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CONSTRUCTION OF SINGULAR HOLOMORPHIC
VECTOR FIELDS AND FOLIATIONS

IN DIMENSION TWO

ALCIDES LINS NETO

0. Introduction

In this paper we construct holomorphic differential equations or foliations in

two different situations:

Case 1. Singularities of vector fields (local case).

Case 2. Ricatti foliations in C X C (global case).

In Case 1 we consider singular vector fields defined in a neighborhood U of

O E C 2 . Suppose that 0 is an isolated singularity of X. In this case, as is well

known, the singularity can be solved by a finite number of blowing-ups (cf. [4],

[5], and [12]). Let us consider for simplicity the case where X is solved by one

blowing-up. After blowing-up O e C 2 , we obtain a complex line bundle

C 2 -> C, C = C U {oo}, a proper projection π: C 2 -> C 2, and a singular

holomorphic foliation J^ on tj = π~\U), where:

(i) π-\Q) = C, the zero section of C 2, and π: C 2 - C -» C 2 - {0} is a

diffeomorphism.

(ii) π sends nonsingular leaves of & in U - C onto integral curves of the

complex differential equation x = X(x). The singularities of 3F are in C and

are all simple (cf. §1.1 for the definition). Set S = set of singularities of ^.

In some cases (nondicritical cases) C is invariant by J^", that is, C is the

union of S and a leaf of J^, C-S. Therefore it is possible to consider the

holonomy group of the leaf C-S (in some transversal section). This group is

called the protective holonomy of the singularity and we denote it by Jf(JF).

In §2 of this paper we prove a slightly more general version of the following

result.

Theorem 1. Let G = {g\,m m', gk) be a set of germs « / 0 E C of holomor-

phic diffeomorphisms which leave 0 fixed and such that g\,''-,gk and

g\° '' ' ° &k a r e Unearizable, not necessarily in the same coordinate system. Then
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there is a germ of vector field X, with a singularity at O G C 2 , such that its

projectiυe holonomy is conjugated (holomorphically) to the group generated by G.

The proof of this theorem is based in a theorem of Grauert (cf. [1]) and a

construction done in §2.3. In §2.4 we prove a generalization of Theorem 1 for

several blowing-ups. I wish to thank D. Cerveau, who motivated me in the

problem solved by Theorem 1, and R. Moussu, who told me about Grauert's

theorem, which simplified a lot the original version of the proof.

In Case 2 we consider Ricatti equations in the form

(1) | F = *(*)' % = a{x) + b(x)y + c(x)y\

where p, a, Z>, and c are polynomials, (x, y) e C2, and T is a complex time.

Let # be the singular foliation on C 2 whose leaves are the solutions of (1). It

is clear that the vertical {x} X C is invariant for # if and only if p(x) = 0. If

p(x) Φ 0, then the vertical {JC} X C is transverse to # . On the other hand the

change of variables v = \/y transforms (1) into

(Γ) | F = />(*), ^--a(x)v2-b(x)v-c(x)

which implies that # extends to a foliation IF on C X C. Clearly & is

transverse to all fibers {x} e C such that p(x) Φ 0. Since /?, a, b, and c are

polynomials, IF can be extended to a foliation IF in CxC. This goes as

follows: the change of variables u = 1/x transforms equation (1) into

ίn\ d u 2 (l\ dy ί\\ l\\ ίl\ 2(2) -= = -uzp - , -p= = a\- + b - \y + c - \yz.
dT \uj dT \uj \u I \u J

Let d = max{dg(α), dg(Z>), dg(c), dg(p) — 2} (dg = degree). If we multiply

the vector field associated to (2) by ud

9 we obtain a new Ricatti equation

without poles, which extends & to a neighborhood of { x = oo) c C x C .

Observe that the line {x = oo} is invariant by J^ if and only if dg(/?) < d + 2.

We call & a Ricatti foliation o n C x C . The fibers {jc}XC, where p(x) = 0

(or {oo} X C if dg(/?) < d + 2) are called the invariant fibers. We say that an

invariant fiber { x } X C is simple if JC is a simple root of p{JC).

Let S = p~\0) or S = p~\0) U {oo} if dg(/?) < p + 2. Since #" is trans-

verse to the fibers of (C-S) XC-^C-S, it follows that we can define a

global holonomy in some transverse section { q } X C, q £ S. This holonomy is

a representation of π^C-S, q) -> Diff({#} X C) and it is defined as follows:

Take a curve γ e. π^C — S, q) and a point (q, y) e {#} x C. Lift γ to a curve

γv, contained in the leaf Ly of J^ through (q, y), and such that γ^(0) = (q, y)

and P^jyit)) = γ(/) Define fy(q, y) = γ^(l). It can be verified that fγ is a

diffeomorphism of { q} X C which depends only on the homotopy class of γ

in π^C — S, q). Moreover γ ->/ γ is a homomorphism of groups. In our case,
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since fγ is holomorphic, it follows that fy is a Moebius transformation of the

fiber {q} X C.

In §3 we prove the following result.

Theorem 3. Let fv- -,fk be Moebius transformations, where k > 1. Let

x0, - , xk be k + 1 points in C, where k ^ 1. There exists a Ricatti foliation &

on C x C with the following properties:

(i) The invariant fibers of & are { J C O } X C , , { ^ } X C . If one ofthef/s

is not parabolic, then these invariant fibers are simple.

(ii) The holonomy of & is conjugated to the subgroup of PSL(2, C) generated

byfy h

(iii) Iffl9 , fk andf0 = (fx ° ° fk)
 ι are not parabolic or elliptic, then

all the singularities of ' & are of Poincare type.

We say that a singularity p of & is of Poincare type if J*" can be defined in

a neighborhood of p by a vector field X such that the eigenvalues λ l 5 λ 2 of

DX(p) satisfy \x/\2£ R.

The proof of this theorem is based on the classification of fiber bundles over

C with fiber C and in a construction sketched in §3.1, which is in fact a slight

modification of the construction in §2.3.

In §4 we apply Theorem 3 to study some aspects of the structural stability

problem for singular foliations on C X C.

I should say that, after writing this paper, J. P. Ramis pointed out that

Theorem 3 can be proved from the results of Birkhoff about linear differential

equations in [2] and [3]. Nevertheless, I decided to include it here since the

method for the construction is almost the same as the one we use for

constructing the singularities in §2.

I wish to thank C. Camacho and X. Gomez-Mont for helpful conversations

and ideas about Case 2.

1. The blowing-up method and preliminary results for Case 1

1.1. The blowing-up method. Let Z(x, y) = A(x, y)d/dx + B(x, y)d/dy be

a holomorphic vector field defined in an open set ί / c C 2 , such that O e [/

and 0 is a singularity of Z, i.e., Z(0) = 0. We say that 0 is a simple singularity

of Z if the eigenvalues λ l 5 λ 2 of its linear part at 0 satisfy one of the following

conditions:

(3) λx - λ 2 Φ 0 and λ 1 /λ 2 έ Q + ,

(4) \x = 0 and λ 2 Φ 0.

By definition, the multiplicity of Z at 0 is the order of the first nonzero jet of

ZatO.
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The blow-up of 0 G C 2 consists in replacing 0 by a one-dimensional projec-

tive line P, the set of complex directions at 0. The total space C 2 is then

replaced by a line bundle C 2, whose zero section is P and such that C 2 - P is

diffeomorphic to C 2 - {0}. Formally this goes as follows: C 2 is covered by

two coordinate charts ((/, x), Eo) and ( 0 , y\ E^), where Eo = C2 - 7^, E^

= C H 2 - 70, 70 is the j -axis, and /^ the x-axis. In the first chart the fibers of

C 2 are represented by the lines / = constant and in the second by the lines

s = constant. The change of coordinates from the first chart to the second is

given by s = l/t, y = tx, so that the Chern class of this bundle is - 1 , as can

be easily verified. The projection π: C 2 -> C 2 is defined by π(t, x) = (x, t x)

in the first chart and by π(s, y) = (s y, y) in the second. This projection

sends fibers of C 2 into lines passing through the origin of C 2 and its restriction

to C 2 - P is a diffeomorphism onto C 2 - {0}.

Now, let & be the singular foliation in U - {0} whose leaves are the

integral curves of the vector field Z. Let J^* = **(&) be the coinduced

foliation on π~\U) - P. It is not difficult to prove that J*"* extends to a

singular foliation on tj = π~ι(U) with a finite number of singularities, all of

them in P (cf. [4], [5], and [12]). We denote this extended foliation by J ^ ( 1 ) ( Z ) .

Two situations can happen:

(i) Non dicritical case—P is invariant for ^ " ( 1 ) ( Z ) . In this case, if we denote

by S the set of singularities of J^ ( 1 ) (Z), then P - S is a leaf of J ^ ( 1 ) ( Z ) .

(ii) Dicritical case—P is not invariant for J^ ( 1 ) (Z) . In this case J ^ ( 1 ) ( Z ) is

transverse to P, except in a finite number of points. Some of these tangency

points are singularities.

The foliation J^" ( 1 )(Z) can be expressed near each singularity by a holomor-

phic vector field (cf. [12]). Therefore the process can be repeated in a

neighborhood of each singularity. If we do this, a new foliation J*" ( 2 )(Z) is

found in a neighborhood of a union of projective lines having normal cross-

ings. The foliation J^ ( 2 ) (Z) has again a finite number of singularities. The

process can be repeated as long as we want, so that after k blowing-ups we

have a foliation ^(k)(Z) defined in a neighborhood U(k) of a union &>{k) of

projective lines having normal crossings. Moreover the process gives us a

proper analytic projection π(k): U(k) -> U such that 7r(k)(^(k)) = {0} and

π(k). u(k) __ 0>(k) ^ u _ |Qj i s a holomorphic diffeomorphism which sends

leaves of J^(k)(Z) onto integral surfaces of Z. We will write

(U(k\ π(k\ @{k\ 3^{k\Z)) to denote a sequence of k blowing-ups, beginning

at 0 G C 2 . The map π{k) will be called the blowing-up projection and ^{k) its

divisor. The divisor &(k) is a union of projective lines such that two of them

intersect transversally in at most one point, called a corner.



CONSTRUCTION OF HOLOMORPHIC VECTOR FIELDS AND FOLIATIONS 5

We observe that when 0 is a simple singularity of Z, then all singularities of

^(k)(Z) are also simple, so that we shall consider a simple singularity as a

final object in the blowing-up method. A remarkable fact about this method is

the following:

Desingularization theorem [14]. Let 0 e C 2 be a singularity of a vector field

Z. Then there exists a blowing-up (U(k\π(k\ 0>(k\ J^ ( / c ) (Z)) of Z at 0, such

that all singularities of ^F{k)(Z) are simple.

Here we are more interested in constructing the vector field Z from the

foliation J*"(A:). In this direction we have the following

Proposition 1. Let U be an open polidisk with 0 G ί / c C 2 and 3? be a

holomorphic foliation defined in U — {0}. Then there exists a vector field Z in U

with at most one singularity at 0 and such that the integral surfaces of Z in

U - {0} are the leaves of &.

The following corollary follows easily from Proposition 1.

Corollary. Let (U{k\ π ( / : ) , ^ ( / c ) ) be a sequence of k blowing-ups beginning

atO^ C 2 , where ττ{k)(U(k)) = U is a neighborhood of 0 and ττ(k\^^k)) = {0}.

Suppose that 3F is a singular holomorphic foliation in U^k\ whose singularities

are in ^(k). Then there exists a vector field Z in U such that ^(k)(Z) = # ,

where ^^(Z) is as before.

Proof. Since ττ(/c): Uw - @w -» U - {0} is a diffeomorphism, then &=

π*(JF) is a foliation of U — (0). Now apply Proposition 1 to JF.

1.2. Proof of Proposition 1. Given a point p e U - {0}, there exist a

neighborhood V c U - {0} of p and a vector field Zp = Ad/dx + Bd/dy in

V, whose integral surfaces are the leaves of fF in V. Let / : F - > C = C u { o o }

be the slope of Zp, f(q) = B(q)/A(q). Since V c U - {0}, for a n y ^ G F we

have A(q) Φ 0 or B(q) Φ 0. Hence /: V -> C is a well-defined holomorphic

function. Now if /: V -* C and / ' : K' ^ C are the slopes of Ĵ " in V and F r ,

where F Π V Φ 0 , then clearly / = / ' in VΓ\V. Therefore the slope

function f:U— {0} -» C of J^ is well defined and holomorphic. It follows

from Levi's extension theorem (cf. [8]) that there exist holomorphic functions

P, Q\ U -> C such that f(q) = Q(q)/P(q) for any q^U - {0}. Now, it is

not difficult to see that the leaves of IF will be the integral curves of the

holomorphic vector field Z = P d/dx + Q d/dy.

2. Construction of nondicritical singularities

Let Z be a holomorphic vector field defined in a neighborhood U of 0 e C 2

and such that 0 is an isolated singularity of Z. Suppose that the first

blowing-up of Z at 0, say (ί/, 77, P, J^ ( 1 ) ) , is nondicritical. In this case as we

saw before, if S c P is the set of singularities of J Γ ( 1 ) , then P - S is a leaf of
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and so it makes sense to consider the holonomy of P - S, with respect to

a transversal section Σ, where Σ Π (P - S) = {pQ}. This holonomy is a

representation of π^P - S, p0) in the group of germs of transformations of Σ

which leaves p0 fixed, defined as follows: Let [γ] e πλ(P - S, p0) and γ be a

loop whose class in π^P - S, p0) is [γ]. Let p: C 2 -> P be the projection of

the bundle defined by the first blowing-up. If p e C is near p0, then we can

lift γ to a curve yp contained in the leaf of J*"(1) which passes through p and

such that p ° Yp = γ. The endpoint of yp will depend only of [γ] and will be

denoted by [γ](p). The correspondence p •-> [y](p) is a holomorphic diffeo-

moφhism between two neighborhoods of p0 in Σ. Moreover if [α], [β] e

irx(P - S, p0), then ([α] *[/*])(/>) = [a]([β](p)% if both members are defined,

where * is the product in mx{P — S, p0).

Now suppose that S = {Pi,— •> Pk+ι) (observe that k > 0). In this case

πx(P — S, p0) is a free group with k generators. Hence the holonomy of P — S

at Σ is generated by k germs fl9- —,fk: (Σ, p0) -> (Σ, p0), corresponding to

the k generators of πλ(P — S, p0).

Here we prove the following result.

Theorem 1. Let g l 5 -,gk be germs at 0 E: C of holomorphic diffeomor-

phisms which leave 0 fixed. Suppose that for any j G. (1, •,/:}, gj is con-

jugated with its linear part at 0, z •-> gj(O) z. Suppose that the composition

So = Skl ° ' ' ' ° Sϊl ^ a^so linearizable. Let /1, , / H 1 Z)e distinct complex

lines through O G C 2 . Then there exists a germ at 0 e C 2 of holomorphic vector

field Z which satisfies the following properties'.

(i) Z /zαs exactly k + 1 analytic invariant manifolds, which are contained in

the Ij's.

(ii) Z w solved after one blowing-up, which is nondicritical, and the projective

holonomy of^(l)(Z) is conjugated to the group of germs generated by gv , gk.

(iii) The multiplicity of Z at 0 is k.

(iv) ^ * ( 1 ) ( Z ) has k + 1 singularities in the divisor and all such singularities

are linearizable.

Remark 1. The case where some of the g/s are periodic is not excluded in

the construction.

Remark 2. The same theorem (without (iv)) can be proved when

8o> 8v'' *> Sk c a n be realized as local holonomies of nondegenerated singular-

ities, in the following sense: We say that the germ g: (C,0) -> (C,0) can be

realized as local holonomy of a nondegenerated singularity if there exists a

differential equation in a ball B, 0 G B C C 2 ,

x = λ 1 x( l + ^ 1 (
1 j > λ j ( l + i ί (
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such that:

(i) λl9λ2Φ0 and ^(0,0) = Λ2(0,0) = 0.

(ii) (0,0) is the unique singularity of (5) in B.

(iii) The holonomy of the invariant manifold {y = 0} Π B — {(0,0)} in

some transversal section Σ = {(x0, y); \y\ < 5} is analytically conjugated

tog.

The hypothesis in Theorem 1 that go, -,gk are linearizable implies that

each gj is realizable as a local holonomy of a nondegenerated singularity.

Remark 3. The construction that will be done in §2.3 for the proof of

Theorem 1 can be applied also to prove the following result:

Let M be a compact Riemann surface and S= {/?0, pλ, , pk) c M,

k > 1. Let { g l 5 , g^} be as in the hypothesis of Theorem 1. Let / e Z . Then

there exist a complex 2-dimensional manifold V D M and a singular foliation

J ^ o n F such that:

(i) The singular set of 3P is S and these singularities are linearizable.

(ii) M - S is a leaf of J*\

(iii) The holonomy of M - S with respect to & is conjugated to the group

generated by {g1? ,g*}.

(iv) The Chern class of the normal bundle of M in V is /.

At the end of §2.3 we will indicate how to prove this result from the

construction.

We observe that, although the C0 0 structure of V is determined completely

by /, we have no control on its holomorphic structure (unless in the special case

M = Cand / < 0).

2.1. Preliminaries for the proof of Theorem 1. The proof of Theorem 1 will

be based in Proposition 1 and in the following theorem due to Grauert [1]:

Theorem. Let M2 be a complex manifold of dimension 2 and S c M2 be a

compact Riemann surface. Suppose that the Chern class of the normal bundle of S

is negative. Let (TS)1 be the normal bundle of S in M and So be the null section

of (TS)1. Then there are neighborhoods V of S in M and W of So in (TS)±

which are diffeomorphic by a holomorphic diffeomorphism φ: V —> W such that

ψ(S) = So.

Now let S c M be a Riemann surface of genus 0 and suppose that its Chern

class is — 1. Since the normal bundle (TS)1 is linear and has Chern class - 1 ,

it follows that (TS)1 is equivalent to the bundle C 2 -> P, obtained by

blowing-up at 0 G C 2 (cf. [8]). The equivalence is a holomorphic diffeomor-

phism φ: (TS)1 -> C 2 which sends fibers to fibers linearly. As a consequence

of Grauert's theorem we have the following:

Corollary 1. Let S c M2 be a projectiυe plane embedded in M with Chern

class - 1 . Let C 2 -> P be the line bundle obtained by blowing-up at O e C 2 .
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Then there are neighborhoods V of S in M and W of P in C 2 which are

diffeomorphic by a holomorphic diffeomorphism φ: V —• Wsuch that φ(S) = P.

In order to prove Theorem 1 completely we shall need a small refinement of

Corollary 1. Let S c M2 be as in Corollary 1 and suppose that ^ is a

nonsingular holomorphic foliation of complex dimension 1, which is defined in

a neighborhood Vλ of S and is transverse to S.

Corollary 2. Let S c M, and let ^ , C2, and P be as above. Then there exists

a diffeomorphism φ: V -> W, as in Corollary 1, such that the image of any leaf

of &/V by φ is contained in a fiber of C 2 -> P.

Proof. Let φ: F -> W, W D P, be as in Corollary 1. Let # = φ * ^ ) be the

foliation induced by ^ in W. Let π: C 2 -> C 2 be the projection associated to

the blowing-up of 0 e C 2 . Let 9+ = irjtβ). By Proposition 1, ^ is defined by

a vector field Z in W* = π(W). Since the leaves of # are transverse to P, it

follows that the linear part of Z at 0 can be taken as DZ(0) = L = x 3/3x 4-

j> 3/9^. Now by Poincare's linearization theorem [1], it follows that there is a

diffeomorphism ψ: ί/x -^ ί/2, such that 0 e ^ n ί/2 and ψ*(Z) = L. Now the

integral curves of L are lines passing through O G C 2 . Let ψ: Uλ -> U2 be the

blowing-up of ψ, Lζ- = τr~1(tζ X / = 1,2. It follows that φ = ψ ° φ satisfies the

properties needed.

2.2. Idea of the proof of Theorem 1. The idea of the proof is to construct a

manifold M of complex dimension 2, by glueing several local models of linear

foliations in such a way that at the end a singular foliation !F will be defined

in M which will have an invariant set P c M, diffeomorphic to a projective

line and with the Chern class of the normal bundle equal to — 1. The

holonomy of P - (singular set of J*"} with respect to J^ will be conjugated to

the given group, generated by gl9- , gk. Hence by Corollary 1 of Grauert's

theorem this foliation & will be equivalent to a foliation # in a neighbor-

hood V of P in C 2 and therefore there will be a vector field Z, defined in a

neighborhood of 0, whose blowing-up is # . The projective holonomy of the

singularity 0 of Z will be conjugated to the given group, generated by

gx, , gk. Moreover the construction of J^ will be done in such a way that its

separatrices, not contained in P, will be leaves of a foliation transverse to P,

and so by Corollary 2 the equivalence between J^ and # will be chosen in

such a way that the separatrices of # will be contained in the fibers of

C 2 -> P. It will follow that the separatrices of the vector field Z will be

contained in k + 1 complex lines through the origin of C 2 . The fact that the

multiplicity of Z at 0 is k will follow from Theorem 1 of [4].

2.3. Construction of the manifold M and the foliation J*". Let ZQ = 0 and

z{\ , z® be arbitrary k points in C, and for each j ε (0, , k} let Dj be a

open disk of radius r and center zy°, where r is chosen so that |z,° - zj\ > 2r
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for any / Φ j , 0 < z, j < k. For each j E (1, , A:}, let us choose a point

z G D . - { Z7

0 } and a point zy" e 7)O - {0}, where

(,x ,, r 12πi( / - 1) \ , n . r
( 6 ) zi = k Γ "J *J " 2'

Let α l 5 , ak: I -> C, 7 = [0,1], be simple curves in C satisfying the following

properties:

(a) αy(0) = z/, α .(1) = z).

(b) ^ . ( 7 ) 0 1),.= 0 ifO * i ^ 7 .

( c ) α , . ( / ) n α y ( / ) = 0 if iΦj.

(d) For any ' G (1, , k}, «7(7) Π 7)0 and «7(7) Π 7)7 are segments of

straight lines contained in diameters of Do and 7)y respectively.

Let Al9- - , Ak be small strips around α1?- ,α fc respectively which satisfy

the following properties:

(tf) Λy Π 7), = 0 if OΦ iΦ j .

(cr) y4f (Ί ̂ 4y = 0 if / Φj.

(d') y4y Π Do and 4̂y Π 7)̂  are contained in sectors of 7)0 and 7)y, 1 < j < A:

(see Figure 1).

FIGURE 1

We also set U = (Uf^Λ;) U (Uf=0 A ) and γ = 3ίΛ From the con-

struction, γ is a simple curve in C. Let Γ be a tubular neighborhood of

and set

^ , Ak,

V = ( C - U) U T, where C = C u {oo}. It follows that

Do, - , Dk,V) is a covering of C by open sets. For each j =

1, , k let us consider in A- X C coordinates (z, ϋy), z G ̂ , ^ G C, and for

each / = 0, , k coordinates (z, M,) in Dt X C , z e D^ wf. e C. In F X C we

take coordinates (w, y) where w = 1/z e F and J G C .

Now the idea is to take in each set of the form F x C , Di X C, Aj X C a

local model of foliation and glue them together in order to obtain a manifold

M and a singular foliation f in M as in §2.2. In Aj X C we take the

horizontal foliation ^J , whose leaves are of the form Vj = constant, y =

1, , k. If F X C we take also the horizontal foliation <#, whose leaves are of
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the form y = constant. The local models &j in D} X C, j = 0, , k, will be

singular foliations induced by linear vector fields in Ό- X C of the form

The numbers αy will be chosen according to the generators g1?- , gk of the

holonomy group. Let gj(x) = λjX + , where λy = gj(O). We take aj so

that e2"iaJ = λj9 j = 1, , A, and α 0 = - 1 - Σf= 1α,, Let γ,(0) = r y e" + z°,

0 < θ < 2ττ, where ry < r. Let Σy. = {p.} X C, />y G yj[0,2π]. It is easy to

verify that the holonomy of the curve γy in Σ •, with respect to the foliation β"j,

is of the form u- •-> λ•«-, where λ o = λf 1 ••• λ^1. We have also, from the

hypothesis, that the transformation g0

 = gk1 ° ''' ° Sϊl ι s linearizable, and

so we can choose the coordinates (z, u0) in Do X C so that g o("o) = ^owo

Now let us define the diffeomorphisms of identification, in order to glue

together the sets Aj X C and D. X C, j = 1, , k. Since Aj Π Ώj is simply

connected and Zj ί Aj Π DJ9 let us consider the coordinate system (z, ύj) in

(Aj Π DJ)X C, where

Here lg is the branch of the logarithm i n C - { x + /y; x < 0 } such that

lg(l) = 0. Since zj = zJ

0 4- r/2, we have that ύj(zj, Uj) = wy and w7(z,0) = 0.

Moreover the leaves of the foliation β^ restricted to (Aj n Dj) X C are the

level surfaces wy = constant, as can be easily seen from (8). Let us identify the

point (z, UJ) e (Aj Π Z)y) x C c ^ . x C with the point (z, wy) G (AJ Π Z)y) X

C c Dj X C, where

Clearly (9) is equivalent to identifying (z, t;y) with (z, wy) and so, with (9), we

are glueing together plaques of the foliation βj in (Aj Π Dj) X C with plaques

of βj in (v4y Π Z)7 ) X C. Observe that this identification sends the fiber

(z = c} c Aj X C, c G Λy Π Z)y, in the fiber {z = c} c Z)y X C. Moreover the

holonomy of the curve )8y = αy * γy * aj1 in the section Σj' = {zjf} X C a Aj

X C, with respect to the foliation obtained by glueing together J^ with β"j9 is

linear of the form Vj •-> λyι;y. Let us call this foliation βj also.

Now let hj\ Bj -> C, be a holomoφhic diffeomoφhism, where hj(O) = 0 e

5 7 Π Cj, and let us glue together the new foliation βj with # 0 in (v47 Π Do)

X C, but now using hj instead of the identity. More specifically, let us identify

the points (z, υj) G (AJ Π Z)O) X Bj with (z, w0) G (AJ Π D 0 ) X C by

( 9 0 Wo = ^ . ( ^
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As above, identification (9') glues together plaques of ̂  with plaques of

#0 and this defines a new foliation in a complex manifold of complex

dimension two, which contains Do U A- U Dj as a leaf of this new foliation.

The holonomy of the curve βj9 in the section { z y " } x C c i ) o x C i s given by

(10) uo^hjiλjhj^uo)).

Now let yo(θ) = r/2eiθ, 0 < θ < 2π, and for each j = 1, , k, let μy be

the segment of γ0 between r/2 and zy" (in the positive sense). Let δy =

μj* βj* μjι andΣ0= {r/2} XC.
It is easy to verify that the holonomy of the curve δy in Σ o is of the form,

(10') «~fc .( λ .Λ-i(«)) ,

where hj = ajιhj, cij = exp(2τπαo(y - l)/k).

Since gj is linearizable we can choose hj so that hj1 ° gj ° hj(ιij) = λyWy. In

the section Σ o the holonomy of δy is therefore gj(u0) = λyw0 + a{u\ + .

Now let M be the manifold obtained by glueing together all the foliations

^i>" ' "> ̂  a s indicated above. Let <# be the foliation in M obtained in this

way. From the construction, # satisfies the following properties:

(a) U = (Uf=1Λ,) Π ( U ) = o ^ ) is a leaf of # .

(b) The holonomy of U in Σ o is generated by g l5 , g .̂ This follows from

the fact that g0 = g^1 ° o g~\

(c) The holonomy of the curve δλ * * δ^ * γ0 is the identity. This follows

also from go = g^ι° ° gf1.

(d) M admits another foliation #, transversal to t/, without singularities.

This foliation is obtained by glueing together, in each step of the construction,

the vertical foliations z = constant of Aj X C and Dj X C and Do X C. Any

leaf of # cuts U in exactly one point and so we can define a projection p:

M -> U so that jp~1(^)is the leaf of # through (z, 0).

(e) Let /0, -Jk be the separatrices of the singularities of # which are

transversal to U (the equation of /y in Dj X C is z = z^). Then /0, , lk are

leaves of #. Moreover # is transverse to # in M - Uy= 0 (/••

Now let A = T Π U, where Γ is the tubular neighborhood of γ = 317

considered before. Then A is clearly an annulus. Moreover, if δ is a closed

curve in A which generates the homotopy of A, then the holonomy of δ with

respect to # (in some transversal section) is trivial. This follows from (c) and

the fact that δ is homotopic to the curve δλ * * δk * γ0 in U - Uy= 0 z&. It

follows from Reeb's stability theorem (cf. [13]) that the restricted foliation

β/A, A = p~1(A), is diffeomorphic to a product foliation, that is, there exists

a diffeomorphism φ: W -> A X D, of some neighborhood W of A in A onto

A X D, where D c C is a disk, such that φ sends leaves of # | W onto leaves
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of the trivial foliation A X {c}, c e D. This map φ can be chosen so that

φ(p-\z)nW)={z}XD.

In order to complete the construction of M and & it is sufficient to glue

together the foliations # in M and & in V X D by using φ, that is, if we

identify a point # e W with φ(#) e F x D , we obtain a manifold Mx which

contains a protective space ί/U F = C = P. Since φ sends leaves of β'/W

onto leaves of the horizontal foliation in A X Z), it follows that the foliation #

extends to a foliation J ^ in Mv where P is invariant by J ^ . Observe that the

foliation Φ can be extended also to M, since φ ( ^ ~ 1 ( z ) Π W) = {z} X D. Let

us call this extension 9V The leaves of <SX are transverse to P and each leaf

intersects P in exactly one point, hence p can be extended to a projection /?:

Mλ -> P, such that p~ι(z) is a leaf of ^ for any Z G X . Observe that some of

the leaves of Φ1 are diffeomorphic to C, whereas others are diffeomorphic to

disks. Nevertheless, it is easy to see that we can take a small neighborhood M

of P in Mλ so that p/M: M -> P is a fibration with fibers diffeomorphic to

disks. To conclude the construction it is sufficient to take J ^ = J ^ / M and

Let us prove that the Chern class of the normal bundle of P in M is - 1 .

This follows from the formula:

k

Chern class of TP"- = Σ ''(zy°> p ) >
/ = 0

where /(zy°, P ) is the index of the singularity of & with respect to the invariant

manifold P (cf. [5]). In [5] it is shown that i(zj, P) = «7 and so

k

Chern class of TP x = £ Λj= -1.
7 = 0

This concludes the proof of Theorem 1.

In order to prove the assertion in Remark 3, we observe that if M is a

Riemann surface and po, , pk e Λf, then there is a disk U c M such that

{ Po>""' > P* } c ^ F r o m Λe construction it is possible to construct a singular

foliation J ^ o n ί / X D such that:

(a) The singularities of J ^ are po,
m",Pk a n d ^ i ^s hnearizable in a

neighborhood of each singularity.

(b) (U — { p0, , pk}) X {0} is a leaf of J ^ and the holonomy of this leaf

is conjugated to the group of germs generated by gv , gk.

(d) The holonomy of a simple closed curve near the boundary of 3 U is

trivial, that is the foliation restricted to A X D , where A is a tubular neighbor-

hood of dU, is trivial.
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Now, as before, glue J ^ with the foliation oί (M — (U - A)) X D whose

leaves are the horizontals (M — (U - A)) X {z}, z G D. The foliation ob-

tained by this process will be holomorphic and will satisfy properties (i), (ii),

(iii), and (iv) of Remark 3.

2.4. Generalization of Theorem 1 for several blowing-ups. Observe that in the

construction of §2.3 we could take αo, , ak so that Σf= 0« z = «, n G Z. The

difference is that the Chern class of the normal bundle to P would be n in this

case.

Let us consider some manifold U(k) obtained after k blowing-ups as

indicated in §1. Then a projection is defined, π(*)g. U(k) -> (7, where U is a

neighborhood of 0 G C 2, (π(k))~\0) = ^ ( / : ) is a union of projective spaces,

and π<k)\Uik) - 0>{k) -> U - {0} is a diffeomorphism. In this process, <^(/c)

is in fact a tree of projective spaces so that if ^ ( / c ) = Uf=1 Ph where P 1 ? ,Pk

are projective spaces, then Pi Π Py is empty or consists of exactly one point (a

corner of £P(k)). Moreover, we have no cycles, in the sense that if Pf , , Pf is

a chain of projective spaces such that P, Π Pf ^ 0 , r = 1, , / - 1, then

p. n P. = 0 .

Let us take in each Pj a set { p^ , /?/} = Sj, where this set contains all the

intersections of Pj with the other Py's. Let us also take for each j a group of

germs of diffeomorphisms Hj9 generated by g{, , g/. Suppose that g/, , g/

and g^ = (g/° °g/)~1 are all linearizable (not necessarily in the same

coordinate system). Then by the construction of §2.3 it is possible to obtain a

manifold Mj and a foliation J^ in Mj with the following properties:

(a) Pj C MJ and the Chern class of TPJ

± in Mj is equal to the Chern class of

TPjX in U{k\

(b) The set of singularities of J^ is Sj and all such singularities have a

neighborhood where J^ can be written as in (7).

Now let us suppose that PtC\ Pj= {p} Φ 0 (this intersection is in £P{k))

and suppose that J^ is written in a neighborhood Wt c M/ of ^ as

(11) %-x, % = ay,

where (x, y) is a coordinate system such that p = (0,0) and P, Π P^ =

{^ = 0}. Similarly, suppose that J^ can be written in a neighborhood

Ŵ  c Mj of /> as

/ 1 1 Λ du dv
(11) ^ = «, ^ ; = ^ ,

where W}C\ P}= {ί; = 0}. If g's G //, and g/, e i/y are the holonomy elements

of J^ and J^ relative to /? e Pf and /? G Py respectively, then we have
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(gίYΦ) = el7ria and (g/0'(0) = e2πiβ. Let us suppose that the following equa-

tion of compatibility is satisfied:

(12) a β = l.

In this case the foliations defined by (11) and (1Γ) can be glued together by

the diffeomorphism ψ(x, y) = (y, x). Therefore we can glue together the

manifolds Mi and Mj in order to obtain a new manifold Mt U φ My = Mtj D

Pi U Pj and a foliation J^ y in Mi} such that /> U Pj is invariant by tFi} and

the holonomies of Pt — St and Py - Sj are exactly i/7 and Hj.

If the compatibility equation (12) is satisfied in all the corners of 8PW it is

clear that we can glue together all the manifolds My's and foliations J^'s in

order to obtain a manifold M(k) D 0>W and a foliation J*"(*) in M ( / c ) such

that the holonomy of Pj - Sj is exactly Hj and the Chern classes of TP^ in

M ( / c ) and in U(k) are the same.

Now let us observe that the Chern class of the last projective space obtained

by the blowing-up process considered is — 1. Hence, by Grauert's theorem the

manifold M(k) can be blown down to a manifold M(k~l) z> Pγ u UPk_v

The Chern class of each TP^ in M^k~l) clearly coincides with the Chern class

of TPj1 in U(k~ι\ the corresponding manifold obtained by blowing down

U(k). Moreover by the corollary of Proposition 1 in §1, the foliation ^^k) can

be blown down to a foliation J^ί*- 1) in M ( / c - 1 ) . If we continue this process

inductively we obtain finally a foliation J^ ( 0 ) in a neighborhood of 0 G C 2 ,

which by Proposition 1 can be represented by a vector field Z defined in

U — {0}. We have proved the following result.

Theorem 2. Let (U(k\ τr(/c), ^ ( A : ) ) be a sequence of k blowing-ups beginning

a/ 0 G C 2 , where π(k)(U(k)) = £/. Lέtf Pv-,Pk be the projective spaces

contained in ^^ and S a finite subset of ^ ( / c ) which contains properly all the

corners of έP(k\ For each] = 19— -,k, let Hj be a group of germs at 0 e C of

holomorphic diffeomorphisms which leave 0 fixed and satisfy the following

properties:

(i) For each p e S Π Py there exists a germ gp e Hj which is linearizable and

such that the set Aj = {gp\p e S Π Py} generates Hj.

(ii) If S C\ Pt= {/?!,- , /?r}, /Λe« we Λtfi e g/?i ° ° g Λ = identity. More-

over for eachpj there exists a- G C such thatg'p{ΰ) = e27τιaj and Σy = 1 α y = c(Pt).

(iii) // Pt Π Pj=p is a corner, and fp e F / ? gp G £ry, wAere //(0) = e27Γ/α,

g^(0) = e27Γ/^ (a and β as in (ii)), then a β = 1.

77ze« ί/iere exw/.s a vector field Z in U, such that if ^F(k) is the singular

foliation of U(k) associated to Z then,

(a) 0>(k) is invariant
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(b) The set of singularities of ̂ ^ is S.

(c) The holonomy of Pj - S with respect to J*"(*) is Hj.

(d) The multiplicity ofZatO(=C2isv= #S - #(corners) - 1.

We observe that (d) follows from Theorem 1 of [4].

3. Construction of Ricatti foliations in C X C

In this section we prove Theorem 3 (stated in the Introduction). The idea of

the proof is to construct a singular foliation & in a fiber bundle E over C with

fiber C satisfying conditions (i), (ii), and (iii) of Theorem 3, by glueing together

local pieces as in §2.3. This process is sketched in §3.1. In §3.2 we prove that

the glueing process can be done in such a way that at the end £ = C x C .

3.1. Construction of E and J5". Here we use the same notations of §2.3. Let

D0,--',Dk be disks around x0 = 0, , xk, and Al9-- ,Ak be strips which

satisfy (b'), (c'), and (d') of §2.3 (see Figure 1). Let V be as in §2.3, so that

{Al9'",Ak9D0,-",Dk9V} is a covering of C. We take coordinate systems

(x,Vj) for Aj x C , j = l, , i , (x, ut) for Z>, X C , i = 0, ,lt, and (w, y) for

V X C, w = l/x. In a neighborhood of A} X oo c Aj X C we take coordinates

(x, ΰj), ΰj = l/Vj. Analogously we put ϊιi = 1/M,-, i = 0, , k, and y = \/y.

Let us define the local models for J^":

(i) In Aj X C we consider the trivial foliation, whose leaves are of the form

AjX p, p e C, j = 1, , A:. The same in V X C.

(ii) Let us fix / e {0, , fc}. As is well known, there is a coordinate system

£ in C — {point} such that /, can be written in one of the following forms:

(a) //(£) = λ7£ if fι is not parabolic.

(b) / 7 ( | ) = £ - 1 if /, is parabolic.

In case (a) we consider a local model of the form:

dx dut [duι

= x X = (XU = α

where e2πiaι = λ7.

In case (b) we consider the local model:

Clearly the holonomies of (13) and (14) around a circle in 2), containing xt

are as in (a) and (b) respectively.

Now let us glue together the foliation on Aj X C and the foliations on

D o χ C and Dj X C. Suppose first that f0 and fj are not parabolic. In this

case we use the same identifications as in (9) and (9') of §2.3, where in (9r)



16 ALCIDES LINS NETO

we take /zyePSL(2,C) such that /y(z) = aj

ιhj(λjhj

ι(ajz)), where a} =
exp(2πiao(j - l)/k). With this choice the holonomy of the curve δy in the
section Σ o = { r/Ύ) X C will be of course u -> fj(u) (see Figure 2).

FIGURE 2

In the case where fj or /0 are parabolic the identifications in (9) and (9') are,
respectively,

χ - χ

r/2
(15)

(15')

(see §2.3 for the definition of z").
It can be verified easily that hj can be taken in such a way that the

holonomy of δj in Σ o is fj.
Now the extension of & to V X C is done in the same way as in §2.3. We

leave the details to the reader.
At the end of the process we obtain a fiber bundle E -» C, with fiber C, and

a foliation IF on E whose leaves are transversal to the fibers in
π~ι(C- {xo, - -,xk}) and such that the fibers π~1(x0)9— ,π~ι(xk) are in-

variant by J*\ Observe that in the case where /0, -,fk are not elliptic or
parabolic then all the singularities of & are of Poincare type (see (13)).

3.2. How to obtain £ = CxC. We use here the classification of ruled
surfaces over C (cf. [8]) which is a consequence of Grothendieck's theorem on
the classification of holomorphic vector bundles over C (cf. [9]). The classifica-
tion of ruled surfaces over C can be summarized as follows:

For each integer k > 0 there exists a unique fiber bundle Ek over C with
fiber C which is characterized by the property that Ek is the projectivization of
Fk θ Fo, where Fj is the line bundle over C with Chern class —j. Every ruled
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surface over C is holomorphically equivalent to Ek for some k. In terms of

sections of E we have the following characterization.

Proposition 2. Let E be a ruled surf ace over C. Then E ~ Ek (k ^ 0) if and

only if E has a holomorphic section σ: C -* E such that the Chern class c(σ) of

the normal bundle of σ(C) in E is -k. If k > 1 then this section is the unique

one with the property c(σ) < k.

Proof. Observe that Fk Θ Fo can be covered by two coordinate charts

(x, yλ, y2) and (w, vl9 υ2), where u = 1/jc, υλ = xkyλ, and υ2 = >>2. When we

projectivize these charts we get (x, (yx: y2)), (w, ( ^ : t;2)), where u = 1/χ and

(vλ: υ2).= (xkyλ: y2). This implies that 2^ can be covered by four coordinate

charts (x, yλ), (x, y2), (w, υj, and (w, υ2) such that the transitions are given by

the equations: u = 1/jc, }>2

 == VJΊ> y2 = l/ϋi» ϋ i = **)Ί> a n c * 2̂ = x~kyi It

follows that the section σ which is expressed in the first chart as σ(x) = 0 and

in the third as σ(w) = 0 has c(σ) = -k.

In order to complete the proof it is sufficient to prove that if k > 1 and θ is

another section of Ek, then c(θ)> k. It is easy to verify that θ can be

represented in the above charts as

v - z ί ί ) v -

— u

where /? and g are polynomials without common factors, dg(/?) = r, dg(q) = 5,

^(w) = urp(l/u), and ^(w) = usq{\/u). It is sufficient to prove that the

self-intersection number of the section given by (16) is at least k. This can be

done by considering a small perturbation θ of θ, expressed in the chart (x, yx)

as yγ = (1 4- ε)p(x)/q(x\ where |ε| < 1. The intersection number of θ with θ

is r + s + /, where ί = 0 if $ = /• + /:, / = .s — /• — Λ: if . s > r + Λ:, or ί = r +

A: + 5 if r 4- /: > 5. In any case it is clear that this number is at least k, which

proves the proposition.

Now let us consider a point p e Ek - σ(C), where σ is the section given by

Proposition 2 (k > 1). Let F be the fiber of Ek through p. Since F is a fiber

we have c(F) = 0. When we blow up at p we obtain a new manifold Ek, a

proper map 77: £ Λ -> £ Λ , and a projective space P c Ek such that c(P) = - 1 ,

π(P) = /?, and # / £ A - P: Ek - P -> £^ - {/?} is a diffeomorphism.

Assertion. There exists a projective space F c Ek such that π(F) — F, F

crosses P transversally, and c(F) = — 1.

This assertion follows from the following more general lemma.

Lemma 1. Let M be a 2-dimensional complex manifold and S c M be a

Riemann surface such that the Chern class of the normal bundle of S in M is
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c(S). Let M -> M be the manifold obtained by blowing-up once at p. Then

π~\S) = S U P, where π(P)=p, π(S) = S, S is diffeomorphic to S, S

crosses P transυersally at one point, and c(S) = c(S) — 1.

For the proof see [5].

From the assertion, we know that F c Ek satisfies c(F) = — 1. It follows

from Grauert's theorem (see §2.1) that we can blow down a neighborhood of F

to a neighborhood of 0 e C 2 . In this way we obtain a new manifold Ek and a

proper map TΓ: Ek -» Ek such that π(F) is a point p e Ek and π | Ek — F is a

diffeomorphism. Let P = π(P). Then it is easy to see that P is a projective

space embedded in Ek and from the lemma we have c(P) = 0.

Proposition 3. The manifold Ek is a fiber bundle over C with fiber C and

Ek « Ek_v Moreover if we put ψ = π °(π\Ek — P)~x, then ψ: Ek - F -+ Ek

— P is a diffeomorphism which sends fibers to fibers.

Proof. Since π\Ek - P and 771 Ek — F are diffeomorphisms, it is clear that

ψ is a diffeomorphism. Let πk: Ek -» C be the projection of the bundle Ek.

Define πk: Ek — P ^ C-{x0], where x0 = πk(F), by πk = πk° ψ" 1 . Clearly

πk: Ek - P -> C— {JC0} defines a fiber bundle structure in Ek — P. We can

suppose x0 Φ 00. If D is a small neighborhood of JC0, then it is not difficult to

see that πk

ι(D — {x0}) U P = ί/D is a neighborhood of A Moreover as the

diameter of D tends to zero, UD tends to P. In particular 77̂  is bounded in

UD — P and so it can be extended holomorphically to P as πk(P) = JC0. It

follows that πk: Ek -> C is a fiber bundle. It remains to prove that Ek « ^ _ χ .

Let us consider the section σ: C -> £ Λ , given by Proposition 2, with

c(σ) = -/c. Since the point p where we did the blowing-up at the beginning is

not in σ(C), we obtain an embedded projective space Σ = π~\σ(C)) c Ek.

The Chern class of the normal bundle of Σ is of course c(Σ) = c(σ) = —k.

Let Σ = 7τ(Σ) c Ek. From the lemma it follows that c(Σ) = -k + 1. Let us

prove that Σ is the image of some section σ: C -> Ek. Define σ: C—{x0} -*

Ek — P by σ = ψ © σ. It is not difficult to see that σ is bounded in a punctured

neighborhood of x0 and so σ can be extended holomorphically to x0, where

σ(x0) G P. Moreover σ(C) = Σ, which implies that c(σ) = — k + 1. It follows

from Proposition 2 that 2 .̂ « ^ - i (Figure 3 illustrates the process.)

Now let us consider the singular foliation IF on E constructed in §3.1 and

let us apply to E the process described above in the case where E *> Eo, say

Suppose first that some of the generators, say fl9 of the holonomy group is

not parabolic. In §3.1 we have chosen a local model for the foliation of the

form
/., - \ dx dux I du1 Λ A 1
(13J —=X + Xl, Ίf=«1uι, — = - α l U l , U l = -
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where e27Γiaι = λv f^ξ) = λ^. Observe that the glueing process was done in

such a way that the projective spaces defined by {x = constant} are fibers of

the bundle E. The fiber F = {x = xλ} contains two singularities of J^, namely

{x = xv uλ = 0} and ( c = xv ux = 0}. On the other hand the section σ, given

by Proposition 2, has an expression of the form uλ = σ(x) in the chart (x, uλ)

(x G Dλ\ where σ is meromoφhic. Let us suppose that o{xλ) Φ 0. In this case

the point p = (xv0) ΐ σ(C) and we can apply the argument illustrated in

Figure 3 to it.

F'

σ(C)

π

x -axis

F'

blowing up at F

FIGURE 3

>.> x-axis

blowing down at P

Let us consider the blowing-up at (x^O) given by ux = t(x — xλ) and

x — xτ = 5Ml5 5 = 1//. The open set #~1(Z)1 X C) c Ek can be covered by

three charts (s, ux)9 (s, uλ), and (ί, x), where t = \/s and x = 5 wx + xτ =

jwfx + x l β Here # = {(s, uλ) \ s = 0} U {($, wx) | s = 0} and

Now, when we blow down F, the open set π(π~\Dι X C)) c Ek can be

covered by two charts (x, t), (x, s) where s = 1// and the inverse blowing-up

is given by x — xλ = uλs, s = WX(JC - xλ) (see Figure 3). We have π(F) = q =

{̂  = 0,x = x 1} and £ ( P ) = P = {(x, t) \x = xλ} U { ( X , J ) |JC = χx). The

map ψ can be expressed by ψ(x, wx) = ( c, /), / = ux/{x — xx), or ψ(x, wx) =

(x, 5), 5 = wx(x - x^. The differential equation in (13) is thus transformed by

ψ into:

Observe also that the section σ of Proposition 3 is expressed in the chart

(x, t) as / = σ(x)/(;c - JCX), and since a(x x ) Φ 0, σ has a pole at x = JCΓ

Therefore we can apply the same process again if c(σ) < 0, blowing-up at

p= {χ = χvt = 0}.
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In the case where σ(xλ) = 0 we begin the process at p = {x = xλ, uλ = 0}

and we obtain at the end the local model:

/- ~,,\ dx dt , -\ / ds ,„ ,

Observe that the holonomy of (13J) or (13") is the same as the holonomy of

(13X) and so the blow-up, blow-down process does not affect the glueing maps.

Therefore the above argument implies that if we had chosen the local model as

(13;) or (13'/) in the construction of §3.1, instead of (13X), then the bundle

obtained at the end of the construction would be Et_λ instead of Eh This

proves the following lemma:

Lemma 2. Let fo,— '<>fk be Moebius transformations, where k^l and

/o = (Λ ° * * ' ° fk)~l- Suppose that fλ is not parabolic. Choose local models as in

(13) or (14) which realize fj as local holonomy in the normal form for I Φ 1.

Choose also Moebius transformations hλ, - -, hk such that fj(z) =

ajlhj(\jh]\ajz)) iffj is not parabolic, orfj(z) = a-ιhj(hj\ajz) - 1) if fj is

parabolic, where a- = exp(27παo(y - l)/k), 1 <y < k. Then there exists aλ

with elητι(Xχ = λx such that the bundle obtained at the end of the construction of

§3.1 is Eo = CxC. Moreover, if no fj is elliptic or parabolic, then all singular-

ities of & are of Poincare type.

In the case where all ŷ  's are parabolic the argument is analogous. At the end

we obtain a foliation J** on C X C with the desired holonomy. However there is

a difference in the local models near the invariant fibers. These local models

can be obtained from (14) by applying the change of variables ψ several times

and by multiplying the final equation by some power of x — xι in order to

cancel the pole, if necessary. Since these computations are straightforward, we

leave them to the reader. In order to complete the proof of Theorem 3, we

prove the following result.

Proposition 4. The foliation & obtained above is of Ricatti type. In other

words, there is a Ricatti equation:

(17) | = ί W , ^=a(x) + b(x)y + c(x)y\

where dg(p) = k + 1, max{dg(α), dg(b), dg(c)} < k — 1, and such that its

compactification in C X C is exactly &.

Proof. Let us consider in CxC coordinate systems (x, y), (x,v), (u, y),

(u,v), where u = l/x, v = \/y. We choose these coordinates in such a way

that the invariant fibers are the verticals ( c = x }, where x} Φ oo, 0 <y < k.

The image of the chart (x, y) is C X C, therefore it induces a singular foliation

# o n C x C which is transverse to all verticals x = c, where c Φ Xj,Q < y < k.

The verticals { c = Xj}, 0 < j < k, are # invariant.
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Now, since # is transverse to the verticals in the set [/XC, U = C -

{xQ, - -,xk}, it follows that # can be defined in U X C by a differential

equation of the form dy/dx = f(x, y), where /: U X C -> C is holomorphic

( / i s the slope of # at (x, ^)). Since # can be compactified to U X C, it

follows that / is a polynomial in the variable y. The fact that 2F is transverse

to the fibers i = c, c e [/, at the points of the form { JC = c, y = 00} = {x =

c, v = 0} implies that the degree of / with respect to y is at most 2. Therefore

we can write f(x, y) = A(x) + J5(x)^ + C(x)y2, where A, B, C: U -* C are

holomorphic. Since # extends to the vertical x = jcy , 0 < j < A:, as a singular

foliation, it follows from Proposition 1 of §1 (or from the construction) that

the points x o, , xk are poles of A, B, C. Therefore we can write A = a/p,

B = b/p, C = c/p, where p is a polynomial whose roots are JC0, , xk and <z,

b, c: C -> C are holomorphic. Hence # can be defined by equations (17). In

order to prove that a, b, and c are polynomials with max{dg(α), dg(6), dg(c)}

< k — 1, it is sufficient to use the fact that J^ extends to the line x = 00, and

that this vertical is not invariant.

4. Applications

In this section we study perturbations of Ricatti foliation on C X C.

Let M be an ^-dimensional complex manifold. A singular foliation & on

M is given by a covering {ί/ α } α e / of M by open sets and a collection
x= {χa)**i such that:

(i) For each α e /, Xa is a holomorphic vector field on l/α, whose singular

set Sa has codimension at least 2.

(ii) If ί/α Π Ljg # 0 , then there exists a function λaβ: UaΓ\ Uβ ^> C* such

that Xα = λα/? Xβ.

Let F(M) be the set of singular foliations on M. Given J ^ e F(M) as

above, we define the singular set of !F as S = Ua(ElSa. Clearly & is a

foliation, in the usual sense, on M - S. The nonsingular leaves of &yUa are

the nonsingular integral curves of Xa.

Let us suppose that M is compact. In this case we can suppose that

/ = { l , ,>w}is finite and that each Ua is the domain of a coordinate system

Φ«: Ua^B2, Br={(xl9"'9xny, \Xj\<r, y = l , , m ) , where the set

{̂ « }«<=/> ^« = ΦαΛ^iX i s a l s o a covering of M. Let us fix ^ * e ,F(M) and

these coverings. Given # e F(M), for each α G I there exists a vector field

Xa on ί/α such that the leaves of &\Ua are the integral curves of Xa. This

follows from an argument analogous to that of Proposition 1 (cf. [7]). Let us

define the ε neighborhood of J*\ °U(F, X, ε), as the set of all # e F(M) such
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that for each a e / there exists a function μα: Ua -> C* satisfying

{|^α(x) - μβ(*) l α (x) |; x e Fα} < ε.

It can be verified easily that the set {<&(&, X,ε)\ J ^ e F(Λf), ε > 0 and

X = { Xa}a€Ξ/, where J*" | t/α is represented by Xα} is a base for a topology in

Let us consider the case where M = C X C and J^ is a Ricatti foliation. Let

{xj} X C, y = 0, , Λ, be the invariant fibers of &. If D c C - {JCO, ••,**}

is a closed disk, then IF is transverse to all fibers {x} X C, x e Zλ Since Z) is

compact, it follows that ίhere exists a neighborhood °ll of #" in F(C X C) such

that if # e Φ, then # is also transverse to all fibers {x} X C, x e 5 . From

this fact it is not difficult to prove that # is also a Ricatti foliation. For the

proof just use the same computations made in the proof of Proposition 4. So

we have the following result.

Proposition 5. The set of Ricatti foliations is an open set of F(C X C).

In this section we prove the following results.

Theorem 4. Let k > 3. There exists an open set <tί c F(C X C) with the

following properties:

(i) Any J^~e °U is a Ricatti foliation with k invariant fibers. All singularities of

J^ are of Poincare type.

(ii) // JF and & e °lί are topologically equivalent, then their holonomies are

conformally conjugated.

We say that J*" and 9 are topologically equivalent if there exists a

homeomorphism /ι: C x C ^ C x C which sends leaves of J^ onto leaves of <&

and the singular set of J^ onto the singular set of ^ .

Theorem 5. Let /1 ? •••,/* fte Moebius transformations such that the group G

generated by them is free and structurally stable in the sense of [15]. Lei

/o = (/i ° ' ' ' ° fk)~l and ^ be a Ricatti foliation constructed as in Theorem 3

/rom / o r * *, Λ 77*e« ^ w structurally stable.

We say that J ^ e ^ ( C x C ) is structurally stable if there exists a neighbor-

hood °U of J "̂ such that any 3? e ^ is topologically equivalent to &.

Remark. Let Dv , D2k be disjoint closed disks and fλ, , fk be Moebius

transformations such that:

(ii) /;.(C-(£>, U Z)y+λ)) c Dj and f]-\C-(Dj U Z)/+A)) c Dy.+/ι, 7 =

1,- - -, AT.

Then fι, • ,fk a r e loxodromic or hyperbolic and the group generated by

them is free. This type of group is known as a Schottky group (cf. [11]) and is

structurally stable, since all nearby representations are free (cf. [15]).
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4.1. Proof of Theorem 4. We begin by proving that if & and 9 are

topologically equivalent, then their holonomies are topologically conjugated.

Let h be an equivalence between 3F and 9. Then h sends invariant fibers of

3F onto invariant fibers of 9. So, if the invariant fibers of 2F are {xj} X C,

j = 0, , k, then h({xj} X C) is an invariant fiber of ^ , which we can

suppose is {Xj} X C. Put S = {*0, •,**}, S" = {X'Q,- -,x'k). F o r a nY fiber

Σq = {q} X C, q £ S, its image Λ(Σ^) is a topological sphere which is

topologically transverse to 9 (that is, h(Σq) has a product neighborhood

whose fibers are disks on the leaves of 9). Let us fix two fibers Σ = Σ^,

Σ ' = Σ ,, q <£ S, qr e S'. We are going to prove that there exists a homotopy

ψ: / X C -> ( C - S " ) X C with the following properties:

(i) ψo(C) = A(Σ), ψjίC) = Σ ' and ψ0: C -> A(Σ), ψx: C -> Σ' are homeo-

moφhisms (ψ,(z) = ψ(ί, z)).

(ii) For z e C, ψ(/ X z) is contained in the leaf of ^ through ψ o(z).

This homotopy can be constructed easily by considering the universal

covering WxC^ (C - S') X C, where W = C or W = {x e C; |JC| < 1}. Let

7r*(^) = ^ + be the foliation coinducted by 9. Then ^ Ϋ is transverse to the

fibers {x} X C, x e W. It follows from a theorem of Ehresman that ^* is

equivalent to the trivial foliation on ί f x C , whose leaves are of the form

W X {z}, Z G C (cf. [6]). We can suppose therefore that ^ is this foliation.

Let Σ ' and Σ be connected submanifolds such that π(Σ') = Σ' and π(Σ) =

A(Σ). Since Σ r is transverse and Σ is topologically transverse to 9^ there exist

functions a,β: C -> W, a analytic and β continuous, such that Σ r =

{(a(z\ z); z G C) and Σ = {(jβ(z), z); Z G C } .

This assertion is clear for Σ'. Let us prove it for Σ. It is sufficient to prove

that each leaf L = W X {z} of &* cuts Σ in exactly one point. Clearly each

leaf L cuts Σ ' in exactly one point. So we can consider a map p: Σ -> Σ r

defined by P(q) = L ΓιΣ\ where q e Σ and L is the leaf of ^ + through q.

Since Σ is topologically transverse to <§* (Σ has a product neighborhood

whose fibers are disks on the leaves of ^ * ) , it follows that P is a covering map.

This proves the assertion, because Σ' ~ C and Σ is connected.

Now it is sufficient to put ψ(ί, z) = π(ta(z) + (1 - t)β(z), z). It is easy to

verify that ψ satisfies (i) and (ii).

We are going to prove that the homeomorphism θ = ψx ° ΨQ X O A: Σ -> Σ r is

a conjugation between the holonomies of & in Σ and ^ in Σ r .

For each point /?' e A(Σ), let ap, be the curve on the leaf of 9 through /?',

defined by ap,(t) = ψt ° ψo \p')- L e t Y be a loop in ir^C-S.q) and for

P = (#> J7) G Σ, let γ^ be the lifting of γ on the leaf L^ of J^ through p such

that yp(0) = p. By definition we have 7^(1) =f[Ύ](p\ where / [ γ ] is the
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holonomy transformation associated to γ. Let p' = h(p\ p" = h(f[y](p)),

and y'θ{p) = α ^ * ( / ι ° yp) * ap>. (see Figure 4). We haveα ^ * ( / ι ° yp

γ# ' ( i 0(0) = a = β(f[y](p)).

Moreover y'θ{p) is a curve contained in the leaf L'h(p) and so it is the lifting on

this leaf of the loop Λ W o o ) = Ŷ» w h e r e Λ : ( C - S 7 ) X C -> C - S " is the

first projection. Hence yί(P)(ΐ) = g[γ>](θ(p)), where g [ γ Ί is the holonomy

transformations of 9 associated to [γ^] G ^ ( C —S", q'). Now observe that the

homotopy class of yp e ^ ( C - S ' , ? ' ) does not depend on p. Moreover, since

h: C-S X C -> C - 5 " X C is a homeomoφhism, the map [γ] G π^C-S.q)

*~* [Ύp] e ^ i ( C ~ S1', ^') is an isomorphism and from the above construction we

have that θ ° f[γ](p) = g[ γ ] ° 0(p). This proves the assertion.

FIGURE 4

Theorem 4 will follow from Theorem 3 and the lemma below.

Lemma 3. There exist open sets °lίx, <%2 c PSL(2, C) satisfying the following

properties'.

(i) Any element f G °UX U ^ 2

 / 5 hyperbolic or loxodromic.

(ii) 7/7*! G ^ αwJ/2 G ^ 2 , thenfγ andf2 have no common fixed points.

(iii) G/ϋβ/i ( / i , / 2 ) e * i x * 2 α Λ ^gi. ^2 G PSL(2, C) .SMCΛ ίλέi/ ίΛ r̂e exwte α
homeomorphism θ of C satisfying θ <>fj = gj° θ, j = 1,2, ί/zew β w α conformal

map.

Proof. The idea is to construct open sets <tίv W2 which satisfy (i) and (ii)

and: (iv) For any ( / i , / 2 ) e * i x * 2 » ^ e gΓ O UP generated by fx and / 2 is not

discrete.

Suppose for a moment that we have constructed such °UX and ^ 2 . Fix

(Λ» Λ) e * i x *2 a n d l e t Γ b e t h e 8Γ O UP generated by / x and /2. Since Γ is
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not discrete, its closure Γ contains a one-parameter subgroup {/ f ) ί e R . Now let

θ be a homeomorphism of C such that gy = θ ° fjθ θ~ι, j = 1,2, are Moebius

transformations. Let Γ' be the group generated by gx and g2, and Γ' be its

closure. Then gt = θ ° ft° θ~ι is a, one-parameter subgroup of Γ'. It follows

from a theorem of E. Cartan that t •-» g, is real analytic. Hence for any z e C

which is not a fixed point of the family {/,},eRwe have that θ is real analytic

along the curve t -» ft(z). This follows from θ(ft(z)) = g,(0(z)). We observe

that, since a one-parameter subgroup is abelian, all nontrivial elements of

{ / J / 6 R have the same fixed points. The same is true for the family {g,}, e R.

Now, let / e Γ be such that / and the family {/,},GR have no fixed points

in common. It follows that the family {fs = f~1fsf}s^R * s contained in Γ and

has no fixed points in common with {ft}t&R. Hence there exists z 0 e C such

that the curves t *-> ft(z0) and s -> fs(z0) are transverses at t = s = 0. Since

transversality is an open property, the same is true for the curves t *-> ft(z) and

s -> / s (z), where z G D, D a neighborhood of z0. Using the transversality of

these curves and the fact that θ is real analytic along them, it is not difficult to

prove that θ is C°° in D. Since Γ is not discrete, it follows from MonteΓs

theorem that U Λ e Γ / i ( i ) ) covers all of C, with possible exception of two points.

It follows that there exists h e Γ such that h(D) contains a fixed point zλ of

fv for example. Since fλ is loxodromic or hyperbolic we can suppose that

f{(zx) = λ, |λ| < 1. Let f3 = h'ιfλh e Γ. Then f3(h-\Zι)) = h-\zx) e D
and f3'(h~1(z1)) = λ. Moreover we can suppose that the fixed points of /3 are

h~1(zι) = 0 and oo, so that / 3(z) = λz. Similarly we can suppose that the

fixed points of g3 = flo/3

o θ~ι are 0 and oo, so that g3(ω) = μω, |μ| < 1.

This implies that θ(λnz) = μnθ(z) and this equation together with the fact that

θ is C 1 in D, 0 e Z>, implies that 0(z) = ξz or θ(z) = ξz. Therefore β is a

conformal map. It remains to prove the existence of °UX and < 2̂ satisfying (i),

(ii), and (iv). This will follow from the lemma below.

Lemma 4. Let fo(z) = λz, where |λ| > 1 and |λ - 1| < 1. Then there exist

neighborhoods ifγ off0 and Ϋ~2 °ί
 t n e identity in PSL(2, C), such that for any

pair (fv f2) e Ψ*x X y 2̂, the group generated by fλ andf2 is discrete if and only

iffλ andf2 commute.

Proof. Let us consider the map φ: PSL(2, C) X PSL(2, C) -> PSL(2, C)

given by <p(/, g) = / ° g ° Γ 1 ° g" 1 . We take φg(f) = φ ( / , g) and ψ = φ/o.

Assertion, ψ is a contraction in a neighborhood Ψ*2 of the identity /, and

\xmn _ x r(f) = Ifor any f e r2.
In fact, ψ(7) = I, and for A e Γ^PSLί^Q) we have

(18) Dφ(l)-A=A-fo-A-fΰι.
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In formula (18) we are considering f0 as a matrix of the form (g °-i), where

μ2 = λ and A = (" _£). An easy computation implies that the eigenvalues

of Dψ(/) are 0, 1 - λ, and 1 - λ" 1. Since |1 - λ| < 1 and |1 - λ" 1 ! =

| λ - 1 | |1 - λ| < 1, it follows that ψ is a contraction in a neighborhood Ϋ*2 of /

and / is the unique fixed point of ψ in i^2. This proves the assertion.

Let us take i^2 in such a way that for any / E f 2 - { / } w e have f2 Φ I.

Let / G iΓ2. Then ψ π (/) G Γ, the group generated by / 0 and /. If Γ is discrete

the sequence {ψn(f)}n>0 stabilizes for n > n0 and since l im^^^ ψ"(/) = /

we have ψ"(/) = / for n>n0. Put /) = ψ y (/) , / > 1, and let m =

min{«; fn = I). We assert that m = I and hence / and / 0 commute.

In fact, suppose by contradiction that m > 1. This implies that fm_x Φ I

and fm_λ commutes with /0. Since fo(z) = λz, |λ| > 1, we have that fm-ι(z)

= pz, where p Φ 1. On the other hand / m _ x = / m _ 2 % ° fm-2 ° fol a n d s o

fo°fm-2°fol = /m-i°/m-2 It is n o t difficult to see that this equation to-

gether with fm_2 Φ I and fm-λ{z) = pz, p Φ 1, implies that f2_2 = /, which

is a contradiction since / m _ 2 G Ϋ~2.

Now, let y^ be a neighborhood of / 0 with the following properties:

(a) For any g ^ ^ , φ g | f 2 i s a contradiction and / is the unique fixed

point of φ g in i^2.

(b) If g e y i 5 then g has a fixed point p such that |g r(/?)| > 1 and

It is not difficult to see that yχ and ^ 2 satisfy the properties we need.

Now let X = { / G PSL(2, C); / % = / 0 ° / }• Then X is a codimension 2

submanifold of PSL(2, C), which implies that i^2- XΦ 0. Let fλ G yς - X

be loxodromic or hyperbolic, with no common fixed points with /0. It is not

difficult to see that f0 and fλ have neighborhoods °Uλ c ^ and ^ 2 c y 2̂

which satisfy (i), (ii), and (iii) of Lemma 3. This ends the proof of Theorem 4.

4.2. Proof of Theorem 5. Observe first that since G = [fv , / J is free

and structurally stable, then there exist neighborhoods <%l9 , °Uk of / l 5 , /*

respectively, such that for any (gι>-' , gk) ^ <%ι X X ^ = ^ , the group

(5 = [ 1̂?* , ̂ ] is also free. Moreover, it follows from the results of [15] that if

(#i>* "•>£*) G . * > Λen G = [g1?- , g j is quasi-conformally conjugated to G.

In fact in [15] this is proved for one-parameter families G λ = [g l λ, ,g^ λ],

gj0 = fp j: = 1, , k, and the result is that the conjugation λ -» hλ between

Go and G λ can be chosen in such a way that it depends holomorphically on λ

and h0 = id. We observe also that all elements of G are hyperbolic or

loxodromic. In fact, since G is free and has nontrivial domains of discontinuity

(cf. [15]), it follows that G does not contain elliptic elements. Let us prove that

G does not contain parabolic elements.
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Given sequences / = (/1? , ir) c (1, , k) and K = {kl9-—,kr} c

{-1,1}, let us consider the map φίκ: ^-+PSL(2,C), φΛ λ-(gi, ,gΛ) =

g^Ί o . . . o g^r of course we do not consider sequences / and K such that
kjkj+ι = ~ ί i f ij = ij+v s o t h a t <P/,A-(gi>- ">gk)Φl ft (Sir * , 8k) G * • I n

this case it is easy to verify that φf κ(^) is an open set of PSL(2, C) and that
the set

•*/,* = {(g i r , gΛ) e 4T; φ Λ J f (gi, , g J is not parabolic}

is open and dense in °U. It follows that sί= C\j κs#j κ is a generic subset of

°ίί. If (g1 ?- • , g i t ) ε ^ , then the group [g1?- , g j does not contain parabolic

elements. Since G is rigid, it follows that G does not contain parabolic

elements.

Now let us consider a Ricatti foliation <F on C x C , constructed from

/i, »Λ a s i n Theorem 3. Since /1, ,/ i t and / 0 = (/i° ••• ° Λ ) " 1 are

hyperbolic or loxodromic, it follows that J^ has /c + 1 invariant vertical fibers

and 2k + 2 singularities, all of Poincare type, where each invariant fiber

contains exactly two singularities. Let us suppose that the invariant fibers for J^

are {x0} X C, , {JC^} X C, where for each j G {0, , k] we have a local

model

/ 1 Ωx dx du ( du Λ A 1

where e1<πιa< is the eigenvalue of Dfj in one of the fixed points of fjm

Observe that in the proof of Theorem 3, the generators fv ,fk,f0 of the

holonomy are associated to fixed generators γi, ,Y*>Yo of πλ(C-S,q),

where S = {JCO, , xk), γ 0 « (γ : * * γ * ) " 1 , and q £ S. Let us consider

neighborhoods °Uj of fj, j = 1, , A:, as before, and ^ 0 = {(gi ° o gk)~ι\

gj G ^ 7 , y = 1, , k). Let us also fix curves γo, —,yk, and k + 1 disks

D 0 , , ^ c C , such that Z>, Π Z)y = 0 if / Φy, jcy G Z)y, and Di (Ί γ7 = 0

for all i, / There exists a neighborhood f of J "̂ in F ( C x C ) with the

following properties:

(a) If ̂  G TT, then ^ is of Ricatti type.

(b) In the chart ( c, >̂ ) considered in Proposition 4, ̂  has an expression of

the form

(170 % = p{x>9\ % = a(x99) + b(x,9)y + c(x,^)j;2,

where for each ^ G ^ , p(x,<$), a(x,<g), b(x,9), and c(x,^) are poly-

nomials such that dg(/>) = k + 1, max{dg(fl),dg(6),dg(c)} < fc - 1, and the

correspondences ^ •-> a,b,c, p are continuous.
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These properties follow easily from Propositions 4 and 5. They imply that
we can choose y satisfying the following additional properties:

(c) If S?e TT, then it has k + 1 invariant fibers {xj(9)} x C , 0 < j < ^ ,
where Xj(&) e D- and the map ^ •-> Xj(@) is continuous for all y. This follows
from the fact that the roots of p(x, &) = 0 are simple.

(d) The holonomy of ^ e TΓ in the section {#} X C is generated by
transformations /^V *>//Γ> where / ) ^ ^ ̂ y is the holonomy element of 9
relative to γ e τ7-1(C-Uf=0 A> #) a n d ^ e correspondence 9 •-> / ^ is continu-
ous. This follows from (b) and the fact that the curves γ0, , yk are fixed.

(e) For each 9 e if the group [ff, , //] is conjugated to [fl9 , fk] by
a homeomorphism Λ^ of C such that 1™^^^/!^=/. This follows from
Sullivan's results [15].

We remark that the fact that all groups [ff, , //] are discrete implies that
hy conjugates f? with fj for each j . This follows also from Sullivan's
techniques.

Another fact that we shall use here is that there exist coordinate systems
(x, v) and (x, v) in D X C, v = 1/υ, such that &/Dj X C can be expressed as

(20) § = x - Xj(9), % = aj(9)v, ( f = -«y(ar)β),

where ^ •-> α y (^) is continuous and αy( J*") = ay.
To prove this, observe first that p(x,&) = (x - Xj(^))Q{x^\ where

Q(x,&) Φ 0 if x e Z)̂ . Therefore we can divide the right members of (17r) by
ρ θ , ^ ) , thus obtaining a local expression for ^ | Z)y X C of the form

(17") ^ = x - Xj(9), & = A(x,9)

Now, observe that ^ | Dj X C has two invariant manifolds of the form
y = oίι(x) and y = a2(x), which pass through the singularities of ^ in
{xj(&)} X C. The change of variables u = (y - aλ{x))/{y - a2(x)) changes
(17") to the form

(190 % = x-(9)

Let a(xj(&), 9) = α / ^ ) and consider the change of variables u -
where

An easy computation shows that if we make this change of variables in (19r),
then we get (20).
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Now let us construct a topological equivalence between 3F and ^ G f . We

start from a conjugation h<$ between the holonomies of & and ^ in the

section Σq = {q} X C. These holonomies are generated by fl9- -,fk and

g l 5 , gk respectively, where gj = //, and we have h ° f} = g^• ° h, j = 1, , k,

h = h9. Let us extend h to a homeomorphism //: W X C ^> W X C which

preserves fibers, where W = C —Uy=0 £,-

Let (x, y) e. W X C and join the points x and # by a curve β in W. Since

&\W X C is transverse to the vertical fibers, lift β to a curve /Sy in the leaf of

^\WxC which covers β. Then β/0) = (x, y), βy(l) = (q, y') e σ̂ . Take

iq >y") = ^(^» ^ 0 a n d consider the lifting β~,} of the curve β~ι in the leaf of

&\WXC through (ήf,^")- Then ^ ( 0 ) = (q, y") and ^ ( 1 ) = (x, y w )

Using the fact that h is a conjugation between the holonomy groups, it can be

proved that y"' does not depend on the curve β chosen and that the

correspondence (JC, y) •-> (x, y '") = H(x, y) is a homeomorphism (cf. [6]).

Now let us consider the restriction Hj = H\ dDj X C: dDj x C ^ . Our

problem is to extend Hj to the interior of Dj X C. Observe that if 9 is near J^,

then Hj is near the identity. This follows from the construction. For the sake

of simplicity let us suppose that Xj = 0 = Xj(@) and that Dj•= {x\ \x\ < 1}.

Take coordinate systems (x, u) and (x, υ) such that ^/Dj X C are expressed

by vector fields X(x, u) = (x, αyw) and 7(x, υ) = (JC, &JV), where ά7 = αy

is near αy.

Let us divide Dj X C in two polydisks Bo = {(JC, w); JC G 2̂ ., |w| < 1) and

ôo = {(*.«); ^ G ^ l«l > 1} Let Γ = {(JC, u); x e Z)y, |u| = 1} = 35 0 n

dB^. Then Γ is a solid torus and the foliation β" of T, obtained by intersecting

the leaves of X with Γ, consists of one closed leaf γ = {(x,u); x = 0, |w| = 1}

and all other leaves are transverse to the boundary and have γ as limit set (see

Figure 5). The same is true for the vector field Y and t = {(x, υ)\ x G DJ,

FIGURE 5
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Let V = Hj(dT). Then V is a topological 2-torus which is near 3Γ, since H-

is near the identity. Since V is topologically transverse to ^ , we can obtain a

tubular neighborhood Uof V, whose fibers are leaves of 9\U. This neighbor-

hood can be constructed by covering V with a finite number of trivialization

charts of 9. Since we are supposing H- near the identity, we can suppose that

3Γ c U, so that if we take V = {(*, υ)\ \x\ = r, \v\ = 1}, where r < 1 is near

1, then V c £/ and F intersects each leaf of 971 £/ in exactly one point. If L p is

the leaf of 9 \ U through p e V, then L^ Π F is a point (x(^) , υ(/?)), where

^ •-> (x(p), v(p)) is continuous with p and |*(/?)l = r> \υ(p)\ = l Since L^

is diffeomorphic to a disk for all /?, we can join p to (x(p),υ(p)) by a

path inside Z^, say p(t, p) = (*(/, /?), ϋ(/, /?)), where p(0, /?) = p, p(l, /?) =

(x(ρ),v(p)), (t,p)*+ p(t,p) is continuous, / -> p(/, /?) is C0 0, and /->

jx(/, /?)| is decreasing with ί. Let f = p([0,l] X F) U {(x, ι;); |* | < r, |C71 = 1}.

It follows that f is a topological solid torus such that df=V and the real

foliation # , obtained by intersecting the leaves of Y with f, has one closed leaf

γ = {( c, t;); x = 0, |u| = 1} and all other leaves are transverse to df and have

γ as limit set. By using the foliations & and <& constructed above, it is not

difficult to extend Hj to Γ, in such a way that Hj sends leaves of # onto

leaves of # and i //Γ) = T.

Now f divides Z)y X C in two regions, say Bo and B^, where {p = 0 } c 5 0

and { v = oo} c B^. The idea for extending Hj to 5 0 , for example, is to prove

the existence of real vector fields X° and Y° with the following properties:

(a) X° and Y° are tangent to & and 9 respectively.

(b) The ω-limit set of any orbit of X° in Bo is the singularity {x = 0, u = 0}

and the ω-limit set of any orbit of 7° in Bo is {x = 0, υ = 0}.

Let us suppose for a moment the existence of such X° and 7°. Let X,0 and

Yt° be the flows of X° and 7 ° respectively. Given p e £ 0 - {(0,0)}, there

exists a unique ί(/?) < 0 such that p' = X%p)(p) e 3^ 0 . Define #,(/?) =

^-/ ( ^)(^ / ) It is not difficult to see that Hy. Bo - {(0,0)} -> Bo - {(0,0)} is a

homeomoφhism which sends leaves of !F onto leaves of 9. Moreover, since

l i m ^ _ φ Q ) t ( p ) = — oo, it follows that

and hence /^ extends to Bo.

The construction of X° is immediate: take X°(x, u) = λ l ( x , w) =

(λx, λαyw), where Re(λ) < 0 and Re(λαy) < 0. This is possible because a} £ R

(X is of Poincare type). The difficulty for constructing 7° is that dB0 has a

part which is only continuous, namely dB0 Π U. This difficulty can be bypassed

by constructing a real vector field 7 1 on B0Cλ U satisfying the following

properties:

(i) 7 1 is tangent to the leaves of 9.
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(ii) Yι is transverse to dB0 Π U and points to the interior of Bo.

(iii) The orbit of Yι through a point p e dB0 Π U leaves U in a finite time.

(iv) Y1 = ~XY in a neighborhood of 8£/, where Re(λ) < 0 and Re(λάy) < 0.

Clearly 7 1 can be extended to a vector field Y° which satisfies (a) and (b).

We leave to the reader the work of constructing Y1. As a suggestion we observe

that:

(A) Each leaf Lp of 9/U intersects dB0 in a piecewise C°° curve, with two

vertices and three C00 segments, namely: Lp Π (dDj X C) Π Bo, the curve

ί ^ p{t,p\ and L^ Π {(x,ι;); M = 1, |x| < r } .

(B) 92?O = dB0 in a neighborhood of 317 and so the real vector field λY is

transverse to dB0 in a neighborhood of dU.

(C) U is a tubular neighborhood of F, with fibers Lp, p e F.
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