respect to

each normal direction, then M is properly immersed and the Gauss map extends

continuously to all of M.

Theorem 1 (which is really intrinsic) is due to Huber. Indeed Huber [5]

showed that M is actually conformally equivalent to a punctured Riemann

surface. We include a proof to make this paper self-contained and because we

need a corollary of the proof.

Theorems 2 and 3 were proved for minimal surfaces by Osserman in case

n = 3 and by Chern and Osserman in general ([7], [3]; see also [6] for a

nice exposition). Their elegant proofs, like so much of the theory of two-

dimensional minimal surfaces, rely heavily on complex analysis. Indeed, the

author was very surprised to realize that their hypothesis of minimality was not

really required. (In the statement of their theorems, / \K\ rather than f \B\2 is

assumed to be finite; but for minimal surfaces |2?|2 = -2K so the assumptions

are equivalent. Of course, in general, finiteness of f \K\ is a much weaker

condition than finiteness of / |i?|2.) (Mike Anderson [1] has proved analogs of

the Chern-Osserman theorems for λ>dimensional minimal submanifolds of Rπ.)
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The results of this paper allow one to give easy proofs of some new
regularity results for embedded surfaces in a three-manifold that are minimal
or stationary with respect to an even parametric elliptic integrand (see [10]).

I would like to thank Mario Micallef for helpful discussions, Stefan Luckhaus
for finding a mistake in one of the proofs, and the Centre for Mathematical
Analysis for their hospitality during the preparation of this paper.

0. Preliminaries

1. M is a complete, connected, oriented surface. Except in §1, M is an
immersed submanifold of Rn.

2. K(x) and B(x) are the sectional curvature and the second fundamental
form, respectively, of M at x.

3. If t, y G M, dist(x, y) is the geodesic distance from x to y in M.
4. G2(n) is the Grassmannian manifold of oriented two-dimensional sub-

spaces of R". It is sometimes useful to identify G2(n) with the set of simple
unit two-vectors in Λ2(R").

5. g\M -» G2(n) is the Gauss map, which assigns to each x e M the
oriented tangent plane to M at x.

6. Ω(r) = [x G M:dist(x, x0) < r}, where xQ is some fixed point, and
L(r) = length(3Ω(r)).

1. Finite connectivity

Theorem 1 (Huber). If fM\K~\ < oo, then fMK+< oo, and M is homeomor-
phic to M\{pv- , pk], where M is a compact 2-manifold.

Proof. Fix x0 e M, and let

Ω r = Ω ( r ) = {x G M:d(x,x0) < r},

where d{x, y) is the geodesic distance from x to y. P. Hartman [4] has shown
that 3Ωr is, for almost all r, a piecewise smooth, embedded closed curve. By
the Gauss-Bonnet theorem,

/ (vτT) - n + Σ (exterior angles of Ωr)

(1) , ,
= 2πχ(r)-j KdA = 2ir(2 - 2h(r) - c(r)) - J KdA.

where χ(r), h(r), and c(r) are the Euler characteristic, number of handles,
and the number of boundary components, respectively, of Ωr.
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Let L(r) denote the length of 9Ωr. Note that the left side of (1) is the first

variation formula for L'(r) [2]; so

(2) L'(r) = 2π(2 - 2h(r) - c(r)) - f K.

Since M is complete and noncompact, L(r) > 0 for all r > 0; so

0 < l imsupL'(r)

^ < 2 τ τ ( 2 - 21iminf/j(r)-liminfc(> ) ) - f \K\++ f \K~ \.

Thus the negative quantities on the right-hand side are all finite. But h(r) is a

nondecreasing, integer valued function of r, so this implies

h{r) = some constant h for r > R.

Also, c(r) is integer valued, so we can find a sequence η -> oo with

c(η) = c = liminf c(r) < oo.

Let Aj be the union of Ω(r ) with those connected components of M - Ω(rf )

which happen to be compact. (There may not be any, in which case Ai = Ω(r7).)

Let h{Ai) and c(Aj) denote the number of handles and boundary compo-

nents, respectively, of A . Then

h = h(Q(η)) < h{At) < h{Q(rl+J)) = h

provided j is large enough that At c Ω(r / + y): so

(4)

and clearly c(At) < c(Ω(r,)). By passing to a subsequence we may assume

(5) c(At) = c' ( < c ) .

By (4) and (5), the ̂ 4,. are homeomorphic, with Ai+ι obtained from Ai by

attaching annuli. The result follows immediately.

Corollary 1. L(r) < (2ττ + ίM\K~\)r.

Corollary 2 (Cohn- Vossen). 0 < lim sup L'( r) < 2 TΓ χ (M) - fM K.

Remark 1. K. Shiohama [8] has independently shown by similar arguments

the sharp form of Corollary 2, namely

Remark 2. To deduce (3) from (2) (which only holds for almost all r)

rigorously, we must know that L(r) does not increase by a positive amount on

a set of r 's of measure 0. This fact is also contained in Hartman's paper.



ί

f \B\*L(r)ι/*[( \B\

318 BRIAN WHITE

2. Quantization of total scalar curvature

Lemma. // fM\B\2 < oo, then there exist a sequence η -> oo such that

Proof.

\W f ID I2

1/2

for some A < oo (by Corollary 1 to Proposition 1). Thus

\B\\ <A( \B\\
dQ(r) I •'θΩ(r)

Γ r-1!/* | * | ) * < ^ Γ ί \B\2dr = A[ \B\2 < oo.

But this proves the lemma since j?lar~ιεdr = oo.
Theorem 1. // / M | 5 | 2 < oo, ίλe« JM^= 2πm /or ίome integer m. If

M c R3, ίAe« m w et ̂ w.
Remark. (For readers familiar with geometric measure theory.) Finiteness

of / |i?|2 (or even of / \K\ in case n = 3) immediately implies that the Gauss
image of M is a rectifiable current in G2(n) of finite mass: in the proof below
we show that it is actually a cycle, which is somewhat surprising since g need
not extend continuously to M (Example 2).

Proof. By the lemma, we can find η -^ oo so that

Note that B may be regarded as the derivative of the Gauss map. Thus the
image of 9Ω(r,) under the Gauss map is a set of closed curves of total length

length(g|8Ω(r,))<ε,.

Let 2t be a collection of disks in G2(n) having these curves as their boundaries.
Note we can choose these disks so that

Area(^) = 0(ε?).

Consider first the case M c R3. Let ω denote the volume form on the unit
sphere S2, so that

KdA= ί g # ( ω ) = ί ω= f ω+ / ω,= ί g # ( ω ) = ί ω= f
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where g#(Ω(r,)) denotes the current image of Ω(η). Since g#(Ω(r/)) and Sdi

have the same boundary, g#(Ω(r/)) - 2. is an integral cycle. Since H2(S2, Z)
is a cyclic group generated by fS2 , we have, for some integer mz,

ω = mj ω =

Thus

Let i -» oo and we are done in the case M c R 3 .
In the case M c RM, recall [6, p. 109] that G2(n) embeds naturally as the

quadric {Z\ + Z2

2 4- +Zrt

2 = 0} in CP"" 1 (where Z1? , Zn are homo-
geneous coordinates). The argument proceeds as before, except that ω is now
the Kahler form on CP"" 1 . Again KdA = g#(ω) (see the Appendix for a
proof). Also, H2(CPn~1,Z) is a cyclic group that is generated by any of the
CP 2 's that sit naturally (i.e., as complex projective lines) inside CP"" 1 . For
instance, i/2(CPn~\ Z) is generated by

Σ = {Z2 = ίZ i ; Z4 = /Z3; Z5 = = Zn_λ = 0}.

Thus (as before)

(1) f KdA = ί ω = m[ ω
JM Jg#(M) JΣ

for some integer m. One can check that if Mo = {(z, z2) E C 2 = R 4 : Z £ C},

then g#(M0) = Σ. Thus

f KdA = ί ω .

Combining this with (1) we obtain

f KdA = mi KdA.

But one can calculate that fM KdA = -2m.

3. The Gauss map at infinity

To insure that the Gauss map extends to all of M, /Λ/|^|2 < oo is not
enough (see Example 2): we need an extra condition on the second funda-
mental form. We say that M c R" is nonpositively curved with respect to each
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normal direction at x if

(1) det(« £ ( , ) ) < 0 at x for all normals n to M at x.

This condition is equivalent to the following convex hull property:

If x ^ M Π d(L X B), where L is an (n - 3)-dimensional

, Y subspace of Rn such that T a n M JC Π I = (0) and B is a closed

^ ' three-dimensional ball in Lx , then M Π (L X B) does not

contain any neighborhood of x.

From (1)', note that if M is nonpositively curved with respect to each normal

at x, and if Π: Rn -> R3 is an orthogonal projection such that H(M) is

immersed, then Π(.M) is nonpositively curved with respect to each normal at

U(x).

Theorem 3. Suppose fM\B\2<oo so that, in particular, M «

Λf \{/? l5 , pk) as in Theorem 1. Lei U be a {punctured) neighborhood of p λ

in M. If

(1) M c R3 #72 J K does not change sign in U or

(2) M c R" and U is nonpositively curved with respect to each normal

direction, then

(3) the Gauss map extends continuously topγ (i.e., l im x _ / ? i g(x) exists) and

(4) M is properly immersed near pλ (i.e., l i m ^ ^ |JC| == oo).

Proof. For simplicity assume M has only one end: M ~ M \{ p }. (We can

always modify M outside of U so that this is the case.) By the lemma in §2, we

can find a sequence of open sets

Qx c Ω2 c U Ωi = M (Ω,. compact)

with / 3 Ω \B\ -» 0. As in the proof of Theorem 1, let At be the union of Ω7 with

the compact components of M ~ Ωz. Then:

Aλ c A2a - - UL4, = M [A( is compact),

dAi has exactly one component,

|Λ|-*O (since a^.caa.).

But

length(g |ΘΛ z . )< ί \B\-+0;

JdAt

so, by passing to a subsequence, we may assume that

(2) g(3^,) c an ε, neighborhood of some P e G2(n), εt -* 0.
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Now consider first the case M c R 3 , s o P e 5 2 ( * G2(n)). Since \K\ < \B\2,

we have

(3)

for sufficiently large /. On the other hand, since K is the Jacobian determinent

of the Gauss map,

(4) L ~A κ=Ls>deg{v)'
where deg(f) is the degree of g \ Ai+1 ~ Ai at v:

deg(ί ) = #{x eAi+1 - Ai\g(x) = υ and K > 0}

- # { J C G ̂ 4/+1 ~ ̂ 4; :g(x) = i; and ΛΓ < 0}.

Since ΛΓ does not change sign,

|deg( ( ; ) ! = # { *

Thus by equation (3) and (4)

(5)

Since deg(ι ) is constant (modulo sets of measure 0) on connected components

of S2 - g(d(Ai+1 - At)) and since

it follows that deg(ϋ) is constant on S2 ~ Bε (P). But then by (5), this

constant must be 0. Thus

{x ^Ai+ι - Ai\g(x) = υ and KΦ 0} = 0 if υ £ B ε(P),

i.e.,

(6) g{x^Aι + 1-Ai:K(x)Φ0]czBει(P).

But if N is any compact surface with boundary immersed in R3, then

g{x<ΞN:K(x)Φθ}Ug(dN)

is dense in g(N). (One shows with the Codazzi equations that int{x e

Λ :̂ ΛΓ(Λ ) = 0} consists of straight line segments along which g is constant: see

[9, V2] or any other treatment of developable surfaces.) Thus (6) implies

Since ε, -» 0, limx^pg(x) = P.
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To prove conclusion (4) of the theorem, suppose P is the ev e2 plane and let
Π: R3 -> P be orthogonal projection. Let U be a small enough neighborhood
of P that

( 7 ) \g(x)-P\<± iϊxeU

(so the tangent plane at M at each x e U is sloped < 30° with respect to the
horizontal). Let Γ be the Riemannian metric on U induced by the orthogonal
projection Π: U -> P. By (7), Γ is a nondegenerate metric and is pointwise
comparable to the original metric on U c M (i.e., the metric induced from R3).
In particular, U is also complete with respect to the metric Γ. Now let x e U
and let γ c U be a curve (a Γ-geodesic) which realizes the Γ-distance from x
to dU. Then Π(γ) must be a straight line segment joining U(x) to U(dU). By
(7),

distM(x,dU) < (sin30°)~1(lengthof Π(γ))

< (sin30°)"1(dist(n(x),n(3i/)) 4- diamΠ(3ί/)).

As x -» p, the LHS -> oo, hence |Π(x)| -> oo, which proves conclusion (4).
This completes the proof in the case M c R3.
Now suppose M c Rw, n > 3, and let Λ, be as above so that (2) holds. Let

Π be orthogonal projection of Rn onto a three-dimensional subspace and let

M' = Π(M), A\ = 11(^4,), ϋ:' = sectional curvature of M'.

Suppose we can choose Π so that, for sufficiently large /, M' ~ A] is
immersed and (2) and (3) still hold, i.e., so that

(2)' g(3^4 ) c an ε, neighborhood of some P' G S2, where ε,- -> 0,

(3)'
1.

Note ΛΓ - 4̂̂  will also be nonpositively curved at each point. Then the proof
above (for n = 3) shows that M' - A\ has a well-defined Gauss map at pf.
Furthermore, if we can find several different such projections Π, then this
forces M - AxΛo have a well-defined Gauss map at /?, thus proving conclusion
(3) of the theorem; conclusion (4) then follows exactly as it did in the n = 3
case.

How do we know that enough such projections Π exist? First, (2)' will hold
provided (kerΠ) Π P = (0). That there exist many IΓs satisfying (3)' is a
consequence of the following integral geometry theorem.

Proposition. Let M be a surface in Rn such that the image of M under its

Gauss map has area A < oo. For υ e RM, |ι>| = 1, let

Π0:R ^(ι;)\ Π » = u -(« v)v.
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// (1) n > 5, or if (2) n = 4 and A is sufficiently small, then there exists a set of

unit vectors υ e Rn of positive measure such that HV(M) is immersed and the

image of Uυ(M) under its Gauss map has area ^ cnA.

Proof. Let

ST= {(ω,ϋ):ω e G2(/i), ϋ e ω, |u| = 1},

,ί;)) = ω,

(so px :y-> G2(«) is the natural circle bundle on G2(n)). Note if υ e 3BW is
not tangent to M at any point, i.e., if v £ P2(PΐJ"(g(^))> then Π ϋ(M) is
immersed. Since

So if n > 5, then for almost all t;, Hυ(M) is immersed; and if n = 4, then
there exists a set of ϋ e 3B4 of measure > f^ 3 (3B 4 ) for which Π ^ M ) is
immersed, provided c^ < }Jf3(3B4).

Now Π υ induces a map Π^ on two-planes (i.e., simple unit 2-vectors in
Λ2R")by

ft Λ Λ - ( ω Λ t ; ) L t ;

Π ^ ω ) " \(ωΛv)lv\

(So if ω is the simple unit 2-vector associated with a plane p c R", then
Πt,(ω) is the simple unit 2-vector associated with Π(P).) From this formula
one readily calculates

Thus

I (Area of Gauss image of Π υ (M)) dυ

= / ^ (Areaof ΐlo(g(M)))dυ

< I I \DTlυ(ω)\ dωdv
Λ>e8B" Jω<=g(M)

< I I \ω Λ v\~2 dvdω

= [ A r e a ( g ( M ) ) ] j \{e1 Λ e2) A υ\~ dυ

= [Area(g(M))] f (l -(v eλ)
2 -(v e2)

2s)'ldv.
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One readily computes that this integral is finite if n > 4. Thus there is a set of
υ e 3BW of measure > f^M(ΘBw) for which

Area of Gauss image of ΐlυ(M) ^ cn^4.

4. Examples and open questions

1. If M is the graph of z = λ(l + JC2 + >>2)1/2, then

f K= Area of g(M)

may be made arbitrarily close to 0 by choosing λ small. Note also that
\iτnx^O0g(x) does not exist.

2. Let M be the graph of a smooth function z = W(JC, y) which away from
the origin is given by

u(x, y) = xsin(log(logr)) (r = {x2 + y2).

Then \Du\ is bounded, so

\B\2dA < C\D2u\2dxdy.

Also, \Du\2 = Θ((rlnr)~2)so

f \B\2^ Cf \D2u\2< oo.

However

^— (JC,O) = sin(log(logr)) + ^((logr)"1)

so the Gauss map is not well defined at oo.
3. Let M be a smooth surface in R4 which, away from the origin, is the

image of

X(r,θ) = r(cos0cos(lnlnr), sin0cos(lnlnr),

cos θ sin(ln In r), sin θ sin(ln In r)).

Then

\dX/dr\2 = 1 +(lnr)~2, \dx/dθ\2 = r2, (dX/dr) -(dX/dθ) = 0.

From this one readily sees that M is complete and calculates that

K= -r~2(l +( lnr) 2 )" 2 < 0, \B\2 = ^((lnr)" 2/-" 2).

So / |2?|2 < oo. On the other hand, for r large the tangent plane to M at
X(r,θ) is approximately

{(z,w) E C 2 = R4 zsin(lnlnr) = wcos(lnlnr)}.
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Thus l i m ^ ^ g(X(r,θ)) does not exist. Hence negative sectional curvature is

not sufficient for Theorem 3.

4. Does j M \B\2 < oo imply that M is properly immersed?

5. In Theorem 3, does M c R 3 , K > 0 in U imply that U is totally geodesic?

6. Can the case n > 3 of Theorem 3 be proved directly, without projecting

M into a three-dimensional space?

Appendix

Proposition. (1) Up to a scalar factor , there is a unique two-form ω on G2(n)

which is invariant under the Θ(n) action on G2(n). In particular , the restriction

to G2(n) of the Kάhler form η on CPn~ι to G2(n) is such a form and is not zero,

so any such ω is a multiple of η.

(2) If M is a surface in R", then KdA = g # ( ω ) for such a two-form ω.

Proof. Let P be an oriented two-plane in Rw: we will determine ω at P.

Let ev e29 εv ε2, , εn_2 be an orthonormal basis for Rn such that el9 e2 is an

oriented basis for P. Note that the two-planes near P are in one-to-one

correspondence with simple two-vectors of the form

Thus we have as an orthonormal basis for the tangent space to G2(n) at P

uλ = e, Λ ε/? ϋ. = ei Λ e2 ( l ^ / < n - 2).

Let { ί/1', Vi} be the dual basis of one-forms. Then

(*) « ( ^ ) = Σ *iPl Λ ί / 7 + Σ βijU* Λ F + L yuV
ι Λ FΛ

Let φ be the isometry of Rn which maps ελ to -ε! and which leaves the other

basis vectors fixed. Let

( φ * < υ ) ( P ) = Σ <jU' Λ ί / ^ Σ β'ijU* ΛVJ+Σ Ί l F A VK

Then

a[2= (φ*ω)(ul9u2) = ω ( φ # ( « 1 ) , φ # ( n 2 ) ) = ω(-w 1 ?w 2) = - α 1 2 .

But αj 2 = a12 by the invariance of ω. In the same way one sees that

«iy = Λy = i8,! = Yiy = ° u n l e s s J = l

and (repeating the argument with ε instead of εx):

«,7 = Yiy Ξ °' βij = ° ( u n l e S S ' = ^')

SO
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Since this is invariant under any isometry that permutes the ε/s
1Λ V\

Finally, since any other plane may be mapped to P by an isometry of R", β
does not depend on P.

As for (2), it is not hard to check that

KdA = g # ( E ί / ' Λ V').
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