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GENERALIZATION OF BERGER'S THEOREM
ON ALMOST

1/4-PINCHED MANIFOLDS. II

O. DURUMERIC

1. Introduction

Let (Mn, g) be a compact, smooth Riemannian manifold and let K(M, g),
d(M,g\ i(M,g), and (M,g) denote its sectional curvature, diameter, injec-
tivity radius, and Riemannian universal cover, respectively. In this paper, we
investigate Riemannian manifolds of positive sectional curvature. For normali-
zation, we take K(M, g) > 1. Let Sw(l), RP"(1), CPW, HP", CaP 2 denote the
standard sphere of radius one, the projective spaces on real, complex numbers,
and quaternions, and the Cayley plane with their standard metrics, respec-
tively. Sn(l) and RPW(1) have constant sectional curvature 1, while the rest
have 1 ^ K( ) < 4. The diameter of Sn(l) is π, and the rest have diameter
π/2. These Riemannian manifolds, except RPn(l), are all of the compact
simply connected symmetric spaces of rank 1, up to a constant factor of the
metric.

If K{M, g) ΞΞ 1, then (M, g) is isometric to Sn(l) [37, p. 69]. By the classical
Sphere Theorem [1], [26], [7]: If 1 < K(M, g) < 4, then M is homeomorphic
to Sn. This result is optimal by the examples above. In [1], M. Berger proved
the rigidity theorem: If 1 < K(M, g) < 4, then either M is homeomorphic to
Sn or (M, g) is isometric to a symmetric space of rank 1. Recently, M. Berger
obtained that for even n, there exists a universal constant ε(n) > 0 depending
only on n such that if 1 < K(Mn, g) < 4 + ε(n), then either Mn is homeo-
morphic to Sn or diffeomorphic to C P n / 2 , HP"/ 4 , or CaP 2 [2].

Some generalizations of the above were given involving the diameter of
(M, g). Bonnet: If K{M, g) > 1, then d(M, g) < TΓ [7, p. 27]. The rigidity for
the maximal diameter is obtained by Toponogov: If K(M,g)>l and
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, g) = 7Γ, then (Λf, g) is isometric to Sn(l) [7, p. 100]. Grove and Shiohama

generalized the Sphere Theorem: If K(M, g)>\ and d(M, g) > π/2, then M

is homeomorphic to a sphere [21]. Gromoll and Grove showed that Berger's

rigidity theorem can also be generalized [15]—[18]: If K(Mn, g) > I and

d(M, g) = π/2, then either (i) Mn is homeomorphic to Sn, isometric to

CPn/2, H P " / 4 , (ii) Mn is simply connected and has the cohomology ring

structure as of C a P 2 , or (iii) Mn is not simply connected, with (M, g) being

isometric to Sn(l) or CPn/2.

In this paper, we will prove some results which extend [15], [17] in the

cohomological sense, and generalize [2]. These results were announced in [11].

The author wishes to thank U. Abresch, D. Gromoll, K. Grove, W. Meyer,

and W. Ziller for helpful discussions and bringing to his attention that the

limit metric is C1. S. Peters proves that the limit metric is C l α in the general

case in [32]. Using similar methods we will give a proof of the limit metric

being C 1 in a particular sense (see §5.0) for the completeness of our paper, and

obtain further properties which will be used in the proof of the main results.

2. Main results

Theorem I. Let n ^ 2, K > 4, and ε0 > 0 be given. There exists δ 0 =

δo( K, n, ε 0) > 0 such that for any n-dimensional smooth Riemannian manifold

(M, g) with

(ii) d(M,g)>π/2-δ0, and

(iii) i(M, g) > ε0, if n is odd,

we have either

(a) M is homeomorphic to a sphere, or

(b) πλ(M, p) = 0 and H*(M,Z) is a truncated polynomial ring with one

generator in Hλ(M, Z), where n = kλ, n is even, k e N + , k > 2, λ = 2, 4 or

8, and if λ = 8 then k = 2 and n = 16, or

(c) ir(M, p) Φ 0 and there exists a C°°-Riemannian metric g' on M with

K(M,g')^ 1 and d(M,g') = π/2, that is (M,g') is isometric to Sn(l) or

CPn/1.

Remarks. (1) If n is even, condition (iii) is irrelevant and δ 0 = δo(K, n)

since i(M, g) > π/(2jK). By the work of Cheeger [6], condition (iii) can be

replaced with a lower bound for the volume of M, for all n.

(2) (b) is not the best possible conclusion which should be "diffeomorphic to

C P ' I / 2 , H ? w / 4 , or C a P 2 . " Under a stronger hypothesis this can be obtained

(Theorems HA and B).
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(3) In (c), if n is even, then there are at most two possibilities:

(i) (M, g') is isometric to RP 2 5(1), n = 2s, s e N + .

(ii) (M, g') is isometric to CPS/I, n = 2s, s ^ 3 and odd, where / is an

orientation reversing involution of CP 5 ; there is only one such space up to

isometry.

If n is odd, then (M, g') is isometric to £"(1) (see [17] and [37]). Hence the

diffeomorphism types of M are completely determined.

Theorem HA. Let n > 4, K > 4 be given. There exists δλ = δλ(K,n)> 0

such that for any n-dimensional smooth Riemannian manifold (M, g) with

(ii) i f * ( M , Z ) = Z[x]/xk + ι, k>3, x^ Hλ(M,Z) for λ = 2 or 4, and

771(M, /?) = 0, and

(iii) 3/?l9 /?2, /?3 G M^wc/z ί/z^ J(/?y, /?y) > V 2 ~ δ i ( ^ w), VI < / <y < 3,

we Λαi e M diffeomorphic to CPk or HPk.

Theorem ΠB. Let n > 4, ϋ: > 4 te gwe/i. 77iere e cw/j δx = δλ(K, n) > 0

that for any n-dimensional smooth Riemannian manifold (M, g) with

(ii) 7rx(M, /?) = 0 £wiέ/ if *(M,Z) = Z[JC]/JC3, JC e if λ (M,Z) /or λ = 2, 4,

or 8, αwJ

(iii) d(M, g) > 77/2 - δλ and V/71V/?2Ξ/?3 ŵc/z //zα/ d(pl9 p2) > *π/2 - δλ

implies that d(pt, p3) > m/2 - δλ for i = 1 and 2,

then we have M diffeomorphic to CP2, HP 2 , or C a P 2 .

Corollary I. Let n > 2, K ^ I be given. 3δλ = δι(K,n)> 0 such that any

smooth Riemannian manifold (M, g) w/ϊ/z 1 < K(M, g) ^ K and i(M, g) >

τr/2 — δx is homeomorphic to a sphere or diffeomorphic to RP", CPk, ΉPk, or

C a P 2 .

The proof of Corollary I follows from Theorems I, ΠA, ΠB, [10, Theorem 2],

[21] and [37]. Obviously [2] is a corollary of Corollary I.

Corollary II (see [17]). Let (M,g) be a C™-Riemannian manifold with

K(M,g)>\, d(M,g) = π/2, 771(M,g) = 0, if*(M,Z) = Z[x]/x3, x e

H\M, Z). Vpyp2Ίp3 G Λf, jttcλ that d(pλ, p2) = *π/2 implies that d(pλ, p3)

= d(p2, p3) = 7r/2, if and only if (M, g) zs isometric to C a P 2 w/ϊ/z /7J standard

metric.

Corollary II does not follow from the statement of Theorem ΠB but it

follows from its proof.

The main idea in proving these theorems is taking a sequence of C°°-

Riemannian metrics (M,gm) with K(M,gm) > 1 and d(M,gm) / π/2, ob-

taining a limit metric which is not necessarily smooth and repeating a proof

modelled on [15], [17]. The limit metric is C l α a priori and there are examples

which are not C 2 in the general context [32]. Even though the first variation
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formula is still valid, the second variation and Jacobi field techniques fail. The
proof of [15], [17] is for C°° metrics; so, although the main idea and steps of
our proof are as in [15], [17], most of their proofs and even the proofs of some
basic facts of Riemannian geometry have to be modified or changed com-
pletely.

In §3, we give the basic notation and definitions. The properties of the limit
metric are developed in §§4-5. In §4, we give the proofs of basic results, and in
§5, differentiability of the metric and local properties are investigated. §6
contains the proof of Theorem I. The nonsmoothness of the limit metric effects
especially the proof of Theorem 6.10. The "differentiability of the metric in a
particular sense" is used in constructing a local parallel translation to obtain
the smoothness of the fibers of some fiber bundles in 6.17. We could not
obtain the smoothness of these fiber bundles in 6.23, and this is the point
where the arguments fail to obtain results on the diffeomorphism types in the
general context. However with stronger hypotheses, results on diffeomorphism
types can be obtained (Theorems ΠA and B). §7 contains the proofs of them.

3. Basic notation

In this text, Mn denotes a compact smooth ^-dimensional manifold with no
boundary. If (M,g) is a C°°-Riemannian manifold, K(M,g) denotes its
sectional curvature.

Let (M, gs) be either a C°° or C°-limit Riemannian metric. ds(p,q) =
d(p, q\ gs) denotes the distance function of gs, d(M, gs) denotes the diameter
of (M, gs). /(/?, M\ gs) and i(M, gs) denote the injectivity radius at a point p
of M or of the manifold with respect to gs. Given a C^submanifold A of
( M , g j ) , then ΓM, U(M, gs% UN(A,gs)9 UT(A, gs) and U(M,gs)\A denote
the tangent bundle, unit sphere bundle, unit normal bundle to A, unit tangent
bundle to A, and unit tangent bundle of M restricted to A, where inner
product is taken by gs. This gs will be dropped only when it is g0, i.e., the limit
metric.

For any metric space (X, d), p e X, A c X, r e [0, oo), we define
B(p,r, X,d)= {x G X\d(x,p)<r} and N(A, r, X, d) = {x e X\ d(x, A)
< r }, with B(p,r, X,d) and N(A,r,X,d) their closures, respectively.

Unless otherwise stated, a normal minimal geodesic γ from p to q with
respect to g satisfies 0 < d(p,y(t)\ g) = t < d(p,q; g). In this case we say
that γ is a mg(/?, q\ g). If γ is the only such geodesic, then it is the
umg(/7, q; g). The set of all mg(/?, q\ g) is MG(/?, q; g). If γ is any C1 curve,
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/(γ, g ) denotes its length with respect to g. For any X c ( M , g), ^ E M, γ is a

mg(/7, X g) means that γ is a mg(/?,#) for some q^X with /(γ, g) =

Any letter of dependence may be dropped if there is no ambiguity.

4. Limit metric and its properties

In this section we refer to [20, particularly Chapters 3, 5, and 8] for all

notation, definitions, and background.

Let S(/ι,Λ,ε0, D) be the collection of all compact smooth ^-dimensional

Riemannian manifolds (M, g) with \K(M, g)\ < Λ2, d(M, g) < D and

i(M,g) > ε0 for given fixed Z>, ε0, Λ > 0. Define VA to be the class of

Riemannian manifolds (M, g) of dimension n, where M is of class C 1 1 (that is

there is a notion of differentiable functions with Lipschitz differential) with

continuous metric tensor, and the distance functions dx: M -> [0, D] defined

by dx{y) = d(x, y\ g) are of class C1'1 (locally and excluding x) with their

derivatives Λ-Lipschitz \fx e M.

If we combine some of the results in [20, 5.3, 8.23, 25, 28 on pp. 65,123,125,

129] (for other proofs also see Peters [32]), we obtain

4.1.0. Theorem (Gromov [20], also see [25], [32]). S(n, Λ, ε0, D) c Vκ for

some Λ' depending on Λ. The convergence of metric structures on S(n, Λ, ε0, D)

in the senses of Hausdorff and Lipschitz coincide. The space of pointed Rieman-

nian manifolds (M, g; p\ where (M, g) e FΛ, d(M, g) < D, i(M, g) > ε0, is

compact with respect to Hausdorff and Lipschitz metrics. Hence, given a

sequence of pointed C°°'Riemannian manifolds (M^, gm, pm) in S(n, Λ, ε0, D),

there exists a convergent subsequence with Hausdorff limit (Mo, g0, p0) e F /̂,

and for sufficiently large m, Mm is homeomorphic to Mo.

4.1.1. As observed in the proof of 8.28 of [20]:

(a) {Mm,gm,pm) -> (Mo, g0, p0) in the sense of Lipschitz and Hausdorff

means that (Mm, gw, pm) converges to (Mo, g0, p 0 ) as metric spaces in the

sense of Hausdorff, and for r < ε0, 5 = 5 ( 0 , r ) c R " is furnished with a

Riemannian metric gm and a distance function dm given by the identification

with B{pm,r\ Mm) via normal coordinates. B is also furnished with a limit

distance function d0 satisfying the fact that dm/d0 converges to 1 uniformly

on (B X B)- diag(£).

(b) Mo is an ^-dimensional C u manifold since inf{/(Mm, gm) \m e N + )

> ε 0 .

(c) ί/^: 0̂ - {x} -> R + is of class C u , where 5 0 = B(x, r, Mo, d 0), r < ε0,

and J^(^) = do(x, y). In fact, dx

n:Bm - {x} -> R + converges uniformly to
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d® in the C 1 sense on the common identification to B — {x} as in (a). Hence

dm/d0 -> 1 in the C 1 sense.

(d) The metric tensor g0 of Mo is continuous and gm -> g0 uniformly on

some coordinate charts (see §5.0).

(e) Vυl9υ2 e TMp - {0}, arccos(g#fi(£;1,i;2)/(||u1||#fI | | ϋ 2 | | J ) = $m(υl9υ2).

Once the convergent subsequence gm -> g0 is taken, then l im^. ,^ gm(vι,υ2)

4.1.2. Since the curvature is bounded uniformly, second derivatives of the

distance functions are uniformly bounded, and the differentials dgm are

uniformly bounded in some coordinates. The distance functions and gm are

bounded on B. Using the Arzela-Ascoli Theorem, convergent subsequences

are extracted [20]. (See §§5.0, 5.1.)

4.1.3. We are concerned with compact manifolds, hence by taking a finer

subsequence, and omitting base points, we can work with (Mm, gm) -> (Λf0, g 0).

4.1.4 (see [32]). Let M be in the same diffeomorphisms class [M]. In this

case (M,gm) -> (A/, g0) in the sense of (4.1.0) means that on a fixed C°°

manifold M, there is a sequence of C°°-Riemannian metrics gm which are

converging to a C°-Riemannian metric g0 uniformly with the stated properties

above. Throughout this paper, the notation gm -> g0 means that the convergence

is in this sense.

4.2.1. Given pv p2 in (M, g0), there exists a curve γ from px to p2 such

that the length of γ with respect to g0 is equal to do(pl9 p2) (see [20], Chapter

I), γ can be parametrized such that ^ ( γ ^ ) , γ(r 2)) = \tλ - t2\. Such a curve is

called a normal minimal geodesic of g0. A curve is called geodesic if it is

minimal locally.

4.2.2. Lemma. Since Mo is compact with no boundary, any geodesic is C1.

4.2.3. Proof (see 5.9, 5.10). Let ε « ε 0 and γ : (-ε, ε) -> Mo be a normal

geodesic. Since d™ -> ^ in the C 1 sense locally, V ^ -> v / uniformly on

5(/?, ε) - {/?} V/7 G M. d^1 satisfies the first variation formula locally. It

follows that γ has to be tangent to v</°, otherwise do(p, γ(/)) = t - t0, where

Y(^o) = P-> ε > t > to> -ε, would not increase linearly with constant deriva-

tive 1.

4.3. Definitions. (1) In the simply connected space form of constant

sectional curvature /c, define p(a; a, b\ K) to be the distance between the two

points which are end points of two minimal geodesies of lengths a and b

starting from the same point and with an angle of a between their initial

tangents, where 0 < a < 77, a, b > 0, and if K > 0 then a,b < m/ {K .
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(2) S"(κ) denotes the sphere of radius κ" 1 / 2 with the standard metric, where

K > 0.

(3) In a geodesic triangle in S 2 (l), with sides of length a, b, and c, all < π,

define a(a, b, c) to be an angle between the sides of length b and c.

4.4. Lemma. There exists a unique exp: TM -> (M, g0) compatible with g0,

that is it takes rays of TMp emanating from 0 to geodesies of (M, g 0) from /?,

V/7 e M, and all geodesies are obtained in this fashion.

Proof. Assume 5.9, 5.10.

4.4.1. Let gm -> g0, as in 4.1. Let r0 e M be such that r0 e

B(Po> εo> ̂ > £o)> w n e r e ^o i s a s i n 4.1.1, and r0 e B. Let rw represent r0 in

(B,gm). For sufficiently large m0 and small /£ «: ε0, exprmtgm:B' =

5(0, Λ, Γ£ r o, g 0) -^ 5 = (B, gm) is defined Vm > m0. || J (exp r J | | c o < C(Λ, R)

on iΓ. Hence /m = exprmigm is a bounded and equicontinuous family on B'.

There exists a subsequence which we denote by fs converging uniformly to a

continuous function f0: B' ^> B. We define expr : Bf -* (2?, g 0) to be f0.

4.4.2. Let q0 e B — {r0} such that do(qo, rQ) < R. ds -+ d0, so, for suffi-

ciently large s, qo&fs(B')9 and 3ys G 5 ' with qo=f,(vs) and γ,(0 =

Λ(Λ'/IKIL) i s a mg^O'tfo; &)• ^ n a s t 0 converge to a.unique υ0 e 5 r , since

/5 -* / 0 uniformly. υ0 Φ 0 by q0 Φ p0, ds/d0 -> 1 and i(M, g5) > ε0. yo(t) =

/o(/ϋo/llϋollo) i s t h e l i m i t o f t h e m s( r o^o; g J s y^O, h e n c e i t s l e n s t h i s

J0(A*0, ^ O ) between r0 and qQ and it is mg(r0, qo\ g0) (see 5.9, 5.10). This shows

that / 0 maps rays from 0 in B' to minimal geodesies from r0 in (B, g0) locally

and f0 is onto J?(r0, R, B, g0).

4.4.3. Let y(t) be a normal geodesic in (B, g0) such that γ(0) = r0. By

4.2.3, γ is C 1 and tangent to vd r° which is Lipschitz (see 4.1.l(c)). Even

though vd®{r0) is not defined, y'(t) is well defined Vt > 0. By the uniqueness

of the solutions of first order ODE given by Lipschitz functions, and / 0 being

onto locally, we have /0(ίγ'(0)) = γ ( 0 Hence:

4.4.4. Around r0 all geodesies from r0 are only given by /0. / 0 is well

defined, it does not depend on the choice of the convergent subsequence of fm.

In fact once gm -> g0 is fixed, then fm -> /0; in order to be compatible with g0,

/ 0 is unique and all subsequences of fm converge to /0.

4.4.5. Suppose given wvw2 <z B' - {0} with 11̂ 110 = 11̂ 110. For suffi-

ciently large m,

By Toponogov's Theorem [7, p. 42],

) > C 2 ( C ! , A, IKHo) if m > 0,
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where f o r m > ° I f Q > °> then C2 > 0 and
£o(Ϋo(0)> to2(O)) ̂  0 (see 5.10). Hence any geodesic is uniquely determined

locally with its initial point and tangent vector. This is true for all r0 (see 4.1.3)

since M is compact, 3 = 0 . It follows that exp0: TM -> (M, g0) is globally

defined, it is unique, and all normal geodesies of (M,g0) are obtained from it.

4.4.6. Remark, exp: TM-+(M, g0) is continuous, but it may not be

differentiable. It is differentiable only in the radial directions. Also

d(exprm)(rm) = Identity Vm, this makes 4.4.5 possible. fm^>f0 in the C°

sense, not C1.

4.5. Toponogov lemma. Suppose given p,q,r e (M, g0), a mg(/?, q; g0) γ,

mg(/?, r; g0) 0, where (M, gm) -> (M, g0) as z/i 4.1 w/Yλ K(M, gm) > K

1. Let dmVm^0be the associated distance function to gm. Then

do(q,r) < P{$O(Ύ'(P)>0

4.5.1. Remarks. (1) If g0 is C0

Theorem [7, p. 43].

(2) A local version of this lemma is given in [2, p. 138, Lemma 3]. We do not

assume that the triangle obtained by attaching a mg(#, r\ g0) lies in

5(/>,εo,Af,go).

4.5.2. Proof. Define qs = y(do(p9q) - l/s) and rs = θ(do(p, r) - l/s)

for sufficiently large s. Assume 5.9, 5.10.

Let s be fixed. Consider γm and θm to be any mg(p,qs; gm) and any

mg(/>, rs; g w ) , respectively. /(γm, gm) = rfw(/?, ^ ) . Since dm/d0 -> 1 in the C 1

sense when J m , J o < ε0, and uniformly on M, given δ > 0 , 3N = N(8) such

thatVw

> do(p,q), do(p,r)'9κ).

then this is the classical Toponogov

- 1 < δ and
dm(p,qs)

Hence, Vm ^ iV(δ),

- 1

do(p>q*)

2δ

- 1

1 - δ *do(PΛs)

Therefore /(γm, g0) -> do(p,qs) as m -» oo. Hence, we take a convergent

subsequence of γ w converging to γ0, a mg(/?, ̂  g0). γ0 has to coincide with γ

between p and qs\ since

(P>q) ~ ~» ^o(/>>tf)|>£o] = do(p,q),

4.2.2 implies that γό(#5) = γ r(^ s) and 4.4.5. This shows that γ0 does not

depend on the choice of the convergent subsequence of γm. By 5.10 and 4.4.5,

y'm(P) -* y\p)- Similar results can also be obtained for θm. By 4.1, gm -> 1
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uniformly as a quadratic form restricted to U{M, g 0). Hence, Vδ, 0 < δ «: 1,

3N = N(δ) such that Vm > N(δ),

and

$»(»>»') < ( ! + «) £ o ( ^ ' ) v ^ ' e ΓM, - { 0 } .

By Toponogov's Theorem [7, p. 43]:

dm(qs9rs) < P(^m(y^p)9θ^(p)); dm(p9qs)9 dm(p9rs);κ)

< p((l + δ) 2 * o ( γ ' ( / > M ' ( / 0 ) ; <U/>>9,) dm(p9rs);κ).

Hence Vδ > 0,

do(qs,rs) < p((l + δ)2$0{y'(p)9θ'(p))'9 do(p,qs), do(p,rs); K),

do{qs,rs) < p(£o(y'(p)> θ '(p))> do(P^s)^o(p,rs); K).

Now let s -» oo to obtain

do(q,r) < p($0(y'(p)9θ'(p)); do(p9q)9 do(p9r);κ).

4.6.1. Corollary. Lέtf p,qe (M, g0), y t e ΰ mg(ήf, p\ g0), ϋ G ΓM^ - {0}

$o(v,y'(q)) < V 2 ~ ε, where ε > 0, α«J (M, g0) be as in 4.5.

exists 0 < δ = δ(ε, /c) < ε0 such that dQ(p,expq gQtv) < do(p9q) V/,

0 < t < δ.

4.6.2. Corollary. Let p, q e (M, g0) α«ί/ q be a local maximum for do(p, •).

Gwe/i α«j ϋ e ΓM^, 3mg(q, p\ g 0) γ ŵc/ί rAΛί ^ 0 ( ϊ ' ( ? ) » y ) < V 2 -

One proves 4.6.2 by using 4.6.1 in [7, p. 107].

4.6.3. Remark. The first variation formula is valid on such (M, g0) by [2].

We obtain the above results as a consequence of a stronger result, 4.5. In fact

Toponogov Lemma 4.5 implies stronger results such as 4.7. A similar form of

4.7 can be proved by using a corollary of Rauch II, [7, p. 31], which is a second

variational technique in the C°° case.

4.7. Lemma. Let (M, g0) be as in 4.1 and 4.5 with K = 1. Letp, q e (M, g0)

W ϋ e I W g o ) , w/YA do(q,p) < ^ ( ^ e x p ^ ^ ί ϋ ) < w/2, Vf G [-δ,δ] /or

56>me δ, 0 < δ «: do(q,p). Let r = exppδυ and γ, # be mg(q, p; g0) and
mS>(q>r> go) respectively, such that 0 < $ 0(y'(q),θ'(q)) <c ττ/2. Z)ς/ΪΛe W(J)

G U(M, go)q to be the unique vector with 0 < s < 7r/2, J ^ 0 ( Ϊ ' ( ^ ) » W ( S ) ) = s>

and $0(θ'(q)> *>(*)) = k " ^ o(0'(qW(q))\. Then Vs,0^s^ π/29

do(expqδw(s),exppδv) < do{q,p).

4.7.1. Proof. By 4.6.1, $0(υ9y'(p)) = π/2. By 4.2.2, y\q) Φ θ\q) and

w(s) is well defined. do(pyq) ^ do(q,r) ^ p(ττ/2; δ,do(p,q);l):= a0 by

4.5.

( 0 ' ( ) ' ( ) ) ( β r f ( O ^ ( ) ) a{δ,do(q,p),ao):= α 0 ,



110 O. DURUMERIC

where the last inequality follows from a(do(p,q),δ,ao) < π/2 and do(q,r)

> do(q,P). ϊoWWMs)) <\s- αol < " A BY 4 5 :

do{apqδw(s),r) ^ p($o(θ\q)Ms)hδ,do(q>&Λ)

< p(\s - α o | ; δ, έ/ 0(ςr,r);l)

< p ( | j - α o | ; δ, Λ O ; 1 ) < p(f - α o ; δ, tfo;l),

since 0 < δ <: do(p,q) < a0 and 0 < α 0 <c π/2. On S 2 ( l) by the second

variation formula, p(ττ/2 - aQ,:δ, ao; 1) < do(p,q).

5. Local properties of the limit metric

5.0. The main purpose of this section is to prove 5.9-5.12. 5.9 and 5.10 are

used in §4, and 5.12 in §§6-7. In order to prove these one needs to have that

the limit metric g 0 of 4.1 is C 1 in some differentiable coordinate charts. S.

Peters obtained Gromov's result [20, 8.28], and showed that in fact g 0 is C l ύ £

in some C 2 θ £ coordinate charts by applying the harmonic coordinates and

estimates of Jost and Karcher [23] to his proof [31] of finiteness results in [32].

§5 can be read from two viewpoints. The first one assumes the work of

Gromov [20] and obtains 5.1-5.5 which give the differentiability notion in a

sufficient sense for the rest of the section. For the second viewpoint, it was

mentioned in Greene and Wu [14] that the proof of Gromov [20] was unclear,

since the equicontinuity of the gm's in the normal coordinates (4.1.2) would

seem to require a uniform bound on the covariant derivatives of the curvature

tensor. For this viewpoint, either one repeats Gromov's proof 8.28 [20] (one

may also use coordinate charts defined by distance functions) in harmonic

coordinates by using the estimates of [23] explained in 5.2, or simply assumes

the results of Peters [32] which imply 4.1, 5.1, and 5.5, then considers 5.2-5.4

as a preparation of the harmonic coordinates for 5.9-5.12. At this point, we

emphasize that for an arbitrary Cι*a metric, the geometric results 5.9-5.12 and

4.4-4.7 may not be valid.

5.1. In the view of 5.0, we may assume that gm -> g0. Let p0 e M, and

choose Ro sufficiently small, mι sufficiently large so that Vm > ml9

i Ro/2; gm) c B(p0, Ro; g o ) := Ux c B(po,2Ro> gJ QU0QM,

Uo is open, and there is a C0 0 coordinate chart x:U0-* Rn. We may assume

that the coordinate chart x (not necessarily normal) can be taken with

ll^mllco,^ < C ( Λ > *o> Ό b y 5 ° and either (i) by [20, 8.28], UQQBoi 4.1, [23,

p. 34], the relation of dm and gm, \K(M, gm)\ < Λ2 (one may also use
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coordinate charts defined by distance functions), or (ii) by [23] as explained in

5.2, or (iii) by [32, Theorems 1.6 and 4.5]. Let g™ be the components of gm in

the coordinates x. Hence \\d(glj)/dxk\\coυι < C'(Λ, Ro, n) Vm > mλ.

5.2.1. Let m be fixed. One follows the construction of the harmonic

coordinates in [23]. Almost linear coordinates Lm are constructed around p0,

for a given orthonormal frame at p0. By Theorem 2.1 of [23, p. 62], \dLm —

P~ι\ < C(Λ,«,ε 0 ) dm(x, p0)
2, where Pr is defined by parallel translation

along radial geodesies from p0. An averaging process gives canonical coordi-

nates which do not depend on the choice of o.n. frame. One finds

hT:B(p09R;gm)^R with Δ(g w )/*r = 0, hT \Wp0, R; gm) =

IT IdB(Po> Λ; g j for 1 < / < Λ, where Lm = (/f, /*,. . , / * ) , and Δ(gm) is

the laplacian for some R chosen small enough and independent of m ([23] and

5.2.4). One takes Hm = (Λf, λ?, •-,*?) and g * = gm(grad/*r, grad*?). In

[23, (5.5), p. 65] it is shown that Hm:B(p0, R, gm) ^ Rn = TMpo, \dHm - Id|

on B(po,R\gm\ and \\dgm\\co^ < C(ΛJR, n)A2R2/S2 on

8m) t 2 3 ' Theorem 5.2], where Id is defined by radial parallel

translation of gm.

5.2.2. As in [23, p. 62], Gm = Lmo^VpQgm: TMpo -> ΓM^, Gm(0) = 0, and

Vε > 03δ > 0, where δ does not depend on m, such that \dGm — I\υ < ε if

t; e ΓM and ||u|| < δ(«, Λ, ε0, ε). By 5.7 we can take / as the identity map

ofR".

5.2.3. Rx > 0 can be chosen sufficiently small and independent of m such

that GJB(O,RvTMpo,gm) is 1-1. By taking Rλ < ε0, e x p p o ^ is 1-1 on

£(0, Rv M, g m ) and Lm is 1-1 on B(p0, Rv M, gm). The averaging process

does not affect the uniform estimates on the differentials.

5.2.4. HJdB(p0, R, gm) = Lm\dB(Po, R, gm). We choose R < Rx inde-

pendent of m in order to make Lm\dB 1-1 and Hm of maximal rank (see (5.5)

of [23]). Any map from an H-disc which is 1-1 at the boundary and of maximal

rank in the interior is not only 1-1 locally but 1-1 on the whole disc.

Hm\B(p0, R, M, gm) is 1-1, an open map of maximal rank.

5.3.1. Choose R sufficiently small to satisfy the conditions of [23, 5.2] and

R < Ro/2. If we consider h™ to be functions of the local coordinates x, then

££("•(£))-••
Let R2 > 0 and m2 > mλ be such that U2 = B(p0, R2; g 0) c B(p0, R, gm)

\fm>m2 and R2^R. Let U3 = B(p0, R2/2\ g0) and U/ be the corre-

sponding subsets of Rn via the coordinates (xl9 x2,- , xn), i = 1,2,3.
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5.3.2. IIAΓWIIc1'",*/' are uniformly bounded Vm ^ ra2, independent of ra,

where a > 0 can be chosen to be independent of m. This is an immediate

consequence of Theorem 6.5 of [29, p. 284]; since gm -> g0, the linear equa-

tions in divergence form Δ(gm)Λ'm = 0 are uniformly elliptic, h™ are uni-

formly bounded on £/2, and do(U3,dU2) > R2/2. This can also be proved by

using Theorem 3.1 of [23] and Theorem 4.1 of [29, p. 399].

5.3.3. Hence for fixed j , {/*r(*)}SU2 and {dh?{x)}™=ni2 form

equicontinuous families on ί/3. By Arzela-Ascoli Theorem, one extracts a

convergent subsequence of h™(x\ which is also denoted by h™, such that

A,m(;t) -> A?(JC) in the C 1 sense, i.e. A™(JC) -> A?(JC) and dh^(x) -> έ/A?(x)

uniformly on ί/3, where A?(x) is a C 1 map. Hence /fm -> i/0 in the C 1 sense,

where Ho is a C 1 map from t/3 into R" by using local coordinates

(xl9x2, -,xn)onU3.

5.4.1. Define i ϊ^ : t/3 -> Rw by H'm(p) = 7/w(^) - Hm(p0) for m = 0 or

m> m2. H'm^ H^ in the C 1 sense and H^(p0) = 0 all m. By (5.5) of [23],

\dHm(Po) ~ I d l < CΊ}/rΪA2R2. We can choose R in 5.2.4 small enough that

\ietdHm(p0)\ > δ > 0, independent of m. So dHό(p0) is of maximal rank.

Choose 0 < R3 ^ R2 such that # ό : ^4 = B(Po> R3> So) ^ R " i s i " 1 a n d o f

maximal rank. 3m3 > m2 such that Π ^ = m H^(U4) contains an open set

K c i/0'(ί/4), containing 0. 3m 4 > m 3 such that Π™=m4(H^\U4)-\V) con-

tains an open set U c (//Q | ί/4)"1(K), containing /?0.

5.4.2. Definition. HQ : t/ -> F is called a LHCS, limit harmonic coordinate

system.

5.4.3. Let g* = ( ( / / ; I ί/4)"1)*gm. Obviously (ί/ 4 ,g w ) is isometric to

( ^ ( ί / 4 ) , g * ) Vm > m 4 . If (^!,^2, , Λ ) is the coordinate system for Rw,

then as in [23, pp. 60, 61],

where gJ

m

k{H^(p)) = gm(grad A£, grad A*)(p) V^ e I/4. t/4 c £/3 =

£(/>o> Λ 2 / 2 ; go) ^ B(Po» Λ2> So) = U2Q B(p09 R] gm) and gm -+ g0, so 3m5

> m4 such that B(p0, R2/2, g0) c B(p0,3R/4; gj Mm > m5. Hence
(i) By (5.8) of [23], || Jg*| | co < C'(Λ, Λ, Λ ) and

(ii) by Theorem 5.2 of [23], \\dg*\\c2/3 < 16c(AR, n)A2R2 on / ^ ( t / 4 ) with

respect to the distance function d* on H'm(U4), using parallel translation of

om'

5.4.4. Let υλ, υ2 e ΓR^ for some q e. V. Then
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Since H^1 -> H^1 and gm -> g 0 uniformly,

If we define g j = #ό*£o> t h e n £m ~* £o> a t l e a s t pointwise. Since ( g * | t / )

satisfy the conditions of 4.1, there exists a subsequence which is also denoted

by g* converging to g$ uniformly and d* -> d0* as in 4.1. For sufficiently

large m, d*(p, q) < Ίdξ(p, q) V/?, # e V. By [5, Chapter 6], or by 5.7 below

and uniform bounds of 5.4.3 on the Christoffel symbols, one can compare the

Euclidean and Riemannian parallel translations on V. Hence, there are uni-

form bounds on C 1 > 2 / 3 norms of g* on V with respect to the fixed metric d$.

Finally, dg* forms an equicontinuous and bounded family on V, and by

Arzela-Ascoli Theorem one extracts a uniformly convergent subsequence of

ί/g* converging necessarily to dgξ. This also proves that g$ has to be C1.

5.5. Theorem (see [32] for a stronger version). Given a sequence gm of

C°°-Riemannian metrics on a C^-manifold Mn with \K(M, gm)\ < Λ2,

d(M, gm) < D and i(M, gm) ^ ε0, there exists a subsequence gk of gm such that

(i) gk —> g 0 in the sense of 4.1.

(ii) g 0 is C1 in the following sense; \fp G M, 3 an open set U containing p,

and a Cι local coordinate chart HQ on U such that g0 is C1 with respect to this

coordinate chart. HQ is a Cι limit of harmonic coordinate charts H'k with respect

to gk. 3 an open set V c Π^ = 1 Hk(U) such that if gk is considered as a metric on

HfcU) c Rn as gt = Hί~ugk9 then g£ -* g0* in the C1 sense on V.

Proof. See 5.1-5.4.

5.6. Remark. In [32], S. Peters has stronger results on the differentiability

of the metric. Our main aim is to prove Proposition 5.12, and 5.5 is sufficient

for that.

5.7.1. Let X(t):R-*Rn be the solution of the first order linear ODE

Xf = AXf with X(0) = υ0, where A(t):R -> R"2 is continuous and \\A(t)\\ < C

Vt. Vε > 0, 3δ = δ(ε, \vo\,C) independent of X(t) and A(t) such that

1 ^ ( 0 - vo\ < εifO < t < δ.

5.7.2. In local coordinates parallel translation is defined by first order

linear ODE whose coefficients are Christoffel symbols for a C 0 0 metric. The

bounds on Christoffel symbols enables us to compare Euclidean and Rieman-

nian parallel translation locally. Obviously the bounds on dg in a coordinate

system determines the bounds on the Christoffel symbols of g.

5.8.1. Assume the hypotheses and notations of 5.1-5.5. For the smooth

metric g* on V define mΓ/y as the Christoffel symbols, as usual in terms of

partial derivatives of g™. Since g* -> g$ in the C 1 sense on V, kTt

lj -^0Γ/7

uniformly, where °Γ/y is defined in the same way as *Γ/7 . °Γ/7 are continuous on
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V. Let γ(0 be a C1 curve in V and let E(t) be a C1 vector field along y(t).

We say that £(/) is in P(F, #0 ', γ) if E(t) = Σ, ̂ ( O V ^ / and

5.8.2. Remark. i/0' is not shown to be C2 and in any change of coordinates

the Christoffel symbols are involved with second order derivatives of the

transition maps. Hence with this information one cannot construct a well-

defined parallel translation. However, the transition maps are shown to be C2

in [32], and hence there is a well-defined parallel translation on (M, g0).

5.8.3. It follows from the theory of systems of linear ODE, [24, p. 137, Satz

1] or [9, Chapter 10], that for any given C1 curve γ and u0 e R", there exists

unique E e P(V, iJ0', γ) with £(0) = υ0.

5.8.4. Lemma. If Eλ(t\ E2(t) e P(V, H^y) then gξ(Eλ{t), E2(t)) is con-

stant.

5.8.5. Proof. Let Y^d/dyi9 Eλ(t) = Σbi(t)Yh and E2(t) = Σc\t)Yj.

Then

K̂m |g,*(^i(0^2(0) = Mm | p ^ ( γ ( 0 )

since g^ -> g? in the C1 sense.

vf ̂ ω = έ f ̂  + Σ^(γ(0)6'(γ(0)^)y/
/ = l \ α ί ij α ί /

and hence

Urn g*(vf )£1(0,£2(0) = 0
Ac—> oo

since Ex(t) e P(F, H^y\ where V(/:) denotes the covariant derivative of the

C00 metric gjf. Also

Consequently {d/Λ)gξ(Eλ(t\ E2(t)) = 0.

5.9. Let U, g0, and gk be as in 5.4 and 5.5, and let K be a compact subset

of [/ with int(A') =̂  0. Consider a sequence of normal geodesies yk9 where γA;

is with respect to gk, k > 0, and γ^(0) G int(^). yk = f/̂ γ̂  is a geodesic of

the C00 metric g*, and γ^ = (γ^i.γ^,- ,γΛϊΠ) with

(5.9.1) ^-2(ykJ) + Σ ^ . ( γ , ( 0 ) | ( ϊ ^ ) | ( γ , , 7 ) = 0.
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g*(y'k(t)> Ϋ*(0) = 1 and g£ -* g? uniformly, therefore go*(%, %) and

HY^OIIR" are uniformly bounded. Since *lV are uniformly bounded indepen-

dent of k, so are d2/dt2(yk {). There exists a subsequence which is also

denoted by yk such that γΛ(0) -> /?0

 G #ό(^O a n d Y*(0) "» Γiς, o with go*(uo)

= 1. Define Fk(t) = (γ^(O>Ύί(O) { ^ ( 0 } * s a n equicontinuous and bounded

family with ^ ( 0 ) -> (po,vo). We extract another subsequence Fk(t) such that

Fk(t) converges uniformly to F0(t) which is continuous.

5.10. Lemma. Given a sequence of geodesies ym in (M, gm), then there exists

a subsequence converging to γ0 in the C1 sense where γ 0 is a geodesic of (M, g 0).

5.10.1. Proof. By 5.9 and 5.3.3, it is sufficient to prove that γ 0 is a geodesic

of g 0 (see 4.4.2). Vί ls t2 \tλ - t2\ < ε0,

l|Ϋό(0L

and hence /(γo |[^i, ^L ^0) = l̂ i ~ h\ Therefore γ 0 = HQ~1% is a geodesic of

go i n M

5.10.2. If (w1? w2, , w j e V (5.5), then define Z^ = (Z£, Z^, , Z^w)

and

( / + M if 1 < / < / ι ,

Using the notation of 5.9, for small t, (5.9.1) is equivalent to

Fk(t) = Fk(0)+Γzk(Fk(s)9s)ds.

Since Fk(t) -> /J,(i) and *lV ->0ΓA uniformly, all functions are bounded and

uniformly continuous; we have Zk(Fk(s), s) -> Z0(F0(s), s) uniformly and

hence F0(t) = F0(0) + /J Z0(F0(s), s) ds.

5.10.3. Therefore, γ o(O is C 2 and satisfies (5.9.1) for k = 0, which is

equivalent to γό(O G ^ ( ^ ^ό»ϊo) ϊo(O ^ M i s n o t necessarily C 2 , since HQ

is not necessarily C 2 .

5.11. Lemma. Lei 5 be a totally geodesic 2-surface in (M, g0), ^«J let p ^ S

be arbitrary. Choose U aroundp as in 5.4 and 5.5. Lei y(t) be a geodesic of g0

in S passing through p. Define E(t) to be one of the continuous vector fields along

γ ( 0 with E(t) e TSy{t), \\E(t)\\go = 1, go(E(t),y'(t)) = 0. Then dH^{E{t)) =

£ ( 0 e P ( F , //0', γ), where HQ and Vare as in 5.4 and 5.5 αnrf γ = H^y.
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5.11.1. Proof. Let p' = H£(p) and T(t) = y\t). As in 5.8.5,

= lim 4-gt(E,E)= lim 2g*(vίk)E, E),
k -* oo «* /: -»• oo

where V ( k ) is the connection of the C°° metric gj£, and E is differentiable

by using 5.10.2 and 5.10.3.

5.11.2.

0 = ±{gg(E9T)) « lim [

= lim g*{vj-k)E,T)
k-*oo

since lim^ _ ^V^T = 0 by 5.10.2 and 5.10.3.

5.11.3. Let S = ^ ό ί 5 ) ' N G tW(^ go V ^ Γ R > > a n d x a n d 7 b e d i f "
ferentiable vector fields in TS around p'. Define

This limit exists by *Γ/y and g^ being convergent, and it only depends on Xp,

and Yp,. SN(X9Y): TSp> X ΓSy -> R is a symmetric bilinear form. SN(x, x)

= 0 by 5.10.3. Hence VN <E UN(S, go)p>, SN = 0 and 0 = SN(T,E) =

5.11.4. By 5.11.1-5.11.3, Vv e ΓR>, l i m ^ ^ g , * ( v ^ ^ ) ( ^ ) = 0.

Hence lim^^^ (v^k)E)(p') exists and equals 0 in ΓR^. In local terms, this is

equivalent t o έ e />(F, # 0\ γ) (see 5.8.1).

5.12. Proposition. Let Sλ and S2 be totally geodesic 2-surfaces in (M,g0)

intersecting along a geodesic γ. Then the angle between the surfaces along y is

constant with respect to g0. This is still true if St are totally geodesic surfaces with

boundary and γ lies at the boundary of both.

5.12.1. Proof. For any point p on γ, choose U and LHCS V around p as

in 5.4 and 5.5. By 5.8.4 and 5.11, the angle between #ά(SΊ) and HQ(S2) along

# ό ( γ ) is constant with respect to g^. HQ is C 1 and g$ = #o'go> hence the

result follows locally and then globally. If γ lies at the boundary of both Sx

and S2, 5.11 can be proved by using a limit argument.

6. Proof of Theorem I

The main steps of this proof follow Gromoll-Grove [15], [17] closely, on a

limit metric. On the other hand, since the limit metric is not necessarily smooth

or even C 2 , the arguments should be modified or changed. We will provide the

proofs for the modified arguments, the rest will be stated only. Occasionally
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basic facts of C°°-Riemannian geometry will have to be proved explicitly for
the limit metric. In §6A dual convex sets A and B are constructed in a limit
metric obtained in 6.1. A and B may have boundaries or not. Each case is
investigated in §§6B, C, and D.

Proof of Theorem I. This is an immediate consequence of 6.1-6.3, 6.31,
Theorems 6.10, 6.22, 6.23, 6.35 and 6.38, Hamilton [22], and the generalized
sphere theorem, Grove and Shiohama [21].

6A. Main construction.
6.1.1. (Similarly as was done in [2].) Given K > 4, n > 2, and ε0 > 0, by

the Finiteness Theorems of Cheeger [6], [7], and [31], there are finitely many
diffeomorphism classes of C°°-Riemannian manifolds (M, g) with

K # ( M , g ) < t f , i(M,g)>ε0, < / ( M , g ) < | , dim(M) = «.

Let Mv M2,M39- ,MS represent all such distinct classes, s > 1. Define
inf{δ|3g on M, with C™g, π/2 > d(Mi9 g) > π/2 - δ, i(Mi9 g) > ε0, 1 <
K(Mi,g)^K) to be ξ[MJ and 80(K, n,ε0) = m i n ^ M J I ^ M J Φ 0} U
{π/2}). Obviously δo(K, n, ε0) > 0 and if n is even, then δ0 = 80(K, n) since

f
6.1.2. Proposition. Any C°°-Riemannian manifold (M, g) with 1 < K(M, g)

^ K9 i(M, g) > ε0, and π/2 - δo(i^, «, ε0) < d(M, g) Λα̂  either d(M, g) >
τr/2, or d(M, g) < π/2 wzϊΛ ξ[M] = 0. Hence M either satisfies any common
property of the diffeomorphism classes [MJ with £[MJ = 0, or w homeomorphic
to a sphere by [21].

6.1.3. Let (M, g) be as in 6.1.2 with d(M, g) < ττ/2 with ξ[M] = 0. There
exists a sequence of C°°-Riemannian metrics gm on Af such that

1 < ^ ( M , gm) < K, i(M9 gm) > ε0, π/2 - 1/m ^ d(M, g) < v/2

Vm G N + .

.βy Gromoυ's Compactness Theorem 4.1.0 [20], we extract a subsequence which
we denote also by g m , swcA ίλαf gm -> g 0 (4.1), wΛere g 0 Λα.5 //ze properties

obtained in §§4 α«d 5. Unless otherwise stated, in all of the following M or
(Af, g0) denotes this limit metric with the distance function dQ.

6.1.4. Since Vm 3pm, p'm^M such that τr/2 > dm{pm,p'm)> π/2 - 1/m,
and M is compact, 3/?0, p'o & M with do(po,p'Q) = ττ/2. V / 7 , ^ G M ,

^mC/7' ̂ ) < V 2 . hence rfo(/7, ̂ r) < ττ/2 and d(M, g0) = π/2.
6.1.5. Dual sets as in [15], [17]: For I c ( M , g 0 ) define X' = {JC e

MI rfo(x, X) = 9r/2}. X c X" and X' = X/r/. By 6.1.4, there exists a pair of
dual compact sets A and B in (M, g0) with 4̂' = B and 2Γ = ̂ 4.
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6.2.1. Definition. In this text, a set X Q (M,g) is said to be convex if

Vp,q ^ X, any mg(/?,<?; g) c X. X is said to be r-convex if any minimal

geodesic of length < r with endpoints in X lies in X [15].

6.2.2. A and B are convex sets. Given any p,q e A and any mg(/?, q) γ,

the closest point on γ to B cannot have distance < ττ/2 to B, by 4.2.2, 4.6.1,

and 4.5 (see [15], [17] and [2]).

6.3. Both A and B are totally geodesic C1 submanifolds of M without or

with boundary which may not be C1. For the proof, see [2, third sublemma, p.

144]. Also one can modify the arguments of [8, pp. 417-418] for this case. In

this text, the interior or boundary of a convex submanifold are taken with

respect to the topology of the submanifold. for convention 3 {point} Φ 0 . In

the following A and B always denote such compact convex dual submanifolds of

6B. The case of dA Φ 0 and dB Φ 0.

6.4. Definitions. 1. (Vm > 0. See [19].) Let p,q e M. q is called a non-

trivial critical point for the function dm(p, •) if q Φ p and Vu e TMq — {0}

there exists a mg(/?, q; gm) yυ such that £m(y'υ(q\ υ) < π/2.

2. Let X be a convex set in (Af, g) with 3 A" =£ 0 . For any p e X, define

C/ 7X= {ϋ e ΓM^Iϋ = 0,or3δ = 8(υ)> 0, exp^jO^i;)] c int(X)}.

3. Let ί/ c Sn(l) be any subset. Define CH(U) to be the smallest subset of

S" with (i) U c CH(U) and (ii) for any nonantipodal pair JC, 7 e CH{U\ the

shortest arc joining x to j lies in CH(U).

4. Let pyq <Ξ (M,g), X c M. The link from /? to ^ ( # /?) is defined to be

L{p,q\g) = {γ r(/?)e t/(Af, ̂ ^ I γ is a mg(/?,^; g)}. The Hnk from p ( ί X)

to Xis L(p, X; g) = {ί; e U(M, g)\εxpp,gvd(p, X; g) e X).

6.5.1. Combining 6.4.1-6.4.3, r̂ is a nontrivial critical point for d(p, •) if

and only if CHL(q, p) contains an antipodal pair.

6.5.2. For convex A, A - dA is a totally geodesic ^-dimensional submani-

fold and, \/p e A - dA, CpA is an ^/-dimensional subspace of TMp. If

p ^ dA, then one can show that Cp is an α-dimensional convex cone contained

in a closed half of an α-dimensional subspace Cp in TMp. (see [8, pp. 419-420,

Proposition 1.8])

6.6. Lemma. Let Aλ be a closed convex set in (M, g 0) with dAγ Φ 0 , and

p e Ax — dAv Then do(p, •) has no nontrivial critical points in dAv

6.6.1. Proof. For any q e dAv 3δ > 0 such that { υ G C ^ J | ||ί;||0 < δ and

exp^ v ^ B(q, δ, intί^j))} is an open subset of C^x

6.6.2. Let q e 3̂ 4x be any point. Suppose that CHL(q, p) contains a pair

of antipodal points. Define Sλ = CpA Π U(M,go)q and let Dλ be a closed

hemisphere in Sx such that CHL(q, p) c Ĉ  Π ί/M^ c Z)x c SΊ and ^ = SDi
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in Sv If L(q, p)nS2= 0, then L(q, p) c i n t ^ ) in Sl9 and CHL(q9 p) c
inti/^). But, inti/^) contains no pairs of antipodal points; so, L(q, p) Π S2

Φ 0 . Let υ e L(#, /?) Π S2. Then ι ι e S 2 n C ? n ί/M^ c 3C^ Π £/M^ in Ŝ .

exp^(y [0, <tfo(#, /?)]) c Av and by 6.6.1, Ξεx > 0 such that expq(v[0, εj) c

dAv Let g' = expqειv. Then Cq> contains both ±((d/dt)(Qxpqtv) | , = 0 ) := + w.

Cq' is contained in a half-space, so w G 3(C^ Π UMq,) in C^ Π ί/M .̂ By a

similar argument 3ε2 > εx such that exp (̂[0, ε2]v) c 3̂ 4X. By the connectedness

of an interval in R, one obtains p ^ dAλ which is not the case. Hence,

CHL(q, p) contains no pairs of antipodal points and recall 6.5.1.

6.7. Lemma. LetAx be a closed convex set in (M, g0), q e dAλ, p e intί^),

ybea mg(p,q;go\ anddo(p,q) = dQ(p^Aλ). Then

6.7.1. Proof. See [8, Lemma 1.7, p. 419] together with 4.6.1.

6.8. Lemma. Let p\ q' e m\.(A^), dAλ Φ 0, where Ax is a closed convex set

in (M9g0) of 6.1.3, and γ0 be any mg(//, q'\ g0). 77ie« the function f(t} =

do(yo(t),dAl):[0,do(p\q')]-^> R cannot have any local minimum at t0 <Ξ

( O ^ o ί ^ ί ' ) ) -
6.8.1. Proof. Suppose that γ Π dA Φ 0. Let p e 3̂4 with

Then γό(/?o) G ^0> which is open, and Yo(/?o) G Cpo This is not possible since
Cp is a closed cone contained in a closed half of Cp . So, γ0 c Ίn^Aγ) and

6.8.2. Suppose 3t0 and δ such that (ί0 - δ, t0 + δ) c (0, do(p',q')) and

V i e (r0 - δ, t0 + δ), f(t)>f(t0). Let γo(Ό) = />. ^ E 9 ^ such that

do(p,q) = do(p,dAι)= f(t0). Choose a sequence ίΛ, « G N + , with r0 +

β > rΛ > /„+!, tn->t0, and {γM}^=1, where γπ is a mg(ί,γ(/π); g0) and

yn -> γ uniformly where γ is a mg(^, ̂  g0). Then γ c intί^!) U {̂ r}.

£o(ϊ'(/>), ϊό('o)) = V 2 by 4.6.1, and Ί'n{q) -> γ^^) by 4.2.2, 4.4, and 5.10.

For sufficiently large N, let ί = γ^ so that β c intίyl!), ^oί^'ίίλY'ί?)) ^

π/2, and δr = tN - t0 <£ min(ε0, do(q, p)). θ Φ γ, so one defines w(s):

[0,7r/2] -* Cq

 n ^ M ^ a s i n Lemma 4.7. By 6.7, if s < π/2, w(s) e Ĉ ; so,

3η(^), 0 < η(s) < oo, such that exp^wO) (0,η(s)) c intC^!) and choose

η(.s) to be maximal. Define r(s) = exp^ 17(5)^(5) if η(^) < 00. Then r(s) G

3 ^ . Define^ = <0(β/(ί),γ/(?».

6.8.3. Claim. 3s0 G (/3O, TΓ/2] 5WC/Z ί t o exp^δrw(^0) G 3^X. C/eβr/y η(β0)

> do(qM*N)) > fi/ L e t Vo = inf{η(5)|yS0 < s < π/2}.

6.8.3.1. If ηo>δ\ then expJwO^IO < ί < δ' and )S0 < s < π/2} c

intί^O a n d exp^O, δ'lwίTr/2) ^ Λ w(flr/2) -L ϊX?), hence w(ττ/2) e ζ - C ^

and exp^O, δ'lwCflr/2) c dAλ by 6.7.
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6.8.3.2. If η0 < δ', then define Iλ = {s G [β,π/2)\η(s) > δ'} and I2 =

{s G [j80,τr/2)|η(s) < δ ' } W e m a Y assume that 7X U 72 = [>S0,ττ/2), since

otherwise 6.8.3 holds. 7X Φ 0 , 72 # 0 , so 3s 0 G 7X Π 72. Let J Λ G 7X, s'n G 72,

« G N + , such that JW -* s0 and ^ -> J 0 . Let η± = hmη(sn) and η2 = limτj(O>

τ?2 < δ ' < ηj. expί7vv(50)η2 is a limit point of {exp^w(^)τj(^)|Λ e N + } c 9̂ 4X

which is closed, and hence exp^w(5 0 ) η 2

 G 3^i K ^ I < °o? then similarly

exp<?w(is0)η1 e 3^41. If either η x = δ r or η 2 = δ', then 6.8.3 holds. If 0 < η2 <

δ' < ηλ < oo, then exp^iφo)[0, i j j Q Av and exp^w(1s0){0,i]1,η2} c 3 ^ . By

a similar argument to 6.6.2, exp^w(50)[0, η j c 3v41? particularly exp^w(5'0)δ/

e 8^41. If η 2 = 0, then ,s0 = π/2 and exp^[0,η1]w(9r/2) c dAx by a similar

argument to 6.8.3.1. If ηλ = oo and τj2 > 0, then exρ^[0, oo]w(s0) c ^ and

exp^η^ί^o), r̂ c 8 ^ ; by an argument similar to 6.6.2 expJO, oo]w(s0) c dAv

So, 6.8.3 holds.

6.8.4. By Lemma 4.7 and Claim 6.8.3, there exists a point expqw(s0)δ' e

3v4x with

/ ( ^ ) = do(yo(tN)Mι) < do(yo{to + δ'

where tN = t0 + δ' e ( ί 0 - δ, ί0 + δ). By obtaining a contradiction to the

assumption of 6.8.2, one proves Lemma 6.8.

6.9. Proposition. Let A and B be dual, compact, convex sets in (M, g0) as in

6.1-6.3. If dA Φ 0 , then there exists a unique p0 G: A with do(po,dA) =

max{J0(/?, 3̂ 4) \p EL A) anddo(po, •): M -^ R Λβ5 «o nontriυial critical points

inM- { po}\ where BQ {p0}' = {/7 G M | J(^,/7 0) = τr/2}

6.9.1. Proof. Clearly /?0 exists. Suppose 3p'o G ̂ 4 with /?0 ¥= /?Q and

do(pO9 dA) = έ/0(pό» 9^) L e t Y b e a nY m g(Po, Pol So) a n d / ( 0 = <*o(ϊ(O> 9 ^ ) ?

/ < do(pθ9 dA). By 6.8, such / does not exist and hence p0 is unique.

6.9.2. Let q E A - {p0) be any point and c = do(q,dA). Define Ac =

{q' EA\do(q\dA)> c). Given q1,q2eAc, and any m g ( ^ , ^ 2 ; g 0 ) γ, the

function f(t) = do(y(t),dA) has to attain its minimum at the end points by

6.8. Hence γ c / and Ac is convex. p0 G int(yίc) in A, d(po,dA) > c by

6.9.1, and g G 8^4c in ̂ 4. By 6.6, ^ cannot be a critical point for do(po, •).

6.9.3. Let q E M - (A U {poy) be any point, and let yλ and γ 2 be
m g ( ^ ? .Po) a n d mg(#> ?o)» respectively, where ^ 0 G B and J0(^r, ̂ 0 ) = do(q, B).

do{q,qQ) < w/2, do(q, p0) < π/2, and do(po,qo) = π/2. By 4.5 and 6.1.5,

£o(ϊί(?)> Y2(9» > " A Vϋ G L(ήf, /?0) and hence Vϋ G C^L(^r, p0), we have

^>0(f, γ2(^r)) > π/2. CHL(q, p0) cannot contain a pair of antipodal points,

and by 6.5.1 the proposition follows.
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6.9.4. Let dA Φ 0 and p0 be as above. 3 dual convex sets Aλ and Bx such

that p0 e Ax c Λ and 5 c {;?0}' c 5 l β 9 ^ # 0 by 4.6.2, 6.4.1, 6.4.2, and

6.9.2. do(po, dAλ) may not be maximal. However, by replacing A, B with Ax,

Bλ we may assume that 3/?0 e 4̂ such that {p0}' Q B and d(p0,- ) has no

•nontrivial critical points on M — B. One can proceed similarly if dB Φ φ, but

not simultaneously for both.

6.10. Theorem. Let A and B be dual, convex sets in (M, g0) as in 6.1-6.3,

and 6.9.4. If dA Φ 0 and dB Φ 0 , ί/*e« M is homeomorphic to a sphere.

Proof. The main idea of our proof is similar to [15], [17], and [21].

6.10.1. Let g0, gm be as in 6.1.3. Choose p0 e A as in 6.9.4 and q0 e 2?

with do(qo,dB) = max{do(q,dB)\q e 5 } . 3δ, 0 < δ < *τ/2, such that M =

Λ^UΛ^ where Nλ = B(po,δ; g0) and N2 = B(qo,δ; g0). Otherwise, by

compactness 3/? e M with ί/oί/7' ^o) = ^oί/7' /̂ o) = w/2» which is not

possible by 4.6.2, 6.4.1, 2, 6.9.2 for B, q0, and 6.9.4. Vm > 0, V^ e (M, gm)

define δ^ί/?) = m i n { r | for some υ G ί/(M, g j , , CH_L(p,po;gm) c

2?(ϋ, r; I/(M, gm)^, ^ J } , 8 ^ ^ ) = sup{δj(^) | ^ e iV,}, and «*(/>),

δ^(7V2) in a similar way. Let η^1 = min{ ^ m_(ι;,w) | ϋ e L(p,p0; gm) and

o ;g m )} and < ( X ) = inf {η-1 ^ e X} where I c M . B y 6.9.3,

2\fp^M- B, δ°B(p) <τr/2\/p^M~ {qo}\ and ^ > 9r/2
Vp £i M — ({qoy U B). For any pn^> p and any q<E. M, the limit set of
L(pn, q\ gm) is a subset of L(/?, q, gm) for a fixed m ^ 0. Hence 3δ2 > 0 such

that δ^iVO < π/2 - 2δ2, δ^(iV2) < π/2 - 2δ2, and η°(Nx Π iV2) ^ ττ/2 +

2δ 2 .

6.10.2 (M, gm) -> (M, g 0) as in 4.1. By 4.5.2 and 5.10, if ym is mg(^, 9 ; gm)

Vm > 1, then the limit set of γm's is the subset of MG(/?,#; g 0). Hence,

3 m 0 ^ 0 and δ3 such that δ^{Nx) < ττ/2 - δ 2, δ^o(7V2) < <π/2 - δ 2,

^ ( ^ Π iV2) ^ 9r/2 + δ 2, M = N3U JV4, ΛΓ3 c Λ ,̂ and N4 c ΛΓ2, where 7V3

= 5(/7 0,δ 3; gm o) and N4 = 5 ( ^ 0 , δ 3 ; gm o).

6.10.3. By applying the mollifier techniques of [21] to dmo(p0, -) on N3 and

dm(q0,-) on N4 we can obtain two smooth functions fi:Ni^2 ~~* [0, *r/2],

i = l,2, such that fλ(p0) = / 2 (^ 0 ) = 0, V/< * 0, and /• > 0 on Ni+2 -

{po,qo}; Vfi is transversal to both 3N3 and ΘΛ̂  for i = 1,2. One observes

that 6.10.2 has the essential information of [21, Lemma 1.3 and Proposition

1.5, pp. 204-205]. Now it is straightforward to show that M is homeomorphic

to a sphere, following [21] for the C 0 0 metric gmQ.

6C. The case of dA = 0 and dB Φ 0 .

6.11. By 6.10, there is no loss of generality in assuming that dA = 0 in

this section.

6.12. Lemma. Let (M, g0) be as in 6.1, pl9 p2, p3^(M,g0\ and

P'i> P'n P3 e S\l) with 0 < do(pi9 Pj) = </(/>;, p'j) < τr/2, 1 < i < j < 3. Ler
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et and η, be mg(/?/+1, pi+2; g 0) and umg(/?f-+1, p'i+2; standard) for i = 1,2,3,

indices mod 3, respectively. If

0 < £o(-02'(/>iM3'(/>i)) = £ (-V2(/>iW3(/>i)):= «o < ̂ .

do(p3MO) = d(p'3,η3U)) V/ e [0,</(/>!,/>2)].
6.12.1. Proof. Let α, = dQ(pi9 pi+ι), indices mod 3. Fix t0 e (0, flx). Let

μ( j) be a mg(03(Ό)>Λ;*o)> « i : = £ o(-0&o)>n'Q))> a n d ' = <Όb('oλ/>3)-
By 4.5, 3 u0 > 0 with do(θ3(to\ p3) = / - M0. For

u e [0, / - max(|ί0 - a3 |, \ax - a 2 - to\)]

define jS^u), β2(u) with 0 < i8f. < 77,

COSJ81(M) sin(/ — M) = (cos^3 - cos/0 cos(/ - w))/sinί 0,

cosβ2(u) - sin(/ — M) = (cosβ2 ~~ oos(aι - t0) cos(/ — u))/sin(aι - t0).

By 4.5, aλ > βι(u0) and TΓ - αx > β2(u0). Since 0 < fll9 aλ - t0 < ττ/2,

(d/du)((sin(l- u^cosβ^u) + cosβ2(u))) < 0 for w > 0.

0i(O) + )82(0) = 77, hence cos^!^) + cos)82(0) = 0. For w > 0, sin(/ - u)

(cosβ^w) + cos/?2(w)) < 0, so, ̂ (w) + β2(u) > IT. Since π = aλ 4- (TΓ - α^)

> βx(u0) + β2(u0), we conclude that w0 = 0, which proves the lemma by ί0

being arbitrary.

6.13. Proposition. If p, r e A, q ^ B, yι is a mg(/?, r; g 0) 6>/ fe«g/Λ

α < τr/2, Λ « J γ2 is a mg(q, /?), w/ẑ re A and B are as in 6.1-6.3, 6.11, then

there exists a unique mg(#, r) γ3 and 2-surface L bounded by γ1? γ2, α«ί/ γ3,

where L is totally geodesic and isometric to the inside of a triangle in S2(l) with

the side lengths α, 77/2, 77/2.

6.13.1. Remark. If we compare Lemma 8 of [2] with 6.13, in our case

ε o < ί ( M , g o ) < 77/2.

Proof. We first prove for a < εo/2.

6.13.2. ^0(γ^(/?),γί(/7)) = 77/2 by 4.6.1, 6.1.5, and 6.11. On 52(1), choose

p\q\r' with d(p\q') = d(q\ r') = T7/2 a n d d(p\r') = a. Let η1,η2 and

η3 be umg(/7r, r '), umg(^r,/?'), and umg(^', r '), respectively, and let Lr c

5'2(1) be the region bounded by ηi and which has area a. Let / =

exp^oφotexp^,)- 1 :// -> L:= /(L') , where ( e x p ^ ) " 1 - B(p\ 3π/4) ->

B(0,3π/4\ φ is an isometric imbedding of TS2{\)p, into (TMp, g0) with

^ O = -77γ^(/?)/2, and φίexp ί r ' ) = ay[(p).
6.13.3. For 0 < s < 77/2, define r/ = ^(77/2 - s), υ's = (exp^Xr/), i r^ί)

^ ^ /Hi il, /(r/) = r5, and γί(ί) = f(ηs

4(t)). For 0 < s < εo/2, d o ( p , r s)

and γ*(ί) is mg(/?,rs). By 4.5, do(rs,r) < d(r^r') and do(rs,q)^

77/2 = d o ( 9 . 0 < ^o(9 ' i) + do(rs9 r)
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so, do(rs, r) = d(rf

s, r') = s. Define y3(ΐ) = /(τ?3(/)), 0 < t < π/2. By Lemma

3 of [2, p. 138], /(γ3 \[a, b], g0) < b - a, if (π - ε o)/2 < a ^ b < π/2. γ3 is a
m g(^ 0 /2, Ό Let L'i c L' be bounded by η 1 ? η

ε

4°
/2, and τj31 [(π - εo)/2, ττ/2].

6.13.4. Claim. / : L[ -> Lx := /(LΊ) is an isometry. Let q[, q2 ^ L[. Choose

q'3,q'4 on τj3(O with q. e umg(/>',?;+2), / = 1,2. Let qt=f{q-\ 1 < i < 4.

Then do(q3,q4) = d(q'3,q'4) by 6.13.3, d(q'2,q'3) = do(q2,q3) by 6.12, and

similarly </(^, #() = J o ( ^ 2 , 9 l ) .

6.13.5. L x is totally geodesic since it is the image of a Riemannian

manifold under a distance preserving map, locally.

6.13.6. One proves the following similarly to 6.13.3-6.13.5. For 0 < s <

π/2, define p's = η2(π/2 - s) and ps = f(p's). Then d(p's, rf) = do(ps, r) by

6.12. Let ηs

5 be the umg(r',/?;) and γ/(0 =/(i?s(O). For 0 < j < εo/2,

γ | ( ί ) G B(p,ε0; g0) and they are mg(r, /?5) by 6.12, [2, Lemme 3, p. 138],

and arguments similar to 6.13.3. Let L2 c L' be bounded by ηv rf5

o/2, and

Άi I [(7r - ε o )/2, <n/2\ Then /1 Lr

2: L 2 -> L 2 := / ( L 2 ) is an isometry and L 2 is

totally geodesic.

6.13.7. LλL)L2 is totally geodesic. 3sι>ε0/S such that umg(^ i,r/ i)

θSι c int(Li U L 2 ). Let R{ c Lr

x U L 2 be bounded by η 1 ? τj2, η 3 , and β .̂ Then

f\R[:R[ -> ^ i •= / ( # ί ) is a local isometry and Rλ is totally geodesic. Since

γ 2 and γ4

51 are minimal, do(pSι,rSι) = d{pf

Sχ,r^) by 6.12 and hence / ( ^ ) is

and do(pSι,rSι):= a(sx) < α.

6.13.8. Replace /?, r, /?r, r\ yl9 π/2, L\ α, and / with pSi, rSι, p'Sι, r^ f(θSι),

β(sλ), L! — R[, αί^x), and fSχ = exp^ oΦ.,1

o(expp/ ) - 1 which is defined simi-

larly, respectively. By repeating 6.13.3-6.13.7 one obtains R2 c LJ — R[ and

s2 > εo/4, replacing R[ and sv R2 = f (R'2) is totally geodesic and locally

isometric to S2(l) by / . Rλ U R2 is totally geodesic since (Lλ U L 2 ) Π JR2 is

open in (L x U L 2 ) U ί 2 by fl5i c int(L; U L 2). Hence / : = i^ί U Λr

2 -^

RXU R2 is a well-defined local isometry. By induction, one obtains that

/ : = L' -> L is a local isometry, and L is totally geodesic. For any t < α, the

image μt of the minimal geodesic from qr to η x(r) in L' under /, is a geodesic

of length π/2 from q to γ^O* so it is minimal and lies in L.

6.13.9. Now let a < π/2. Apply 6.13.2-6.13.8 to p, q, yλ{ε0/2\ γ l 9 and γ2

to obtain L ( 1 ) as above. Then apply 6.13.2-6.13.8 to γi(εo/4)> ?> ϊi(3εo/4), Yi,

and μeo/Λ to obtain L(2). L ( 1 ) n L ( 2 ) is open in L ( 1 ) U L (2). So L ( 1 ) U L ( 2 ) is

totally geodesic and locally isometric to S 2 (l) . Inductively one obtains L

which is totally geodesic, and f:=L'^>L defined for a < π/2 is a local

isometry. Since μa is minimal one repeats 6.13.4 to see that / is an isometry.
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6.13.10. Uniqueness of L and γ3 = μa follows 5.12.

6.14. Corollary. Let A and B as in 6.1-6.3, 6.11. \fp,r ^ A and Vq G 5,

(l)Vί G L(q,p;go)3w G L(qt r\ g0) such that £ 0 O,w) = do(p,r)\

(2) ΓAere w a natural bijection between L(q, p\ g0) αw*/, L(#, r; g0) locally.

6.15. Definition. Let Λ and i? be convex sets in (M, g0) as in 6.1-6.3, 6.11.

For any p,r e A, q ^ B, υ G L(p,q; g0), and any mg(/?, r) γ, we define

P(Ί>q)(υ) t o be the unique vector in L(r,q) such that in 6.13 -γ^ί/O = ι>,

γx = γ, and -γ3'(r) = P(γ, q)(υ).

6.16. V/7 e (M, g0), there is a natural metric on U(M, go)p, namely

$0(
wv wi) Vw1? vv2 G ί/(M, g0). With this metric, U(M, go)p is isometric to

Sn-ι(l).
6.17.1. Fix q*=B, and define #(/?, ήr) = (Span L(p, q)) Π U(M, go)p Vp

G ^4. By 5.12, P(y,q) is an isometry from L(p,q) onto L(r,q) with 6.16,

where γ is any mg(p,r). Hence dim#(/?,#) = dimiV(r, q) Vp,r^A. Let

dimiV(/?,#) = λ' - 1, 1 < λ' < n. Ξ unique extension P(γ, q):N(p,q) ->

iV(r, #) such that P is an isometry (6.16). For any p,r ^ A, let #(/>, r) be the

collection of all curves from p to r in A which are geodesies of A except at a

finite number of points. P(θ,q) is defined for θ e #(/?, r). Let G(p,q) =

(P(0, #) 10 G #(/?, p)}. G is a subgroup of the isometry group of N(p, q) =

S^" 1 ^) . G is an algebraic subgroup of O(λ'). Let ι;0 e L(p,q) be arbitrary.

G(p,q)υ0 c L(p,q) which is closed. Gu0 = Gu0 c L(p,q\ where G is the

closure of G in O(λ'). G is a lie subgroup of O(λr) and the orbit G(v0) is a

compact smooth submanifold of U(M,go)p. Let £^

) } c UN(A9g0\ Then

) I r G y4, γ G MG(/>, r)} is a subfiber bundle of UN(A, g0) and

equal to £^.

6.17.2. The fibers σ~ι(r) of the fiber bundle σ:Eq-+ A are smooth com-

pact submanifolds P(y,q)(Gv0) of UN(A,go)r for any mg(/?, r) γ in A.

Obviously, σ'ι(r) c L(r,ήf; g0).

6.18. Remark. 6.17 is quite similar to the proof of Proposition 3.4 in [17] in

which parallel translation and holonomy are used (see 5.8.2).

6.19. Lemma [17]. Let F ^> E -> Bo be a fiber bundle where F is a closed

manifold and E is homeomorphic to SN. Let Eo c E be a subset such that σ \ Eo:

Eo -> Bo has a structure of a fiber bundle: Fo<^> Eo-> Bo where Fo is a closed

submanifold of F. Then Eo = E.

Proof. See [17, Proposition 3.4] and also 6.27.5.
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6.20. Let F <-* SN -> Bo be a fiber bundle where F and i?0 are compact

manifolds with F and i?0 Φ point, and JV e N + .

6.20.1. If JV = 1, then this has to be a finite covering of Sι by S1. So we

may assume that N ^ 2.

6.20.2. Let JF be connected, hence i?0 be simply-connected. By [4], F has

the homotopy type of Sι, S3,oτ SΊ.lϊ F — Sι, then Bo has the homotopy type

of CPk. If F = S 3, then 2?0 has the integral cohomology ring isomorphic to

those of H P * . If F ~ S\ then Bo is homeomoφhic to S 8 (also by [33]). N has

to be odd, by χ(SN) = χ(BQ)χ(F).

6.20.3. If F is not connected, then σ: SN -> £ 0 lifts to σ: S^ -> BQ and

one obtains Fo ^> SN -* Bo, where Fo is any connected component of F. If F

is discrete, then SN -> 2?0 is a covering map.

6.20.4. If N is even, then SN -> l?0 is a covering map and ̂ ( U Q ) = Z2.

6.20.5. If iV is odd and F is not connected, then Bo is as in 6.20.2.

6.20.6. In all cases, dim F + 1 divides N + 1.

6.21. Proposition [17]. Lei ̂  W 5 be as in 6.1-6.3, 6.9.4. If dA = 0 and

dB Φ 0 , ίΛefl Z? = {go}> ^ = cutlocus(#0), B = normalcutlocus(^4), α«J

LWv4 w homeomorphic to Sn~ι.

6.21.1. Proof. This can be proved by using 6.9, passing to an appropriate

C00-metric gm o as in 6.10.1 and 6.10.2, and obtaining a smooth function /

from dm (q0, •) by techniques of [21], where / > 0 and ||V/|| Φ 0 on M —

({#o} u N(yl, ε, g0)) for small ε and V/ is transversal to dN(A, ε; g0), to show

that UNA is homeomorphic to Sn~ι. The rest follows as in Proposition 3.4 of

[17] by using 6.17 and 6.19. \JpGA L(p, qo; g 0 ) = UN(A, g 0) and

U / 7 e / 4 L ( ^ o , j p ; g o ) = ί / ( M , g o ) < 7 o b y 3 ^ = 0 .

6.22. Theorem. Lei ̂ 4 and B be convex sets in (M, g 0) β5 z>z 6.1-6.3, 6.9.4.

If dA = 0,dB Φ 0 , and ̂ ( M , /?) * 0, /λ<?Λ (M, g0) w isometric to RPn(l).

6.22.1. PAΌO/. If n = 2, then Λ is a closed geodesic of length m by 4.6.2,

6.13, and 6.21. M is locally isometric to S2(l) except possibly on {#0} and A

by 6.13. By convexity and dim(^4) = 1, any geodesic in A of length π/2 is

minimal. For any p e A, the dual set of { p } contains at least two points and

cannot have boundary (6.10). Hence there are other pairs of dual sets A and B

as in the hypothesis. Hence M is locally isometric to S 2 (l), and therefore

isometric to RP 2 (1).

I f n ^ 3 , t h e n π x ( A , p λ ) = i r x { M - { p 0 } , P i ) - ^ ( M , p x ) f o r s o m e p x ^ A

by 6.21. In the fiber bundle Sx'~x = UNAp «•* Sn~ι = UNA ̂  A, λ' = I by

π^A, pλ) Φ 0 and 6.20. So, dim A = n — 1 and L(/?, q0) = ί/iV^ is a pair of

antipodal points for all p e A. L(q0, p) is a pair of antipodal points by 4.6.2.

Let f:S"-\l) = ί/M^o -> ̂ / ί " 1 be given by f(υ) = exp^TO/2. By 4.5 and

6.16, / is distance decreasing, locally 1-1, and hence a local isometry by 6.14.1.
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The L(q0, p)9s being antipodal pairs implies that (A9g0\A) is isometric to
RPn~ι(l). Let ql9 q2 G M be arbitrary, and pl9 p2 G A such that do(4o, 9/) +
rfo(?i» Λ ) = V 2 f o r ' = 1>2. Choose po^A with do(/?o, /?,) = π/2, i = 1,2.
The sets ^ = { ; e M|d o(p, p0) = π/2] and J5X = {p0} are convex dual
sets by A = RPn-\l)9 and &4X = 0 by 6.10. Λx is isometric to R P " " ^ ) .
9o> 9i> 92 e A Hence, Vυl9 υ2 G ΓM^ with H^Ho, ||ι;2 | |0 < ττ/4>
έ/o(exp^oϋi,exp^oϋ2) = p($0(υl9υ2), |K| | 0 , ||u2 | |0; 1) (4.3.1). (M, g0) is locally
isometric to ^"(l) around #0. The same is true for p0 ^ Aby using Ax and 5 1 ?

and hence for qι G ̂ 41# ^ e M was arbitrary, hence (M, g0) is locally isomet-
ric to Sn(l). π^M, pλ) = πλ(A, pλ) = Z2. Using A = cutlocus (#0), one con-
structs an isometry from RP"(1) onto (M, g0).

6.23. Theorem. Let A and B be convex sets in (M, g0) as in 6.1-6.3, 6.9.4,
and with ΰA = 0, dB Φ 0, am/ π^M^p) = 0. JFie Je/ϊ/ie a = dimyl and
λ = n — a. Then, we have the following: λ = 2, 4, or 8. « = kλ for <:GN+,
k > 2. // λ = 2, ίλίw M" Λ&Ϊ ίΛe homotopy type of CPk. If λ = 4 or 8, //ze«
H*(M,Z) = Z[JC]/X/C+1 wAere JC G # λ (M,Z). If λ = S then k = 2 and n =
16. 77zaί w // λ = 4 or 8 ί/ie« M Λa5 /Ae cohomology ring structure of HPk or
CaP 2 .

6.23.1. Proof. If « = 2, then Λ has to be a closed geodesic, and by 6.22.1,
M is locally isometric to S"χi) which has diameter π. So, n > 3. 0 = ^ ( M , /?)
= ^(Λ,/?) by 6.21. The fiber bundle UNAp = Sλ~ι «-> ί/ΛM = S"" 1 -> ^ f l

and 6.20 will give λ = 2,4, or 8. H*(A,Z) = Z[x]/xk, where a = (k - l)λ,
JC G if λ(y4, Z), A: ̂  2, α > 2, « > 4, by 6.20. If λ = 8 then k = 2 and A is
homeomorphic to Ss. By 6.21, Λ is a strong deformation retract of M - {q0}.
For the inclusion /: A «-» M - {^0}, /*: ^ * ( M - {tfo}>z) -* H*(A,Z) is an
isomorphism. The cohomology exact sequence for the pair (Af, M -
with Z coefficients has the following part:

where j : M — {q0} ^ M is the inclusion map. If 1 < q < « - 1, then
^^(M, M - {q0}) = 0. So, / = i*y*: Hq{M,Z) -* H\A,Z) is an isomor-
phism for 0 < q < Λ - 2. TΓ^M, /?) = 0; so, Hn'\M9 Z) = 0 and #"(M, Z)
= Z. Therefore, Hq{M, Z) = Z if λ | ̂  and 0 < q < «; = 0 otherwise. Let y
be the generator of Hλ(M,Z). λ < n - 2, and JC = /(>>) generates Hλ(A,Z).
I(yl) = (^(>;))/ = ^7 * 0, and hence / # 0 for 1 < / < k - 1. yk Φ 0 since
there is no torsion in H*(M, Z) and the pairing Hq ® Hn~q -* Zis nonsingu-
lar [36, p. 159, 5.27]. Hence yι generates Hlλ(M, Z), 0 < / < ifc, and H*(M, Z)
s Z[>Ί/y*+1. If λ = 2, then by [4], [3, pp. 189, 190] and [27] Mn has the
homotopy type of CPk.
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6D. The case of dA = dB = 0 .

6.24. By 6.10, 6.22, and 6.23, there is no loss of generality in assuming that

dA = 32? = 0 in this section. We define a = dim A and b = dim B, a,b > 0.

6.25. Definition. For any p,q G (M,g0) we define T(p,q): L(p,q)-*

L(q, p) by T(p, q)y'(p) = -γ'(tf) for any mg(/>, #) γ.

6.26. Let q0 G £. Construct £ = ̂  as in 6.17. then F <-> £ -> ̂  is a

fiber bundle, where F, £, and ̂ 4 are closed manifolds with the possibility that

F has many components or is discrete. Let Ef be {v G ί/JV(i?, g o) q o |/?Gy4,

H> G £, i; = 7X/?, 9o)(w)}. Then F' <-> E' ^ A is a fiber bundle with i 7 ' and

£ ' being homeomoφhic to F and £ respectively, where σ'O) = exp^ττί /2.

6.27. Proposition [17]. Lέtf ^4, 5 , E' be as in 6.24 and 6.26. Γ/zew JE:' =

UN(B9go)qo = S»-b-\ Consequently, Όp^AL(q0, p) = UN(B9 go)qo, M =

expgo[0, π/2]UN(B, g0), and the normal cutlocus of B is A. By symmetry, the

similar statements are true if A and B are interchanged and q0 is replaced by

Po^A.

Proof. See [17] for a slightly different proof for the C°° case.

6.27.1. Let ε 0 > 0 be as in 4.1. Let S = {expqoεov/2\ v e UNBqo}9 SOB

= 0 , 0 < do(S, B) = εx < ε0. Let q' e S2{\\ υ0 e US2(l)q,, and ^ r =

expfVtfr/2. 3ε 2 > 0 such that d(p\&φ^tw) < m/2 - εx/2 if w G US2(1)^9

$ (w, ϋ0) < ε2, and εo/2 < / < π/2.

6.27.2. Choose ε3 < ελ/2 such that N2 = N(A,ε3; g0) and 3iV2 are homeo-

moφhic to the unit normal disc bundle of A in M and UNA, respectively, 3iV2

is a differentiable submanifold of M, and similarly for B with JV4 =

N(B, ε3; g0). Ξε4 > 0 with N2U N3 = NλU N4 = M, where

Nλ = ΛT(^,9Γ/2 - ε4; g0) and 7V3 = N(B,π/2 - ε 4 ,g 0 ) .

Let N = Nλ- N2. Then V/? e N, do(p, A) and Jo(/?, B) are in [ε4, ττ/2 ~ ε4].

By 4.5, 3ε5 > 0 such that Vp e N9 \fv G L(/?, Λ; g0), Vw e L(/?, 5; g0),

^o(ϋ» w ) ^ π/2 + ^ε5 Vp ^ N any mg(j9, ^4; g0) cuts 3Â 2 orthogonally.

V/7 e 8Λ 4̂, any mg(^, A) makes an angle ^ 2ε5 with dN4. Any sequence of

mg(/7, v4; gm) γw, m e N + , has a C 1 convergent subsequence converging to

γ0, a mg(/?, ^4; g0) (see 5.10), and similarly for B. Hence 3m0 such that

(i) Vp G iV, Vί; G L(/>,Λ;gm o), Vw G L(/7,1?; g m j , ^ m o ( i ; , W ) > ir/2
+ ε5,

(ii) \fp ^ N any mg(/?, ̂ 4; gmo) cuts 3iV2 transversally;

(iii) Vp G 37V4 any mg(/?, A\ gm o) cuts 37V4 transversally of an angle > ε5.

One applies the mollifier techniques of [21] to the function dm ( , A) of the

C°° metric gm to obtain a smooth function / with |v/ | Φ 0 on N with v /

transversal to 3ΛΓ9 and 3ΛΓ4.
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6.27.3. N2 is homeomorphic to the unit normal disc bundle of A in M.

Using the integral curves of v / o n e constructs h\ [0,1] X (M - N4) -> M — N4

with Λ(0, p) = p, Λ(l, p) e AVp ε M - N4, and Λ(/>, /) = p Vp e Λ, V/ e

[0,1]. Hence yl is a strong deformation retract of M - JV4.

6.27.4. Let φ: [O,τr]-* [εo/2,π/2] be continuous with φ(0) = π/2 and

Φ([β2, * ]) = βo/2. Let Λ: [/#(£, go),o - M by Λ(ι ) = exp^ g o υφ(d(υ, £'))

(see 6.16, 6.26). If d(υ, E') > ε2 then do{fλ{υ\ B) > ex. If J(ι>, £ ') < ε2 then,

by 6.27.1 and 4.5, dQ(fλ{υ\A) < w/2 - εx/2. Hence, Λ: UN(B,g0)qo -+ M

- N4 and / 2 = HlJ^υ)): UN(By go)qo -> ̂  with ^(ϋ) e ^ and f2(v) =

h(l, f^v)) = fx(v) = expqQπv/2 = σ'(v) Vυ e E' (see 6.26).

6.27.5. (See [17, Proposition 3.4].) Suppose E' Φ UN(B,g0) = S n-b-l

3H: [0,1] X Ef -> £/MB ô with if(0, ϋ) = υ and ^ ( 1 , ι;) = υQ e £ ' Vί; e £ ' .

/ 2 i / : [0,1] X E' -> ̂  with /2i/(0, ϋ) = σ'(ί ) and /2ff(l, ϋ) = f2(υ0) = p0. By

the homotopy covering theorem [34, p. 54], 3H: [0,1] X E' -> £ ' with σ'/f =

/ 2 i / and H(0, v) = υ Vv e E'. H(l, E') c σ ' - ^ ^ ) - Z17. dimi^' < d i m ^ '

and both F' and E' are closed Z2-oriented manifolds. The identity map of E'

cannot be homotopic to a map which sends the top homology class to 0. Hence

E'=UN(B9g0),o.

6.27.6. E' c L(q0, A; g0) c UN(B, g0)qo, and hence all are equal. q0 e B

is arbitrary. A is the normal cutlocus of B and vice versa. The rest follows.

6.28. Let /?, p0E: A and qo,q e 5. We have the fiber bundles F ^ E ^> A,

and F ' ^ £ ' >̂ y4 as in 6.17, 6.26. σ ' " 1 ^ ) c L(qQ, p). E' = UNBqo = Sn-b~ι

and hence F r = σ'""1^) = L(ήf0, /?) by 6.27. So L(p, q0) = σ~\p) = F which

is a compact smooth submanifold of UNAp by 6.17. By symmetry, V/?,g,

L(p9q)9 L(q,p) are smooth compact submanifolds of LWΛ̂  and UNBq

respectively. E is homeomorphic to Sn~b~ι.

6.29. By 4.6.2, F' is not a point. If Fr is connected, then ir^A) = 0 and

F' - Sλ~\ where λ = 2, 4, or 8 by 6.20. Clearly dim Ff = dimF = λ - 1. If

i 7 ' is not connected, then either A is E' itself with λ = 1 or 3 a fiber bundle

FQ ^ £ ' -> vί, where fj/ is any connected component of i 7 ' with F0

7 = S λ " 1 ,

λ = 2, 4, or 8, and whenever d im£" > 1. If dimiΓ = 1, then E' -* ̂ 4 is a

finite covering of S 1 by Sι. dim E' = n - b - 1, so a + b + λ = n, λ divides

all α, fe, and n. Since L(p,q) is homeomorphic to L(q, p) via Γ of 6.25,

obtaining the above bundles for B results with the same fiber, but the total

spaces of the bundles might be different spheres.

6.30. Remark. In the case of dA = 0 and B = {g0}, the L(p9qQ) are

equal to UNAp, but one cannot conclude that the L(q0, p) are smooth

submanifolds of U(M, go)qo since P is not defined on {^0}
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6.31. Under the conditions of 6.24, π = ί/ + H λ > 3 . By Hamilton's

results [22], any compact Riemannian 3-manifold of positive Ricci curvature

admits a metric of constant sectional curvature 1. Hence, there is nothing to

prove in Theorems I and II in the simply connected case when n = 3. In the

following we assume that n > 4 when M is simply connected. Also we take A

and B with dimΛ < dim B. a < n - 3, since 0 < λ < a < b. πλ(M, q) =

TTX{M -A9q) = π^B, q) by 6.27 Vq e B.

6.32. If irx(M,q) = 0, then the fibration Sb+λ~ι = UN(A, go)p -> Bb gives

b > 2 and the fiber L(p,q) is connected. So, L(q, p) is connected V# G 5,

/?Gi4. 7Γ1(^,P) = O by λ > 2 (see 6.29), and the fibration t S α + λ " 1 =

ί/iV(£, g 0 )^ -> Λβ with connected fibers.

6.33. Proposition. If A and B are convex sets in (M, g0), as in 6.1-6.3, 6.24,

and πλ(M, p) = 0, then λ # 8, where λ w g/t Λ̂ Z?y 6.29.

6.33.1. Λw/. Suppose that λ = 8. Then α = Z? = λ = 8by 6.20.2. 4̂ and

B are homeomorphic to S 8 . Let C = {exp^ ft; | υ e tW(5, go)^o, ί e [0, V 2 ! }

for some q0 G 5. C is a topological submanifold of M since L ( / ? , ^ 0 ) = 5 ' 7 i n

UN(A, gQ)p \/p G A, and yl is a strong deformation retract of C - {q0} by

6.27. By a similar proof to 6.23.1, /f*(C,Z) = Z[JC]/X 3, j c G i / 8 ( C , Z ) .

5 — {# 0} is homeomorphic to D 8 . M - C = {expqtυ\q & B - {q0}, υ e

UN(By go)q, t G [0,77/2)} and is homeomoφhic to Z>24; this map can be

extended to a continuous map from Z)24 onto M by 6.27. So C is a strong

deformation retract of M - {/?0}, /?0 ί C. By a similar proof to 6.23.1,

i/*(M,Z) = Z[JC]/JC\ where x G HS(M,Z). Such a manifold does not exist

by [35].

6.34. Proposition. Lei 4̂ α«J 5 be convex sets in (M, g 0) β5 /« 6.1-6.3 α«rf

6.24, βfld ^i(^4, />) = πλ{B, q) = 0. Le/ a = fl'λ β«<i 6 = b'\ where λ w given

in 6.29. ΓAέw λ = 2 or 4. If λ = 2 then A and B are isometric to CPa' and

CPh\ respectively. If λ = 4, then A and B are isometric to HPa and HPh

respectively.

Remark. A is a C 1 submanifold and σ': £ ' -> A is C°; neither is known to

be C°° at this point.

6.34.1. Proof. Let q0 G .β be arbitrary and fixed. Consider £ ' = L(^ o , 4̂)

= UN(B9 go)qo = S"1"*"1^) as an abstract manifold, with the C00 metric d of

6.16, by 6.27. Recall 6.28, 6.29: σ': E' -* v4, σ'"^/;) = L(^ o , Z7) is a compact

smooth submanifold of E'. Let ^ 1 ? /?2

 G A, pλ Φ p2- Let υ G σ'"^/?!), γ be

any mgί/^, /?2; g0), and w = T(p2,q0)<> P(y,q0)oT(qφ px){v). By 6.13,

£ 0 ( w , v)=do(Pι,p2\ d(v,σf'\p2)) ^ do(pv p2).\fu G σ ' 1

doiPnPi) = do{expqom/2,cxpqoπu/2)
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by 4.5. Hence the fibers of σ': E' -* A are equidistant: V/^,/?2

 G A, Vυ G

σ'-\Pι), d(v,σ'-\p2)) = d0(pvp2).

6.34.2. The fibration of the smooth manifold {E\d)= Sn~b~\\) has

smooth equidistant fibers Sι or S3 (6.28, 6.29, 6.32, 6.33). We will show that

this is a smooth fibration.

6.34.3. Let p0 G A, Fo' = σ'~\pQ\ v0 G i^' be fixed. Define D =

£(/? 0 , εo/2; Λ, g 0). V/? G D, 3umg(/?0, /?) γ r Let υ0 = Γ(^ o, />o)(^o) BY the

uniqueness of the surfaces obtained in 6.13, fVo(p) = T(p, qo)° P{yp, #o)(ϋό) :

D -» £ " is C°. For w G t/TM^, ί G [0, εo/2], fVo(exppo tw) is a geodesic arc in

£ " starting from u0, which is normal to i ^ at ϋ0 by 6.34.1 and 4.5, and fVo is

1-1. φυo: UTApo -> tW(F0 ')ϋ 0, defined by φ j w ) = (d/dt)(fυo(exppQtw))(θi is

1-1 and continuous. dimUN(F0') = Λ - f c - l - λ = Λ - l = d i m ί / 7 ^ .

Hence φVQ is a homeomoφhism, and so is fθQ: D -> {expϋoίw|/ G [0, εo/2],

w G UN(FQ)VQ}. Any geodesic arc of length p < εo/2, normal to FQ at ϋ0,

corresponds to a umg(/?0, /?) of length p for a unique p G D and vice versa by

6.13, 5.12.

6.34.4. Claim. N(F^εo/2, d, E') Π Normal cutlocus(Fo) = 0 . Suppose

3εz , 0 < ε, < εo/2, υt G Fo

r, w, G UN(F£)Όi, i = 1,2, with ϋ3 = e x p ^ ε ^ =

expϋ2 ε2w2. Let γ^ί) = exp^o(expϋ. twt\ i = 1,2. Both γx and γ2 are geodesies of

lengths ελ and ε2 starting at pQ ending at pλ = e x p ^ ^ . i(M,g0) > ε0, so

yλ = γ2 and εx = ε2 = do(po, pλ). Both exp^/w,, / = 1,2, are normal to

σ'^ipj since εx = ί/oίσ'"^/?!),^) = do(po,pλ\ wλ = w2, and υλ = ϋ2 by

φV3 being 1-1 and γx = γ2, ( £ ' , <i) is a smooth Riemannian manifold and Fo' is

a smooth submanifold. Hence the claim follows from the structure of the

normal cutlocus in the C00 category. In fact the focal points of FQ correspond

to the cutlocus of p0 in A.

6.34.5. d( , FJ): N(F^ εo/2, d) - Fo' -• (0, εo/2) is smooth, {υ G

E'\d(υ, FQ) = r} is a smooth submanifold of E\ 0 < r < εo/2, and it is the

union of all fibers σ'~ι(p) which has d(σ'~\p), o'~ι(p0)) = do(po, p) = r.

6.34.6. One repeats the proofs of Lemma 6.2 and Proposition 6.1 of [13,

pp. 12-15], to prove that the fibration of E' by o'~\p\ p G A, is a smooth

fibration with compact fibers - Sι,S3; that is 3 a smooth map σ0 and a

smooth manifold Λg such that FQ ^ E' ^ Ao is a smooth fiber bundle and σ0

is a C 0 0 submersion. By Proposition 2 of [13, p. 6] and since the fibers are

equidistant (parallel in the terminology of [13]), there exists a C°°-Riemannian

metric g' on Ao such that σ0: (E\ d) -> (Aθ9 g') is a C°°-Riemannian

submersion.

If λ = 2, then by [16, Corollary 2.2], the smooth metric fibration of

(E\d) = Sn-h-\l) by 5 1 is congruent to the Hopf fibration Sn'b-\1) -*

CPa\ and hence the simply connected (Ao, g') is isometric to CPa .
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If λ = 4, then in [18, Corollary 5.4] all Riemannian submersions Sn~b~\ϊ)

-> A% by the smooth fibers - S3 are classified to be the Hopf fibration

S»-b-\l) -> H P " , and (A%, g') is isometric to H P " .

Clearly λ = 2, 4 are the only possibilities by 6.20.2 and 6.33.

6.34.7. Define /: (Ao, g') -> (A,go\A) by I(x) = σ'ίσόΉ*))- I is well

defined, 1-1, and onto. By [7, pp. 65, 66, 68], for any C°°-Riemannian

submersion the distance between two fibers is equal to the distance between

their images under the projection map. By 6.34.1, / is an isometry.

6.35. Theorem. Let A and B be dual convex sets in (M, g0) as in 6.1-6.3,

such that both have positive dimension and no boundary. If n > 4 and πλ(M, p)

= 0, then (Mn,g0) is isometric to CPn/1 or HPn/A. In fact k > 3, where

kλ = n and λ = 2 or 4 for C or H, respectively. Hence, (M, g0) is a

C°°-Riemannian manifold.

Proof, k > 3 follows from 6.29. Tn this proof we only use g0 on M.

6.35.1. By 6.26-6.34 we have the following. A and B are totally geodesic

simply connected submanifolds of (M, g0) at a distance ττ/2 from each other.
σ

A is the normal cutlocus of B and vice versa. \fp G A, q G B, UN(A, go)p^> B

is a fiber bundle with fibers o~1(q) = L(p,q)= S λ~ 1, a great sphere in

UNAp = Sn-a-\l\ and λ = 2 or 4. a + Z> + λ = n, λ | a, b, n. A and 5 are

isometric to C P f l / 2 and CPb/1 respectively if λ = 2; or to UPa/Λ and UPb/Λ

respectively if λ = 4.

6.35.2. Hλ(M, Z)Φ 0 and hence M is not homeomorphic to a sphere.

This follows from the long exact sequence for cohomology for the pair

(M, M - A), H\M - A) = H\B) by A being the normal cutlocus of B and

B being a strong deformation retract of M — A, and H\M,M - A) =

H\N{A, ε), N(A, ε) - A) = 0 for / = λ, λ + 1 by NE(A) being homeomor-

phic to the n — a dimensional normal disc bundle of A in M, Thorn Isomor-

phism Theorem [30], and λ + 1 < n - a - 1, b ^ 2.

6.35.3. Claim. V / ? 1 , / ? 2 G M , we can choose A and 5 as above and Pι,P2^A.

Proof. Let Al9Bx satisfy 6.35.1. Let px £ Aλ and γ be mg(^ 3 ,^ 1 ) with

p3 e Λ l s /(γ) = </<,(/>!, Λx). γ'(/>3) e I/ΛMp γ(w/2) = ?i e= ̂ . Let ^ 2 e Bx

and ;?4 e 4̂X with do(qι,q2) = do(p3, p4) = π/2. Find dual convex sets A2,

B2 with /?3, qλ G. A2 and ̂ 4 , q2 e 5 2 . jp1 G ̂ 42 by convexity. 3τl2 = dB2 = 0

by 6.35.3.1. Obviously A2, B2 satisfy 6.35.1, as above. Let p2£A2, since

otherwise the claim holds. Let θ be m g ^ , p2\ First, assume θ\pλ) G UNA2.

θ(π/2) = q3 e Jϊ2. Pick ί 4 e 5 2 and ̂ 5 e ^ 2 with ^ ( ?!, Λ ) = do(q3, q4) =

τr/2. Find convex dual sets Λ3, B3 with /?l5 ̂ 3 G A3 and /?5, j ^ 4 G B3. dA3 =

35 3 = 0 (6.35.3.1) and ̂ ^ G A3. A3 and ̂ 3 satisfy 6.35.1. Second, 0 'Oχ)

ί ί/Γv42 since A2 is totally geodesic and p2$ A2. Third, assume that
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2, where 0<μ,.<l, υ1sUN(A2)pi9 υ2eUT(A2)pi. Define
γ,.(0 = exP/7i tvi9 i = 1, 2. Let p6 = y2(τr/2) e Λ2, ? 5 = γχίir/2) e 2?2.

do(pv p6) = π/2 hy A2 being isometric to G P ' for some /. By the proof of

6.13 θ(π/2) = rx lies on a mg(/?6,05) γ3. Let # 6 e £ 2 with do(q5,q6) = π/2,

and construct dual convex sets A4 and B4 with ^ 1 ? ^ 6 Ξ A4 and /?6,#5 Ξ # 4 .

Clearly dA4 = 9i?4 = 0 and 6.35.1 holds for A4, B4. rλ e i?4 by convexity.

do(Pi> rι) " ^ / ^ J and hence 0'Oχ) e UNA4; this reduces to the previous case.

6.35.3.1. Suppose dA2 Φ 0 and pQ e ^42 is at maximal distance from dA2.

p0 cannot lie on a closed geodesic by 6.8, 6.8.1, 6.9. A2 Π 4̂X and 5 2

 n ^ i

form a dual convex pair in Aλ ( = CP α ' or H P α ) , so each is a submanifold of

Aλ without boundary or is a point. Let p'o be the closest point oί A2 (Ί Aλ ίo

Po PoφPo bY d(p'09A2nB1) = ir/2, 4.6.2, 6.4.1, and 6.9.2. Let γ be a

mg(p'0,p0). γr(0) e LW(^X Π v42). γr(0) is normal to UN(A2 Π ^ ) n UTA1

by 4.5, ί/(/?0, ^ ! Π £ 2 ) = ττ/2 and 6.35.1. γr(0) e LW^l9 γ(w/2) = / # e 5 l 9

γr(τ7/2) e LWΛlβ By 4.5, d ( ^ ' , £ 2 Π 5X) = ττ/2 and so p'o' <Ξ Bx Π A2. By

6.34.6, L(p'o\p'o) and L(p'o,p'o') are great spheres in ί/M^ and UMp^

respectively. Hence y(kπ) = p'o and γ(ττ/ 2 + kπ) = ^ VA: G Z. γ(R) c ^ 2 .

One obtains a contradiction by 6.8, and hence &4 2 = 0 .

6.35.4. Any two points of (M,g0) are contained in a totally geodesic

convex set A which is isometric to either CPa/2 or H ? f l / 4 . Hence /(Af, g0) =

^ ( M ^ o ) = V 2 and Vpvp2<=M with do(pl9 p2) = π/2, L(pvp2) is a
great sphere 5 ' λ " 1 in UMpχ.

6.35.5. Claim. V/71? /?2, p3 G M, 3 a totally geodesic convex submanifold

C c of M which is isometric to CPc/1 or H P c / 4 and /?, e C, / = 1,2,3.

By 6.35.3 we may assume that pl9 p2 & A, p3 & A, and pt are distinct. Let

p4, p5e B with do(p4, p5) = π/2 = J0(jp4, /?3) + do(p3, A). Construct dual

convex sets Aλ and Bλ with {p^p4} U ̂ 4 c ^ and j ^ 5 e 5 ^ Similar to

6.35.3.1: 3 ^ = 0 . If dBλ= 0 , then the claim holds. If dBλΦ 0 , then
Bι = {Ps}, by 6.21, 6.35.1. The fiber bundle of 6.23.1, U(M, go)P5 -* ^ l 9 has

totally geodesic equidistant fibers Sλ~ι by 6.35.4. By the proof of 6.34,

Ax = Cc is isometric to CPc/2 or HPc/A (also see [12], [13]), C is totally

geodesic and convex.

6.35.6. Given p e M, consider σP: (M, g0) -> (Λf, g0) defined by

σ^exp^ to) = exp^ - tυ V/ e [0, *τ/2]. Vςr, r e M, we choose C of 6.35.5 con-

taining /?, r̂, and r. Since C is isometric to a symmetric space, σ̂  is well

defined and do(q,r) = do(σp(q),σp(r)) in C and hence in M. (M, g 0) is a

symmetric space. As in [2], each σ̂  is C 1 [28, Theorem IV.3.10], the group of

isometries G of (Af, g0) is a Lie group [28, Theorem I. 4.6], G is transitive, and

(M,g0) is a homogenous space which has to be a C°°-Riemannian manifold. By



BERGERS THEOREM ON ALMOST 1/4-PINCHED MANIFOLDS. II 133

6.35.5 (Af, g0) is a C00, simply connected, symmetric space of rank 1. CaP 2

does not admit dual convex sets A and B with dA = dB = 0. Hence (Af, g0)

is isometric to CPn/2 or HPn/\

6.36. [17, §5]. Let (Af,g0), A, B be as in 6.1-6.3 and 6.24, and let

π1(M,p)Φθ in the rest of this section. Let (Af, g0) be the Riemannian

universal cover of (Af, g0). K(M, gm)> 1 implies that d(M,gm)^ π9 and

hence ττ/2 < d(M, g0) < 77. Let 17: (Af, g0) -> (M, g0) be the Riemannian

covering map, i.e. g0 = 7j*g0, yί = tfl(A\ and 5 = η~\B). A and 5 are

totally geodesic. Given /? e Af with do(p, B) = ττ/2, let γ be mg(/?, 5).

7X77/2) Ξ LW5, τj*γ'(τ7/2) e tW5, (ηγ)(0) G Λ, and γ(0) = ; G i . V ^ E i ,

do(p, B) = π/2. Let p,r^A, q^B with do(p,q) = π/2 and 3mg(/?, r )

γx c X Any mg(/?, #) is normal to 4̂, hence by 4.5 and above do(q, r) = ττ/2.

If vί0 and ^ 0 are the connected components of A and B containing p and ^

respectively, then V/ e i 0 , Vq' e ^ 0 , Joί/?', ̂ 0 = ττ/2 By 6.31, « ^ 3; and

if n > 4, then ^Af, r̂) = TΓ^^, q), B is connected and so is A since codim(B)

> 1 and 4̂ is the normal cutlocus of B. The following also takes care of n = 3

andrf(Af,g o)>ir/2.

6.36.1. Let /? e M with Jo(/?, ̂ 40) = / and let γ be a mg(v40,/?). Then

γ'(0) G ί/7Vi, γ(flr/2) G £, γ'ίflr/2) e ί/iV5, γ(π) G i , and hence rf(/?, i ) <

min(/, 7r - /). M = ΛΓ(̂ ί, τr/2) and if /? G 5 then d(p, Ao) = 77/2. V/ G yf,

V r̂r € B9 do(p\ q') = 77/2. As in 6.2.2 and [17], V / , q' G i with J o ( / , ήf') <

77, any m g ( / ? , ^ ) c i (see 4.5, 4.6.1). If 3pvp2,p3 G M with £/(/?!,/?,-) = 77

for ι = 2,3 then p2 = p3 by 4.5. Since d i m ^ > l , >ί is connected and

77-convex [15], [17] and so is B.

6.37. Lemma. Assume that 6.36 holds. Ifn = 3, then a = b = λ = 1, 0m/^4

αwrf ^ αr^ closed geodesies of shortest period 2 77 andd(M, g 0) = 77.

6.37.1. Pro6>/. β = ft = λ = 1 follows 6.28 and 6.29. Let / G i be fixed

and p = η(p'). Since Z? is connected, the maps σ: t//V/4p = S 1 -> 5 — 5 1 and

σx: UNAp, = S 1 -• 2? = S 1 are / and /' fold covering maps respectively,

/' \πλ{M,p)\ = /, where σ(v) = exppπv/2, σ^*/) = expp,m'/2. A and B
are normal cutloci of each other since A and B are. ί/ΛU and ί/iVJ? are

oriented in M. M is the union of the two solid tori N(A, τr/4) and N(B, π/4\

attached along their boundaries by a diffeomorphism of T2. Let C —

(expy tv\υ & UNApf, 0 < t < 77/2}. M - C is homeomoφhic to a 3-disc and

hence 0 = T7X(M, /?Q) = 771(C,/?Q). C is obtained by attaching a 2-disc to

5 = S 1 along its boundary by a /'-fold covering map. By Van Kampen's

Theorem ir(C9p'o) = Z//'Z, and hence /' = 1. (UNA^d) - » ( 5 , g o | ^ ) is a

Riemannian covering map (see 6.13 and 6.16). B is a closed geodesic of
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smallest period 2π and any part of length π is minimal by π-convexity of B;

hence d(M, g 0) = π.

6.38. Theorem. Let A and B be dual convex sets in (M, g0) as in 6.1-6.3

such that both have positive dimension, no boundary, and π}(M, p) Φ 0.

(i) Ifd(M, g 0) = π/2, then (M, g0) is isometric to CPn/1, πλ(M, p) = Z 2 ,

n/2 is odd, and n > 6. g0 tf«d /zewce g0 w tf C°°-Riemannian metric. In fact

(M, g 0) is unique up to isometry, [17, Theorem 5.3] α«<i [37, p. 304].

(ii) // d(M, g 0) > 7r/2, ίλeΛ d(M, g 0) = TΓ, (M, g 0) w isometric to Sn(l),

and g 0 and hence g0 is a C^-Riemannian metric. See [17, Theorem 5.2] and

[37] /or the classification of such (M, g0).

6.38.1. Proof, (i) It is the same as [17, Theorem 5.3], by using 6.31,

6.35-6.37. Smoothness of g0 follows 6.35.6, and it is a local property.

6.38.2. (ii) d(M, gm) > π/2 for some m e N + , and hence M is homeo-

morphic to S"7 by [21]. λ = 1, since A and B are normal cutloci of each other

(6.36), one repeats the proofs of 6.33 and 6.35.2. Let p e A, q ^ B. σ':

UNAη(p) = £ ' -> J5 is a covering map (6.26, 6.29). σr: ( £ r , </) -> ( 5 , g01B) is

a distance decreasing map (4.5, 6.16), and it is a local isometry by 6.13. σ':

(E',d) = (l/W/ί^ >̂ o) -* (B, g01B) is a local isometry by 6.13, where σr(?;) =

exppfl u/2. If Λ > 4, then 77X(5, ̂ r ) = TΓ^M, ήr7) by 6.31, ^ ( 5 , q) = 0, and σ':

(E',d) -> ( 5 , g o | ^ ) is an isometry since B is ττ-convex. If n = 3, then see

6.37.1. Hence L(/?, ̂ ) contains only one vector, so does L(q, p). So, UNBq -^ A

is an isometry. Consequently d(M, g0) = TΓ.

6.38.3. g 0 is C 1 a priori, so Toponogov's maximal diameter theorem is not

applicable. M = N(A, π/2) = N(B, π/2) (6.36). Pick pl9 p2 G i with

dpiPuPi) = *> Ao N({pvp2},π/2). \/q e M, 3 ^ G i with J0(?»?i) =

do(q,A)^π/2. 3mg(ql9q) γ1? mg(^, {pl9 p2}) γ2, both with lengthy
77/2. γί(9χ) e LWi, γ2 c i ; so, by 4.5, d(q, {pl9 p2}) < π/2, and

ΐV({^^ 2 },7r/2) = M. Let C = {4 G M | J O ( Λ . J ? ) = V ^ for i = 1,2}. Λ c

C and Cx = C Π vί is a great (α — 1) sphere in A = Sa(l). C is ττ-convex and

the union of all minimal geodesies of length π/2 between C\ and B. It is a

connected totally geodesic, b + (a — l) + l = n — 1 dimensional submanifold

of M. dC = 0 , by proof similar to 6.35.3.1 and C being the union of closed

geodesies by using 6.38.2. {pvp2} = {q ^ M\do(q,C) = π/2} since B U Cλ

c C and 6.36. Define μ: L(pl9 C) -> C by /x(ι ) = exp/,i τr«;/2. One can apply

6.13, 5.12, 6.34.3 to C and pλ to obtain the following:

(i) μ is 1-1 on μ~\Cλ U 5 ) by 6.38.2, so it is 1-1 on L(pv C).

(ii) /x is a local isometry and L(pl9 C) is complete in UMpι.

(iii) L(pv C) is totally geodesic « - 1 dimensional submanifold of UMpχ.

Hence μ is an isometry from (UMp]9 d) = Sn~ι(ϊ) onto (C, g01C).
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6.38.4. For any ql9q2 e M, pick mg(pl9p2)
9s yx and γ2 with qt = yfa),

= *0(γί(o),γ2'(o)) = * 0 (γί(*)>yί(*)) : = «>

by C and { /?1? /?2} being π-convex dual pair. r3 := do(<7i> q2) < p(α, r1? r2; 1).

6.38.5. Claim. r3 = p(α, r1? r2; 1).

Case (i). r1? r 2 ,α < ττ/2. This follows by applying 6.12 twice, starting with

the triangle px, yx(m/ΐ)9 γ2( V
2 )

Cose (ii). rx, r2 < ττ/2 < a < 77. Choose ί any mg(q1,q2) in B(pl9π/2)

by the convexity of C. Vg e M, there exists a unique mg(/?l9 /?2) T̂  which

contains q. Pick 0 = ί0 < tι < < tt = d(qv q2\ si = 0(/;), αy =

^O(Y;,(0), γ;/+1(0)) such that «,. < 9τ/2.

by (i), 'Ί = do(pλ, s0), r2 = do(pl9 sj, π > Σai> «•

C α ^ (iii). r l 9 r 2 > π / 2 , 0 < α < TΓ. Using (i) and (ii) for /?2: r3 =

p(α, π- rvπ -_r2; 1) = ρ(α, r1? r̂ ; 1).

Hence both B(pvπ/2) and B(p2,π/2) are isometric to hemispheres in

Sn(l). C separates M into two open connected sets.

Case (iv). rx > π/2, r2 < π/2. Choose any mg(#1? q2) θ and let {q3} = θ

Π C. Using (i) and (ii) for each piece of θ in B(pi9π/2), and using the

inequalities of (ii) for / = 2 one obtains the claim.

6.38.6. Hence (M, g0) is locally isometric to S"(l) and homeomorphic to

Sn. One constructs an isometry from Sn(l) onto (M,g0), using exp/,i and

6.38.5. So g 0 is C°° and so is g0.

7. Proofs of Theorems IIA and IIB

They will be proved together.

7.1. Let K > 4, « > 2, 8 > 0 be given. If a smooth ^-dimensional mani-

fold M admits a C°°-Riemannian metric g which satisfies (i)-(v) below then

we say that M satisfies condition (K,n,δ).

(ii^M,/?) = 0. H*(M,Z) = Z[x]/xk+\ x e H\M,Z\ n = kλ, λ = 2,

4, or 8, it = fc[M] > 2, /i even; if λ = 8 then k = 2 and Λ = 16.

(iii) V v ^ < /(M, g) < J(M, g) < π/2.

(iv) If &[M] > 2, then Ξ/?^ /?2, /?3 e M with ί/(/?/? /̂ . g) > ττ/2 ~ δ for

1 < / < 7 < 3.
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(v) If k[M] = 2, then Vpv p2 3p3 e M with d(pl9 p2; g) > π/2 - δ im-
plies that d(pi9 p3)> π/2 — δ for / = 1 and 2.

7.2. Let K and n be fixed. There are finitely many diffeomorphism types
of manifolds satisfying condition (K9n,π/2) by [6], [7], [31]. Clearly there
exists such diffeomorphism classes. Let Ml9M2,-"9Mι represent all such
distinct classes. Define ξ, = £[MJ = i n f ^ M , satisfies condition (K, n,δ)}
for 1 < i < /. Also define δx(K9 n) = min^f,. 11, # 0, 1 < i < /} U

{ δ o ( ^ Ό} τ h e n δi(^> Ό > °
7.3. Let (M,g) be a C°°-Riemannian manifold satisfying the hypothesis.

H\M, Z) Φ 0, so J(M, g) < ττ/2 by [21]. M satisfies condition (K9n9δ) for
δ < δj, hence ξ[M] = 0. Let gw be a sequence of C°° metrics with (M, gm)
satisfying condition (K, n, \/m). One extracts a convergent subsequence of gm

converging to a limit metric in the sense of 4.1. g0 satisfies all properties
obtained in §§4-5. Let d be distance function for g0.

7.4. Claim. (M,g0) is isometric to GP*, HP*, or CaP 2 with their standard
metrics, and g0 is a C°°-Riemannian metric.

7.4.1. By compactness and gm -> g0, for k > 2. 3/?1? /?2, p3 ^ M with
^(Pi»P/) = V 2 f o r 1 < i <y < 3, and for k = 2 V/>l9/?2, 3j^3 G M with
d(pvp2) = w/2 implies that d(pvp3) = d(p2, p3) = π/2. Obviously the
hypothesis of Theorem I is satisfied. Let D = {pl9 p2}' and C = D\ be dual
convex sets as in 6.1.5. If dC = dD = 0. then 7.4 holds by 6.35. So we may
assume that one has boundary. Apply 6.9.4 to C, D to obtain Cl9 Dv By 6.10,
6.9.4, only one has boundary. Recall 6.21. If 3CX = 0 and Dλ = {p0}, then
let Cλ = Λ, Dx = B and replace p3 with /?0. If 9D1 = 0 and Q = { /?0}, then
(0 Po « {Pi, Λ} a n d {Pi Λ} n {/>o}' = 0 ( 4 6 2, 6.4.1, 6.9.2), (ϋ) let γ be
umg(/?0, Pι), and /?4 = y(π/2) e 2)^ (iii) rf(Λ, ^) < w/2, ί/(/71? /?3) = ir/29

p3 e />!, γr(9r/2) e ί/iVD^ so d(p4, p3) = ττ/2 by 4.5, (iv) let A = Dv B =
Q, and replace pv p2, p3 with p3, p4, p0 respectively. Hence, one may assume
that 3pvp29p3<ΞM with pl9p2eA9 dA= 0, {p3} = B, d(Pi, Pj) = π/2,
1 < / < y < 3. One constructs dual convex sets 4̂X and A2'm A with /?1 G Al9

p2 e ^ 2 satisfying 6.9.4. Let P 2 = {̂  e M | J(^, ̂ ) = V 2 } a n d ^i = {̂  G

M\d(q, B2) = 77/2}. ,0! and B2 are dual convex sets in M, 4̂X = Bv and

7.4.2. Case for dAι = 0. Suppose 32?2 ^ ^ L e t ^ be at maximal distance
from dB2. q £ A2 U {p3} by 4.6.2, 6.4.1, 6.9.2. Let γ be a normal geodesic
with γ(0) = γ(τr) = p3, y(c) = ςr, γ(ττ/2 + c) = ?", and γ(π/2) = q' e ^ 2 c
4̂ Π 5 2 , by 6.22. Apply 6.9.4 to Λx, 5 2 to obtain the dual convex pair Dl9 D2

in M, with Dλ D yl1? D2 c 5 2, 8D2 # 0 . Then dDλ = 0 by 6.10, Z)2 =
and q"<^Dλ by 6.22. So d(q9q") = w/2, and γ'(0) = γ V ) . Hence
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contains the closed geodesic γ, which is not possible by 6.8, 6.8.1, 6.9 (similarly

in 6.35.3.1). So dB2 = 0 , by a proof by contradiction. Claim 7.4 holds and

k > 3 by 6.35. Similarly if dA2 = 0 .

7.4.3. Case for dAx Φ 0 and dA2 Φ 0 . By 6.10, A is homeomorphic to a

sphere, so to Sλ by 6.22. k = 2. Apply 6.9.4 to 4 l 5 £ 2 to obtain the dual

convex pair Cv C2 in M with Q c Al9 dCx Φ 0 , £ 2 c C2. Then 3C2 = 0 by

6.10, Cι = {90}, a n < i Q i s a homotopy λ-sphere and C 1 submanifold by

6.20.2, 6.21, and 6.22. C3 = exp^JO, ττ/2] L(p2, p3) c 2?2 and C3 is homeo-

moφhic to Sλ. Hence C3 = B2 = C2 and A2 = {p2}. Similarly, Aλ = {pλ},

V# G Λ, L(#, />3) = £/A^ by 6.21. 3q' G Λί with ^(9,9') = τr/ 2 by 7.4.1.

Construct dual convex sets {9} and A3i){p3,q'}. Hence L(p3,q) =

UN(A3)p3 = S ί λ - I ( l) The fiber bundle E' = UMp3 = L(p3, A) =

5' 2 λ~ 1(l) -^ Aλ constructed as in 6.26 with dim B = 0 has fibers of great

spheres. Equidistancy follows 6.34.1. By a similar proof of 6.34.3-6.34.6, and

using [12] or [13], this equidistant fibration of 5'2 λ~1(l) by great spheres

Sλ~ι(l) is congruent to a Hopf fibration: Sx~\\) -> ^ 2 λ - χ ( l ) -* Sλ(4), where

λ = 2, 4, or 8. A is isometric to Sλ(4) as in 6.34.

A is the cutlocus of p3 by 6.21. Given any qλ G M, 3^r2,^3 G M with

d(qn q/) = π/2 for 1 < i < j < 3. If qx = pi9 then there is nothing to prove. If

P3 ^ <lv ihen let q e A be with d(p3,qι) + d(qvq) = τr/2. Ξ̂ f2 G ̂ 4 with

d{q^q) = V 2 d{q,p3) = V 2 » d{q2,qγ) = ττ/2 by 4 5, and 43 exists by

7.4.1. Repeat 7.4.1 for ? f.:D = {91,92V* C = D'.dC =dD = 0 cannot occur

by k = 2. If 3 Q = 0 , then {9i,92} ^s a n antipodal pair in Q = Sλ(4) and

9o = 93 since otherwise one would obtain q5 e Q with d(q5yq3) = d(q3,Cι)

< 77/2, and d(9 3 , {9 l5 92}) < π/2 by 4.5 and rf(95, {91? 92}) < π/4. The case

of 3Z)1 = 0 cannot occur; since otherwise: q4, q3 would be an antipodal pair

in Dλ = 5rλ(4), similarly d{qA,q2) = d(q2, Dλ), 9o>94>9i>92> l i e o n a c l o s e d

geodesic by d(qvq2) = ττ/2, 94, q0 G C, Z) = {93} which is contradictory

with itself: D 1 = D. Hence given qvq2,q3 with d(qi9qj) = π(l - δ / y)/2, we

can choose A with 9 l 5 ^ 2 G yl, and { 93}, A form a dual convex pair. Using this

one can prove that:

(ii) \/qλ G M, C(9X) = cutlocus of qx with respect to g0 is a totally geodesic

submanifold of M, isometric to Sλ(A).

(iii) V^x e M, Vg2 G C(9X), the union of all mg(^ 1 ?^ 2) forms a convex set

with no boundary isometric to Sλ(4) in which qx and 9 2 are antipodal,

(iv) Any geodesic of M is a closed geodesic of least period π.

(v) \fqλ G M, V r̂2 G C(9X) V m g ^ , 92) yl9 Vγ2 a geodesic in C(qλ) passing

through 9 2, 3 a unique totally geodesic 2-surface L containing 9χ,92, γ^ and
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γ 2, locally isometric to 52(1). L is isometric to RP2(1) by using (iv) and 6.13.

One follows [2, pp. 148-150] to show that (M, g0) is a compact symmetric

space of rank 1 with smooth metric g0. The rest follows from the classification

of such spaces ([1], [2], [7]).

7.5. Theorems IIA and IIB follow 7.4.
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