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PERIODIC 4-MANIFOLDS

CLIFFORD HENRY TAUBES

1. Introduction

S. K. Donaldson's theorem on the nonexistence of certain closed, smooth

4-manifolds [8] (and see [12]) has the surprising corollary that there exists an

exotic smooth structure on R4. This corollary was deduced by M. Freedman

using his machine [13] for analyzing topological 4-manifolds. The existence

proof for this exotic structure is presented in [15], [12].

Subsequently, R. Gompf proved [15] that $ = (oriented diffeomorphism

classes of smooth manifolds which are homeomorphic to R4} has at least four

elements. Freedman and L. Taylor [14] have produced a fifth element, and,

recently, Gompf has shown that 2% contains a countable, doubly indexed

family {Rw,w}^,w = 0

 o f "exotic" R4 's [16], where, R o o is R4 with its standard

smooth structure.

The primary purpose of this paper is to prove the following theorem.

Theorem 1.1. There exists an uncountable family of diffeomorphism classes of

oriented 4-manifolds which are homeomorphic to R4.

The proof of the preceding theorem is a two part argument; the first part is

basically topological in content, and the second part is basically analytical. The

topological aspects of the proof were provided to the author by R. Gompf (see

Gompf relayed to the author (after an observation of R. Kirby) that

Freedman's original existence proof realized an exotic R4, R, as follows. In

[13], Freedman constructs a closed, oriented topological 4-manifold, | £ 8 Θ 2s8|,

which is simply connected; and whose homology intersection form is the

definite, nondiagonalizable (over Z) unimodular symmetric form £ 8 θ E%.

Donaldson [8] asserts that | £ g θ Es\ is not smoothable, but Freedman's

surgery techniques show that F Ξ | £ 8 + ES\ \ pt. is smoothable. Now, accord-

ing to Freedman there exists R c l , compact sets K c V and Kλ c R, and a
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proper diffeomorphism

(1.1) φ:V\K^R\Kλ.

Let ψ: R -> R4 be a homeomorphism. For each r > 0, the open balls

Br = { x G R 4 : |JC| < r} are embedded topologically in R by ψ. Let

(1.2) Rr = r\Br).

Each R r c R is homeomorphic to R4. Each Rr also inherits a differentiable

structure from the inclusion Rr -> R. When speaking of R r as a smooth

manifold, it is with reference to this inherited smooth structure.

Since \ES Θ Es\ is not smoothable, there exists some r0 < oo such that for

all r > r0, the smooth manifold R r is «#/ diffeomorphic to R4. (This was

Freedman's original observation. The number r0 is determined by the condi-

tion Kλ c R ) It is natural to ask whether, for a pair r, s > r0, one could have

Rr and R 5 diffeomoφhic.

It was observed by Freedman that if there is a diffeomorphic pair R r, Rs for

r,s > r0 and r < s, then there would exist a smoothing on V which has a

differentially periodic end. Indeed, let χ : R r -> R5 be a diffeomorphism. Let

5 r

3 (S^3) be the topologically embedded boundary 3-spheres of Rr (Rs) in

Rs + ι. That is, 9R r = Sr

3. And similarly for R5. Then χ maps some open collar

Nr c R r of SΓ

3 (take Nr = \p~ι(Br\Br_ε)) diffeomoφhically onto an open

c o l l a r ^ c RsoίSs\

Let W= Rs\(Rr\Nr) = ^~\Bs\Br_B). W is an open submanifold of Rs

which is homeomorphic S3 X (r - ε, s). An exotic R4 with a periodic end is

(1.3) R = RSUNWUNWUN ••-,

where R 5 U N W is obtained from the disjoint union of Rs and W by

identifying 7V5 c Rs with Nra W using the diffeomorphism χ:Nr-+ Ns. The

iteration of this identification, gives the smooth manifold R.

Using the map φ in (1.1), one obtains from R a smoothing on V which is

periodic at infinity; that is, there exist compact sets K c V and ^ c R and a

proper diffeomoφhism

(1.4) φ:V^>R\Kι.

If no such asymptotically periodic smoothing of V (as in (1.4)) exists, then

necessarily each Rr (r > r0) defines a distinct diffeomoφhism class of 4-

manifolds homeomoφhism to R4. Freedman had suggested that one might

prove Theorem 1.1 by using gauge theory, a la Donaldson [9], to prove that V

has no end-periodic smoothings. Gompf asked that author whether such a

generalization of Donaldson's arguments was possible. The answer is provided
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in Theorem 1.4 below, which asserts that certain smooth, end-periodic 4-

manifolds do not exist.

Before stating Theorem 1.4, certain preliminary definitions are required to

set the stage; in particular, a working definition of end-periodic is needed.

Loosely speaking, the end of an end-periodic 4-manifold is constructed from a

fundamental segment W by gluing copies of W together end to end. (Were the

diffeomorphism in (1.4) to exist, then W in that case would be smooth, and

homeomorphic to (0,1) X S3.)

Definition 1.2. A smooth, oriented 4-manifold M is end-periodic if the

following data exists:

(1) A smooth, connected, oriented and open 4-manifold W with two ends,

N+ and N_. W is called the fundamental segment. Thus, there exists a

compact set C c W such that W\ C is the disjoint union of two nonempty,

connected, open sets, N+ and N_.

(2) Suppose that there is a compact set C + c N+ such that N+\C+ has two

connected components, N++ and N+_. Assume that C+ is such that W\C+

is the disjoint union of iV_U C U ]V+_ and N++. Similarly, assume that a

compact set C _ c JV_ exists such that N_\C is the disjoint union of two

connected components, TV and N _ + , and that W\ C_ is the disjoint union

of TV and N_ + U C U N+. Assume that there is a diffeomorphism i:N+->

N_ which is orientation preserving and which takes N++ to N_+ and N+_ to

N__.

(3) An open set K c M, with one end, N. Suppose that a compact set

Co c TV exists such that N\ Co is the disjoint union of two open sets, 7V0_ and

No+. Assume that K\C has two components, (K\N)U No_ and No+.

Require that there exists a diffeomorphism i_:N -* N_ which takes 7V0_ to

7V__ and N o + to N_+. Require that /_ preserve orientation.

(4) An orientation preserving diffeomorphism φ:M -> K U N WΛJ N W

U N . Here, K U N W is obtained from the disjoint union of K and W by

identifying N c K with Λf_c W via /_. Also, W U N W is obtained from the

disjoint union of two copies of W,Wι U W2, by identifying N+a Wx with

7V._c Wx via / (see Figure 1). Identify End M = Wo U N Wλ U N .

) )

FIGURE 1
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In order to define reasonable (for the present purposes) gauge theories on

such end-periodic manifolds, it is necessary to restrict the allowable fundamen-

tal segments W.

Definition 1.3. An end-periodic 4-manifold M is admissible if the funda-

mental segment W has the following properties:

(1) πx(W) does not represent nontrivially in SU(2).

(2) Hλ(N; R) = 0 and H2(N; R) = 0.

(3) Let Y be the compact, oriented 4-manifold which is obtained from W by

identifying N+ with N_ via / (see Figure 2). Require that the intersection

pairing on H2(Y; R) be positive definite.

= Y

FIGURE 2

If M is an end-periodic 4-manifold such that H2(N\ R) = 0, then the

intersection pairings on H2(K,R) and H2(M\R) are nondegenerate. If also

Hλ(M; Z) = 0, then both H2(K\ Z) and H2(M; Z) are torsion free (see Lemma

5.7). Concerning the intersection pairings, one has

Theorem 1.4. Let M be a smooth, end-periodic and admissible 4-manifold.

Suppose that πx(M) has only the trivial representation into SU(2). If H2(K; Z)

has positive definite, unimodular intersection pairing, then this pairing is

diagonalizable over Z. If the intersection pairing on H2(K; Z) is only known to

be positive definite, then the intersection pairing on H2(M\ Z) is unimodular and

diagonalizable over Z in the following sense: There is a sequence of free abelian

groups Λ. j c Λ o c Aλ c c H2(M; Z) with lim _ An = H2(M; Z) such

that (1) Λ_x ® R = H2(K; R) and (2) the intersection pairing on An is

unimodular and diagonalizable.

Theorem 1.4, as argued, implies Theorem 1.1. Additional corollaries to

Theorem 1.4 have been pointed out to the author. The proofs below are due to

R. Gompf.

Proposition 1.5 (R. Gompf [16]). There exists a family {RSJ:s, t e (0, oo)} of

distinct elements in 3# (exotic R4's). Rs t embeds in Rs>j> if and only if s < s'

and t ^ t'. If s > s' or if t > tf, there is a compact set in Rs t which does not

embed in Rs>y. No two elements of {RSJ} have diffeomorphic ends.

Proposition 1.6 (M. Freedman). Let M be a closed, definite, TOP 4-manifold

with nonstandard intersection form and with πλ = 1 (e.g., Es, E%#ES). Then M

has no simplicial triangulation.
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This result provides examples of manifolds with no simplicial triangulation.

No examples of such manifolds of dimension Φ 4 have been found. A. Casson

[6] has independently proved that any closed TOP 4-manifold with nontrivial

Kirby-Siebenmann invariant has no simplicial triangulation.

Proof. If M were triangulated, it would be PL except at a finite number of

vertices. Coalesce these to a single point p (whose link is fake S3). Now M\p

is PL, hence smoothable; and its end is smoothly (fake S3)X R, which is

periodic and contradicts Theorem 1.4.

Proposition 1.7 (S. Akbulut). Let Σ be a homology 3-sphere which bounds a

smooth A-manifold with nonstandard, definite intersection form and with πγ = 1

{e.g., the Poincare homology 3-sphere). Then Σ # - Σ does not bound a contract-

ible 4-manifold', or a definite A-manifold with ττι — 1.

Proposition 1.8 (R. Gompf). Let Σ be as in the previous proposition. Then

Σ does not embed in any manifold homeomorphic to S3 X S ^ C P 2 representing

a generator of H3.

Proof. If it did, take 1/2 the universal cover and cap off to contradict

Theorem 1.4.

Given as facts the technical results of §§3-10, the proof of Theorem 1.4

follows the argument of Donaldson in [9]. With extra restrictions on K, the

argument of Fintushel-Stern in [11] carries over to the end-periodic category

too. The Fintushel-Stern argument is given in §2. The full proof of Theorem

1.4 is given in §11. The technology that is developed in §§3-10 will, presum-

ably, allow arguments on compact M to generally transplant to admissible,

end-periodic manifolds.

On a different vein, the end-periodic technology—and especially the com-

pactness results in §10—suggests an interesting interaction between the homo-

topy type of the segment W and the topology of K. For example, Freedman

constructs a simply connected oriented top 4-manifold whose intersection form

is the unimodular matrix Es. By Quinn [25], |2s 8 |\pt. has a smoothing.

Rohlin's theorem prevents a smooth product, S3 X (0, oo), from occurring as

the end of Es \ pt. (A. Casson [6] proves that no smooth homotopy sphere X

(0, oo) can appear). Theorem 1.4 rules out periodic ends with segments

homeomorphic to S3 X (0,1). It is known [13] that there exists a smooth,

simply connected 4-manifold with intersection matrix E% with a product end,

Σ X (0, oo), where Σ = Poincare homology sphere. Since πλ(Σ) has two repre-

sentations in SU(2)/Ad SU(2), Theorem 1.4 is not violated. Here, one sees the

representations of 7τx(Σ) intimately tied to the properties of the quadratic form

Es. This suggests a nonlinear version of the index theorems of Atiyah-Singer-

Patodi [5]. It should also be intimately related to Casson's recent work in [6].
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Before turning to §2, the author gratefully thanks R. Gompf and M. H.

Freedman for their advice and suggestions concerning the material in this

article.

2. The proof of Theorem 1.1

Suppose that V = ( £ 8 # £ 8 ) \ p t . has an end-periodic smoothing, that is,

End V is homeomorphic to S3 X (0, oo) and diffeomorphic to an exotic,

periodic smoothing of S3 X (0, oo). As in [11], one can find a class e e H2(V\ Z)

with e - e = 2. As explained in §9, the class e determines an end-periodic (see

§7) principal SΌ(3)-bundle, P -> V. This bundle has a reducible self-dual

connection with square integrable curvature form (Proposition 9.1). In fact,

there is a moduli space, M, of orbits under Aut P of self-dual connections on

P with the following properties: M is a manifold except at the orbit of this

reducible connection (Proposition 8.2); the dimension of M is 1. Also, M has

one endpoint, the orbit of the reducible connection (Propositions 8.2 and 9.3).

Finally, M is compact (Proposition 10.1). Thus, M is a compact 1-dimensional

manifold with one endpoint.

A bit of experimentation with a length of string will convincingly demon-

strate that no such M exists. Hence, E%#ES \ pt. has no end-periodic smooth-

ing. As argued, this implies Theorem 1.1.

Theorem 1.4 is proved in §11. The remainder of this paper contains the

machinery that the proofs require. The strategy is to translate the formalism in

[14], [9], [12], [11] from compact manifolds to end-periodic manifolds. Given a

convenient Fredholm theory for the anti-self-dual DeRham complex (and its

twisted counterparts),

(2.1) 0 -> C?(M) -i C^(T*M)P-^C°°(P_A 2 T*M) -> 0,

the formalism translates relatively easily. Here, Q°( ) are functions/sections

with compact support. Also, P_= ^(1 - *), with * = the Hodge dual of an

end-periodic metric on TM (see §3). §§3-4 are concerned with Fredholm

theory for elliptic complexes on end-periodic manifolds. Because the expense is

not too high, §§3-4 consider the theory for a quite general class of such

complexes on manifolds of dimension > 2. The analysis here is modeled

closely on the work of Lockhart and McOwen and their analysis of operators

on manifolds with product ends [21]. However, there is a crucial difference in

the two problems. The situation for end-periodic complexes is summarized in

Theorem 3.1.
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In §5, the specific case of the anti-self-dual DeRham complex is considered.

The result in §5 is a computation of the Betti-numbers of this complex in terms

of the homology of the compact piece, K c M. Here, one should compare [5]

and [21].

§6 is a digression concerning the complex in (2.1) with P _ defined by a

metric which is not strictly end-periodic, but only asymptotically so. The set of

strictly end-periodic metrics is too specialized; for these metrics, the moduli

space is not guaranteed to be manifold away from the reducible orbits.

In §§7-11, gauge theories on end-periodic 4-manifolds are discussed. §7

defines a useful Banach manifold of connections on an end-periodic principal

bundle. The appropriate Banach Lie group of gauge transformations is defined

in §7, and the orbit space is shown to be a smooth Banach manifold. Here the

Fredholm theory of §§3-6 allows a more or less direct translation of the

arguments in [24], [2], [12].

§8 proves that for a generic metric (defined in §6), the self-dual moduli

spaces are smooth manifolds away from the reducible orbits. The neighbor-

hoods of the reducible orbits are also described. Here, again, the Fredholm

theory in §§3-6 allows a direct translation from [8], [12].

In §9, the moduli spaces are shown to be nonempty. The arguments from

[11] (Proposition 9.1) and [28], [30] (Proposition 9.2) are modified to the

end-periodic case.

In §10, the boundary of the moduli space is described. Here, the argument

diverges significantly from the compact case (cf. [8], [12]). In particular, the

topology of the segments which make up End M now plays a crucial role. The

flat connections on these segments determine the structure of the end of the

moduli space.

§11 contains the complete proof of Theorem 1.4. Here, the new argument of

Donaldson in [9] is adapted to the end-periodic situation.

3. End-periodic differential operators

Suppose that M is an end-periodic ^-manifold as given by Definition 1.2.

To understand Fredholm theory on such M, it is convenient to introduce the

furled up manifold,

(3.1) Y = W/~ ,

where ~ identifies N+ with N_ via /. The manifold Y is compact, oriented

with Z-fold cover

(3.2) Ϋ= " UNW_1UNW0UNWι-",
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with projection m: Ϋ -> Y. Here, each Wj is a copy of the fundamental domain

W. End-periodicity identifies M\(K\N) with

(3.3) E n d M - W0UNWιUNW2UN ••-,

as a subset of 7. The deck transformations of Ϋ act on End M as a faithful

representation of the semigroup Z + - {0,1,2, } generated by

(3.4) T:Wj=Wj+1.

A vector bundle, E -» M, will be called end-periodic if Γ lifts to a bundle map

(3-5) T:E\Wj^E\W]+ι.

Alternately, E is end-periodic if

(3-6) E\zndM = π*Eγ,

where π: End M -> Y is the projection and Eγ-* Y is a vector bundle.

In general, a geometric object on M will be called end-periodic if it

transforms naturally under T of (3.4). This is equivalent to saying that it is the

pull-back via IT of an object on Y. Both definitions are, at times, convenient.

For example, let E, F be end-periodic vector bundles over M. A differential

operator 3 : Co°°(£) -> C0°°(F) is end-periodic if

(3.7) dfs = tds

for all s e C°°(E\EnάM). Equivalently, 3 is end-periodic if, under the isomor-

phisms E\EndM = π*Eγ and F\EndM = ττ*Fy, one has 3 | E n d M = τr*3 y, where

3 y : C°°(£ y ) -> C°°(Fy) is a differential operator over 7.

Let {EJ}JL0 be a set of end-periodic vector bundles over M. Let

{dJ+1:C^(Ej) -> C 0

0 0 (£ / + 1 )} j ίo 1 ) be a set of degree > 0, end-periodic dif-

ferential operators. This data defines an end-periodic, elliptic differential

complex over M,

(3.8) { £ , 8 } = 0 ^ C « f ( £ 0 ) - ••• ̂  <:„"(£„)-»0,

if the corresponding symbol sequence is exact, and if 37 + 19y = 0.

For such an end-periodic, elliptic, differential complex, the question arises:

To what Banach space completions of {C™(Ej)} does {E,d} extend as a

Fredholm complex? Here one is looking for Banach space completions, L(j),

of C^(Ej) for j G. ( 0 , 1 , . . . , N} such that dJ+ι extends to a bounded operator

with closed range from L(j) -> L(j + 1). In addition, one requires that for

G {0,, , N } the induced map

9J+ι:L(j)/hndj-+L(j+l)

has finite dimensional kernel. Here, set L(N + 1) = L(-\) = 0, 30 = 0, and
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Lockhart and McOwen [21] answer the preceding question for a 2-step

elliptic complex,

over an /?-manifold whose end has the product structure: (n - l)-manifold X

(0, oc). Their work will be seen here to generalize.

To begin the analysis, fix a Riemannian metric on TM which is end-

periodic (over End M, require that the metric be pulled back via π from 7) . If

E -» M is an end-periodic vector bundle, give E a fiber metric which is also

end-periodic. All norms, inner products, and integrals will be computed using

these end-periodic metrics, unless specified otherwise. Inner products will be

denoted by ( , ).

To measure distances on End M, one requires functions τ: End M -> (0, oo)

and p : Ϋ -> Λ. They are defined as follows: Choose any smooth t: W -> [0,1]

such that t\N_= 0 and t\N+= 1. (Thus, dt descends to Y as a smooth 1-form.)

Define p on Ϋ by setting ρ(x) = n + t(x) if x e Wn. Extend to M by

bumping p to zero in N and extending by zero to the rest of K. Call the

result T.

Decay restrictions on sections of an end-periodic bundle E -> M are best

enforced using weights. As done in [21], for 1 < p < oo, and for δ e R, define

the weighted space Lξ{E) as the Banach space completion of C™(E) in the

norm

Γ , ι/p

(3.9) ||5||α= / Jvol(^l') .

To define weighted Sobolev spaces which control the derivatives of sections

of £ , one must choose a connection on E which is periodic on End^. If E is

associated to the frame bundle of M (i.e. TM, T*M, the bundles of /?-forms,

ApT*M, and the bundles of (p,q)-tensors, ® TM®qT*M\ by fiat, the

Christoffel-Levi-Civita connection from the metric will be used. For some

other vector bundle E -> M, a connection Λ is end-periodic if, under the

isomorphism E\EnάM = π*Eγ, it is identified with the pull-back π*AY of a

connection on £ y . Thus, the covariant derivative of an end-periodic connec-

tion commutes with T of (3.5). If E and F are end-periodic vector bundles

over M with the end-periodic metrics and connections, then E ® F, E θ F

will always be given the obvious product periodic structures (unless specified

to the contrary).
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For 1 </? < o o , 0 < y < oo, and δ e R , define the weighted Sobolev space
Lfs(E) to be the completion of C^(E) in the norm

(3.10) | | j | | L / β

where V(/c) = VV V, fc-times, and V : Co°°(£ ®q Γ*M) -> C?(E ®q+ι

Γ*M) is the covariant derivative from the end-periodic connections on E and
T*M.

Let {Ej }^=O be a set of end-periodic vector bundles over M, and let {£, 3}
be an elliptic differential complex, which is end-periodic. This extends to a
sequence of bounded linear operators,

(3.11) 0 - Lrs(E0) - L r J E , ) - - LξΛ{EN) -> 0,

where m- = degree 3y and q = Σ^= 1my. Here, /: ^ 0.
To understand the conditions under which (3.11) is a Fredholm complex, it

is necessary to consider the equivalent sequence over the compact space Y.
Since {Ej = π*Ejγ} and (3^ = π*djγ} over EndM, one has the following
elliptic complex on Y:

(3.12) {EY,dγ} = 0 - C">(EOtY)*Z - y C ° ° ( ^ y ) - 0.

For each j e {1, , ΛΓ} let

(3.13) 8 / y : C » ( £ y + l i y ) ^ C « ( £ 7 , y )

denote the formal ZΛadjoint. Since y is compact, the cohomology of {Eγ, 3y}
is finite dimensional; that is, for each y e {1, , JV}, one has the isomor-
phism

(3.14) i/^(£ y ,3 y ) = { ψ G C*(£,. i y):3y + l ίyψ = 0 and 3,*yψ - θ}

of finite-dimensional vector spaces. The index of this complex, Indlϋ^, 3y}, is
the number

N

(3.15) Ind{£y,3y}= Σ (-l)JdimHJ(Eγ,dγ).
7 = 1

The Atiyah-Singer index theorem computes Ind{£y, 3y} from the topology of
7 [8].

A necessary condition for (3.11) to define a Fredholm complex is the
vanishing of Ind{3y}. There is a second condition which involves an action of
^ D R ( ^ ) (the first DeRham cohomology of Y) on the complex {Eγ, 3y}.
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Observe that the function p on 7 does not descend to Y. However, its

exterior derivative, dp, is the pull-back from 7 of a closed one-form, γ e

C°°(T*Y). The DeRham cohomology class, [γ] (Φ 0) e H^R(Y) generates the

kernel of TΓ* :H^R(Y) -> H^R(Ϋ). The one-form γ induces a sequence of

differential operators {σy + 1 ( γ ) : C°°(EjY) -* C ^ ( £ y + 1 y ) } ^ 1 via the formula

(3.16) oJ+1(y)s = lim \(e-»[dJ+ι%γ,e"]s)9

with p of (3.8) considered as a multivalued "function" on Y. This σ/ + 1 (γ) is a

differential operator with C 0 0 coefficients of order one less than that of 3y+i,y

(If order dJ+ι γ = 1, then σ 7 + 1(γ) is, pointwise, the symbol of dj+^y evaluated

on the 1-form γ—thus giving a section of Hom(£^ y ; EJ+ιγ).

If s e ker3y + 1 y , then

(3.17) °j+i(y)s = *j+ιAPs)>

which shows that σy + 1 ( γ ) : ker dJY -> ker 3 y + 1 y . Also, if s = 37,y/, then

which shows that σ y + 1 (γ) : Im37 y - ^ Imβy.^^y. Then, in the usual way, σJ+ι

induces a map on the cohomology H*{Eγ, 3 y ) :

(3.18) σJ+ι[y]:HJ(EY,dγ) - HJ+1(EY,dγ).

(3.17) shows that the maps [oJ+1[y]}^J0

l depend only on the cohomology class

[y] e Hι

DR.

If each operator 3y has degree 1, then σy + 1 (γ)σ 7 (γ) = 0, since the symbol

sequence for the complex in (3.12) is exact.

Theorem 3.1. Let 3 = {3y.+1: C?(Ej) -• ̂ ( ^ ^ O l j l o ^ on end-periodic,

elliptic differential complex over an end-periodic n-manifold, M. Suppose that the

associated complex {dJ + lY:C°°(EjY) -+ C°°(Ej+ιγ)} has index = 0 and is

such that for each] e {0, , N}, the induced map

is injectiυe. Then there is a discrete set D G R without accumulation points such

that for all p e [2, oo), m > q, and δ e R\D, the complex in (3.11) is

Fredholm.

Theorem 3.1 follows from Proposition 4.1 and 4.2 of the next section.

For gauge theories, the omnipresent elliptic complex is the anti-self-dual part

of the DeRham complex:

(3.19) 0 -> Co°°(M) ^ C0°°(Γ*M) ^ <T(P_Λ 2 Γ*) -> 0.
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Here d = exterior derivative, and P_:A2T*^>A2T* is the anti-self-dual
projection from the metric; P_ = %(1 - *), where * = metric Hodge "star."
The associated complex on 7 has cohomology

(3.20) d i m / / ° = l , dim//1 = bx(Y)9 dim//2 = ^ ( 7 ) .

Here bλ = first Betti-number, and b2 = \ (second Betti-number minus signa-
ture (Y)).

Lemma 3.2. For the anti-self-dual DeRham complex over 7, the conditions of
Theorem 3.1 are equivalent to the assertion that the Euler-characteristic of
Y = signature of Y and that the map [γ] U :Hι

DR(Y) -> HlR{Y) has 1-
dimensionalkernel {— λ[γ], λ G R).

Proof of Lemma 3.2. The index of the anti-self-dual DeRham complex on
Y is

1 - bx{Y) + b2'(Y) = -\ (Euler-characteristic(y)-signature(y)).

Theorem 3.1 demands that this number vanish. The map σ^γ) sends / G
C°°(Y) to γ/ in C°°(T*Y). Since [γ] Φ 0 in / / D R ( 7 ) , the map σ^γ) is
automatically injective. For w G C00(71*7), one has σ2(γ)w = P_(γ Λ w).
Suppose that dw = 0 and that [P_(γΛw)] = 0 e P_H^R(Y). Then
P_(γ Λ w) = P_da for some α G C°°(T*Y) which means that γ Λ w = ώ .
That is, [γ] U [w] = 0 G / / ^ R ( ^ ) - Conversely, if [γ] U [w] = 0, then γ Λ w =
Jα and /)_(γ Λ w) = P__da.

4. Fredholm theory

The study of end-periodic operators on M requires, eventually, the study of
periodic operators on Ϋ. This is an excision property of elliptic complexes.
Periodic operators on Ϋ are obtained as follows: Let {EjY}?=0 be vector
bundles over Y and let {3y+1 y : Cco(Eι γ) -* C°°(£/ + 1 y)} define a periodic,
elliptic complex over Y. The pull-backs {Ej = π*EiY} and (3 / + 1 =
π*9 / + 1 γ: C™(Ej) -> C0

00(£'/+1)} define a periodic elliptic complex over Ϋ.
With the time function p, on 7, define the weighted Sobolev spaces

{Ljf^ί^ )} for /? > 2, A: > 0, and δ £ R . Each 3 / + 1 extends to a bounded
operator from L ^ ( £ f ) to /> ί_W / + 1,δ(^ / + 1) if A: ̂  m/ + 1 = degree(3/ + 1)

 τ h e
relevance of this structure on 7 is tied to

Proposition 4.1. L̂ / Af te an end-periodic manifold, let {£,} be end-
periodic vector bundles over M, and let {3/+1: Co°(£, ) -* Co°(£/+1)} &/ι/ie α«
end-periodic elliptic complex over M. For a given 8 E R , ί/ze complex in (3.11) w
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Fredholm if and only if the following complex over Ϋ is Fredholm:

(4.1) 0 - Lξ+q,s(E0) ^ - Lζj{EN) - 0.

Proposition 4.1 is an excision assertion which extends to end-periodic

manifolds an equivalent assertion for manifolds with product ends in [21, §4].

The proof here translates with little modification from [21]. The details are

straightforward, tedious, and omitted.

As the operators in (4.1) are periodic, the study of (4.1) reduces to studying

structure on the compact manifold Y. The result is Proposition 4.2, below.

Together, Propositions 4.2 and 4.3 yield Theorem 3.1.

Proposition 4.2. Assume that the conditions of Theorem 3.1 are met for the

elliptic complex in (3.12) over Y. Then there exists a discrete set D c R with no

accumulation points such that the complex in (4.1) is Fredholm for all δ ̂  R \ D.

In studying translation invariant operators on a cylinder, (n - l)-manifold

X R [21], use the Fourier-Laplace transform. In the situation here, only the

discrete group Z acts. To exploit this action, one should use the Fourier-Laplace

series. Proposition 4.2 is proved using this tool. The remainder of this section

contains the arguments.

Proof of Proposition 4.2. Let E -> Ϋ be a periodic vector bundle. For

ψ e Co°°(£) and Z G C * , define the "Fourier-Laplace transform" of ψ by

(4.2) ψz( )= Σ z"{f^)( ),

where, f:E->E covers the deck transformation T: Ϋ -> Ϋ (see (3.4), (3.5)).

For fixed z e C, ψ obeys the periodicity condition

(4.3) (f^)(.) = z-^(.).

By restriction to WQ, ψz defines a smooth section over Y = Ϋ/Z of the

vector bundle

£y(z)=[£βRC/Z],

w h e r e Z a c t s o n E c v i a t h e a c t i o n s e n d i n g l e Z a n d ( / ? , λ ) G £ ' Θ R C t o

(fp,zλ).
One may think of the collection

(4.4) Eγ= { £ y ( z ) : z ^ C * }

as defining a smooth vector bundle over Y X C*.

The Fourier-Laplace inversion formula is as follows: Let ή be any section of

Eγ over Y X C*, holomorphic in C*. Then, if s e (0, oo), the formula

(4.5) (h)W-2/ -H*M))
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for x e Wo, and π(x) e Ydefines a section of E over 7. By Cauchy's integral

formula, the left-hand side of (4.5) is independent of s. Cauchy's formula

implies that (4.2) and (4.5) are inverses of each other.

If E, F are periodic vector bundles over f, and if 3 : Co°°(£) -> C0°°(F) is a

periodic differential operator, then 3 commutes with a Fourier-Laplace trans-

form in the sense that (4.2) extends the differential operator 3 y : C°°(EY) ->

C°°(FY) to 3 y : C°°(£ y(z)) -> C°°(Fy(z)) via the formula

(4.6) 3 y ψ z = ( 3 ψ ) z .

For each z e C*, the bundle Eγ(z) -> Y is isomorphic to Eγ(z) = E{\).

Indeed, if ψ, is a section over Y of EY(z), then z'ψ, is a complex-valued

section over F of Eγ. Here ί: Wo -> [0,1] is the time function of §3. (Fix a

branch of In z to define zt = eύnz.)

Via the preceding isomorphism, the family of operators {3 y :C°°(£ y (z)) ->

( ^ ( ^ ( z ) ) } is mapped into the holomorphic family

(4.7) {dY(z) = dY + z'[dY,z-']:C»(Eγ 9C)-> C"(Fγ;C)}.

It is convenient to use both descriptions of this holomorphic family of

operators.

The fundamental lemma to relate the analysis on Y to that on Ϋ is

Lemma 4.3. For p e [2, oo), k > 0, and δ G. R*, let (4.1) define a periodic

elliptic complex over Y. Equation (4.1) defines a Fredholm complex if and only if

for all z e C* with \z\ = eδ^2, the cohomology vanishes for the complex

{3/ + 1 , y (z) :C°°(£ 7 , y ) - C™(EJ + hY)}»So

ι over Y

Lemma 4.3 has reduced the proof of Proposition 4.2 to the study of the

complex F(z) = {dJ + lY(z):Ccc(EJY) -> C°°(Ej+hY)} for all z e C = {ω e

C * : | ω | = 5 = e δ / 2 } .

Since 3/ + L y ( z ) - 9/_hl y is a compact operator for all j , the index of the

complex F(z) and that of F(l) agree. Thus, for the cohomology of F(z) to

vanish, the index of F(z) = index(F(l)) = 0. This is the first condition asserted

by Theorem 3.1—it is a necessary condition.

To understand the second condition of Theorem 3.1, observe that its

immediate implication is to

Lemma 4.4. Under the conditions of Theorem 3.1, the cohomology of F(z)

vanishes for all z in an annulus, Aε = {ω e C* :0 < \ω - 1| < ε] for some

ε > 0.

Lemma 4.4 asserts that the conditions of Theorem 3.1 imply that the

cohomology of F(z) vanishes for all z in an open domain in C*. The fact that

each 3y y ( z ) depends holomorphically can be used to obtain
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Lemma 4.5. For z in a domain Ω c C, let

0 -> Bo U -.. U £ „ -> 0

Z?e <3 Fredholm complex, where, for j e ( 1 , . . . , iV}, 3y(z) w α bounded, linear

operator from the Hilbert space Bj_x to the Hubert space B-. Assume that

3/ + 1 (z)3 / (z) = 0 for all j and z e Ω. Also, assume that each 3y(z) depends

holomorphically on z e Ω, and that for all z,zr e Ω, 3y(z) — 9/(z/) is a compact

operator. If the cohomology of {B,3(z)} vanishes at z = zo^Ω, then it

vanishes for all z e Ω \ D, where D is a discrete set with no accumulation points

in Int Ω.

Together, Lemmas 4.3-4.5 imply Proposition 4.2 as follows: By Lemma 4.3,

one need only study the cohomology of a C* 's worth of elliptic complexes over

the compact manifold 7; precisely, for z e C*,

/ _ χ 9i,y(^) dNY(z)

From Lemmas 4.4 and 4.5 there exists a discrete set D ̂  R* with no

accumulation points such that for all δ e # \ Z), the cohomology of the above

vanishes for all z e C* such that |z| = e8/2.

Proof of Lemma 4.3. If the cohomology H*(Eγ, 3 r(z)) vanishes, then for

each y e {0, , t f - 1},

( 4 8) dj+lΎ(z):L.p(Ej

is an isomoφhism. Let

(4.9) Rj+iAz.

be the inverse to dj+ιγ(z) in (4.8). By assumption, Rj+ιγ(z) is a bounded

operator, defined for all z e C = (co e C* : |ω| = ̂ δ / 2 } .

For fixed ψ e ker3 y + 2 c CQ>(EJ+1) and for z e C,

(4.10) Λ.+ 1(z)(z'ψ z) e L!*(EJ γ)/lmdj Y(z).

Let fez(ψ) e C°°(Ej Y) be a section which projects to Λy + 1 y(z)(z?ψz). There is

no obstruction to requiring that {bz(ψ):z e C} defines a continuous section

of EJY over 7 X C. The lift 2>z(ψ) is unique up to

with η(z) a continuous section of Ej_ιγ over 7 X C which is C00 in 7.

Let b(\p) e C°°(έ ) be defined by the Fourier-Laplace inversion formula

(4.12) (f"MΨ))(*) = ̂ -/cf;
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Notice that

The ambiguity in the lift ((4.11)) means that b(ψ) is unique up to

b(ψ) + θyTj, where η is obtained from z~*djtY(z)η(z) by Fourier-Laplace

inversion as in (4.12). As in [21], [19], [22], (4.12) extends as a bounded

operator,

(4.13) 3/Λ : (ker 3,+2) n Z / s (EJ+ι) - Z / 5 ( £ , ) / I m 3 7 ,

which inverts 37 + 1. The existence of the inverses implies that the complex in

(4.1) is Fredholm.

Conversely, suppose that for some z G C, HJ(Eγ(z),dγ) Φ 0. Let ψz G

C°°(£y(z)) represent a nonzero element. Via (4.3), ψ2 defines an element

ψ7 G C°°(£ ; ). For each 9 G (1,2, }, define ψ^ G C?(EJ) by

(4.14) tq(x) = βqψz(x)/q1^,

where ^ e C°°(7; [0,1]) obeys

βg(x) = 1 if x e WP for \k\<q,

(4.15) i8^(jc) = 0 if x G WA for |Λ| > ? + 1,

sup I v ^ I < B for all / < 2 (degree 9 y + 1) + k.

Observe that \ψq\LP δ is bounded away from zero, independent of q; but it is

also bounded, independent of q. Also, since

has support in W± ( ( ? + 1 ) only,

(4.16) Hm \\*j+dJL,Λ - 0,

which implies that the complex in (4.1) cannot be Fredholm. Indeed, if so, then

for each q, there exists bq G ker3y + 1 such that

(4-17) lim Uq-bJLPe=Q
q —* oo

(the closed range). Furthermore, {[bq]} converges in Lp

 δ (Ej)/Imfy (finite-

dimensional cohomology). Thus, for a subsequence, there exists b G ker37 + 1

and {ηq} c Lp

δ (Ej_λ) such that

(4.18) I I ψ - b - 3 η J L , - ^ 0 .

Now use (4.2) to observe that

(4.19) lim | ψ 2 - ^α-z-Vz-a ή || = 0.
q-* oo ' J
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But Range 3 y y c L.p(Ej(z)) is closed, so ψ, = 9̂  γρΣ for some p, G

L.p(Ej_ι(z)). This contradicts that ψz is nontrivial in HJ'(E(z),dY).

Proof of Lemma 4.4. Assume to the contrary that a sequence of

points {l + w r t } ^ = 1 c C * exists with \wn\ -> 0 such that for each w,

HJ(EY,dY(l + wj) * 0. Then, for each n, there exists ψn G C°°(£,-y) such

that

(4.20) 3y+1ψM + wπσ + 1 ( γ ) ψ M + w^RJ+1^n = 0,

where, Λ y + 1 M: C°°(£Vy) -* C^f^ +x^) has degree 2 less than degree 3 y + 1 .

Further,

y + ' . r / J n + i

is uniformly bounded when p e [2, oo), / = degree 3 + 1 , and k > 0.

Let 3* : C°°(EJ+1Y) -> C°°(£y^ y ) denote the formal L2-adjoint of 3y. Like-

wise denote σy*(γ) and R*n. Then it is no loss of generality to assume of { ψw}

that

(4.21) 37,y(l + wj ψ, = 3/*ψ/J + wwσ*(γ)ψrt + w^RJ+uJn = 0.

(4.20) and (4.21) imply, via standard arguments, that {ψw} has a subse-

quence which converges in the C°°-topology to some O ^ ψ G HJ(EY,dY).

Relabel this subsequence as {ψrt}. Thus, one must have HJ(EYidY) Φ 0. Let

{ηk} be an L2-orthonormal basis for Hj+ι(EY,dY\ the finite dimensional

vector space in (3.14). Let {φ/} be a similar basis for HJl(EY, 3 y ) . From

(4.20) and (4.21),

<η*,σ,+ 1(γ)ψ>L2 = <rik,oJ+1(y)(φ - ψ j > £ 2 + O ( | W J ) ,

< ψ , σ 7 . ( γ ) φ / > L 2 = < ψ - ψ Λ , σ y ( γ ) φ / > L 2 + O ( | w π | ) .

As the right-hand side above tends to zero as n -> oo, one sees that

ψ e k e r ( σ y + 1 ( γ ) : i ϊ ^ ( £ y , θ y ) - HJ'+1(Eγ,dγ))9

These two facts contradict the conditions of Theorem 3.1. Hence, Lemma 4.4 is

true.

Proof of Lemma 4.5. For each j G {1, , N}9 Bj• = ker dJ+1(z0) Θ

Im3 (z 0 ) . Thus, a partial inverse 3/~
1(zo) : ^/ ~~* ̂ /-i ^χists such that

θ / U H U ) = 1 on(ker8,.(z0))-Lc5y._1,

9 / 1 ( 2 ) l O
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As a function of z G Ω, consider first the operator Qx(z) :Bι-*Bι given by

This operator is bounded, Fredholm, and it depends holomorphically o n z e Ω

(in the sense of Chapter VII of [18]). Because 9(z) is Fredholm, the zero

eigenvalue (if present) has finite multiplicity and it is isolated. Thus, by a

theorem in [18, Supplementary notes to Chapter VII], the resolvent of Qx(z),

/^(λ, z) = (Qι(z) - λ)" 1, has the property that Rλ(O, z) does not exist for

any z e Ω; or else Rλ(O, z) is meromorphic in z G β. Since Rλ(O, z0) = 1,

RX(O, z) is meromorphic in z e Ω. Thus, ker3x(z) Φ 0 only for z e Do

where D o c f i is discrete with no accumulation points in Int Ω. Thus, the

lemma is true for H°({B,d(z)}). Now suppose for k > 0, a discrete set

Dk_ι c Ω without accumulation points in IntΩ exists such that the cohomol-

ogy { HJ({ B,d(z)})}J<k = 0 . The previous argument shows that

Qk = dk(zoy
ldk(z): ( I m θ ^ t z o ) ) " - ( i m θ ^ U ) ) "

is an isomorphism for all z e Ω \ D ' with D ' c β discrete and having no

accumulation points in IntΩ. For z e ί l , consider ψ G ^ with dk{z))ψ = 0.

By assumption, if z e Ώ,\D'k + 1 there exists η ^ Bk_λ such that ψr = ψ +

3 ^ _ 1 ( Z ) Ί ] e (Im9w_1(z0))-L for such z one can solve for η e (Im9^_ 2 (z 0 )) ±

obeying

Thus set Z)̂  = Z)' U Dk_v This set is discrete with no accumulation points in

IntΩ and if z £ D r then //*({£,3(z)}) = 0 . Lemma 4.5 follows by induc-

tion.

5. Index calculations

If M is an end-periodic 4-manifold which is admissible in the sense of

Definition 1.3, then the anti-self-dual DeRham complex

(5.1) 0 -> C0°°(Af) ^ C0°°(Γ*M) -> C0°°(P_ Λ 2 Γ * M ) -• 0

satisfies the conditions of Theorem 3.1 (cf. Lemma 3.2). Thus, for p > 2,

k > 0, and all but a discrete set of δ e Λ, the complex { L p

δ (d, P-d)}:

(5.2) 0 - L£+2ι,(Af) X L£+hS(T*M)P^Ltδ{P_ Λ2Γ*M) - 0

is Fredholm. The latter half of this paper requires information about the

cohomology groups of the complex in (5.2) for δ near zero. These are

computed in the following proposition.
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Proposition 5.1. Let M be an admissible, end-periodic 4-manifold. Then

there exists δ 0 > 0 such that for all δ e (0, δ0), p > 2, and k > 0, the complex

in (5.2) is Fredholm with the following cohomology:

dim//0 = 0, dim//1 = bλ(K), dim//2 = ^"(A'),

where bx(K) = dimHX(K, R) and b^K) = \(dim H2(K, R) - τ(K)). The

number r(K) is the signature of the intersection pairing on H2(K, R).

We remark that the admissibility assumption implies that the intersection

pairing on H2(K, R) is nondegenerate (see Lemma 5.7).

The remainder of this section contains the proof of Proposition 5.1.

Proof of Proposition 5.1. Theorem 3.1 and Lemma 3.2 assert that the

anti-self-dual DeRham complex, { L \ g; (d, P.d)}, is Fredholm for δ e (0, δ0)

with δ 0 > 0. It remains to compute its cohomology. For simplicity, only the

case p = 2 will be considered. The cases p > 2 follow from the p = 2 case

using standard elliptic regularity plus some obvious function space inclusions.

For δ > 0, the constants are not in L\8. Thus, for δ > 0,

ker(d:L2

k + 2,s(M) - L\ + ut(T*M)) = 0 , H°(L2

 y (</, P_d)) = 0.

This is true for δ > 0 (and, obviously, it is false for δ < 0). For δ > 0, one

obtains in addition the useful Sobolev inequalities below:

Lemma 5.2. Let δ > 0 and let f e C^iM) obey

(5.3) I l/H 2 =( e τ V/l 2 <*>
JM

Then f G. R exists such that

(5-4) ί eτS\f-f\2<Z\\f\\\

JM

(5.5) / e™\f-f\Λ <Z\\f\\\

with Z = Z(δ) < oo, independent off. Further, forp e (2, 4),

(5.6) \ ί eΛδτΛ4'p)\f-f\4pAΛ-p)\ P' < z ί eδτ\df\p,
[JM J JM

whenever the right-hand side is finite. Here, Z = Z{p,δ) is independent of f.

Finally, if p > 4, and if

f eδτ\df\p < oo,

then {enδ/p(f(T"('))-f)} e C°°(W0) converges to 0 in the C°-topology.



382 CLIFFORD HENRY TAUBES

This lemma will be proved at the end of §5.

Now consider Hι for the complex (L2

 δ \{d,P_d)). Suppose

w e ker(p_J:L 2

 + M ( Γ * M ) - L2,δ(i>_ Λ 2 Γ*M)).

As 8 > 0, one can use integration by parts (valid for δ = 0, too) to conclude

that

(5.7) 0= ί \P_dw\2 = \( \dw\\

Since dw = 0 and since Hι(W, R) = 0 (due to the admissability of M\ one

can write

with / e C°°(EndM). By fixing a smooth, nonnegative bump function β,

which is 1 on Wo\ N_ and 0 on K\N, one has an almost canonical way of

constructing a closed 1-form r(w) e C™(T*K) from w e keτ(P_d), viz:

(5.9) r(w) = W

which becomes canonical when one uses (5.4): There is a unique f(w)

C°°(End M) which obeys (5.8) plus

(5.10) /

Notice that (5.8)-(5.10) imply that βf(w) G L2

k + 2δ(M). For this reason, the

map r induces an isomorphism

(5.11) r:Hι{L2y,(d,P_d))~HlΏR(K),

where H£ΏR(K) denotes DeRham cohomology on K with compact supports.

As K has only one end, HQΌR(K) -> H^R(K) is injective, and because

H\N; R) = 0, HlΌR(K) = HlR(K). By DeRham's theorem, this is

Hι(K; R) — HY{K\ R) (simplicial cohomology and homology, respectively).

Now, consider the cohomology H2(L2

8;(d, P_d)). A class [w] is repre-

sented by a C0 0 2-form on M, w, which obeys

(5.12) w = _ * w ? e-
τ8d(eτ8w) = 0, ί eτ δ |w|2 = 1.

Lemma 5.3. //M is an admissible, end-periodic 4-manifold, then there exists

δ 0 > 0 such that for all δ e (0, δ0), a 2-form w obeying (5.12) satisfies

< oo.
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Lemma 5.3 will be proved shortly; for now, assume it to be true.
For n = (0,1, }, set Kn = K U N Wo U N U NWn. A homomorphism

(5.13) rn : H
2{L2y, (d, P_d)) -» HlΌK(Kn)

is defined as follows: Let βn e C°°(M; [0,1]) be identically 1 on ^ \ Wn,
identically zero on M\Kn_x, and satisfy \dβn\ < B, independent of n. Thus,
supp|dβn\ c i_(N) c Wn. Because H2(N\ R) = 0, one can write

(5.14) eτδw\=dan onWnΠi_(N).

A careful analysis of DeRham's theorem shows that one may assume, with no
loss of generality, that an e Ccc{T*(Wn Π i_(N))) obeys a priori estimates
which depend on those of eτδw: For m > 0,

(5.15) Ki le* <

Define

(5.16) rn(w) = / d{βnan) on /_(7V) n Wn,

[0 on M\Kn + ι.

Concerning rn(w), one has
Lemma 5.4. There exists n < oo ̂ wc/z that for m > n, rm of (5.13) is an

injection.

The proof of Lemma 5.4 requires the following technical lemma:
Lemma 5.5. Given ε > 0, there exists n(ε) < oo such that each w e.

L2,s(P- Λ2 T*) obeying (5.12) satisfies

(5.17) f ' 2 <ε

for m > n(ε).
Lemma 5.5 will also be proved shortly. Given Lemma 5.5, Lemma 5.4 is

proved as follows: Suppose [rm(w)] = 0 E HQΌR(KΠ). Then rm(w) = dvm with
vm e C™(T*Kn). But, this implies (via integration by parts)

(5.18) / r m ( w ) Λ r m ( w ) = 0,

since

(5.19) [ \eτδw\2> f eτS\w\2 = 1.

(5.17) and (5.18) are contradictory for m > n(ε) of Lemma 5.5 so for such m,

ker r = 0 .
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Proof of Lemma 5.5. Due to (5.12) and Lemma 5.4, the 2-form eτδw obeys

uniform estimates: Given ε > 0, there exists n\ε) < oc such that if m > tf'(ε),

(5.20) \\er*M\cHivm)<*'

(5.15) and (5.16) and Lemma 5.3 give (5.17). (Remember, the unit sphere in

H2(L2

δ (d, P_d)) is compact.)

Using the homomorphism rw, the dimension of H2(L2

δ (d, P_d)) can be

computed from HQDR(K): The assignment of 2-forms υ, u G C™(Λ2T*Km)

to the number

(5.21) Q{v,u)= f v A u
Jκm

defines a symmetric quadratic form on i/0

2

DR(ΛΓm): Indeed, if du = 0 and if

ί e C™(T*Km), then

ί db A u = 0.
Km

Choose a basis for H2

ΌK{Km), {<?,.} G CO°°(P_ A2T*Km\ in which ρ is

diagonal. Let g = ^(m) be the number of negative eigenvalues of Q and let

{e j} ?=1 be the eigenvectors with negative eigenvalues.

Lemma 5.6. For n as in Lemma 5.4 and for m > n, one has

dim H2(L2

δ (d,P_d)) = q(m).

Proof of Lemma 5.6. Lemmas 5.4 and 5.5 assert that rm identifies

H2(L2

 8\{d,P_d)) with a linear subspace of HlΌR(Km) on which Q is

negative. Thus, q{m) > dim H2(L2

8\ (d, P-d)). Conversely, let u e

span{ey}/= 1; thus du = 0 and £>(w, w) < 0. As {L2

δ (rf, P , ^ ) } is Fredholm,

a G L 2

δ (T*M) exists such that

5(«) = P_(iι + ώ ) G L 2 , δ (P_ Λ 2 Γ * M )

obeys der8s(u) = 0. Also,

( 5 . 2 2 ) /* s(u)Λs(u)=f (u + da) A(u + da)

- f P + (u + da) A P + (u 4- da)
JM

(M + ώ ) Λ(M.4- dα) Ξ ρ ( w ) < 0.

Therefore, s induces a homomorphism

which is injective, due to (5.22). Hence, q(m) < dim H2(L2

 δ; (d, P^d)), too.
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Lemma 5.6 implies that q(m) is independent of m for m > n. To compute

q(m), one must understand how the topology of M is built up from the K and

the segments of End M.

Lemma 5.7. Let M be an end-periodic A-manifold such that Hλ(N\R) =

H2(N; R) = 0. Let K_λ = K. The inclusion homomorphisms, H2

omp(Kn; Z) ->

H2(Kn; Z) for all n > - 1 , and H2

omp(Kn\ Z) -> H2(M; Z) are injections. Thus,

the intersection pairings on H2(Kn; R) for n > -1 and H2(M; R) are nondegen-

erate. For all n > - 1 ,

q(n) = %[dimH2(Kn'9R) - τ(Kn)] = bl(K).

Proof of Lemma 5.7. Consider the inclusion homomorphism over R,

/: H2

omp{Kn', R) -> H2(Kn; R). By Poincare duality, H2

omp(Kn; R) = H2(Kn; R)

and the kernel of / is the radical of the intersection pairing on H2(Kn;R).

Also, by DeRham's theorem, H2

omp(Kn; R) = H^ΌR(Kn) and via this isomor-

phism, the intersection pairing on H2 and the bilinear form, Q, on HQ ; D R

agree. Let [w] e H2

omp(Kn; R). Suppose that /[w] = 0. Represent w by a

closed 2-form, w, with compact support on Kn. Thus, w = da with α a 1-form

on Kn. Let )8 e C™(Kn) be identically 1 on suppw U (Kn\i+(N)). Here,

/+ :N -> W^ defines the end of # „ . The 2-form w' = w - d(βa) is cohomolo-

gous to w in H2

omp(Kn',R). However, [w'] e H2

omp(i+(N); R). By Poincare

duality H2

omp(N; R) = H2(N;R) = 0. Thus, wr = J γ with γ a 1-form with

compact support in i+(N). Thus w = d(βa + y) and βα + γ has support in

Kn. Hence [w] = 0 in H2

omp(Kn; R). This proves that over R, the homomor-

phism / is injective. The nondegeneracy of the intersection pairing and of Q is

a direct corollary.

The injectivity over R, of / means that over Z, ker(/) is contained in the

torsion subgroup of H2

omp(Kn;Z). Let [w] e ker(/). Then a compact set

F c ^ exists such that [W]<Ξ H2(Kn, Kn\V). No generality is lost by

requiring that Kn \ V c N and that N Π F is connected. Consider the exact

sequence

. L/l/ î  \ v τj\( ΊS \ Ί/\ v zjr2/ is V \ τ/^ *. t/2/ r̂  \ .

— \ « / — ^ ^ V - ^ w X / — \ « » « \ / — v «/ —

Since ^ \ F c iV, the map r factors through r r : H\N\ Z) -^ i / ^ ^ \ V\ Z).

However, //^TV; Z) is the free group, Homίi/^iV; Z); Z), and thus H\N; Z)

= 0 if Hι(N;R) = 0. This is the case, by assumption, as H1(N,R) =

Hom(HX(N', R), R). Therefore, the following sequence is exact:

0 - Hι(Kn\ V) Λ H\Kn, Kn\ V) Λ i/2(^J - .
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If / w = 0, then w = 8a with a G Hι(Kn\ V). The preceding sequence

asserts that 8 is injective, so, since Hι(Kn \ V\ Z) is free, w = 0 if w is torsion.

The injectivity of H2

omp(Kn; Z) -» H2(Kn; Z) now follows, and the injectivity

of # c

2

o m p (M; Z) -> i/ 2(M; Z) follows by taking direct limits.

To complete the proof of Lemma 5.7, it is sufficient to prove that

(5.23) ^(rankβ - signatureQ)

is equal to its value on HQΏR(K). TO see that such is the case, observe first

that the previous arguments also establish that the inclusion K c Km induces a

monomorphism

Pull-back by / induces a homomorphism

From /*, a homomorphism,

is constructed as follows: Let [w] e H^ΌK(Km) be represented by a closed

w e C£°(Λ2T*Km). Since #2(7V; R) = 0,̂  w| N = da for some a e C°°(Γ*7V).

Let /3 G C°°(M; [0,1]) with β = 1 on K\ N and /? = 0 on w0 \ i_(N) and the

rest of End M. Set

Ύ _ ίw on K\N,
J{W}~ \d(βa) on TV.

Thus, j(w) G C™(A2T*K\ and one can check that y"[w] = [j(w)] G

HQΌR(K) is independent of the choice of « E C°°(Γ*iV) and representative w

for [w]. Using Poincare duality plus the vanishing of H2(N\ R), one finds

i ° ί * = id on HlΌR{K).

Let w G C^(A2T*Km) represents a class [w] G HoΌR(Km) with β(w, w) <

0. Suppose that β(7'w, 7'vv) > 0. Let

, _ | w onEndM\(ΛΓΠ EndM),
v- w-i+jw- ^ ^ ^ oniVΠEndM.

Since β(ί;, /*7'w) = 0, it follows that Q(v, v) < 0. Now v is compactly sup-

ported on

(5.24) W0UNWλUN -^ UNWm+l9
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and one can check that the assumptions concerning Y imply that the intersec-

tion pairing on (5.24) is positive definite. This gives a contradiction unless

(5.25) QO'vv, jw) < 0 whenever Q(w,w) < 0,

which implies that the number in (5.23) is independent of M, as claimed.

The completed proof of Proposition 5.1 requires still the proof of Lemmas

5.2 and 5.3.

Proof of Lemma 5.2. Before beginning in earnest, consider the unique

v e C°°(7) which is the harmonic 1-form on Y,

(5.26) dv = 0, d*v = 0,

cohomologous to the push forward of dτ | E n d M to Y. Back on End M,

π*v = ds with 5 e C°°(End M). The function s obeys

(5.27) s\Wn = s\Wo + n.

Extend s smoothly to all of M. No generality is lost by assuming that s > 0.

Let Σ c Wγ be the inverse image of a regular value, r, of s such that Σ is an

embedded 3-manifold on which the restriction

(5.28) *ds\Σ

is a positive 3-form. Now consider u e C™{M) and observe that integration

by parts gives

f es8\u\2ds Λ *ds = - ί esδ\u\2*ds - \ ί esδudu A * ώ ,
Js>r JΣ °Js>r

where (5.26) and (5.27) have been used. Holder's inequality plus (5.28) yield

(5.29) \ f esδ\u\2ds A *ds + f es8\u\2*ds < —Ί f es8\du\2.
1 Js>r JΣ δ Js>r

Now, let H denote the completion of C™(M) with respect to the norm || ||.

Since

\\\ \ f \ ( ) [ \f\

(5.29) implies for u e H that

(5.30) f eτ8\u\2 < Z(β) ί eτ8\du\2.

Now, consider / G C°°(M) with | | / | | 2 < oo. A standard argument provides

a unique u e H with

(5.31) e-τδd*eτδd(f-u) = 0.

(Minimize the functional on H which sends v to
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and use (5.30) to prove convergence.) Let g = (f — u). (5.4) follows by

proving that g = constant. Now,

(5.32) ί eτ8\dg\2 <oo,

so, since τ\w e [«, n + 1], one can conclude that

(5.33) / \dg\2<e-"'e2

H

with {εn} a Cauchy sequence with limit zero. (5.31) and (5.33) with standard a

priori estimates (on compact domains) show that on Wn,

(5.34) \dg\ < Z(δ)e-»8/2εn, Osc(g) < Z(δ)e~^2εn,

where Osc(/) = max(/) - min(/). Let q e [0,1] be a regular value of the

function t on Y. Let Σ π = τ'\q + Λ) c Wς. This Σ π is a smooth, embedded

3-manifold. Set

(5.35) kn = τ-\{0,q + n])ciKn.

This manifold is compact with dKn = Σn. Let

(5.36) gH=lj g ) . ( /

(5.31) and an integration by parts imply that

(5.37)

Since Kn c Kn + ι c = Af, (5.37) implies that g = constant, which estab-

lishes (5.4).

The proof of (5.5) uses the dimension 4 and the local Sobolev inequality (cf.

[1]) L^(Ball) -> L4(Ball) together with the end-periodicity of M. Equation (5.6)

is proved with a similar argument using the local embedding Lξ(Ball) ->

£4/>/(4-/>)(Ball) (p e (2,4)). The final assertion of Lemma 5.2 uses the local

Sobolev embedding, L{(Ball) -> C°(Ball)(/? > 4).

Proo/ o/ Lemma 5.3. The proof will be seen to follow from the following

result.

Lemma 5.8. Let M be an admissible 4-manifold. There exists ξ > 0 and

8λ > 0 such that on Ϋ = U W_x U N Wo U N Wγ U N , // δ e [0, S2),

/
y

obeys ξ(S) > ξ.

), ί
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Proof of Lemma 5.3, given Lemma 5.8. Let (1 - β) e C°°(M\ [0,1]) equal

0 on K\N and equal 1 on W0\N_ and Wλ U N W2 U . For each
n e (1,2, }, set

ί - β ) Λ if T < Λ,

nδ/2e^2w iίτ>n.

This w,7 e L2

0(P_ A2T*Y) and it obeys

ί
-dβ A wn i f τ < l ,

0 i f l < τ < « ,

— dτ Λ w^ if T > n.
Observe that

(5.38) / \dwκ\
2<U \w\2 + ζ2jf K| 2

JY JW0

 ZJτ>n

with ξv ξ2 constants independent of n. Lemma 5.8 implies via (5.38) that there

exists δ 0 > 0 such that if δ e (0, δ0), then {wn}^=1 is uniformly bounded in

LQO(P_ A2T*Y). Since {wn} converges in L\oc to eτ8w, one concludes that

eτ8w e Llo(P_ A2T*Y\ as required.
Proof of Lemma 5.8. If the lemma were false at δ = 0, then a sequence

{wj}JLι c C™(P_ A2T*Ϋ) would exist with the property that

(5.39) lim f \dw,]2 = 0 but [ |w,|2 = 1 for all j .
j-*ao JΫ JΫ

To see that such a sequence cannot exist, return to Y and consider the

cohomology of the complex

o -> C°°{Y) 4 c^iT+Y) ^"c°°(p_ Λ2r*y) ^ o,

where z e C obeys |z| = 1 and

(5.40) dJ^df+z'dz-'Λf

(see (4.14)).

Lemma 5.9. LW^r //ze assumptions of Lemma 5.8, Coker(P_<iz) c

C°°(P_ Λ2 Γ * 7 ) /or /Aβ complex in (5.40) « empty for all z e C w//Λ |z| = 1.

Assuming Lemma 5.9 for the moment, the proof of the δ = 0 case of

Lemma 5.8 is completed by observing that because Y and Sι = {z e C: \z\ =

1} are compact, there exists f > 0 such that

(5.41) f \(P_d:ry\2>ζf |γ|2
Jγ I Jy
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for all γ e C°°(i>_ A2T*Y) and for all z e S1. Here, {P_dz)* is the formal

ZAadjointof P_dz,

(/>_dz)*y = *(dy + z ' ώ " ' Λ γ ) .

(5.41) plus the Fourier-Laplace inversion formulas, (4.10), (4.12), and (4.13),
implies that no sequence obeying (5.39) can exist.

Proof of Lemma 5.9. The admissibility assumption asserts that
Coker(P_ί/,) = 0 at z = 1. It further asserts that for all z, the index of the
complex in (5.40) is zero. Thus dimCoker(jP_<iΓ) = A0 - A1, where (A0, A1) are
the dimensions of Ker(rfz) in C°°(7) and of keτ(P__dz,(dz)*) in C°°(Γ*7).
For A0, if dzf = 0, then d{z~tf) = 0. Thus, z~'/ = constant and / = constant
• z'. Thus for z # 1, / g C°°(7) unless / = 0. So, A0 = 0. For A1, if P_έ/Zα = 0,
then P_d{z~ιa) = 0, and this implies that

(5.42) J(z-fc) = 0.

(Integrate by parts in jγ\P_d{z~ta)\2.) Since /ί1(>F,R) = 0, one concludes
that

(5.43) z-'a = df

for/e C ^ ί ^ C). Also,

(5.44) d*df=0.

Since ^ is a 1-form on y, /*α = α, where i:N+-+ N_ is the identification of
Definition 1.2. Thus,

(5.45) /*/=z/+c

with c G C, a constant.
Choose a smoothly embedded submanifold Σ c ]V+c F o which separates

the two ends of N+ (so H\Y\Σ\R) = 0). Let W be the manifold with
boundary that is obtained by cutting Y along Σ : W embeds in W, dW = Σ U

(-Σ).
By integrating over ίί' and using (5.45) with Stoke's theorem, one finds that

(5.46) ( * -

Next, multiply (5.44) by / and integrate over W. Stoke's theorem plus (5.45)
yield

(5.47) cί *df+ ί \df\2 = 0.

Together, (5.46) and (5.47) imply that A1 = 0 unless z = 1. This completes the
proof of Lemma 5.9.
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For the cases δ > 0 in Lemma 5.8, set σ = eτS/2w for w

lAp- Λ2Γ*7). Then

* ft I f

(5.48) - -d)eTw\=U

8

Since |<iτ| is bounded and σ e L2(Ϋ), the existence of 8λ > 0 and the
assertion of Lemma 5.8 for 8 e (0, 8λ) follow from (5.48) and the 8 = 0 case.

6. Perturbations of end-periodic structures

It is convenient to weaken the strict end-periodicity requirement for the
metric on TM. The reason is that eventually certain Banach space genericity
results are needed which require some latitude in the choice of metric. As in
[21, Chapter 3], introduce the parameter space Cι(GL(TM)) of Cι (I ^> 2),
oriented, automorphisms of TM. Let g0 be a fixed, end-periodic metric on
TM. Define

# = φ e C'(GL(ΓM)):

(6.1)

lim sup
n-* oo

/

Σ
7 = 0

where V is the Levi-Civita connection given by g0. The space ^ is a Banach
space.

For ψ G ^ , φ*g0 defines a new metric on TM which approaches g0

asymptotically on End M. A metric on TM of the form φ*gQ, φ e ^ , will be
called asymptotically periodic. The asymptotically periodic metrics on TM
provide a convenient class of metrics to use.

Let P_(g); Λ2T*M -» A2T*M denote the anti-self-dual projection as
defined by a metric g on TM. If g = φ*g0 for φ e ^ , then

(6-2) P

Each φ e <̂  defines an elliptic complex,

(6.3) 0 ^ C?(M) 4. C0

0 0(Γ*M)3^ )C0

0 0(P_ A2T*M) ^ 0.
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Here, for convenience of notation,

(6.4) d(φ) = P_(φ-1)*d

and P_ = P_(g0). Note, 3(φ) always maps into the fixed space of section of

/>_ Λ 2 Γ*M.

As φ varies over V the complex in (6.4) changes. For l-2>k^0,p>2,

δ e R , and φ e ^ , the complex in (6.4) extends as a bounded elliptic complex

(6.5) 0 -> Lξ+2j(λf) - Lξ+U8(T*M) d™Ll8{P_ Λ2Γ*M) - 0.

(These spaces are defined as in (3.10) using the fixed, end-periodic metric g 0).

Proposition 6.1. Let M be an admissible, end-periodic A-manifold. Let g0 be

an end-periodic metric on TM. Fix / » 2. Let δ 0 > 0 be as in Proposition 5.1.

For 8 e (0, δ0), allp e [2, oo), / - 2 > k > 0, am//or a// φ G ^ , *λe complex

in (6.6) w Fredholm with cohomology:

dimH0 = 0, dimi/1 = ^(ϋC), d i m # 2 = b^{K).

Proof of Proposition 6.1. In [21, §6], Lockhard and McOwen prove a similar

result for complexes on manifolds with product ends. One can readily adapt

their argument to the end-periodic case to show that (6.6) is Fredholm for

φ G ^ whenever it is Fredholm for φ = 1. To compute the cohomology of

(6.6), one can argue as follows: As φ varies through #, the operator 3(φ)

varies continuously in the Banach space of bounded operators between

L£+18(T*M) and L£8(P_ Λ2Γ*M). It follows that the index of the complex

in (6.5) is independent of φ. The arguments in §5 compute dim//0 = 0 and

dim//1 = bλ(K)\ then dim//2 follows by subtraction.

7. Gauge theory on M

Let G be a compact Lie group. Suppose that M is an end-periodic

4-manifold and that P -> M is an end-periodic principal G-bundle. Here, it

will be assumed that

(7-1) P\En6M = **(Y><G)-

If G is simple and simply connected, then all such P are globally trivial,

(7.2) P ^MXG.

For G simple, but with πλ(G) nontrivial, such P are classified by an element of

// 2(M; πλ(G)) which lies in the image of the homomorphism H^omp(K\N) ->

// 2 (M). For G = SO(n), this element is the second Stieffel-Whitney class of

the associated #"-bundle E = P XGR
n.
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The concern of gauge theory is the space of connections on such end-
periodic principal bundles. To restrict attention to end-periodic connections is
too drastic and to study all connections is too ambitious. Let s/(P) = the
space of all smooth connections on P. Consider

(7.3) J / = [A G J / ( P ) : ί | / ^ | 2 < o o

Topologize stf as follows: The space s/(P) is an affine space, since fixing
Ao e st(P) identifies. sέ(P) = C°°(AdP Θ T*M). (AάP = P ΘG © © =
Lie alg(G). The set of sections C°°(Ad P Θ Γ*M) is topologized as a Frechet
space by the set of pseudonorms

(7.4) fl«kπ= sup

Here, Kn = K U N WQ U U NWn. Thus, s/(P) has the structure of an
affine Frechet manifold. Topologize J / via the inclusion of jtf into stf(P).

Let 9= 9(P) denote the set of smooth automorphisms of P. This group
has a Frechet space structure which makes it into a Frechet Lie group. The
tangent space to 1 e 9 is isomorphic to Γ(AdP) as a Frechet space topolo-
gized via the pseudonorms in (7.4).

One can check readily that 9 acts smoothly on s#(P\ and 9 acts as a
topological transformation group on J /

(7.5) SB = J*/99

and topologize with the quotient topology.
Connections in stf are not necessarily end-periodic, but in a weak sense, they

are asymptotically so, and asymptotically flat. Here, asymptotically flat means
asymptotic to a flat, periodic connection on Ϋ. If Y is not simply connected,
there may be nontrivial, flat connections to be asymptotic to. Let

Γ = Hom(ττ1(7),G)/AdG.

This set parametrizes the set of G-equivariance classes of flat connections on
ΫX G.

Since P is end-periodic, P admits end-periodic connections which are
isomorphic (via ψ of (7.1)) over End M to the product connection on End M
X G. Using these connections, a simple grafting argument (cf. [28] or [30])
produces connections in J / which are asymptotic (over End M) to any chosen
flat connection on Ϋ X G.
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The present interest is with connections on P which are asymptotic to a
trivial, flat connection on Ϋ X G. To define this notion, introduce the set

Es/(P) = {End-periodic connections on P which are isomorphic

over End M to the product connection on End M X G).

Lemma 7.1. For each A e Es/(P),

(7.6) A/
8π2 JM

is an integer, where tr( ) is the trace on the adjoint representation of G.
The proof of this lemma and of the assertions below will be deferred to the

end of the section.
With the grafting procedure in [30, §4] one observes that \v&(px: Es/(P) ->

Z) is unbounded in both directions.
For the present purposes, the set of connections Esέ(P) is too small. It is

useful to enlarge Es/(P) by introducing Banach spaces of connections with
controlled decay.

For each k e I m ^ : £ J / ( P ) -> Z), fix Ao e Es/(P) with px(A0) = k.
Fix δ > 0, and let

{ T*M)9

(7.7) l "

The affine space s/k has a natural Banach manifold structure from the norm

(7.8) U\\2A=ί

with A = Ao. The dependence on 8 is to be understood implicitly.
With the given Ao e Es/Π plι{k\ define the "small" gauge group,

(7.9) 9k = {h e Lf ; l o c (AutP): | |v^ |L < «>}•

Topologize ^ as follows: Use the trivialization of (7.1) to identify
C°(Aut PI Eod M) with C°(End M; G). Since L^;loc c C°, each * e ? A defines
a continuous map, h: End M -> G. An apphcation of Lemma 5.2 and Kato's
inequality shows that for x e fF0,

= lim
/ 1 - * 00

exists for all /* e 9k\ further, r{h) is independent of x G ff0. (Kato's inequal-
ity asserts that for any A G J / ( ? ) and for any vector bundle E -> M,
associated to P, and for any ψ e L^ loc(£"), IV̂ ΨK *) > Î IΨK ̂ )! f o Γ a e
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x G M.) A neighborhood base for the topology of 9k at h G S?λ is given by

sets of the form

{g e ^ ||v^(A - g) |£ + distσ(r(Λ), r(g)) < e},

where dist σ( , ) is the geodesic distance on G as measured by a bi-invariant

metric.

Let 9k denote the closed subgroup {g G ̂  r(g) = 1}.

Lemma 7.2. Let 8 > 0. 77ιe spaces S^, a?* are Banach Lie groups. The Lie

algebra of &k is

®k={°^ L] Λ Λ P XA d ®)= llv^σL < oo}.
The norm on 9k sends σ to \\VAo\\Λ + |r(σ)|. The Lie algebra of 9'k is

®k= (σ G ©Λ; r(σ) = 0}. ΓΛe L/e grow/? ^ ac/5 smoothly on s#k. The set

{g e L3

2

;loc(Aut P):g's/k=s/k) is <$k. The quotient <Sk/Ψk = G.

As is the case when M is compact, one has the following "slice theorem":

Lemma 7.3. Let δ > 0, and let k e I m ^ r i ^ ί P ) -» Z). ΓΛβ quotient

space SS'k = jtfk/yk is a Cx -Banach manifold and the projection π:jtfk -* $#k

defines a principal &k-bundle. Let s/* c sίk denote the subset of irreducible

connections. The quotient space 8&k — $0*/^ is a C00-Banach manifold such

that the quotient m'.stfg -> @lk defines a principal ^k/center ^k-bundle. The

tangent space to [A] G SS'k is isomorphic to

{ f l G 4 ) l o c ( A d ? 0 T*M):\\a\\A < oo ande-τSd*eτ8a = θ} .

The tangent space to\A\^ 3&k is isomorphic to

2 ; l o c ( ) | | L oo,

(7.10)
/ eτ8

The manifold Sh is the orbit space of asymptotically periodic connections

which will be used in this article.

Although a choice of Ao G pϊ\k) Π Esΐ(P) was required to defined 81 k,

this space does not depend on the particular choice. The following lemma

describes the situation.

Lemma 7.4. Let k G \m{pι :Es/(P) -* Z) am/ to ^40, ̂ x G EJ#(P) Π

Pΐι(k). Define the spaces ^k0^kϊ and &k0, 9kι with Ao and Al9 respectively.

There exists g E ^ such that

(ΐ)gΆι =A0on EndM.

(4) The quotient spaces 81'kl, 38kX are isomorphic as Banach manifolds to 3S'kQ,
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Due to Lemma 7.4, no generality is lost by henceforth referring to one space

&#'k (or <%k), independent of the defining connection in Es/(P) Π pϊι(k).

For the proofs of Lemmas 7.1-7.4, it is necessary to have the following

estimates on gauge invariant norms:

Lemma 7.5. Let P -> M be an end-periodic principal G-bundle over the

end-periodic 4-manifold M. Let E -> M be a vector bundle over M associated to

P. Let A, Ax G stk for some k G \m{pλ :Es/(P) -» Z). There exists ξ < oo

with the following property. For all ω G C°°(£) with \\ω\\A < oo,

S\\ωAι\\<\\ω\\A<ξ'ι\\ω\\Aι.

For all ω G C°°(E) with \\VAω\\A < oo,

The remainder of this section contains the proofs of Lemmas 7.1-7.5.

Proof of Lemma 7.1. Choose a smoothly embedded, oriented submanifold

Σ c Wo, which separates N_ from N+. Let W+ denote the component of

W0\Σ which contains N+. Compactify KUN(W0\W+) by gluing it to

-(K U N (WQ\ W+)) across Σ. Call this compact 4-manifold Q. Let Γ denote

the product connection on Wo X G. Let ̂ 4 G ES/(P). Then, by assumption,

there exists g(A) G I S O ( ^ 0 X G; P | ^ o) such

(7.11)

Λto/e. g(^4) is unique up to g -> A g with A G Aut(PF0 X G)

( = C°°(Wo; G)) a constant gauge transformation. Using g(A), one constructs a

bundle P(A) -+ Q by defining

, ^ o W + ) ) = -(Jf U N (Wo\ W+)) X G,

with g(^4) identifying the two halves over Σ. Notice that A automatically

extends to a connection on ^(^4) which is trivial over -(K U N (Wo\ W+)).

Then, by Chern-Weil [23],

(7-12) Pι(A)=Pι{P(A)xAάG®),

where, on the right-hand side, Pι(-) is the first Pontrjagin number, an integer.

It is convenient to consider Lemma 7.5 next.

Proof of Lemma 7.5. Use Lemma 5.2, Kato's inequality, and Holder's

inequality.

Proof of Lemma 7.2. Armed with Lemmas 5.2 and 7.5, the proofs here are

trivial translations of the arguments in [12, Chapter 3]. The key estimate is the

following: Given δ > 0, there exists ζ > 0, such that for all A G jtfk and



GAUGE THEORY 397

(7.13) ( e*s\VAσ\2 > ξ f e^\o - r ( σ ) | 2 .

This uses Kato's inequality plus Lemma 5.2. The only item which does not
translate from [12] is the assertion: <3k= { g e L^;loc(Aut P) :g*s/k = s/k}.
For this, suppose g e L3;loc(Aut P) and that

Then Holder's inequality plus Kato's inequality plus Lemma 5.2 puts g E ^ .
Proof of Lemma 7.3. Again, with Lemma 5.2 and Lemma 7.5, it is a

straightforward adaptation from [12, Chapter 3] and from [24] to prove the
assertion about SSk. The key is to use (7.13). There is a residual G =
G/center(G) action on 3tk which is free on A%/9'k c 3t'k. The quotient, 3Sk,
will be a manifold provided that local slices of the G-action exist. To construct
them, note that for all ε > 0, sufficiently small, a neighborhood of [A] e 3tk is
diffeomorphic to

(7.14) S = {a e L^ ; loc(AdP 0 Γ*M):| |α|| / ί < ε and e'^d^a = θ}.

For small ε < 0, there exists for each a ^ @ and each σ e ©, a unique
q(a\σ) obeying

(7.15) e-τSd*e*sdA+aq(a;σ) = 0 and r( ί( f l;σ)) = σ.

To construct q, minimize over the closed submanifold r" 1(σ)G©A . the
bilinear functional η -* fMeτ8(dAη,dA+aη). Use (7.13) plus elliptic regularity
to prove that a unique minimum exists.

Using Lemmas 5.2 and 7.5, it is easy to prove that the assignment of
(fl, σ) G ̂  X © to ήf(έi; σ) e ©Λ defines a smooth map from 2 X © to ®k

which is linear in © for fixed α e ©. By construction,

dA+aq(a; o) ^ 2) for |σ| <̂c ε.

D e f i n e a m a p q\Q) -* © * b y sending α G ® t o the l inear funct ional

(7.16) σ-^(q(a),σ)=ί e^δ{dA+aq(a; σ), β).

The claim is that ^-1(0) c @ is a smooth submanifold, which, for ε sufficiently
small, is a slice of the G-action.

Since A is irreducible, A + a is also irreducible for a ^ S) and for ε
sufficiently small. Thus, dA=aq(a; σ) = 0 if and only if σ = 0. This means that
the differential of q at a e ςΓ^O) is surjective and so <7-1(0) is a smooth
submanifold of 3).
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The tangent space to the G-orbit through a e ^ ( O ) is precisely the

(7.17) Span{dA+άq(a;σ)',σe®}.

This subspace of Tβ\a, plus Tq~l(0)\a, spans TΘa. To show that q~ι{ϋ)(z3 is
a slice of the G-action, one must show that any time a e q~ι(0% h e G, and
h - a e ^"HO), then A = 1. For ε-sufficiently small, any time h α e §"1(0),

(7.18) A = l + ^ ( f l ; σ ) + 0( |σ | 2 ) ,

with σ e © and |σ| <: ε. The O(|σ|2) term is O(ε2) in the norm of (7.9).
Equations (7.16) and (7.18) imply that σ = 0 and A = 1.

Proof of Lemma 7.4. The last three assertions of the lemma follow im-
mediately from the first assertion. To prove the first assertion, consider
Ao, Ax e Es/(P). On End M, one assumes that Ao = g Ax for gG
A u t ( P | E n d Λ / ) ( = C°°(EndM;G).)Let a = i40 - i4x e C^ίAdPig) Γ*M) re-
stricted to End M,

(7-19) α = gV^ίΓ1.

Since both >40 and AΎ are trivial over fΓ0, Chern-Simon's theory [8] gives

(7.20) 0 = p^A,) -Pι(A0) = α(G)<g (γ),[Σ]>,

where α(G) Φ 0 is a group-theoretic constant, γ e H3(G) ( - Z) is the genera-
tor, and [Σ] is the fundamental class of the 3-manifold Σ. Since dimΣ = 3,
(7.15) implies that g \ Σ is homotopic to the constant map 1: Σ -» l c . Affecting
such a null homotopy in a tubular half-neighborhood of Σ, (-ε,0) X Σ c
Wo\ W+ gives an extension of g to AutPI^. Such a g is unique up to
composition with ^ 0 and &'kl. Its existence proves Lemma 7.4.

8. Moduli spaces: Internal structure

Let P -> M be an end-periodic, principal G-bundle over M obeying (7.1).
The constructions in the previous sections provide the necessary technical
machinery with which to study, as in [12], the moduli spaces of self-dual
connections on P. The basic lesson in the next few sections is the following:
For those 8 e (0, oo) where the complex in (5.2) is Fredholm, the constructions
on compact 4-manifolds will succeed on the admissible, end-periodic M (cf.
[30], [9]).

Fix an end-periodic metric, g0, on T*M. Let k e lm(pι:Es/(P) -> Z).
Define a ^-equivariant map from s/k X V into Lj.loc(Aά P ® P_ Λ2T*)by
sending (A, φ) to

(8.1)
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Let

(8.2) /£*=fωeL? ; l o c (Ad/>ΘΓ*):/ eτδ(\VAω\2 + |ω|2) < oo ]

This linear space is a Banach space with the obvious norm. The image of
lies in A\.

As in [12, §3], one has the parametrized spaces

(8.3) M'k = 9-\$)/9'k and Jt k = »-\$)/9k = Jt'JG.

As in [12, Theorem 3.16], one has the following structure theorem.
Proposition 8.1. Let M be an admissible, end-periodic 4-manifold and let

P -> M be an end-periodic principal SU(2) or SO(3)-bundle which obeys (7.1).
Let k e lm(pλ: E^(P) -> Z). Γftere exists δx > 0, JWCA that for all S e (0, δλ),
Jt'k Π (sfk/9'k X ί?) αwd Jfkn(@kX <£) are smooth Banach manifolds.

The projection to # from s/kX tf induces projections

(8.4) r : J ^ ^ ^ and 77: Jk -* if.

K. Uhlenbeck's generic metric theorem [12, Theorem 3.17] translates in the
present case to

Proposition 8.2. Make the same assumptions as in Proposition 8.1. There
exists δ2 > 0 such that for all δ e (0,δ2), the following holds: A Baire set of
φ e V exists for which the moduli spaces Λf'k(φ) = ττ/""1(φ) and Jtk(φ) =
ΐf~\φ) are such that Jt'k(φ) Π (sf*/9'k) and Jtk(φ) Π ̂  are smooth mani-
folds of dimensions 2k - 3(ί>2"(iC) - bx(K)) and 2k - 3(1 + b^{K) - bλ(K))
respectively.

The manifold Jt'k($) admits an 5O(3)-action which is free on the orbit of
an irreducible connection. Thus, the projections J(k{φ) -* Jtk(Φ) Π 36k de-
fine a principal SΌ(3) bundle.

At the orbit of a reducible connection in Jt'k{φ), the 5Ό(3)-action will not
be free, by perturbing Jtk(φ) as in [8], one can assume that a neighborhood of
the reducible orbits in Jtk(φ) have a standard form. For compact Λf, the
result is described in [12, Theorem 4.11].

Proposition 8.3. Make the same assumptions as in Proposition 8.1, and
assume that b^K) = 0. There exists δ3 > 0, such that for all δ e (0,δ3), the
following is true: If the intersection pairing on H2(K, Z) is indefinite, then for a
Baire set of φ e #, Jtk{φ) contains no orbits of reducible connections', it is a
smooth manifold of dimension 2k - 3(1 4- b2{K) - bλ(K)). If H2(K; Z) is
definite, then the orbits of reducible connections in Jtk(φ) are isolated. There is
a perturbation of Jtk{φ) which is compactly supported in a neighborhood of each
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such orbit so that locally about such an orbit, J? k(φ) is homeomorphic to an open

cone on CP7, with I = k — 2. The identification is a diffeomorphism off the

vertex.

The strategy for proving Propositions 8.1-8.3 will be to set up a formalism

that allows the arguments in [12, Chapters 3, 4] to translate directly to the

end-periodic case. The key to the formalism is in understanding the operator

P_dA:C°°(AdP ® T*) -> C°°(AdPΘ P_ Λ 2 Γ * ) when A E ^ . The prin-

ciple result required is Lemma 8.4, below. To state the lemma, introduce the

Banach space %k defined as follows: Pick A e s/k and set

(8.5) %k = {a e C°°(Adi> ® T*):\\a\\A < oo},

with norm || Ĥ  (see (7.8)). Due to Lemma 8.4, the choice of A E i ^ is

immaterial to %k.

Lemma 8.4. There exists δ4 > 0 such that under the assumptions of Proposi-

tion 8.1: If 8 e (0,δ4) and if (A,φ) e 9>-\ϋ) Π (s/k X V), then

(8.6) o^ ^ί^ΐίX^o
is Fredholm with index ik - χbϊ(K)-b^K)). Further, ktτdA c %'k is
empty.

Assume for the moment that this lemma holds.

Proof of Proposition 8.1. The map 9 from s/k X # to A\ is readily seen to

be smooth. One identifies Tsίk | M ] = %k. The differential d& at (A,φ) G

^ " ^ O ) splits as a direct sum d&λ + rf^2 corresponding to T(s/k X <£)-

Θ Γ^7. Observe that

Since (8.6) is Fredholm, Cokerd@<z CokQτd^>

ι is finite dimensional. By

using the ZAinner product of the metric φ*g0 on TM, one can represent

ω e Coker J ^ | {Aφ) by ω e C°°(Ad P (8) />_(Φ*g0)Λ2 Γ*M) Π L 2 obeying

J^ω = 0. The proof is finished by copying the proof of Theorem 3.16 of [12].

Proof of Proposition 8.2. The projection 77' \Jί'k Π (A^/^k X V) -> ^ is a

smooth, Fredholm map of index 2A: - 3(Z?2~(AΓ) - bx(K)). The index calcula-

tion is Lemma 8.4. The Smale-Sard theorem [27] establishes the assertion of

Proposition 8.2 for M'k n (s/ϊ/9'k). The group 9J9'k = SU(2) (or 50(3))

acts on Jt'k Π (st£/9'k)\ the stabilizer of a point is ± 1 c ££7(2) and 1 c

SO(3). Thus, in both cases there is a free action of SO(3). The quotient,

Jί'k(φ) Π ^ is a manifold provided that local slices of the 5O(3)-action exist.

Let (A,φ) e Jί'k(φ) Π (j^k*/^k). A neighborhood of (^ ,φ) is diffeomorphic

to

dA * φe*δa = 0, P _ ( φ * g o ) ^ « = 0 and |M|U < ε]* φ
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for sufficiently small ε. Here, *φ is the Hodge star for the metric φ*g0. In the
remainder of the proof, all inner products, volume forms, and anti-self-dual
projections are with respect to φ*go This will be implicit.

Given a e JV and σ e su(2) (= so(3)), construct q(a\ σ) e ®k as in (7.15),
but use the metric φ*g0. The construction is the same at the expense of a
smaller ε > 0 in (8.6). Since A + a is self-dual,

(8.7) dA+aq(a\ o) ^ Jί for σ e ΛΊ/(2) and |σ| «: ε.

Using the metric φ*g0, construct the map q\Jf-+ su(2)* as in (7.16). The
argument in §7 can now be directly appropriated to show that q~ι(0) c Jί is a
slice of the SΌ(3)-action.

Proof of Proposition 8.3. The proof of Theorem 4.11 in [12] translates
directly to the case here. See also the proof of Corollary 3.21 in [12]. The reader
is also referred to [11].

Proof of Lemma 8.4. (7.13) implies that dA\%'k -> %k has no kernel and it
has closed range. It follows that (8.6) is Fredholm if the two-step complex

is Fredholm. Here,

(8.9) Φ>k = | σ e L?;loc(Aut P): f^ e τ ί ( | V ^ | 2 + M 2 ) <

Pick Ao G Es/Π s/k and consider the operator

(8.10) 8(A0,φ):?ίk-> ζk\.

This operator, on End M, is isomoφhic via (7.1) to

δ(O,φ) -

(8.11)

The complex in (8.11) is Fredholm, by Proposition 6.1. Arguing as in §6 of
[21], one proves that δ(A0,φ) is also Fredholm. Then, Lemmas 5.2 and 7.5
plus Kato's inequality show that
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is a compact operator. Thus, δ(A,φ) is Fredholm. Further, Index(δ(^4,φ)) =

Index(δ(v40,φ)). Since δ(A0,φ) is isomorphic to δ(O,φ) over EndM, the

excision property of the index [4] asserts that the difference, Index(δ(Λ0,φ))

- Index(δ(0,φ)) depends only on K. By embedding K in the compact

4-manifold Q from the proof of Lemma 7.1, one can use the index theorem on

compact manifolds to compute this difference. The answer is Lemma 8.4 (see

[2])

9. Moduli spaces: Existence

Fix an asymptotically periodic metric, φ*g0, on T*M (as defined in §6). A

connection on a principal G-bundle P over the end-periodic, admissible

4-manifold M is self-dual if P_FA = 0, with P_ = P_(Φ*g0). ( I n t h i s section,

all norms, inner products, and operator adjoints are taken using φ*g0. This will

be implicit.) The purpose of this section is to prove that the moduli spaces of

self-dual connections, J(k(φ\ can be nonempty.

Rather than discuss the existence question for admissible, end-periodic

manifolds in the generality of [30], attention will be restricted to the case where

bλ(K) = b2(K) = 0 (see Proposition 6.1).

Consider first the existence of reducible self-dual connections on principal

SU(2) and SO(3) bundles P -> M which obey (7.1). To construct such a

connection, pick a class e e H2{M, Z). Through Poincare duality, e is dual to

a class e e 7/c

2

omp(M,Z), and via the injection (Lemma 5.7) H2

omp -> H2, the

class e defines a line bundle,

(9.1) L(e)-* M.

Via DeRham's theorem, e defines a closed two-form, ω(e) e HQΌR(M).

This two-form is \/-Γ X the curvature of a connection Ae on L. By repre-

senting e by an embedded, closed two-dimensional surface R c M, one can

arrange that Ae is trivial away from a tubular neighborhood of R in M.

Following [11], construct from L(e) the R3-bundle

(9.2) E = L(e)®R£>,

where S = M X R is the trivial, real-line bundle. Put an end-periodic metric on

E. Define P = P(e) to be the bundle of orthonormal oriented frames on E—a

principal SO(3) bundle over M. Note, if the mod 2 reduction of e, e2, is in the

image H?omp(K\N; Z 2) ^ H\M\ Z 2), then P(e) obeys (7.1). Indeed, its

Stieffel-Whitney class will then vanish in H2(EndM; Z 2), since w2(E) = e2.

Assume that such is now the case.

The connection Ae is in sfk(P(e)) (by Lemma 7.4) for any δ > 0 and for

(9.3) k = e e.
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Thus, s/(e.e)(P(e)) has reducible connections. Note, if e2 = 0, then P(e) lifts
to the SU(2) bundle M X SU(2). Thus, s/k(M X SU(2)) has reducible con-
nections whenever k = e e for e G H2(M, Z) with e2 = 0 G H2(M, Z2).

For self-dual reducible connections, one has
Proposition 9.1. Lei M be an end-periodic, admissible A-manifold with

bλ(K) = b2(K) = 0. Lei δ0 > 0 be as given in Proposition 6.1. Fix 8 e (0, δ0).
Let P ^ M be a principal G = St/(2) or SO(3) fcwidfe wΛ/cΛ obeys (7.1). 77ze

orbits of reducible connections in Jtk(P) are in 1-1 correspondence with the set
of pairs {±e e H2(M,Z):e e = kande2 = w2(P ΘA d ©)}.

Proo/ o/ Proposition 9.1. Given e G H2(M,Z) as above, Proposition 6.1
finds a self-dual connection 4̂ on L(e) such that α = i(A - Ae) e L2S(T*M)
obeys

It follows from Proposition 6.1 that A is unique. This connection defines a

reducible self-dual connection in s/k(P) (since P is isomorphic to P(e) and

A: = e e; see Lemmas 7.1 and 7.2). Thus, each pair

{±*?<Ξ H2(M,Z)',e- e = A: and e2 = w2(P X A d ©)}

determines a reducible orbit in Jf k{P). It follows from Proposition 5.1 (by
mimicking the arguments in [11] or [12, Chapter 10]) that any such reducible
orbit in Jtk{P) comes from a pair {±e e H2(M,Z):e e = ky e2 =

To construct irreducible self-dual connections on M X SU(2), one adapts
the construction in [28], [30]. For an end-periodic, admissible 4-manifold with
positive definite intersection form on H2(K\ Z), the construction yields non-
empty Jt'4l for / G {1,2, } (see Proposition 9.2, below). (When the inter-
section form on H2(K,Z) is indefinite, then JtAl is nonempty for all / >
l(b2(K)).) For the proof of Theorem 1.4, only the case b2(K) = 0 and / = 1
is required. The general situation should be an exercise for the reader who is
familiar with [30].

Definition 4.2 of [30] assigns to each (x, λ) e M X (0,1) a point T(x, λ) G
^ 4 such that the induced map

Γ:MX(0,1) ^ ^ 4

is a smooth embedding. The point T{x, λ) has the following properties: Let
[A] = Γ(x, λ). For 8 G [0, oo) and p G [1, oo],

l/p

if eτ8\P_FA\
(9.4) l J

If e*\IΆ)
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and if y G M obeys dist(^, x) > 4\/X, then

(9-5) \FA\{y) = 0.

Also, A is irreducible.

To find self-dual connections in SSA, one searches for such of the form

[A(x, λ)], where

(9.6) A(x, λ) = A(x, λ) + a(x, λ ) ,

with [Λ(x,λ)] = T(x,λ) and φ , λ ) G C ° ° ( A d P ^ Γ*M) is small in a

suitable way.

Proposition 9.2. Le/ M Z>£ as in Proposition 9.1. ΓAere £*«/.$ δx > 0 swcA

/ΛΛ/ / / f i e (0,5!), /Λ«ι ^#4 Φ 0. In fact, λx > 0 β/2ί/ f < oo exw/ wiϊA ίAe

following properties: Let S e (0, fi^, (Λ, λ) e M X (0, λ x), and [A] = Γ(JC, λ).

(1) 77zm? wiste [^4(JC, λ)] e ^T 4 n

(2) 7/_y G M obeys d = dist(^, JC) >

(3) ΓΛe assignment of (x, λ) e M X (0, λx) to [A(x9λ)]e@4 defines a

smooth map of M X (0, λ x) z'wto ^ 4 wA/cA w smoothly homotopic to the map T.

The remainder of this section contains the proof of Proposition 9.2. The

argument here is almost identical to the argument in [28] and [30] for compact

M. Familiarity with [28], [30] (see also [12, Chapters 6, 7]) will be assumed.

Proof of Proposition 9.2. As in §§2 and 3 of [30], the strategy is to first find

a(x, λ) in (9.6), given appropriately chosen data (fil5 λ l 5 ξ). A priori estimates

from the existence proof yield assertions (2) and (3) of the lemma.

Consider first the existence question. One writes a = *dAω for ω G

C m + 1 (Ad P <8> P_ Λ 2 Γ * ) . If A + *dAω is to be self-dual, then ω must satisfy

(9.7) P_dA{P_dΛ)*ω +(P_dA)*ω Λ(P_dA)*ω + P_FA = 0.

(9.7) is solved by a successive approximation scheme; one sets

(9-8) ω = £ ω ,
7 = 0

with

(9-9) P_dA(P_dA)*ω0=-P_FA,

and for j > 0,

(9.10) P-dλ(P-dλY<ύj = -Qj.
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Here,

7-2

(9.11) Qj = Σ ?-{vk A vj_λ + vj_λ Λ vk) + i>_("y-i Λ "y-i)>
k = 0

where Vj = (P.rf^)*^.
To succeed here, the following eigenvalue estimate is crucial.
Lemma 9.3. There exists 8Y > 0, \γ > 0, W ξ > 0 swc/ί ί/wtf I / J G [0,δ^

α/ίJ λ G (0, Ax), //*e« the following is true: Let A = A(x,\) and let A\ denote
the Banach space of σ e L^loc(Ad P ® P_ /\2T*) such that

Then

\fMe«\e-«(P_dΛ)*e«o\f T L l
Given Lemma 9.3 and the Sobolev estimates of Lemma 5.2 (and Kato's

inequality), the existence proof now proceeds, virtually word for word, as a
copy of the arguments in [28, §§4, 5] and [30, §§2,3]. The details are left to the
reader. (Remember, the end-periodicity of M implies that M has "bounded
geometry.") The end result is that one finds \ > 0 such that if (x, λ) e M X
(0, λx), then there exists a unique ω e A\ such that A + *dAω is self-dual and

(912) / Σlvy>«|2<?(λ).
^ /=o

To put A 4- *d/ίω e J / 4 , one must exploit (9.7). First of all, elliptic regular-
ity plus (9.12) implies that ω e Cm+1(Ad P ® P _ Λ 2 Γ * ) .

To obtain the L2^-estimates on *dAω the first step is to obtain the following
L°°-estimate on ω.

Lemma 9.4. Let M be as in Proposition 9.1. There exists λx > 0 and ξ < oo
// λ G (0, λx), [>4] = T(x, λ), ω ofteyj (9.7) and (9.12),

Proof of Lemma 9.4. The Weitzenbock formula for P_dA(P_dA)* (see [12,
Appendix C]) implies that

(9.13) d*d\ω\ - r\ω\ < z ( | * ^ ω | 2 + | P _ ^ | ) .

Here, r ^ 0 is uniformly bounded due to (9.4) and the fact that M has
bounded geometry. Because M has bounded geometry, the injectivity radius of
M is bounded away from zero by p > 0. For I G M , let βx( ) ^ C™{M) be
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identically 1 if dist(x, y) < \p and zero if dist(x, y) > \ρ. Assume that βx> 0
and that \dβx\ < 20P'1. Then

(9.14) f^ d vol(y) βx(y)(dist(xy y)Y2\*dAω\2(y) < ξλ.

Use (9.12) and Lemma A.3 of [29] to prove this. From (9.4) and Holder's
inequality:

(9.17) qn=
ίe

(9.15) [ dvol(y)βx(y)(dist(x - y))~2\P_FA

(9.12) with Lemma 5.2 and Holder's inequality establishes that

(9.16) ί d vo\(y)βx{y){άi$i{x ~ j O Γ ^ M < f ' χl/2-
JM

Now, multiply both sides of (9.13) by ^(-Xdis^x, ))" 2 and integrate over M.
Use the fact that (dist(x, ))~2 is (up to a constant) the Green's function for
d*d on M to order dist(x, ) - 1 . Then integration by parts and (9.14)-(9.16)
give Lemma 9.4.

Now, one can get L2

δ-estimates as follows: Let

?τδ i f τ < « ,

Contract both sides of (9.7) with qnω, and integrate over M. After integration
by parts, one has

(9.18)

By Lemma 9.4, and (9.4), (9.5), there exists λλ > 0 such that if λ e (0, λx),
then

(9.19) / qn\dAω\2 <&( <7>|2 + f λV<*>«.

With Lemma 9.3, it follows that 8λ > 0 exists such that if δ e [0, δx),

(9.20) iinN^fiiJ^I2-

(9.19) and (9.20) imply that \VSX > 0 exist such that if δ e [O,δJ and
λ e (0, λ :), then

/ qH\dAω\2 < ?λ2e^>
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with ξ independent of A and n. Taking n -> oo, above, shows that for δ and λ

as above,

(9.21) f eτδ\dAω\2^ξλ2eτ^x)δ.
JM

The L^s estimate for VA(*dAω) now follows by using the Weitzenboch

formula with Lemmas 5.2 and 7.5 on the equation

0 = j eτ8\P_FA + P_dA*dAω + P_{*dAω A *dAω)\2.

The details are straightforward and one finds that

(9.22) ί e^\vA*dAω)\2^ζ-λ2e^8,

with f, again, independent of (x, λ) e M X (0, λ x). The derivation of (9.22) is

left to the reader (see [28, §§4, 5]).

Assertion (2) of Proposition 9.2 is obtained by exploiting the fact that A is

flat and trivial on Λfλ = M\{y e M: dist(x, λ) > 2γ/\ }: Assertion (1) im-

plies that a = *dAω obeys the (elliptic) system

P_da 4- P_a A a = 0 and d*a = 0

on M λ . Meanwhile, (9.21) and (9.22) give uniform estimates on the L\.]oc

norms of a on Mλ. Since M has bounded geometry, the standard bootstrap

arguments give assertion (2). Here, one may have to adjust the numbers

δl9 λx > 0.

The final assertion of Proposition 9.2 is proved as in §3 of [30]. The

formalism there translates word for word over here.

Thus, Proposition 9.2, at its heart, comes down to the

Proof of Lemma 9.3. The proof of Proposition 8.8 in [28] translates almost

directly to the situation at hand. To use said proof, one must study the

operator

(9.23) KAδ = P_dA(e-τδ{P_dA)*erδ) on L2

s(AάP ® i>_ Λ 2Γ*M).

Via Weitzenboch formulae and integration by parts, it is easy to show that

KA8 is a closed, essentially self-adjoint, nonnegative operator on L\8 with

dense domain L\ 8. The key fact is

Lemma 9.5. Let M be an end-periodic, admissible 4-manifold and let δ e

[0 ,^) with δι > 0 given in Lemma 5.8. Let P -> M be a principal G-bundle

obeying (7.1). Let k e I m ^ : £ J / ( P ) -> Z) and let A <Ξsίk. Then KAδ has

pure point spectra with finite multiplicities in the interval [0, f(δ)), with ξ(δ) as

defined in Lemma 5.8.
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To prove Lemma 9.3 from Lemma 9.5, note that the only case of interest is

when ξA < ξ(δ), whence Lemma 9.5 implies that ξA is an eigenvalue of KA 8.

This fact, plus Lemma 5.8, allows one to carry the proof of Proposition 8.8 in

[28] to the case at hand, essentially verbatim. This is left to the reader.

Proof of Lemma 9.5. Suppose that KA δ has been shown to have pure point

spectra in an interval [0, v] c [0, ζ{8)). Let Vdenote the closed, linear subspace

of Llδ which is spanned by the eigenvectors with eigenvalues in [0, *>]. Let

K ± c / ί f denote the L\^-orthogonal complement to V. Define a bounded

quadratic functional o n K 1 by sending σ to

(9.24) J(σ) = f eτ8\e-τ8(P_dA)*eτ8σ\2.

Let

(9.25) ^^UT^wi
Let { σ,} c V1- be a sequence which obeys

(9.26) f e τ δ |σ,|2 = 1 and 7(σ,) -» vλ./

This last condition implies via a Weitzenboch formula that

1/2

^ ( i V ^ + lσ,!2)

is bounded uniformly in /. Then using (9.26) and the fact that vλ is an

infimum, one obtains the strong convergence of a subsequence of {σ,} (de-

noted ( σ j ) in L\.λoc(\άP Θ P_ A2T*). This subsequence also converges

weakly in the Banach space V1 to some σ e V± . (Lo,δ-orthogonally is

preserved by weak limits.)

Given ε > 0, choose n = n(ε) such that

eτδ\σ\2 < ε2.(9.27) jf

Then z(ε) < oo exists such that for all j > /(ε),

(9.28) [ e^oj 2 < ε 2 .

Let β = β(n) <= C^ir^in, oo); [0,1]) be such that β = 1 on T~\(n + 1, oo))

with β = 0 on i_(N) c Wn. Make H ^ l ^ independent of n. Write
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and observe, using (9.27) and (9.28), that

(9.29) (1 + zε)/(σ ;) > /(j8σ,.) + / ( ( I - jB)σf.) - zε,

with z independent of {σz} and of A. (Just use Holder's inequality.)

Write A = Ao + a with AQ e Es/(P) (Ίsfk and with | |α | | / 4 o < oo. Then,

using Kato's inequality plus Lemma 5.2 one finds n = n(A, ε) < oo such that

(9.30) J(βθi) > ί eτ8\e-r*(P_d)*eτ8βσi\
2 - zε for all / > z ( ε ) .

Then, (9.29), (9.30), and Lemma 5.8 imply that

(9.31) - zε.

Since ε > 0 was arbitrary, (9.26) and (9.31) imply the following: If vλ < ξ(δ),

then given ε > 0, there exists n(ε) < oo such that for all i > i(ε)

(9.32) / eτS\σ, 2 < ε,

which insures that {σ,} converges strongly in Llδ(AάP Θ P_ A2T*). Stan-

dard arguments now show that σ is an eigenvector of KA8 with eigenvalue vv

Since σ e K-1, one has ^x > v. This proves that AΓ̂  δ has discrete spectrum in

The same argument proves that the eigenvalues in [0, f(δ)) have finite

multiplicity. Indeed, the argument shows that any sequence of normalized

eigenvectors with a fixed eigenvalue in [0, ξ(δ)] has a convergent subsequence.

This can happen only if the eigenspaces are finite dimensional.

10. Moduli spaces: Boundary

In the case where M is a compact, 4-manifold with definite intersection

form, the moduli space used in [8] is diffeomorphic, outside a compact set, to

M X (0,1). The compact analogues of (9.6) and Proposition 9.3 provide a map

which induces the diffeomorphism. This is the "Collar Theorem" [12, Theorem

9.1]. Fintushel-Stern's argument [11] on compact M requires a compact moduli

space. In both cases, the "boundary" of the moduli-space is the crucial issue.

For the end-periodic analogue, one has

Proposition 10.1. Let M be an end-periodic, admissible 4-manifold with

positive definite intersection form on H2(K; Z). Assume that π^W) has no

nontriυial representations in SU(2). There exists δλ > 0 such that for all δ e

(0,δ x), the following is true: Let φ e V.

(1) Let P ^ M be a principal SO(3) bundle obeying (7.1). Let k = 2,3. Then

J?k(φ) is compact.
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(2) Let P = M X 5(7(2). Then there is an open set J f c Ji4(φ) with the

property that for some λx > 0, Jf is diffeomorphic to M X (0, λλ) and isotopic in

@A to the image of T:M X (0, λ x) -+ 38A of Proposition 9.3. // {[A;]}

c ι/# 4(φ) \Jf has no convergent subsequence, then for all n < oo,

The rest of this section contains the proof. To begin, normalize the inner

product on Ad P so that

(10.1) H 2 = - - i

I t r β ( σ σ).

This choice has the property that for [A] e Jt k(φ), one has

(10.2) ί \FA\
2 = \k\,

JM

if one uses the asymptotically periodic metric φ*g0 to measure norms on TM

and volumes on M. Henceforth, this will always be done, and with no explicit

notation.

In general, for k > 0, consider {[Aj]} ^Jΐk(<$>), a sequence of orbits of

self-dual connections. Suppose that

(10.3) lim I sup \FA \(X)\ = oo.

Theorem 8.31 of [12] is valid even on noncompact M as it is an essentially

local theorem on M. From Theorem 8.3 of [12], (10.3) is true only if

(10.4) k= ί \FA
JM

\FA

M

Suppose that {[Aj]} ^.Jtk{φ) is a sequence such that (10.3) is not true.
Either

' ' /-.π-o(10.5) lim lim f
n-*cc \ j->oc Jτ^n

-.

or not.

Lemma 10.2. Let M be an end-periodic, admissible 4-manifold with no

nontrivial representations of π^W) in SU(2). There exists 8λ > 0 such that for

8 e (0,8XX the following is true: Let φ e <€. Let P -^ M be a principal SO(3)
or SU(2) bundle which obeys (7J). Suppose that {[Aj]} e Jt\(φ) (for k > 0)}.

There exists (1) a self-dual connection A on P with jM\FA\
2 < k\ (2) a finite set

of points {xa} G M\ (3) a sequence {hf\ e C°°(Aut P\ M\{Xa}); and (4) a

subsequence {Aj} (now relabeled) such that {hjAj} converges on compact
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domains in M\{xa] to A in the Cm-topology (if φ is Cm). Suppose that (10.5)

holds. Now, the sequence {hj} can be chosen so that [A] & Jt/(φ) for some

I ^ [0, k]. In this case, n < oo exists such that

lim / eM\vAVA{A ~ HJAJ) f+\vA{λ- Λ,Λ,) f
j->ao «'τ~1((w,oo)) v

+ \(A-hJAJ)\2) = 0.

When (10.5) holds, I = k if and only if {xa} = 0, whence [hjAj] converges to
[A] in Jίk(φ\

Lemma 10.2 is the extension of the combination of Theorem 8.8 and

Theorem 8.31 of [12] to the end-periodic case. (See also [29, Proposition 4.4].)

Lemma 10.2 describes the situation if (10.5) is satisfied. When it is not, one

has

Lemma 10.3. Make the same assumptions as in Lemma 10.2 concerning M,

P, and δ. // {[Aj]} e Jfk(φ) does not obey (10.5), then

(10.6) lim ( lim ί \FAΛ > 4.

Lemmas 10.2 and 10.3 will be proved shortly; assume them for the moment.

Proof of Assertion (1) of Proposition 10.1. Since k = 2,3, this is now

immediate from (10.2-4) and Lemmas 10.2,10.3.

Proof of Assertion (2) of Proposition 10.1. Let λx be as in Proposition 9.2.

For some λ e (0, λ j , one can define, as in Chapter 8 of [12], the set of

self-dual orbits with scale size < λ. This is Jί'4 λ . With the techniques in §9, it

is straightforward to reprove the Collar Theorem of [8] (Theorem 9.1 of [12]) in

the present circumstance. The reader is encouraged to trace the argument

through. The result is some λ G (0, λ x) such that Ji'4λ is diffeomorphic to

M X (0, λ) and isotopic in J*4 to the image of the map T. Set J f = JϊAλ. If

{[ylj} <zJίΛ\jf has no convergent subsequence, then neither of (10.3) or

(10.5) can hold. Then, Lemma 10.3 and (10.2) imply that for any n > 0,

(10.7) lim j i I 2 = o.

By Theorem 8.8 of [12], the sequence [Aj] is gauge equivalent to one which

converges in Cm of compact domains to a flat connection on M. This implies

the final part of assertion (2).

Proof of Lemma 10.2. If (10.5) is satisfied, then a subsequence {[Aj]}

exists with the following property: Given ε > 0, there exists n = n(ε) < oo

such that for all j , Theorem 8.8 of [12] plus (10.6) implies that the following
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data exists: An integer n < oo, a subsequence {[Λy]}, and a sequence {#y} e

C°°(Aut PI τ-i((w,00))) such that {qjAj} converges strongly in the Cm-

topology on compact domains in τ"1((«, oo)). Further, the limiting connection

A' is self-dual. Theorems 8.8 and 8.31 applied to τ - 1([0, n 4- 1]) c M imply

that one has the following additional data: A smaller subsequence {[̂ 4y ]}, a

finite set of points {xa} e τ~ι([0, n + 1)), and a sequence (wy) c

C°°(Aut P | ( τ i([0 « + i)))\{xα}) such that {ujAj} converges strongly in the Cm-

topology on compact domains in τ - 1([0, n + l))\{jc α }. The limit A" is a

self-dual connection on τ - 1([0, n + 1)). (This uses the removable singularity

theorem [31].) There exists h e Cm(Aut P | τ -i ( ( n , π + i))) such that

h>A" = A' on τ~ι((n,n + 1)) .

Since the Stieffel-Whitney classes of P are preserved under the limits [26], the

data (A",A'\ h) defines a self-dual connection A on P, and from the data

{uj,qj}, one can construct [pj e C°°(AutP\ M^x } ) such that {PjAj} con-

verges to A in Cm of compact domains in M\{xa). (Argue by Theorem 8.8 of

[12].) The connection A is self-dual, and weak-lower semicontinuity implies

that

/ \FA\
2<k.

To prove the remaining assertions of Lemma 10.2, one must use (10.5) to

find a gauge for each A- which gives uniform decay in the weighted spaces.

This is a multistep bootstrapping process. The first step is the next lemma. This

lemma is also crucial for the proof of Lemma 10.3.

Lemma 10.4. Let U be an oriented open noncompact, Cm-Riemannian

4-manifold (m » 2). Let Q c U be a smooth submanifold with compact closure,

Q c U. Let P -> U be a principal G-bundle. There exists ε < 0 and ζ < oo

which depend on £/, Q, P, and a Cm neighborhood of the Riemannian metric on

U with the following significance: Let A be a self-dual connection on P with

lu\FA\
2 < ε. Then heCm + ι(Q;G) exists such that

sup < Σ I vf o (/i*^ - Γ) I / < ? / \FA\
2,

Q l / = o ) J u

where Γ is aflat connection on P\Q.

Proof of Lemma 10.4. This is essentially Theorem 8.8 of [12], but one must

keep track of the norms involved. To begin fix a locally finite, open cover of U

by geodesic balls {Ba} such that the balls of 1/2 the radius, {Ba}, cover U. By

[32], there exists {ha e Lj(lso(Ba X G,P\ BJ)} such that
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obeys dfaa = 0 and i*(*aa) = 0. Here, i: dBa -> Ba is the inclusion and Γo is

the product connection on 2?α X G. Further, if Ba Π Q Φ 0 , then

/. |fj!.
B

Since Γo 4- aa is self-dual, aa satisfies uniform C "'-estimates in the ball of

radius 3/4 (radius (Ba)). These C "'-estimates are bounded by

(10.8) U \FA\
2.

In Ba Π Bβ,

(10.9) aa = haβaβh-a

ι

β + haβdh'a
ι

β

with haβ<E Cm + 1(BanBβ\G). Due to (10.9), dhaβ obeys uniform Cm-

estimates in (Ba Π Bβ) Π β; these with bound, (10.8). The data {Ba, haβ, aa)

defines a pair: principal G-bundle, ?' -> β; connection on P'. A priori, P' is

isomorphic to P (see [12, Theorem 8.8])

Arguing as in the proof of Proposition 3.2 and Corollary 3.3 of [32], one

constructs pa e Cm + ι(Ba;G) for those Ba which intersect such that (1) pa

obeys C w + ^estimates in Ba with bound by (10.8), (2) in (Ba Π Bβ) Π Q,

PahaβPβ1 = zaβ i s constant. If 5 α n 2 = 0 , set pα = 1. The data {Ba n

2, zα/8} defines a flat connection on a bundle P"\Q isomorphic to P'\Q. Call

this connection Γ. The data {B Π Q, zaβ, paaap~a

x 4- ρadp~1} defines a connec-

tion A on P " which obeys

sup{£ Ivf^U-n

this follows as all the relevant pa and aa estimates are bounded by (10.8). The

pair ( P " , A) is isomorphic (as bundle, connection) to (P\Q, A). Pulling back

via such an isomorphism gives Lemma 10.4.

To apply Lemma 10.4, take

(10.10) U=W_ι\JNW0UNWl9 and Q = Wo.

Use the periodic metric, g0, for TU. Let ε > 0 be as given in Lemma 10.4 for

P = U X G, G a compact Lie group.

Now choose k < oo according to the following criteria: If n > k, then the

asymptotically periodic metric φ*g0 on Un = Wn_xΌ N Wn\J N Wn + ι is C"1-

close enough to g0 for Lemma 10.4 to apply for U = t/w, β = W ;̂I, P = Un X G,

and the given ε, above.
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Lemma 10.5. Let M be an end-periodic ̂ -manifold such that ΊT^W) has only

the trivial representation into G. Let ε, k be as defined in the previous para-

graphs. There exists p < oo and ελ > 0, with the following significance: Let A be

a self-dual connection on End M X G. Suppose that n ^ k exists such that

Then h e Cm + I(r'1([n + 1, oo)); G) exists such that for j > n + 1,

Σ \v^(h*A-Γ)\ U p / |FJ2,
, /=o / JVjvυJ+ι

where Γ w the product connection on τ~\[n + 1, oo)) X G.

PAΌO/ of Lemma 10.5. By Lemma 10.4, there exists hj e C w + 1 ( ^ ; G) for

each ; > « + 1, such that (10.11) is obeyed with wy replacing h. The assump-

tion on πλ(W) insures that the flat connections on W X G are trivial. On Wp

set a} ΞΞ Λ*^ - Γy. On ϊ ^ Π Wj+V define Λ y J + 1 e C W (P^ Π »^.+1; G) by the

cocycle condition

(10.12) aj = hJJ+1aJ+ιhj}j+ι + hJJ+ιdh])+ι.

(10.11) and (10.12) provide bounded Cm +^estimates for each /z y J + 1 with

bound

(10.13) f/

For εx > 0, and small, the argument which proved Lemma 10.4 can be

repeated with the data {hjJ+ι} to produce pj e Cm+ι(Wβ G) obeying Cm+ι-

estimates bounded by (10.13) such that pjhjj+ιpjlι = zJJ+1 in Wj U Wj+ι.

Again zJ+ι = constant. Now, change pj to

Pj^PjZjJ+i ' " Z«+M

Then dpj obeys Cm-estimates bounded by (10.13), and pjhjjJrlρ~lι = 1. On

Wj, set h = pyλy. Check that h does as required.

An important remark to make here is that the assumption on πx(W) is

critical in the preceding argument.

To obtain the rest of Lemma 10.2, it is necessary to fine tune the gauge

transformation h of Lemma 10.5 in order to obtain uniform weighted esti-

mates. Let A, h be as in that lemma and set a = h*A - Γ. Since T: Wn -»

[n, n 4- 1], (10.11) proves that if j > n + 1, then

(10.14) / e«[t\vPa\2)*ζ[ e«\

whenever the right-hand side, above, is finite.
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Lemma 10.6. Make the same assumptions on M as in Lemma 10.5. There
exists k < oo and 8X > 0, and for 8 e (0, δx), there exists ε(δ) > 0 and
z(δ) < oo with the following significance: Let A be a self-dual connection on
EndM X G such that for some n > k,

f^JFA\
2<ε(8) and f^jτδ\FA\

2<κ>.

Then s G Cm+\τ-\[n + 1, oo)); G) exists such that a = s*A - Γ G L\8 and
it obeys

(10.15) j \a\2 + sup \a\2 < z j \FA\
2,

and on τ([n + 2, oo)),

(10.16) e-τδdfeτδa = 0.

Proof of Lemma 10.6. The proof is simplified under the assumption that
bλ(K) = 0. Since the question here is on EndM, one can always arrange by
surgery in K\N that H^K ΈL) = 0. This will maintain the admissibility of
the manifold.

First, let ε, k be as in Lemma 10.5, and make sure that ε(δ) < c. Let h be as
specified in Lemma 10.5. Look for s of the form qh. Let b = h*A - Γ. Then b
obeys (10.15) and a will be given as

a = qbq~ι + qdq~ι on τ~ι([n + 2,oo)).

(10.16) is now an equation for q. To prove that a solution to (10.15) and
(10.16) exists, the continuity method will be used. Thus, consider a family
{qt:t G [0,1]} c Cm+ι(M;G) such that

(10.17) bt = tβqtbq~ι + qtdτq~x

is in Llδ(T*M Θ ©) and solves

(a) e-rδdferδbt = 0,

( 1 0 ' 1 8 ) (b) / \bt\
2 + sup|Z>,|2 < z

where β G C°°(M) is 0 on r^flO, « + 1]), 1 on τ-χ((« 4- 2, oo)), and \dβ\ < 20.
The goal is to find the conditions on δ, ε2(δ), and z = z(δ) under which
(10.18) is solvable for all / G [0,1]. For this puφose, set

Λ = {/ G [0,1]: (10.17) and (10.18) are solvable for qt}.

At t = 0, q0 = 1 solves (10.17) and (10.18), so Λ Φ 0 . Elliptic regularity
readily establishes that Λ is closed. If Λ is open, then Λ = [0,1]. One may
assume that the right-hand side of (10.18) is nonzero. Otherwise, A is flat on
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τ~\[n, oo)). Then A is the trivial connection on each W} if j > n (due to the

assumption on π^W)). Then Van-Kampen's Theorem [18] implies that A is

trivial on τ~ι([n, oo)). Or, argue as in the proof of Lemma 10.5.

(10.14) insures that βb e Ljδ(T*M ® ©). So, by the implicit function

theorem with Lemma 5.2, one can find some t0 > 0 such that [0,t0] e Λ. Let

0 < / e Λ. Then the implicit function theorem provides an open interval

(t - v, t 4- v) such that for all λ e (t - v, t + *>), (10.17) and (10.18a) are

solvable for qλ, but with bλ obeying

(10.19) / \bχ\
2 + s u p \bλ\

2 < 2zi \FΛ\\

For a better estimate for bλ, one must use the self-duality equation which

implies that

(10.20) P_dτbλ = P_{-bλ Λbλ + qλ(tdβ A b + tβ(tβ - 1)6 Λ b)q?).

Together, (10.18a) and (10.20) will provide the required estimate. To obtain the

estimate, note that one can solve for ω e L]8(P_ A2T*M Θ ©) n C m + 1

which is Lg-orthogonal to ker((P_J Γ )* n L2

0(P_T*M ® ©) and satisfies

(10.21) = p _ ( _ f t λ Λ ^ + q ^ t d β Λ ft +

This is due to Lemma 9.5. (Here, one must choose δ small as determined in

said lemma.)

The right-hand side of (10.21) is quadratic in bλ. Thus, ω will obey

λ-independent estimates. First, contract both sides of (10.21) with ω and

integrate over M. Do not use a weight. Integrate by parts and use Lemma 9.5

to obtain (for δ sufficiently small)

(10.22) / \FA

2 ) \ ί \FA\
2\

where (10.11), (10.14), and (10.19) have been used to estimate bλ and b.

Now, bootstrapping in a straightforward fashion (as in the proof of Lemma

9.4) gives, with (10.11), (10.14), (10.19), (10.21), and (10.22), the estimate

ί e~τδ(P dτ)*eτδω\2 + sup \e-
τδ(P_dτ)*eτδω

JM M
τ ) \ 2 p

JM M

(10.23) , ,

\FΛ2 + ί F/2
FA FA
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(10.19a), (10.20), and (10.21) imply that

(10.24) bλ = e-τ8(P_dτ)*eτ8ω,

which is a consequence of Proposition 6.1 since, bλ{K) = 0 by assumption.

Choose z = 2ξ, with ξ as in (10.23). Then, choose εx < \{Az2 + I ) " 1 . With

these choices, (10.23) and (10.24) verify that Λ is open in [0,1]. This proves

Lemma 10.6.

Lemma 10.7. Under the assumptions of Lemma 10.6, there exists k < oo and

δλ > 0, and for δ e (0,6^, there exist ε(δ) > 0 and z(δ) < oo with the follow-

ing significance: Let A be a self-dual connection on End M X G such that for

some n > k,

f | f J 2 < e ( δ ) and f e^\FA f < oo.

Then for Q > 4,

ήg \FA\\
Proof of Lemma 10.7. Require that k, δ 1 ? and ε(δ) be such that Lemma

10.6 holds. Let a = s*A - Γ, and let v = βa, with /? now obeying β = 1 if

T > n + 3, β = 0 if T < n + 2, and |d/ί| < 20. This i; obeys

(10.25) e-τδdfeτ8υ = δ(dβ, a), P__dτυ = P_(dβ A a - a A υ).

Due to Proposition 6.1 and Lemma 9.5 there exists ζ(δ) > 0 such that

(10.26) f eτ8(\e-τ8dfeτ8υ\+\P_dτv\2)> ξ(δ) [ eτ8\v\2.

Together, (10.15), (10.25), and (10.26) imply that

(10.27) U(δ) - f \FΛ | 2 ) / e^ < £*"«/ \FA \\

Choose e(δ) < hζ(δ) so that (10.27) yields the uniform estimate

(10.28) ί e*8\a\2 < ζ.e"8 ( \FA\\

Now, let βQ e C^iM) obey^ ρ = 1 if T > n + ρ, ^ Ξ 0 if r < Λ + \Q, and

l ^ ρ l < ^ δ " 1 - H e r e ^ ^ke ρ > 4. Then υQ = βQa obeys (10.25) with (υQ,βQ)

replacing (υ, β). In place of (10.28), one obtains

(10.29) / e^\a\^j±-2e»sf \FA\\
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From (10.25) and (10.29), one readily obtains by bootstrapping

(10.30) / FA^ / \FA

Q J

The lemma is a direct consequence of (10.29), (10.30), and Lemma 5.2.

Proof of Lemma 10.2, completion. (10.5) plus Lemmas 10.5 and 10.7

provides p < oo and for each Ai9 some qx , e Cm+I(τ~ι([p, oo)); G) (with

G = SU(2) or SO(3)) such that at = qfAt - Γ obeys for Q > 1

(10.31) / e"( £ |vf^.|2) < £ ί τ ^ / l^f

where m > 2 is assumed. It follows from (10.31) (cf. [29]) that a sub-

sequence of {^4,} (now relabeled) has the property that {at} converges on
τ~ι([p + 1> o°)) i n t n e norm

V 1/2

, / = 0

Let a denote the limit. Then a = h*A - Γ for h e C w + I (τ- 1 ([/? + 1, oo)); G).

Set ,̂ = Λ"V/ The first part of Lemma 10.2 provides

such that {ufAi — A] converges outside of the finite set of points {xa} c

τ"1([0, p]). By altering each st- by a constant group element, one can arrange

that {SiUj1} converges in Cm+I(τ~ι([p + I, p + 2])) to 1. Thus, for i suffi-

ciently large, one can deform st over τ~ι([p + 1, p + 2]) to equal wy there.

Call the resulting gauge transformation /*,. The set {/*,} has the required

properties.

Proof of Lemma 10.3. According to Lemma 10.2, there exists a self-dual

connection A on M with

(10.32)

and with the following additional properties: A subsequence of {Aj} (now

relabeled) plus a sequence of gauge transformations, {Λy}, exist such that

{hJAj} converges to A in Cm+ι(M\ finite set of points). (This is convergence

on compact subsets of M \ finite set.)

Due to (10.32), given ε > 0, there exists n < oo such that

(10.33) jMFj2<ε.

Choose n so that the finite set above does not intersect τ~ι([n, n + 3]).
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By assumption, P \ EndM = End M X G with G = SU(2) or £0(3). If G =

SO(3), lift all connections to the double cover, P = End M X SU(2).

Lemma 10.4 provides A e C m + 1 ( ^ + Γ > 5^/(2)) such that

(10.34) sup £ Ivf7)(A*^ - Γ) | Ί < ξe.
K+i \ / - 0 /

Here, because ^ ( W ) has no nontrivial representation in SU(2), Γ is the flat,

product connection on Wn+ι X SU(2).

For all y sufficiently large, (10.34) implies that

(10.35) sup £ \v^{h*hμj - Γ) | Ί < fε.
M ; \ / O /

Now, each A- and is self-dual. Thus, given ε > 0 and j < oo, there

/

+ B + 1 ; St/(2)) such that

exists Q(j)< oo such that

(10.36)

Lemma 10.4 supplies ί y €

Again, Γ is the trivial connection (by definition of s/k, this time.) Let

βn e C°°(M) obey βn+ι = 1 if r > /i + 2, /?M s 0 if r < n + 1, and | ^ r t + 1 | <

20. For 7 large, define a connection (and principal 5/7(2) bundle) on

by specifying

(10.38)

(1 - β« on r-Hh + β, Λ + Q + 2]).

By construction, Aj = Γ on Wn and on Wn + Q+2. Now, furl up BJ

ε to obtain the

closed manifold 7/—identify N _ in Wn with N + in Wq+n+2 as in Figure 3.

% I

identify ^ " " V

Λ̂ ^

e

+Q+2

FIGURE 3
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The connection, Aj descends to 7/. Notice that for j large enough,

(10-39) j\p-Fλιf<U,

(10.39) and (10.40) imply via the Chem-Weil formula that

(10.41) f \FA | 2 < f ε mod4.

(10.40) and (10.41) imply Lemma 10.3.

11. The proof of Theorem 1.4

Let P = M X SU(2) with M an admissible, end-periodic 4-manifold. As-
sume that irx(M) has only the trivial representation in SU(2), and that
b^iK) = 0. For a generic, asymptotically periodic metric on TM, Jί4 c <%A is
nonempty (Proposition 9.2). It is a smooth, 5-dimensional manifold away from
the orbits of reducible connection (Proposition 8.2). By a local perturbation,
one may assume that a neighborhood of each reducible orbit in Jί A is
diffeomorphic to the cone on CP2 (minus the vertex) (see Proposition 8.3).
Proposition 9.1 catalogues which reducible orbits appear in Jί4. Finally,
Proposition 10.1 describes the ends of Jί' A.

Donaldson's argument in §3 of [9] will be adapted to the end-periodic case
to prove Theorem 1.4. Rather than translating the constructions of §§2, 3 of [9]
to this case, it is simplest to compactify M and the moduli space Jί A. Then
Donaldson's argument can be used directly.

To compactify Jί'4, consider the following function on Jί A\ send [A]^JίA

to

(11.1) f([A])= ί β\FA\\

where 0 < J 8 G CQ°(M) is identically one on K and zero on End M\ Wo. It
follows from Proposition 9.3 that / is nonconstant and that

(11.2) i n f / = 0 .

The function / is smooth on JίA Π ̂ 4 and continuous on JίA. As the orbits
in JίA of reducible connections are isolated (Proposition 9.1), one can find
arbitrary small ε > 0, such that (/"1( ε) ^JίA) C ^ 4 n ^4> where it is a
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smooth, 4-dimensional submanifold. Fix such an ε and set

(11.3) Jί'

By construction, Jί* is a smooth 5-dimensional manifold with boundary.
Note, Jί* is not compact. Lemma 11.1 makes rigorous the intuitive notion
that Jί\JίE consists of orbits of connections whose curvatures on K are
pointwise small.

Lemma 11.1. Given ε > 0, there exists ελ > 0 such that if [A] e f~ι([0, εj)
CΛJiA, then

sup \FA\(x) < ε.

Proof of Lemma 11.1. This follows from Lemma 10.4.
Let Σ c Wo be the inverse image of a regular value q e [0,1] of T. Let

Σn = τ~1(q + n) be the translate of Σ. It is convenient to compactify M by
first cutting along Σn to obtain the compact manifold with boundary,

Set Qn = ί/M U Σ(-t/w). The number « will be determined from ε of Lemma
11.1.

The family of orbits of connections Jί* defines a like family on Qn. This
new family is constructed as follows: via translation, [Ln = M\Un_2}f=2

 a r e

all mutually diffeomorphic to Lo; the diffeomorphism is Tn.
Let Γ denote the product connection on Lo X SU(2) and let

Let

(GL 3

2

; l o c(L 0; 517(2)):/ e« ί
JLo 7 .

Fix x G Lo, and let Px denote the fiber {JC} X SU(2). &(L0) acts on Px by

(11.4) Λ'(L 0) = ( J / ( L 0 ) X PX)/9(LO).

A repetition of the proofs of Lemmas 7.2 and 7.3 shows that SS\LQ) is a
smooth Banach manifold. Note that &9'(L0) admits a smooth SO(3) action
with fixed point [Γ, 1], 1 e SU(2).

Now, back on M, let xw = Tn(x) e Lw and let ^ e n denote the inverse
image of J(* under the projection (J?/4 X PXn)/&4 -• ^ 4 / ^ 4 (see §7). Away
from the reducible orbits, Jίm -* Jί2 is a principal SO(3) bundle.
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By restriction to Ln and via pull-back by Tn, one obtains a smooth, SO(3)

equivariant map

(11.5) jn:Jl*»-> 3\L0).

Lemma 11.2. Given a neighborhood 3 of [Γ, 1] G 9S\LQ) and ε > 0, there

exists m < oo such that for all n > m, jn{Jίεn) c 3.

Proof of Lemma 11.2. This is because each A G s#4 is asymptotic to the

trivial flat connection on EndM. See also Lemma 10.4 and the proof of

Lemma 10.3.

Now, choose 3 to be contractible onto [Γ, 1]. It is possible to make this

retraction SΌ(3)-equivariant. Indeed, given v > 0, but small, a neighborhood

3ι{v) of [Γ, 1] is diffeomorphic to

( l i 6) {* L ^ ( L ° ) x

e~r8d*er8a = 0 and I*( Λ) = 0},

where z:Σ (= 3L0) -> Lo. The group SO(3) = SU(2)/{±1} acts on 3 by

(Λ, β) -> hah'1. Retract 3 onto [18] by sending (t, a) e [0,1] X ^ to (1 - /)α

e ^ . This SΌ(3)-equivariant retraction is used to construct the compactly

supported (on M) moduli space described below:

Lemma 11.3. Given ε > 0, there exists a smooth homotopy h : [0,1] X Jίε ->

^4/^4 andn(ε) < 00 with the following properties:

(1) λ(0, •) = identity.

(2) // \A\^Jf\ there is a lift of h ( ,[Λ]) to a path h ( ,Λ):[0,l]->

s/4 which is the constant path when restricted to T ' ^ O , n - 1]).

(3) A(l, yl) w gauge equivalent to the trivial product connection on T^fl^oo))

X SU(2).

(4) For each /e[0, l ] , A(/,uTe) Π ̂ 4 is diffeomorphic to Jίε CΛ B. By

implication,

h(t,Jΐε n(s/4\sΐ*)/&4) c (sfA\s/f)/9A for all te [0,1].

Proof of Lemma 11.3. Choose m < 00, sufficiently large so that jn\Jtεn ->

^(y) for all Λ > m and for y small. Let βn G CO°°(M) obey j8π = 1 on

T-^tO, Λ - 1]) and βn = 0 on T " 1 ^ , 00)). Let / G [0,1] and let [A, I] G ̂ ε r t .

Then a unique g(A, I) G L^;g(LM, S£/(2)) exists such that g(^)(xM) = / and

(11.7) g{A)*A = T + a{[A}) on LH9

where (TM)*α is in 3 of (11.6). Define a connection .A(/,(Λ, /)) on M X 5ί/(2)

by setting

h(t,(A9l)) = A onτ-ι([0,n- 1]),

Λ ( r , ( ^ , / ) ) = Γ + ( 1 - / )α + /A,£i o n L Λ .
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Now set h(t,[A]) = [h(t,(A,l))]. It is straightforward to check assertions
(l)-(4) of Lemma 11.3; this is left to the reader. The only difficulty comes in
checking that h(ϊ, [A]) is an orbit of a reducible connection if [A] is. If A is
reducible, then φ e L\.Xoc{M) X su{2) exists satisfying v^Φ = 0. The converse
also holds. Let ψ = g(A, l)Φg(A, l)~ι over Ln. Then dψ + [a, ψ] = 0 on Ln.
Since T"*a e 2, it follows that

(11-8) i ( </ψ) = 0,

where in:Σn -> Lπ. Also,

(11.9) e-τSd*eτ8dψ - *(a Λ *dψ - Jψ Λ *α) = 0.

Equations (11.8) and (11.9), Lemma 5.2, and the maximum principle imply
that each component of ψ (as a map of Ln into su(2)) is constant on Ln. Thus,
Jψ and [α, ψ] are both zero on Ln. The conclusion is that

ψ = φ onτ-\[0,n-\]), ψ = ψ on Ln

is covariantly constant for h(t,(A,l)) for all t e [0,1]. Thus, λ(/,[4]) is the
orbit of a reducible connection if and only if [A] is.

Given ε > 0, let Jfε = A(l, ^ ε ) with h as per Lemma 11.3. This is a family
of orbits of compactly supported connections in ^ 4 . This family defines a
family of orbits of connections on a principal SU(2) bundle over Qm if
m > n(ε) 4- 2 with n(ε) as given in Lemma 11.3. The construction starts by
constructing, as in the proof of Lemma 7.1, a principal SU(2) bundle P' -> ()m

with Pontrjagin number 4. ("Instanton" number 1.) Let s#(P'\ 9(P') be the
space of L^-connections and Z^-gauge transformations on P'. If s/*(P') c

are the irreducible connections, then

is a smooth Banach manifold [12, Chapter 3]. The space Jk* automatically sits
inside s^{Pf)/^{Pf). Indeed, let [A] e J K Then the unique (up to multipli-
cation by a constant h e 5^/(2)) g(>l) e L2;δ(Lw, 5(7(2)) exists such that

^ = Γ on LΛ + 1.

Define a bundle with connection (Pj, Λ') over g m by writing Qm = AΓ,?+2 U
(Qm \Kn+ι) and then specifying that

m ^ \ ^ + i X SU(2),T).

The clutching function is g(A). The isomoφhism class of (P^, ̂ 4') of a bundle
with connection defines a point in s/(P')/&(P'). This defines a continuous,
1-1 map, Ψ \Jί* -> s0{P')/<S(Pf\ which (due to Lemma 11.3) maps orbits of
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reducibles to orbits of reducibles and which is an embedding away from these

orbits.

For future use, it is worth digressing here to indicate which orbits of

reducibles are in Jίε. According to Proposition 9.1, the orbits of the reducibles

in Jίε are in 1-1 correspondence with the set of pairs { + / e H2(M,Z):f /

= 1}. Since an orbit in Jiε restricts to T " 1 ^ + 1, oo)) as the orbit of the

product connection, only the pairs { + / e H2(Kn + ι;Z):f / = 1} can corre-

spond to reducible orbits in Jίε. Here, it is illuminating to remark that

according to Lemma 5.7, the homomorphisms H2(KhZ) -» H2(M,Z) for

/ > -1 are injective, so there is no ambiguity involved in labeling orbits of

reducibles in Jίε by classes in H2(Kh Z). Notice that Lemma 5.7 also implies

that for / e [-1, n + 1], the homomorphism H2(KhZ) -» H2(Qn+1\ Z) is also

injective; this verifies that reducible connections on M which are flat on

τ~ι((n + 1, oo)) can be extended over Qn+Ϊ as reducible connections. Finally,

since ^(Λf) does not have nontrivial representations in SU(2), it does not

have them in Sι either. Hence, Hλ(M\ Z) = 0. Thus, the group H2(M; Z) is

free abelian. By Lemma 5.7, the inclusion homomorphisms, i/c

2

o m p(M, Z) ->

H2(M Z), {i/c

2

omp(^/; Z) -> H2(M; Z ) } , ^ are injections. Hence, H2(M; Z)

and H2(Kh Z) are free abelian groups too. Because the intersection pairing on

H2(Kh Z) is positive definite, the number of pairs { ±f e H2(Kh Z ) : / / = 1}

is at most rank H2(KhZ), with equality only if the intersection pairing is

unimodular and diagonalizable over Z.

From ^ # ε , one now constructs a 5-dimensional manifold with boundary,

Jίελ c £%(P'). Before starting, note that Proposition 10.1 provides a subset

j f ε (zjfε such that J?ε\Jfε is compact and Jfε is diffeomorphic to a

domain with smooth boundary in M X (0,1). Proposition 9.2 provides λ 2 > 0

such that

For λ e (0, λ 2 ) , construct a manifold with boundary, Jίελ <^Jίε, in the

following way: Take the set

(M X {λ} C\Xε) u(/'1(ε) C\(Jlε\Xε)) U(f-ι(ε) Π M x[λ,l))

in Jίε and smooth the corners where f~ι(ε) intersects MX {λ} in Xε\

smooth these corners away from K X {λ}. The resulting space is a smooth

4-manifold which is denoted Bελ (see Figure 4). The interior of Bελ is a space

which is a manifold away from the orbits in Jtε of reducible connections. By

Lemma 11.3 and Proposition 9.1, each such orbit has a neighborhood which is

diffeomorphic off of the reducible's orbit to the cone on C P 2 minus the vertex.
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= Beλ

FIGURE 4

By cutting each cone, one obtains the manifold with boundary JtεX. The

boundary of Jt*x is the disjoint union of

Bελ U ι CP 2 ,

with / < rank H2(Kn + ι; Z).

Lemma 11.4. For ε and δ > 0, but small, and for n < oo but sufficiently

large, the manifold Mελ, above, is oriented.

The proof of Lemma 11.4, and the remaining lemmas in this section, will be

deferred to the section's end.

By construction (see Proposition 9.2 and Lemma 11.3) the image of K X {λ}

in JίεX is homotopic (in fact, isotopic) to the image in @(P') under the map

T of §9. (Because the connections in the image of T are trivial on End M, T

maps K X (0,1) into @{P').) The map T: K X (0,1) ^ @(P') is the obvious

restriction of T: Qn + ι X (0,1) -> @(P') (see [28], [30], [12]).

The topological significance of the map T is described in [9, §3]. In [9],

Donaldson defines a map,

with the property that T* °μ:H 2 (Q n + ι ; Z) -> H2(Qn + ι; Z) is Poincare

duality. (Here, and henceforth, T is to be restricted to Qn + Ϊ X {λ}.) To

exploit T and μ as did Donaldson, the relationship between the cohomology of

dJ?ελ and that of K needs investigating.

Let α G H2(K,Z). The inclusion i : K -> Qn + ι induces z*α e H2(Qn + ι,Z).

By Alexander duality, Γ * f i ^ α £ i / 2 ( g n + 1 , Z ) comes from a class α e

H2

omp(K; Z) which is Poincare dual to a [17].

L
p

Let i:K -> 3 ^ ε λ and let J:dJfελ -+ @(P') denote the obvious inclusions.

Then / induces a monomorphism (Lemma 5.7),
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Lemma 11.5. For ε, λ > 0, but small, and for n < oo, but large; one has for

all a G H2(K\Z\

Accept for the moment this lemma as fact. Let a,β^ H2(K\Z). Then
ά j e H^omp(K; Z), their Poincare duals, can be represented by cocycles which
vanish off of a compact set in K. By Poincare and Alexander duality,

(11.10) a β=(lάUiJ,ζ),

where ξ is the generator of H4(Bελ;Z) and ( , ) is the usual pairing of
cohomology with homology. By Lemma 11.5, one has

(11.11) a - β = (J*μi*a U J*ψiΦβ,ξ)'

Using the homology of Jfeλ, (11.11) implies that

(11.12) a β= Σ μ ( ' « )Uμ(

Here, Σ' means to sum over the set of pairs {±e e H2(Kn + ι; Z): e e = 1}
which label the orbits of the reducible connections in Jt\

By Lemma 2.27 in [9] (see also §III(ii) in [9]), (11.12) equals

(11.13) a'β=Σ'(±)(<*'e)(β-e),

where the sign of each term is analogous (but see [10]).
Since the intersection pairing on H2(K; Z) is nondegenerate, the number of

terms in Σ r must be at least rank H2(K\ Z). One has additionally,
Lemma 11.6. Let Λ_x c H2(Kn+ι;Z) denote the free abelian group that is

generated by the set of pairs { ± e e H2(Kn+x; Z): e e = 1} which contribute to
Σ'. Then άimA_1 = dim(H2(K;Z)X H2{K\ Z) c A_v and the intersection
pairing on A_x is unimodular and diagonalizable over Z.

As a remark, if the intersection pairing on H2(K; Z) is unimodular, then it
follows that H2(K; Z) = Λ^.

Proof of Lemma 11.6. Since H2(N; R) = H^N; R) = 0, it follows by
Meyer-Vietoris that

and this splitting is respected by the intersection pairing. Thus

(11.14) A_X®R = H2(K;R).

Since A_x is generated by primitive elements, it follows from (11.14) that
H2(K\Z) c A_v Of course, from (11.14), H2(K;Z) and A_x have the same
dimensions. Finally, since the intersection pairing on A_λ is positive definite,
and A_λ is generated by elements with square 1, the intersection form on A_λ

must be unimodular and diagonalizable.
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To prove that the intersection form on H2(M;Z) is unimodular and

diagonalizable one need only replace K in the preceding arguments by

Ko c Kλ c etc. This defines free abelian subgroups Λ _ 1 c Λ o c Λ 1 c

• c H2(M; Z) with the property that

lim ΛΛ = i

and, for all n, the intersection form on An is unimodular and diagonalizable.

In this sense the intersection form on H2(M\ Z) has these same properties.

The proof of Theorem 1.4 is completed now by proving Lemmas 11.4 and

11.5.

Proof of Lemma 11.4. The orientability of JίzX is measured by the first

Stieffel-Whitney class of its tangent bundle. Since JttX is diffeomorphic to an

open subset of JίA, one could show that JίεX is oriented by proving that

w1(7L#4) = 0. By construction, TJtA is the restriction to Jί'4 of the ΛΓ-theory

class (in K(&4)) of the index bundle for the ̂ -parametrized family of elliptic

operators {(P_dA,e-τ8d%er8):[A] e SSA) [3]. One could compute wx for this

^-theory class directly. But, since the computation for such an index class is

available on compact M [9], [12], it is simpler to argue as follows: The

eigenvalue estimates from Lemmas 9.3 and 9.5 with the obstruction analysis in

[30, §§3, 4] (see also [9]) when applied to the sort of grafting done here show

that (when n is large) the class of 7 l # ε λ in the ^-theory of M*x is the

restriction to Jί^ of the class in K(8{P')) of

(11.15)

Here, index ( ) is the formal difference of finite-dimensional vector spaces,

as [A] varies in £#{P') (see [3]). The R3 bundle in (11.15) is associated to the

canonical principal SO(3) bundle

where q e Qn + ι is a fixed point. The integer / in (11.11) is fe^(βrt + i) -

bι(Qn+ι), the number of anti-self-dual harmonic 2-forms on Qn+ι minus the

number of harmonic 1-forms on Qn+1. (b^iQn+i) grows linearly with n, while

bι{Qn+ι) is independent of n.)

(11.15) implies that

(11.16)
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Now notice that πx(@(P')) = (1) [12, Chapter 5] so ^(Index^)) = 0 and

(11.16) implies that Jί*λ is orientable.

Proof of Lemma 11.5. Let Kx = K U N Wo U N Wv Since Kλ c g n + 1, and

since T *μ is Poincare duality, one has

In cohomology, one has the exact sequence (cf. the chapter on Alexander

duality in [17])

(11.17) - # c o m p ( * i ) - H\B*) Λ H2{B*λ - Kλ) -> .

To prove Lemma 11.5, one must show that p(J*μi#a) = 0. By Alexander

duality, it is sufficient to check that ρ(J*μi*a) pairs to zero with all classes in

H2(Bελ, Kλ). Let V = £ e λ - (Kλ \ Wx). Thus V Π Kx = Wλ and by excision,

Thus, a class c e H2(Bελ, Kλ) can be represented by an embedded 2-manifold

# c V with 3.R c Ĥ p However, Hλ(W,Z) = 0 since π^W) has no nontrivial

representations in SU(2). Hence, one can assume that dR = 0.

To evaluate the pairing (/*μ/+α, /?), go to Donaldson's definition of μ in

[9, 2]: let Σ c AT be an embedded surface which represents α in H2(K\ Z). A

connection on P' defines, by restriction, a connection on the principal SU(2)-

bundle P' \ Σ - Σ X S£/(2). The manifold Λ parametrizes a family of orbits of

irreducible connections on P''. By perturbing R, one may assume that the

induced family of orbits of connections on P'\Έ are all irreducible. To each

[A] G R, one associates a Fredholm operator, the Dirac operator on Σ twisted

by P'\Σ Xsυ(2) C 2 . The association of [A] ^ R to this Fredholm operator

defines a continuous map, ψ:R -> #£/ [3]. Here J5ί7 = BU(oo) is lim BU(n).

According to Donaldson,

where cx e H2{BU, Z) is the universal first Chern class. In [20], U. Koschorke

proves that (ψ*c1?JR> = 0 if the kernel and cokernel of the twisted Dirac

operator on Σ vanish for each [A]£ R. The Dirac operator in question has

index zero, and the kernel and cokernel vanish for the product connection on

Σ X SU(2). The kernel and cokernel then vanish for all connections on

Σ X SU(2) which are C2-close to the product connection.

Since R Π K = 0, the number

sup (sup \FA\(x)\
[Λ](=R
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can be made arbitrarily small by choosing λ and ε small. This follows from

Proposition 9.2 and Lemma 11.1. Since T Γ ^ M ) does not represent nontrivially

in SU(2), Lemma 10.4 implies the following: Given a C 2 neighborhood 0 of

the flat, product connection on Σ X SU(2) there exists ε, λ > 0 such that the

orbits of connections parametrized by K restrict to orbits of connections on

Σ X SU(2) which intersect Θ. Thus, (ψ*cx, R) = 0 by Koschorke, and Lemma

11.5 follows. The preceding "localization argument" to calculate the cohomol-

ogy of Bελ was modeled closely on the arguments of Donaldson in [9].
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