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HOMOLOGY OF CLOSED GEODESICS
IN A NEGATIVELY CURVED MANIFOLD

TOSHIAKI ADACHI & TOSHIKAZU SUNADA

0. Introduction

Let M be a compact Riemannian manifold whose geodesic flow on the unit

tangent bundle is of Anosoυ type. It is known that each free homotopy class of

closed paths in M contains a unique closed geodesic (W. Klingenberg [9]). In

this paper, we show, by using a modified Perron-Frobenius theorem, that there

exist infinitely many prime closed geodesies in each homology class in

Hλ{M, Z). More precisely, we prove

Theorem 1. // we denote by N(x, a) the number of prime geodesies p in M

whose homology class is a given a and length /(£) < x, then the exponential

growth rate l i m ^ ^ JC" 1 logiV(jc, a) is equal to the topological entropy h of the

geodesic flow ( > 0).

The above theorem is intuitively anticipated from the fact that the funda-

mental group of M has exponential growth, while Hλ(M,Z) has polynomial

growth. In this view, one may ask whether there exist infinitely many closed

orbits with a given homology class for a general Anosov flow (X,φt). It is

known that the exponential growth rate of the number of closed orbits with

respect to the period is always equal to the topological entropy. But one can

easily construct an Anosov flow such that every homology class contains only

finitely many closed orbits.

If HX{M,Έ) is of finite order, Theorem 1 can be proven by means of

dynamical L-functions, combining the idea of proof of the Chebotarev density

theorem with the fact that there is a resemblance between prime closed

geodesies and prime ideals in number fields (see [13], [17], [18]). In fact, we

have
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as x goes to + oo ([2], [13]). If we regard Hλ{M,Έ) as an "ideal class group,"

this is a geometric analogue of the Dirichlet theorem for arithmetic progres-

sions.

The heart of the matter is in the case rank Hλ(M, Έ) > 0. Since the classical

argument in number theory cannot apply to the ideal class group of infinite

order, we need to develop a new idea to handle this case. Indeed, if we would

try to go along the same line as a proof of the case of finite order, we have to

investigate the singularity around s = h of the function

where d\ denotes the normalized Haar measure on the character group of

HX{M, Z), and L(s, χ ) is the L-function defined by

i

Even in a special case (for instance, in the case of constant negatively curved

surfaces), the singularity of the above function seems very complicated (a

difficulty is caused by the presence of small eigenvalues of the Laplacian acting

on sections of the flat line bundle associated to a character χ) .

The method we will take up in this paper is rather combinatorial, and is

motivated by Bowen [4] and Pollicott [14]. To explain the underlying idea, we

recall that one of basic tools in the study of Anosov flows is a Markov family,

which defines an oriented finite graph embedded in the base manifold as a

1-dimensional CW-complex. In view of Bowen's symbolic dynamics [4], each

closed path in the graph approximates a closed orbit of the flow. The problem

of counting closed orbits of Anosov flows is therefore reduced to that of closed

paths in oriented graphs. But as we mentioned above, this is not enough to

establish Theorem 1. A special feature of a geodesic flow φt is that it has a

reversible property: -φt(v) = φ_t(-v). This enables us to construct a Markov

family with an involution (see [1]). The presence of an involution yields an

interesting property of eigenvalues of "twisted" Perron-Frobenius matrices

associated to the graph, which plays a crucial role in counting closed paths and

leads us to the conclusion.

It is known that if the curvature of M is strictly negative, then the geodesic

flow is of Anosov type (see [6]). It should be noted that our assertion is not

always valid for nonpositively curved Riemannian manifolds. Indeed, a homol-

ogy class a of a flat torus contains a prime closed geodesic if and only if a is

not a nontrivial multiple of another homology class.
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We should point out that there are many compact constant negatively
curved manifolds with positive first Betti number (cf. [11]). For adequate
background on the subject of Anosov flows we refer to [3], [4], and [16].

To avoid confusion, we employ the following terminology throughout: For a
general flow (X, φt) an orbit cycle p with period τ(p) means an oriented cycle
in X defined by a map: U/τ(p)Z -> X (t -> φt(x)\ where x is a periodic
point with Φτ(t))(x) = x, r(p) > 0. If τ(p) is the minimal period of x, the orbit
cycle p is a closed orbit in the usual sense (we also say in this case that p is
prime). In case of geodesic flows, orbit cycles correspond to (not necessarily
prime) closed geodesies, and τ(£) is the length of the corresponding closed
geodesic.

It is a pleasure to thank Mark Pollicott and Atsushi Katsuda for their
assistance (the idea of subdivisions of graphs is due to them).

1. Twisted Perron-Frobenius theorem

Throughout, we shall use the terminology given in [2].
Let (F, E) be an oriented irreducible finite graph, where V is the set of

vertices and E c F X V is the set of edges. We assume that (F, E) is not a
circuit graph. Given a path c = (υ0,- , O> (vi9 υi+1) e £, we put \c\ = m.
When c is closed, i.e. υ0 = vm, we denote by (c) the cycle represented by c.

It is known that the set of vertices of an irreducible graph can be decom-
posed into disjoint subsets F1? , Vv (called primitive parts) with the following
properties (see [7]):

(a) v is the greatest common divisor of {\c\ I c is closed),
(b) if v,w G Vi9 there exists an integer m(v,w)^ 1 such that for all integer

m > m(v,w) one can find a path c with \c\ = mv, v = ̂ (c), the origin of c,
and w = /(c), the terminus of c,

(c) if c is a path with *(c) e Vt and v divides |c|, then /(c) also lies in Vi9

(d) for a closed path c in (V, E), at least one vertex on c is contained in Vv

We set

Vm(V, E) = (closed paths c in (F, E) with | c | = mv),

0>m(V, E) = (prime closed paths c e Vm(V, E)}.

We regard (F, E) as a 1-dimensional CW-complex in a natural manner, and
denote by ^ ( F , E) the fundamental group. The first homology group of
(F, E) with coefficients in Z is denoted by Hλ{V,E). The following is
fundamental in our discussion.
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Lemma 1-1. π^V, E) is generated by homotopy classes of closed paths in

( F , £ ) .

Proof. Let v0 be a point in V, and let c be a loop with base point υ0. We

may write c = cλ ck, where [c^c^1,- - -,c[~l) } or {cf \ c 2 , , 4 - 1 ) }

are paths in (F, £ ) . In the former case, choose paths c[,- m,c/

k_ι such that if h

is even (resp. odd),

*{c[) = /(q),/(cθ = υo,*{c'2) = vo,t{c'2)=*{cϊι), ,

(resp. * ( 4 - i ) = ϋ0, t(c^_λ) = *(ck)). Then
C l ' C l ' C 2 ' C 2 ' c l > C 2 * C 3 ' C 3 ' * * * J Ck ' Ck-l

(resp c^_! ck) are closed paths, and c is obviously homotopic to

(resp ( q c[) (c 2 c2"
x c j)" 1 (c 2 c3 c£) ( 4 _ x cA)). Employing a

similar argument in the latter case, we observe that c is homotopic to a

composition of closed paths and reversed closed paths.

We denote by π: (F, E) -> (F, £ ) the universal covering. Put Fx = τr"1(F1).

Let ^ denote the vector space of all complex-valued functions on Vv Given a

positive function / on £, define an operator J^: ^ -» ^ by

where, in the summation, c = (v0,- , υv) runs over all paths in (V, E) with

^(c) = υ and |c| = v, and

For each character χ: HX{V, E) -> £/(l) = (z e C I \z\ = 1} (as usual we

regard x as a character of ^ ( F , E)), we define a vector subspace ^ χ by

and define the operator J?fχ: &χ -> ^ χ to be the restriction of ^ to this

space. In case of the trivial character H, it follows from the Perron-Frobenius

theorem for nonnegative aperiodic matrices [7] that

(1) the operator S£f{. <&Λ -> <&Λ has a simple positive eigenvalue λ ( / ) with a

positive eigenfunction,

(2) other eigenvalues μ satisfy |μ| < λ(/) .

(Note that λ ( / ) does not depend on the choice of a primitive part Fx).

Our interest is in the case of a general character χ.
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Proposition 1-2 {Twisted Perron-Frobenius theorem [2]). (1) Any eigenvalue

μ of S£fχ satisfies \μ\ < λ ( / ) .

(2) J£f χ has an eigenvalue of the form λ ( / ) e x p ( / - T # ) , 0 < θ < 2π, if and

only if for any close path c

χ([c]) = exp(/=Γfl|c|A),

where [c] denotes the homology class G HX{V, E) represented by c.

(3) T r a c e d = Σc^m^E)Mc)^Vχ χ([c])f(c).

In what follows, we suppose that the graph (F, E) possesses an orientation-

reversing involution K, that is, K is a map of V onto itself such that κ2 = Id,

and (KV, KU) G. E whenever (w, υ) G E. For a path c = (ι;0, , ι;m), we denote

c = (ί;m, , v0). If c runs over all closed paths, then so does κ(c) = κ(c).

Note that K yields a homeomorphism of the CW-complex (V, E).

Lemma 1-3. Suppose that a positive function f satisfies f(κ(c)) = f(c) for

every closed path c, and that there exists a homomorphism φ: Hλ(V, E) -> H

with φ ° κ+ = φ. Then for each character χ of H, Trace ̂ m

χoφ is a real number.

Proof. From the assumption, we find that

χ o φ ( [ / c ( c ) ] ) = X°φ(-[/c(c)]) = χ ( - φ ( ι c * [ c ] ) ) = χ ° φ l c j ,

so that, by Proposition 1-2,

= Trace JS? 7 7 X . 9 .

Lemma 1-4. Lei λ^χ),- , λd(χ) (rf = Card(Fi)), ^ ( χ ) ! > |λ 2 (χ) |

• > I λ ^ χ ) ! denote the eigenvalues of the operator J ^ χ o φ . 77Ϊ^« λ x ( χ ) w

whenever |λ x (χ) | > |λ 2(χ)| .

Proo/. Set yl = -2},χβφ, λx = λx(χ) = r ^ ^ 1 ^ For large w, |Trace^w | Φ 0,

and

+ 1 = Traced ^ Γ ^ + ( λ 2 / r ) w + • +{\d/r)m

I Traced +

This implies l i m ^ ^ ^ ^ 2 ^ " 1 mθ = 1, which happens if and only if θ G 77Z, or

equivalently λx = ± r .

Lemma 1-5. If <£f χoφ has an eigenvalue of the form λ(f) exp(\/-l θ\

then θ = 0 or π, and hence χ°φ = H or

( # ) χ ° φ [ c ] = exp(\/- l 7r|c|/z>) = ± 1

for every closed path c.



86 TOSHIAKI ADACHI & TOSHIKAZU SUNADA

(When φ is surjective, χ is uniquely determined by this relation in view of
Lemma 1-1.)

Proof. According to (a), we can select closed paths cl9- , ck and integers
al9- , ak such that aλ\cλ\ + +ak\ck\ = v. On the other hand,

χoφ[c] = exp(/^T0|c |Λ) = exp(/^T0| Ίξc)\/v)

= X°φ[κ(c)] = χ°φ[c] ,

which implies that x ° φ[c] = ± 1 for all c, so that

exp(J^ΪΘ) = e x p ( / I T ^ 1 | c 1 | A ) ^(f^θak\ck\/v) = ± 1 .

This proves that 0 = 0 of 77.
Let α E i / . W e set

and Fw(χ) = Trace«^w

χoφ. Let ί/χ denote the normalized Haar measure on
the character group H of H. The orthogonal relation of characters leads to

()
JH c

so that we have
Lemma 1-6. \Cm(a)\ < λ(/)
We want to estimate Cm(a) from below.
Proposition 1-7. Suppose that φ is surjective and λ(/) > 1. Then at least

one of the following holds:

liminf ^ -

or

9^-^ 1 l(«) > lθgλ(/).

Proof. We distinguish between two cases: (1) there exists no character χ 0

obeying the relation (#), or χ o(α) = 1 if it exists, and (2) χo(«) = — 1. First
we treat the case (1). Put

W= { χ e £ l R e χ ( α ) < 0 } ,

iί} f o r £ > 0 .

From Lemma 1-5, we observe that UB shrinks to the two points {t,χ 0} as
B ΐ λ(/), so that, by the perturbation theory of eigenvalues of matrices, there
are positive B and C such that C < B < λ(/), W Π UB = 0, and |λ 2 (χ) | < C
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if χ e UB. Let A be an arbitrary number with ma.x{B, ]jλ(f) } < A < λ(/).

Put L = min{Reχ(α) l X e UA). Since λ 1 ( X o ) = - λ ( / ) and F 2 m (χ 0 ) =

λ ( / ) 2 m + Σ? = 2 λ,(χ 0 ) 2 m > 0 for large m, we have, when χ e UB,

F 2 J χ ) = | F 2 m ( χ ) | =

so for sufficiently large m we have

Σλ,(χ)
2m

B2m - dC 2m

= f Reχ(α)F 2Jχ) dX + f Reχ(α)F2m(χ) dχ
JUB

 JH\UB

Reχ(α)F2m(χ)dχ+ f Reχ(α)F 2 w (χ) dX

B),

-B)

[ m f
JUA

 JH\UB

> L(A2m - dC2m) vol(UA) - dB2m.

In the second, we suppose χ o(α) = - 1 . Define

ί/; = { χ ^ l λ ^ χ ) G R and

UB = [χ^H\ λ^x) e R and

for a positive B. There are positive B and C such that C < B < λ ( / ) ,

W Π £/+ = 0 , W z> ί/̂ , and | λ 2 ( χ ) | *z C if χt= U£ U Ug = UB. Then for

sufficiently large m and χ G ί/fl, R e χ ( α ) F 2 w + 1 ( χ ) is positive. From this we

have

2lM + i ( α ) = ί

R e χ ( α ) F 2 m +

+ (A 2m+ι - dC 2m+ι ) - dB 2m+\

where A is as above and L + = min{Reχ(α) I x e t/^}.

In any case, these estimates imply our assertion.

For later use, we consider several operations of graphs. Given an irreducible

graph (F, £ ) , we define the graph (V(n\ E(n)) of n-steppaths as follows;

Λ - l } .
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It should be noted that ( F ( w ) , E(n)) is also irreducible, and if we put

v°

then V(n) = F 1

( π ) U U F, ( π ) is the decomposition into primitive parts of

V(n). If (F, £ ) has an orientation-reversing involution K, then the correspon-

dence κ ( w ): (ϋ°, , vn) -> (/c(ί;'2), , κ(t;0)) defines an orientation-reversing

involution of ( F ( M ) , £ ( / l ) ) .

It is useful to introduce an orientation reversing morphism ω (λ ί ): ( F ( w ) , £ ( w ) )

-> (F, £ ) defined by ω(w)(ί;0, , u") = ιA Then the correspondence c

•-> ω ( w ) (c) gives rise to a bijection between the set of cycles in ( F ( M ) , E(n)) and

that in (F, £ ) . Note that K O ω<
Λ> # ω ( π ) ° κ(/ ι). But we have

Lemma 1-8. The following diagram is commutative:

Let c = (vtf\ , ^ M ) ) , ϋίw> = (ϋ?, , ί f) e F ( w ) , be a closed path

in ( F ( w ) , £ ( w ) ) . Then ω(n)κ(n)(c) = (κ(υζ),- - , κ ( ^ ) ) , and /cω(w)(c) =

(ιc(ϋg),- , ι c ( O ) . N o t e that ϋ/+ 1 = ϋ/" 1 , hence (κ(υn

0),' , /c(^)) =

(κθ° . w ) , , fc(ϋ°_n)), where by a convention *;£ = ŷ +m> k ^ Z. This implies

that ω(w)/c(w)(c) and κω(n\c) are identical as cycles. Since Hλ(V{n),E{n)) is

generated by homology classes of closed paths, we get the conclusion.

Let (F, E) be a graph with a positive (length) function / on E. Given a path

c, we define /(c) to be Σ/(e), where e runs over edges on c. A graph ( F ' , £")

with a positive function /' is called a subdivision of (F, £ ) if

(a) ( F r , E') is a subdivision of (F, is) as a CW-complex and the orientation

of edges e E' are compatible with that of E, that is, each edge e e £ is

identified with a unique path c(e) in ( F ' , £')>
( b ) /(e) = /'(C(^)), e e £ .

Note that there is a natural correspondence (c) <-> (c ' ) between the set of

cycles in (V, E) and the set of cycles in a subdivision ( F \ £ ' ) such that

/(c) = /'(O.
Consider a function / of the form fs(e)= exp( — sl(e)\ where / is a positive

function on E and s e R. It is known that there is a unique positive constant

h = A(/) with λ ( / Λ ) = l . Since

lim - logCard{(c>; /(c) < JC} = A(/),
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we have

Lemma 1-9. // (V, E\ /') is a subdivision, then h(Γ) = h(l).

Lemma 1-10. Let (F, E) be a graph with an orientation-reversing involution

K such that l(κ(c)) = /(c). Let ε > 0. There exist a subdivision (V',E',Γ)

satisfying

(1) (V\ £") has an orientation-reversing involution K' such that /'(/c'(c)) =

(2)max/ymin/ / < 1 + ε.

Proof. Without loss of generality, we may assume that the action e -> κ(e)

on E is free. We select a set { ev , en} of edges such that

E = {*i>" •">*«} u { / c ( ^ 1 ) , , κ{en) } (disjoint).

We shall subdivide each edge ek and κ(ek) in such a way that

Assume /(^1) = min/. By Kronecker's approximation of real numbers by

rationals, we may choose positive integers pv , pk, qv -,qk such that

PJ\
<ε/2.

Then, putting n1 = U" pp n, = q£\jΦi Pj, we find

l{eγ) l(e,

which implies that

f ί ^ O / j / ί ί e . O / Λ , . } < 1 4- ε.

Defining the involution K on (V',E') by κ(ekβ = ek,^_/+i, we get the

desired subdivision.

2. Proof of Theorem 1

We denote by h the topological entropy of the geodesic flow on the unit

tangent bundle of a compact Riemannian manifold M, and by /(£) the length

of a closed geodesic p.
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The following proposition is crucial in our discussion.

Proposition 2-1. Suppose that the geodesic flow is of Λnosoυ type. Then for

any positive ε, there exist a positive constant /, a finite family of oriented

irreducible finite graphs (Vα,Eα), a = 0,1, , N9 with positive functions fa on

Ea, and a family of maps Φa of the set of cycles in (Vα, Ea) into the set of closed

geodesies in M satisfying the following properties.

(1) Φo is surjective and bounded-to-one.

(2) /(Φ 0 ((c))) < \c\J for every closed path c.

(3) There exists a surjective homomorphism φ: //-^V0, E°) —> HX(M,Σ) such

that[Φ0((c))] = φ([c])

(4) f0 <exp{-(h- ε)/}, λ(/ 0 ) > 1, and λ(/ β ) < 1, a > 1.

(5) (V°, E°) has an orientation-reversing involution K such thatfo(κ(c)) = fo(c)

and ψ ° /c* = φ.

(6) There exists a positive Θ such that if c is a prime closed path in (V°,E°)

with nonprime Φ 0 ((c)), one can find a prime closed path c' in (\a,Ea) for some

a > 1 satisfying

^a{(c')) = %((c)), | c ' | < θ | c | , and fa(c')>f0(c).

We defer the lengthy proof of this proposition to §4, and proceed to the

proof of the main theorem.

Let va denote the number of primitive parts of (Vα, E α ), and let V* be a

fixed primitive part in \a. We put da = Card(Vf). For simplicity, we set

(V, E) = (V°,E°), / = /o, λ = λ ( / ) , Φ = Φo, d = d0, Vλ = V,0, and H =

By properties (3) and (5), we are in a position to apply Proposition 1-7. Put

Gja) = Σ f(c),
ce^m(K,£) with prime Φ((c)), ^(c)e 1̂ , and φ[c] = a

PJ«)= Σ /(c).
cG^m(K, £) with ^(c)e K^φtcl^o

Lemma 2-2. 77ze/*e exwίj α positive constant Cx such that for every m

Proof. Let H = 7/^ θ i/' be a decomposition into the direct product of

free part and torsion part. Put a = m^ + α,, α^ e ^ being primitive, α̂  G //',

and / being a nonnegative integer. Here an element in Hf is said to be

primitive if it is not a nontrivial multiple of another element in Hf. Note that if

a closed path c in (V, E) is not prime, then there exists a unique prime closed

path c' with c = (c')s for some integer s ^ 2. The correspondence c -> cr is at
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most m-to-1. Since φ[c'] = iap/s + β for some β with sβ = α,, and f(c) <
f(c') in view of Proposition 2-1(4), we have

PΛ«) = CM - Σ f{c) > CM - Σf(c)
c: nonprime c

>Cm(a)-mΣ Σ Cm/s(-a/s(-ap

s\m

>Cm(a)-m2λ(f)m/2dCaΐd(H'),

where we have used Lemma 1-6.
Lemma 2-3. There exists a positive constant C2 such that for every m

Proof. We use properties (4) and (6) in Proposition 2-1. For a prime closed
path c with nonprime Φ((c)), we let c' be a prime closed path given in (6).
Then

<U«) = Pm(«) " Σ f(c)
V, E) with nonprimeΦ((c)),

^(c)el/1,φ[c] = α

(C) > Pm(") -™KΣ ΣfaiCal
c a = l ca

where ca runs over closed paths in (Vα,Eα) with \ca\ < [nv®/va] + 1, #{ca) G

Vfand A"= supCard{Φ0-
1(Φ0«

c»)} Since

we find

Combining Lemmas 2-2 and 2-3 with Proposition 1-7, we have
Proposition 2-4. Λ t least one of the following holds:

liminf — \ogG2m(a) > logλ(/) > 0,

or

liminf 2 m

1

+ 1 l o g G 2 m + 1 ( α ) > logλ(/) > 0.

Proof of Theorem 1. Let x be an arbitrary positive number. In view of (1)
and (2) in Proposition 2-1, if mvJ < x, then the correspondence Φo gives rise
to a map of the set (c e ^m(K, £ ) l^(c) e F l 5 Φ0((c)) is prime, and φ[c] = α}
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into the set (prime closed geodesies p in M\ [p] = α, l(p) < x}, which is at

most mK'ioΛ. Hence, according to (4), we have

N(x,a)

> -^ Card{c e 0m(V, E); *(c) e Vl9 Φ 0 « c » is prime, φ[c] = a]

Put m(x) = [x/(2f/)]. For sufficiently large x, one gets

- e)2vm(x)J}

Since liminfjc"1 logG 2 m ( x ) (α) > 0, or l iminfx~ 1 logG 2 m ( x ) _i(«) > 0, we have

liminf — logiV(x; a) > (h - ε).
x-> oo X

On the other hand, it follows from Parry-Pollicott [12] that

lim - logCard{ p | length(p) < x } = h.
JC—»oo - ^

Since ε is arbitrary, this completes the proof of Theorem 1.

Remark 1. From [2], [12], we find

Card{t)|[t)] = « and length(p) < x}

x^ oo Card{ p \length(p) < x }

= / ( C a r d i / ^ M , / ) ) ' 1 , if Hx{M,t) is of finite order,

lO, otherwise.

We conjecture that the above ratio is asymptotically equal to C/xbl(M) as x

goes to infinity, where bλ(M) denotes the first Betti number and C is a

positive constant not depending on a.

Remark 2. Let φ be an Anosov diffeomorphism on a compact manifold X,

and let (ΣX, φt) be the associated suspension flow, which is known to be of

Anosov type. Consider the canonical map TΓ: ΣX -* (R/Z, and the induced

homomorphism π+: Hλ(ΣX,Έ) -> Z. From the definition, π*[p] = l(p) for

every closed orbit p, so that each a e Hλ(ΣX, Έ) contains only finitely many

p, and if ττ+(α) < 0, then there exists no closed orbit p with [t)] = α.
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3. Review on symbolic dynamics

We review some basic notions and facts on symbolic dynamics which are

required in a modified form. Given an oriented irreducible finite graph (V, E),

we set

Σ ( F , E)=U= ( € 0 e Π V\(?,ti+l) G E for any i \ ,
- oo

00

Σ + (F, E)=U= (ξ1) e Π^l(€'.€'+1) e £ for any ι >

on which the shift operators σ and σ + are defined in the usual way. Note that

if V — Vx U • U Vv is the decomposition into the primitive parts, then

Σ + (V,E)= \JΣ + (V,E) (disjoint),

where Σ+(F, £ ) = (ξ e Σ + ( F , £ ) | £ ° e F,}. For each θ e (0,1), define a

distance function dβ on Σ(K, £ ) (resp. on Σ + ( F , E)) by

(resp. dθ(ξ,η) = fl»^{"l«'-^ f°rθ«,<»}) F o r a c o m p l e x v a i u e d function g on

Σ(K, £ ) (or on Σ + ( F , £ ) , Σj+(K, £)), we set

Lipβ(g) = sup{|g(O - g(η) !/</,(€,ij) II * T,}.

The space ^ = (g: Σ ^ F , £ ) -> C | \\g\\θ < 00} is a Banach space with re-

spect to the norm || \\θ.

Given a positive valued function F o n Σ + ( F , E) with \\F\\Θ < 00, define an

operator RF: @θ -» % by

# F £ ( £ ) = Σ ^ ( η j ^ ί σ + η ) F{σ'+-ιη)g(η).

The following proposition is a consequence of an infinite-dimensional version

of the Perron-Frobenius theorem established by Ruelle [15].

Proposition 3-1. RF has simple positive eigenvalue A(F). The rest of the

spectrum is contained in a disc of radius strictly smaller than Λ(F).

Let /+ be a positive valued function on Σ + ( F , E) with ||/+ | |^ < 00. Then

Λ(exp(-^/+)) is a monotone decreasing function of s G IR, and there exist a

unique h > 0 such that Λ(exp(-Λ/+)) = 1. The number h has a dynamical

explanation. Suppose that a continuous function / on Σ(F, E) is cohomolo-

gous to a continuous function /+ depending only on the future (ζ')i>0, in the
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sense that there is a continuous function ψ on Σ(V9 E) with / = / + - ψ + ψ°σ.

We regard /+ as a function Σ + ( F , E). Then the number h with Λ(exp(-/z/+))

= 1 coincides with topological entropy of the suspension flow (Σ(V, E,l\

σ(/),) associated with the function /. Here

Σ(V9E,l) = {(f ,0l€

with appropriate identifications. (Note that the operator RF is the restriction
to the space 9e of the ^-iteration of the Ruelle operator introduced in Ruelle
[15] and Parry-Pollicott [12], so that A(F) is the ?th power of the maximal
positive eigenvalue of the Ruelle operator.)

The graph (V{n\ E(n)) of π-step paths is regarded as an approximation of

Σ + ( F , E) in the following sense.

Proposition 3-2 [14]. Let {Fn}™=ι be a sequence of positive valued functions

on Σ+(V, E) with \\Fn\\θ < oo converging to a positive valued function F with

respect to the || \\θ-norm. Suppose that Fn(ξ) depends only on (ξι)"=0. If we

define a function fn on E(n) by

where ξ° = w°, , ξ» = w\ then λ ( / J = A(Fn), and l i m ^ ^ λ(/ π ) = A(F).

Here λ(fn) is the maximal positive eigenvalue of the operator J?fnί acting on the

space &t = {g: F / r t ) ^ C } .

4. Proof of Proposition 2-1

Let UM be the unit tangent bundle of M, and φt: UM -> UM be the

geodesic flow of Anosov type. If we define an involution μ: UM -> UM by

/x(jc) = -x, then we have μ°Φt = Φ-t ° μ.

First of all, we construct finite graphs derived from a Markov family of the

geodesic flow. Roughly speaking, a Markov family Vo of size a is a finite

family of disjoint local cross-sections to φt with X = U Γ e K o Φ [ O ,α](T) We

define £ 0 to be the set of all (Γ, S) e Fo X Fo such that there exists an

"interior" point in T which firstly goes into S along the flow φr The

recurrence property guarantees that this graph is irreducible. From the re-

versible property μ°φ, = <f>_,°μwe may take a Markov family VQ, of small

size, with an orientation-reversing involution K and a continuous surjective

map p: Σ(F 0 , £ 0 , /) -* Jf such that

(B-l) / is a strictly positive function satisfying / = / © /c ° σ, where ίc:

Σ(K0, £ 0 ) ^ Σ(K0, £ 0 ) is defined by ic(£)< = κ({-'),
(B-2)po σ (/) / = φ /op.

(B-3) p is a bounded-to-one map,
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(B-4) p({, 0) e f ° for any $ e Σ(K0, Eo),

(B-5) if we define μ: Σ(V0, Eo, I)-> Σ(V0, Eo, I) by jS(fcj) = (Jc o σ ( ξ ) ,

/(ic°σ(£)) - s), then p°μ = μ°p (see [1]). We refer the suspension

Σ ( F 0 , 2s0, /) as the principal suspension of φ r

In order to cancel out the overcounting of closed orbits of (UM, φ,), we need

to introduce finite auxiliary graphs (Va,Ea),a = l,-—9N9 which correspond

to the auxiliary suspensions Σ(Va,Ea,la) defined by Bowen [4]. The auxiliary

suspension admits a canonical map pa: Σ(Va,Ea,la)-> UM with pa ° σ(la)t =

φ, o pa. Applying the counting lemma due to Manning [10] and Bowen [4] we

observe that

(B-6) for each φ,-closed orbit q, there is a σ(/),-closed orbit £ with

p(P) = q. If p is a σ(/),-closed orbit with nonprime ρ($), then there exists a

σ(/α),-closed orbit p' with p(p) = pα(t>') and τ(£) = Tit)') for some a.

It should be noted that the topological entropy of φ, is equal to that of

σ(/),, and is greater than that of σ(la)r

Using the above result we show the following.

Proposition 4-1. The oriented irreducible finite graphs (Va, Ea\ a = 0, , N

satisfy the following conditions.

(1) There is a continuous map ι0: (Vo, Eo) -> UM.

(2) There are bounded-to-one correspondences Ψa of the set of cycles in

(Va, Ea) into the set of φt-orbit cycles.

(3) Ψo is surjectiυe, and for a closed path c in (Vo, Eo), Ψ0((c)) is free

homotopic to ιo(c).

(4) For each closed path c in (F o , Eo), %((κc)) = μ%((c)).

(5) If c is a prime closedpath in (F o , Eo) with nonprime Ψ 0 ((c)), one can find

a prime closedpath c' in (Va, Ea) with %((c)) = %((c')) for some a > 1.

Proof. For each v e Vo choose a point x(υ) G V. Whenever (v,w) e Eo,

the distance from jc(t;)tojc(w)is sufficiently small, hence we can join them by

a minimal geodesic γ(f,w). Define the map L0: (VO, EO) -> X by ιo(υ) = x(υ)

and ιo(v,w) = y(υ,w).
Let c = O 0 , , υm) be a closed path in the graph (F o , Eo). Define ξ(c) e

Σ ( F 0 , Eo) by ξ(cy = ϋΛ, where i = fc modm. Then ($(c),0) e Σ(K0, £ 0 , /) is

a periodic point of σ(/) p and
m~\

7 = 0

is an orbit cycle in Σ(V0, Eo, I) (note that the correspondence c <-> ̂ (c) yields

a bijection of the set of cycles in (V, E) onto the set of orbit cycles in

Σ(V0,E0,l), under which the set of prime cycles goes onto the set of closed

orbits, and that \)(κ(c)) = /Z(t)(c))). Since ρ(σkξ(c\0) and x(vk) lie in υk
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and the size of the Markov family is small, it is clear that if we define %

by %((c)) = p(ί)(c)), then to(
c) = y(vo>υi)' Ύ(vvv2) " ' Y θ m - i Ό a n d

%((c)) are free homotopic. Properties (2), (3), and (4) come from (B-3), (B-6),

and (B-5) respectively.

For auxiliary graphs (Va, Ea) we define the correspondence Ψa in a similar

manner. Property (5) is a direct consequence of (B-6).

It is known that \\l\\θ < oo, ||/fl||^ < oo for some θ e (0,1). We now con-

struct positive functions {/̂ } and {/*„} depending on finite coordinates

(ί')7-o s u c n t n a t C a n d C Λ c o n v e r S e t 0 positive functions /+ and /+

cohomologous to / and la respectively. A major subtle point is to impose a

condition on /+ which inherits the relation / = / ° ίc ° σ.

For each « > 0, define a positive function /„ on Σ(F 0 , Eo) by

/„(£) = Sup{l(η)\η e Σ ( F 0 , ^ 0 ) withV = ̂  for - „ < / < „ + l } .

It is obvious that ln = ln ° ίc o σ. Imitating the arguments in Bowen [4], we find

that ln converges to / with respect to || \\θ, for θ' > θ. To / and ln, we associate

strictly positive functions /+ and 1+ on Σ + ( F 0 , Eo) such that (a) /+ and I* are

cohomologous to / and ln respectively as functions on Σ(F 0 , £ 0 ) , and (b) /^(ξ)

depends only on (£')o</<Λ> a n d C converges to /+ with respect to the

|| ||0,-norm for some θ < Θf < 1.

Lemma 4-2. // ξ e Σ(F 0 , Eo) satisfies σmξ =

w —1 m —1

ΣCH)= ΣC(
7 = 1 7 = 1

w — 1 ni — 1 m — \ m — \

ΣC(^)= Σ/,(σ^)= Σ/,("-'«)- ΣUσ-^ί)
7 = 1 7 = 1 7 = 1 7 = 1

Λ>2 — 1 W — 1

= Σι:(°-J-ιt)= Σ C ( 4
7 = 1 7 = 1

As for approximation of the suspending functon la of auxiliary suspensions,

we simply define

where 1+ is a strictly positive function on Σ(Va, Ea) depending only on the

future, cohomologous to la. Then /+Λ converges to /^ with respect to || \\θ, for

some θ < β' < 1.

The following lemma is an immediate consequence of the definitions of /+

and C,,.
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Lemma 4-3. Let £ e Σ(F 0 , Eo) and ξ e Σ(Va9 Ea) be periodic points with

minimal period m and mr with respect to the shift operators, and let p(ζ) and

P(ζ) be the corresponding periodic orbits in the suspension flows. If p(£(£)) =

), then we have

7 = 1 7 = 1

We are now in position to prove Proposition 2-1. Denote by h and ha the

topological entropy of the principal suspension (Σ(F, is, /), σ(/),) and the

auxiliary suspension (Σ(F f l, isfl, /α), σ{la)t). Let ε be an arbitrary small positive

number. From the fact ha < A, it follows that

Λ(exp(-A/β

+)) < Λ(exp(-Aβ/β

+)) = 1 = Λ(exp(-Λ/+)),

so that for a sufficiently small ε' > 0,

Λ(exp((ε' - h)l+

a)) < 1 < Λ(exp((ε' - h)l+)) for all a.

For later purpose, we take ε' with (h - ε')(l + ε')""1 > h - ε. By Proposition

3-2,

Λ(exp((ε' - Λ)C.J) < 1 < Λ(exp((ε' - h)l+

n))

for sufficiently large n > n(ε').

The following lemma is an easy consequence of Proposition 3-2.

Lemma 4-4. Let hn be a positive number with λ(e~h"ι")=l. Then

l im w ^ 0 0 A l l = A.
Take a large Λ > /i(ε') with h - ε' < hn, and set

( V ^ , E f l ) = ( F j ^ , ^ ) , £ i > l .

We regard /^ and /^n as functions on E^n) and E" respectively. By Lemma

1-10, we may take a subdivision (V°,E°, (/*)') with an involution K of

(K 0

( w ),£<Jw\/+)suchώat

maxίOVminίCV < 1 + ε7.

Define the correspondences Φa to be the compositions

Φ o : {cylesin(V°,E 0)} ^ (cycles in (V0

(n\ E^n))}

ψ
-^ (cycles in ( F o , £ 0 ) } -» (orbit cycles in (UM, φt)}

^ (closed geodesies in M},

Φa: (cycles in (V f l,E f l)} ^ (cycles in (Kβ, £ j }

-^ (orbit cycles in (UM,φt)} -> (closed geodesies} (α > 1),
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and define a homomorphism φ: /^(V0, E°) -» HX(M, Έ) by the composition

HX{V\Έ?) Z Hλ{yt»\ EP) ~ - \ ( ^ Eo)

Since Ψo is bounded-to-one, and surjective, we get (1) in Proposition 2-1.
Recalling that ω(/ί) is an orientation-reversing morphism, we find that
[Φ0((c))] = φ([c]). From Proposition 4-1 and Lemma 1-8, it follows that
φ ° κ ^ = φ . Define f0 and fa by

/0 = e x p ( ε ' - λ ) ( C ) \ Λ = exp(e'-*)/:,„, a>l.

By Lemma 4-2, fo(κ(c)) = /0(<:) for every closed path c. If we put / = (1 + ε')
min(/+)', then by Lemma 4-3, we find

'(*<,«'») < Cto = (C)'(c) < {max(C)'}|c| </| c | ,
which is condition (2). Moreover,

/0 < exp{(ε' - Λ) min(/n

+)') < exp{-(A - ε')(l + ε')" 1/}

< exp{-(A -

(Lemma 1-9), so that {fa} satisfies condition (4). Condition (6) comes from
Lemma 4-3 if we put Θ = maxα{max(/)/min(/α)}. This completes the proof
of Proposition 2-1.
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