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INVARIANTS OF CONFORMAL LAPLACIANS

THOMAS PARKER & STEVEN ROSENBERG

The conformal Laplacian O = d*d + (n — 2)s/4(n — 1), acting on func-
tions on a Riemannian manifold M” with scalar curvature s, is a conformally
invariant operator. In this paper we will use O to construct new conformal
invariants: one of these is a pointwise invariant, one is the integral of a local
expression, and one is a nonlocal spectral invariant derived from functional
determinants.

We begin in §1 by describing the Laplacian O and its Green function in the
context of conformal geometry. We then derive a basic formula giving the
variation in the heat kernel of O. This formula is strikingly simpler than the
corresponding formula for the ordinary Laplacian given by Ray and Singer
[15].

The heat kernel of O has an asymptotic expansion k(f, x, x) ~
(47m1)~"/*La,(x)t*. In §2 we prove that a,_, , is a pointwise conformal
invariant of weight —2, ie. it satisfies a,_,) »(x; A%g) = Na,_, »(x; 8),
where g is the metric and A is any smooth positive function. In particular, this
shows the existence of a nontrivial locally computable conformally invariant
density naturally associated to the conformal structure of an even dimensional
manifold. The key to the proof is to consider the parametrix of the Green’s
function, which is obtained from the heat kernel by an integral transform. One
finds that a,_, , occurs as the coefficient of the first log term in this
parametrix, and its conformal invariance then follows directly from the confor-
mal invariance of the Green’s function.

In §3 we show that [a, , is a global conformal invariant (the calculations in
§4 show that it is not a pointwise invariant). The proof is a direct calculation of
the invariant of [a, , using equation (1.10).
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In §4 we explicitly compute the conformal invariants [a, , for n = 2,4,6
and a,_,, , for n = 2,4,6,8. These computations are quite complicated when
n = 6 and 8; they depend on the work of Gilkey [10] and connect nicely with
the recent work of Fefferman and Graham [9]. We begin by reviewing the
short list of explicitly known conformal tensors. For the conformal Laplacian
acting on scalars, the invariant a,_, ,, n < 8, is a sum of these conformal
tensors. For the bundle Laplacian, a(,_,,,, contains additional terms; these
have led us to discover a new conformal tensor (Theorem 4.1). It is jointly
associated to the conformal structure of M and the hermitian structure of the
bundle, and is natural and regular in the sense of [1]. The invariants [a, ,,
n < 6, can then be expressed in terms of the Euler class of M and integrals of
conformal tensors. In dimension 4, [a, is particularly interesting: it has a
topological lower bound which is realized if and only if M is self-dual.

We were led to consider a(,_,,, and [a,, by the work of Branson and
Orsted [6]. Specifically, they (and Schimming [17] and Winsch [19] indepen-
dently) proved that a(,_,) , is a conformal invariant for the wave operator.
They then argued that the same result holds for the heat operators, and
checked this for n = 2,4. They also conjectured Theorem 3.1 which they have
now proved by different methods [7].

In §5 we consider conformal deformations of the functional determinant of
0. We prove that the determinant is a conformal invariant in odd dimensions
(Theorem 5.3). This gives a new global conformal invariant, constructed from
the spectrum of O. In even dimensions the determinant is not conformally
invariant, but we obtain interesting invariants by considering the ratio of
determinants. Specifically, we use the solution of the Yamabe problem on a
spin manifold to construct conformal Laplacians 0O,;, O, on left and right
spinors. The ratio detO, /detO is then a locally smooth function on the
space of all metrics which we explicitly compute (equation (5.6)). Furthermore,
the “conformal anomaly” 4 log(detd, /detOz) is a conformally invariant
1-form on each conformal class (given by integration against the 4-polynomial
as a differential form in the curvature). The invariance of this conformal
anomaly reflects a dichotomy: on each conformal class either detd; /detOy is
invariant (we give examples of this), or this ratio has no critical points in the
conformal orbit.

The unifying feature to the invariants of this paper is the zeta function
associated to the conformal Laplacian. Roughly speaking, the invariants in §2
is the residue at s = 1 of the local zeta function {(s, x), the invariant of §3 is
§(0), and the conformal anomaly is d({;(0) — {z(0)).
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1. The conformal Laplacian

The conformal Laplacian on an n-dimensional Riemannian manifold (M, g)
is

(1.1) g =d*d + as,

where s is the scalar curvature of the metric g and a = (n — 2)/4(n — 1).
This operator arises in the well-known formula describing the conformal
behavior of scalar curvature: changing the metric conformally to g, = e*/g
transforms as to

asl = e'(”*z)f/zljge(”*z)f/z

(cf. [3]). Hence O, -1 =e~™*?/Oe"/, where w = n/2 — 1. Using this to
expressO, - 1, g, = e*'g,, in terms of O, and O, leads to

(1.2) e"™*Dfog 0™ =0,
This formula is best understood in the context of conformal geometry.

Recall that a conformal structure on M is an equivalence class of metrics
with g, ~ g, if g, = e¥/g, for some f € C®(M). Equivalently, it is a reduc-
tion of the oriented GL(n) frame bundle of T*M to a bundle F. whose
structure group is the conformal group CO(n)= R* X SO(n). For each
w € R we have a representation w: A — (det A)*/" of CO(n), and hence a
trivial real line bundle L* = F.x R associated to the conformal structure.
Each metric g, within the conformal class determines an SO(n) subbundle
F C F, and an identification i, ,: L" - L% = M X R. Changing the metric to
e2/g changes F to e*F (multiplication within the fibers of F,) and changes i, ,,
to e /i, . The number w is called the weight of L" and sections of L" are
functions of weight w.

Equation (1.2) shows that when w = n/2 — 1 the operator
(ig.w 4p) teO,ei,, is invariant under conformal changes of metric. Thus
setting w = n/2 — 1 we obtain a Laplacian O: T'(L*) - T(L**?) which
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depends only on the conformal class, and a commutative diagram
o

r(L») r(L"*?)
(1.3) = } fgw = l lgw+2
Cc2(M) = Cc=(M)

for each metric g in the conformal class.

More generally, if (E, k) is a hermitian vector bundle over M, then a

hermitian connection v on E gives a conformal Laplacian

o= (ig‘w”)-l(v *vV +as)i,, T(E® L") > T(E® L""?)
and a diagram corresponding to (1.3). Here v *v is the trace Laplacian of ¥
and g, given in local coordinates by —(det g)~'/*v,g"/(det g)'/*v . Note that
v is taken independent of g; conformal invariance fails if one tries to identify
v with the Levi-Civita connection (which is defined when E is associated to
the orthogonal frame bundle).

Now suppose that (M, g) is compact. Let G,(x, y) be the Greens function
for O,. The identification i, ,: L” - L% = R determines a constant section
ldx|* = (i,,)~"1 € T(L") with the property that |dx|" = dv, is the volume
form determined by the metric. The conformal Green’s function is the section
of the exterior tensor product bundle L¥ ® L* over M X M defined by

G(x,p) = Gy(x, y) dx|” ®|dy| .
For each h € I'(L**?) in the image of O the convolution taking 4 to

f(x)= [G(x,y)h(y) is a well-defined operator T'(L**?) — I'(L*) which
solves the equation Of = h. The conformal invariance of G(x, y) implies that
(1.4) Gorg(x,y) = Gy(x, y) - exp[—w(f(x) + f())].

Most of our theorems will involve the heat kernel of O,. This is the
distribution k (¢, x, y) on [0, 00) X M X M which satisfies

9, +0_ )k (t,x,y)=0, t>0,

(1.5) ( t g) g( y)
ko (0,x,y) =8(x, y).
As is well known (cf. [13], [15]) k, exists, is smooth for ¢> 0, satisfies

k(t,x, y)=k(t,y,x), and is a semigroup in ¢ under convolution. For ¢ €
C>((0,¢] X M)

o(t,x) =fds/ k(t—s,x,2)(0, + O)¢(s,z)dv(z)
(1.6) M
+;iinofk(t-s,x,z)qs(a,z)du(z).
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This is seen by writing the first integral on the right as a limit of integrals over
[8, ¢t — 8] X M, integrating by parts and using (1.5).

The following variational formula will be important later.

Lemma 1.1. Let g, = e*¥g be a smooth 1-parameter family of metrics, and
k (1, x, y) the heat kernels for 3, + O,,. Then

Lk (1%, )]z
(1.7)
= —‘/: ds /Mf(z)[ko(t —5,x,2)0k(s,z,y) + o] dv(z),

where < denotes the same term with x and y reversed.
Proof. Set O, = e "¥De"¥. Then O, = e~2¥0’ by (1.2). Differentiating
the expression (0, + O,)k, = 0 gives

(3, + D)k = 2f0ky + Olky = —2f0,ky — w(fO — Of ) ko,

where the dot denotes d/de at e = 0. For ¢ = k, the last term in (1.6)
vanishes, as can be seen by using the product rule for d/de and the convolu-
tion property of k. We can then symmetrize (1.6) in x and y, noting that
k(t,x, y) = i[k(t,x, y) + k(t, y, x)]. This gives (1.7) plus the additional term

—wfo’ ds fM (k(t = s,x,2)[f(z2)D = Of(2)] k(s, 2, y) + &} db(2),

which vanishes since O is selfadjoint.

2. A local invariant

Near the diagonal of M X M the heat kernel k of O, on a hermitian vector
bundle E with compatible connection v has a parametrix

L
(2.1) pr(t,x, ) = (4mt) "2 "4 Y ay(x, y)ik,
k=0
where r = dist(x, y), and foreach L and t < 1

|(k = po)(t,x, y) | < ext" "> Lexp(r?/t),

|at(k - pL)(t’x’ y) | < cltL_n/zexp(rz/t)

for some ¢, > 0 (cf. [13], [15]). On the diagonal, the coefficients a,(x, x) €
T'(End(E)) are regular local invariants of weights —2k as in [1]. This means

that: (i) a,(x, x) is given by a universal expression in the metrics of M and E,
the connection coefficients of v, and their derivatives, (ii) a, is invariant

(2.2)
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under the action of the group of all bundle automorphisms, (iii) when the
metric g is scaled to A’%g, A € R, then a, changes to A~ *#a,.

Now the a,(x, x) are invariants of the Riemannian structure of M con-
structed from the conformal Laplacian, and one might ask whether they are
conformal invariants, i.e. does (iii) hold when A is a smooth function? Unfor-
tunately this is not the case because the distance function r—which is crucial
to the expansion (2.1)—is not well behaved under conformal changes of
metric. Indeed, while a,(x, x) = 1 is invariant, a,(x, x) is a multiple of the
scalar curvature so is not conformally invariant. There is, however, one notable
exception:

Theorem 2.1. Suppose that n = dim M is even and let w = n/2 — 1. Then
the End(E )-valued density a,(x) = a,(x, x) dv,(x) is conformally invariant of
weight <2, i.e.,

(2.3) a,(x)=e¥%a, (x),

where the left-hand side is computed from the metric § = e*/g.

Remark. In contrast, the heat kernel expansion (2.1) for the usual Laplacian
d*d contains no conformal invariants: in the conformal normal coordinate
systems used in [12] the heat kernel of d*d agrees with the euclidean heat
kernel to arbitrarily high order.

Before proving Theorem 2.1 we note that there is a close relationship
between the heat kernel parametrix (2.1) and the parametrix of the Green’s
operator (cf. [8]). We shall give an elementary proof below. Consider a general
second order selfadjoint elliptic operator D = v *v + (lower order terms) on
T'(E) over a compact Riemannian manifold M. Standard elliptic theory shows
that there is a complete basis of L2(E) consisting of smooth eigenfunctions
{¢,} of D whose eigenvalues are real, discrete, and bounded below. Hence
L?(E) decomposes as the direct sum of the finite dimensional spaces L2 (E),
L3(E) spanned by the eigenfunctions with negative and zero eigenvalues, and
the infinite dimensional space L% (E) of eigenfunctions with positive eigenval-
ues. The inverse of D: L2(E) ® L*(E) > L>(E) ® L>(E) is then given by
convolution with the Green’s function G(x, y) = G*(x, y) + G™(x, y), where
(2.4) G*(x,y) = A202\/?‘«1!»(()6) ® ¢t(y)
and G~ is the corresponding sum over {A, < 0}. Similarly the heat kernel
k(t,x,y)of Disk =k*+ k® + k™, where
(25) k+(t’x’y)= Z e""k¢k(x)®¢’}:(y)

A>0

and k~, k° are the corresponding sums over { A, < 0} and {A, = 0}.
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Theorem 2.2. In a neighborhood of the diagonal of M X M, the Green’s
function of D has an expansion

P(x,y)+ ®y(x,y), nodd,
G(x,y)= —n/2 5

P(x,y)—(47) a,(x,y)logr*+ ®,(x,y), neven,

where @, and ®, are bounded, w = n/2 — 1, and
((n—3)/2] 2-n+2k
n r n
(2.6) P(x,y)=(4r)"* ¥ ak(x,y)(-z—) F(E — k- 1).
k=0

Proof. First note that k= and k° have asymptotic expansions as t — 0
which involve only nonnegative powers of ¢; hence k" (¢, x, y) has a parame-
trix which agrees with (2.1) for L < n/2. Now (2.4) and (2.5) imply that

(2.7) G'(x,y)= j:o k*(t,x,y)dt.

For L =[n/2 - 1]
(a) The function ¢,(x, y) = [¢/*(k*— p,)(t, x, y) dt is bounded by (2.2).
(b) Setting A = r2/4t we have

f1/4 t~Yexp(—r2/4t)dt = —logr® + ¢,(x, y),
0
where
© 5 -1 1y
¢o2(x,y)=f A exp(—x)dmf A~ 1(exp(=A) — 1) dA
1 r?

is a smooth function.

(c) The function ¢5(x,y)= [ k*(t,x,y)dt satisfies (D, + D,))¢; =
2k*(1/4,x, y). Since k*(1/4, x, y) is a smooth function on M X M, elliptic
theory implies that ¢,(x, y) € C*(M X M).

(d) Set N =[(n—3)/2]. It is straightforward to check that ¢,(x, y) =
Jt94 Py(t, x, y) dt is bounded and that [§° Py(¢, x, y) dt is the function P(x, y)
of (2.6).

Now when »n is odd, N = L and (2.7) and (a)-(d) above give G(x, y) =
P(x,y)+ ®y(x, y), where &, = G™+ ¢, + ¢; — ¢, is a bounded function.
When n is even, L = N + 1 and we similarly obtain

G(x,y) = P(x,y) =(47) "a,(x, y) logr® + &,(x, y),
where ®, = G™+ ¢, + ¢,(47) "%a,(x, y) + ¢; — ¢, is bounded.
Proof of Theorem 2.1. Fix x € M. We know (2.3) holds when f is constant,
so we may assume that f(x) = 0. The metrics g and g are then equal at x.
Fixing an orthonormal frame of T, M and applying the exponential maps of g
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and g gives normal coordinate charts ¢,&: R = T.M — U M with ge"! = Id
+ O(r?). From (1.4) we have

0= e*[Gy(x, ») exp[wf(»)] = (71)*&*Gy(x, »)]
while Theorem 2.2 gives

e*G,(x, y) = e*P(x, y) — (47) ""?e*a,(x, y) logr? + O(1)

and a similar formula for €*G,(x, y). Now combine these, expanding exp(wf),
e*a,(x, y), and €*a,(x, y) in their Taylor series at x. The result is

r2="Q —(47r)_"/2[aw(x,x) —a,(x,x)] logr*=0(1),

2=|y|* and Q is a polynomial in y. This implies that a (x, x) =

where r
a,(x, x).

3. A global invariant

Let {a,} be the heat kernel coefficients of the conformal Laplacian on a
bundle E. In this section we will show that on an even dimensional manifold,
[tra, ,,(x,x)dv, is a conformal invariant (here tr denotes the trace in the
fiber of F at x).

To fix notation, let (M”, g) be a compact Riemannian manifold and let
0, = {e*g|f € C*(M)} be the set of metrics conformal to g. For each &, the
formula J,(g) = [y tra,(x, x) dv, defines a function J;: 0, - R.

Theorem 3.1.  The differential of J;: O, > R is (n — 2k)tra,, i.e.

gm0 = (n = 2k)jMf~ tra,.

In particular, if n is even, thenJ, ,, = [ytra, , is a conformal invariant.

This theorem is proved by calculating the term-by-term variation in the heat
kernel asymptotics. A direct approach requires careful analysis (cf. [5], [7]). We
will instead use the zeta function which is needed in §5. It is defined by

Ss)= X Al

A0

d
6ka = E‘Ik (ezefg)

where {A;} are the eigenvalues of O counted with multiplicity. Taking the
Mellin transform gives

) 1 ° " .
(3.1) g(s)=xlz<0|>\,.| +mf0 t 1fMtrk (t,x, x) dxdt,

where k* is the heat kernel (2.5). It follows that {(s) is analytic for Re(s) > 0
and has a meromorphic continuation to C with only simple poles (cf. [15]).
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Now write k*= k — k® — k™ as in (2.5). Noting that

/ (K + k™) (t,x,x)dx = ¥ e ™M= #{\, <0} +0(1),
A;i<0

and that I'(s) has a simple pole at s = 0 with residue 1, we have
$(0) = #{A <0}

1 s—1 —
(3.2) +Resy [ ¢ d’[fM"ko,x,x)dx #{A, <0} +0(1)

= Resofl ts—lf trk(t,x,x)dxdt — #{\,=0}.
0 M
Substituting in the parametrix (2.1) gives
(3.3) §(0)=(477')‘§f tra,, — #{A,=0}.
M

Similarly, one finds (cf. [16]) that when n = dim M is even

- -1 -1.2... 1
Res, §(s) = (47) (k—l)sz“a%“"’ k=127,
(3.4)
k — 1 k
{(—k) = (=) ki(4m) " tra1+k+(1 "F) Y A kezt
M : */ A <0

and when #» is odd
n -1
(3.5) Res,,/z_kg(s)=(4w)‘f[r(%—k)] [ tra,, k=01,
M

We can now prove Theorem 3.1. First suppose » is even. Because dim ker O
is conformally invariant (by 1.2) equations (3.3) and then (3.2) give

8,0 = (4m)"?85(0) = (4m)"> - Res, [ £ [ 8 k(1,x,x) dxdt.
In /2 (47) /f() (4) eo_/(; erf(xx)x
From (1.7)

8ffM trk(t, x,x)dx =f0t dsfM —2f(z)fM (k(t—-s,x,2), Bsk(s,z,x)>x,

where (, ) is the inner product in the fibers of E. The innermost integral on
the right is
tre 7999 k(s,z,x) = —tre”“"9°0k(s, z, x)
= —trOe “"9%(s,z,x) = trd k(¢, z, z).
Hence

8J, 0= (47)"*Res, _/01 t’fM =2f(z) trd,k(t,z,z)dzdr.
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Finally, plugging in the parametrix (2.1) yields

N

-2k
3.6) 8J,,=R - L= =
(36) 87,0 =Res, [ 2(x) B kT tas(xx) d = 0.
This computation is easily modified to give

)

- 2k
8Resk§(s)=(4w) ﬂmeftran/zAk, k=1,2,---,

[NF

(3.7) 8(—k)=(-1)k1(4m) "*(-2k)

1
. tra, +{1 - —)8 A;
fo /2+k ( k! )\‘2<:()| i

k
b

kel

if dim M is even, and

(3.8) 8Res, ,_,{(s) = (47) [r(% - k)]_l(n - 2k)fo- tra,,

k=0,1,2,---,
if dim M is odd. The theorem follows from equations (3.4)—(3.8).

4. Conformal invariants: Examples

In this section we will explicitly calculate the conformal invariants of
Theorems 2.1 and 3.1 for dimensions 2, 4, 6, and 8. These invariants are
polynomials in the curvature tensor R, (= <8/8xk, (V,Vj - V,-V,-)a/ax,>
in our conventions) and its covariant derivatives. Few such conformally
invariant curvature polynomials are known. However the results of §2 give new
invariants of this type. We will write down the simplest of these.

For n > 4 the space of curvature tensors decomposes under the action of
O(n) into three irreducible pieces corresponding to the scalar curvature
s = RY,,, the traceless Ricci curvature B,; = R¥,; — (s/n)g,;, and the Weyl
curvature

1
Wiiki = Riju — m(ngBik — 8B+ 8B — gilBjk)

N
- m(gﬂgm - gjkgil)'

The Weyl curvature is conformally invariant, and we can construct conform-
ally invariant scalgrs by completely contracting powers of W, ; examples
include |W|* = W', ,, and the invariants

B = W ixWiipdWpaiso Bir = WiixWipkq

W.

jplq
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which will appear frequently (here, and below, repeated lower indices have
been contracted with the metric). Recently Fefferman and Graham [9] have
shown the existence of a series of increasingly complicated conformally in-
variant scalars. They explicitly computed the first of these; in dimension 7 it is

2 8 1 2
Q,=|vw| +n_2[4317+316—n_1s|w| +(W,AW)
4.1 n—lO N o 2] 2(n_10) 2
(4.1) +—n~2(ka,jv,.Bkj IvBl) +———n2(n_1)IVs|,

where AW is the tensor with components W, ;, ,, (this also appears in [11]).

Theorem 2.1 also gives a series of conformally invariant scalars a,, ,,_;(x, x).
Moreover, when applied to the conformal Laplacian on a hermitian vector
bundle E, Theorem 2.1 shows the existence of a series of conformally invariant
scalars tr4, ,_;(x,x) naturally associated to the conformal structure of M
and the hermitian connection V on E. These are polynomials in the Rieman-
nian curvature, the curvature F;; € End(E) of v, and their covariant deriva-
tives. Since tr4, ,,_; is a multiple of a, ,, _; plus terms involving F;, the sum
of the terms involving F;; is itself conformally invariant (cf. (4.5)). The first
such example is rather obvious (it is essentially |F|> when n = 6). As we will
see below, the next example (n = 8) has the form

(4.2) a)(F,AF) + a)|VF|" + aytrV,F, 7, Fy + as|F|°

for some constants a,. It is natural to guess that this is the n = 8 case of a
conformal invariant Qn which, like the Fefferman-Graham invariant, exists in
all dimensions. Assuming this, we can find the a; as follows.

Under a conformal change of metric g — g = e*/g the bundle curvature F
is unchanged and the Christoffel symbols become

T =Tj + 83,/ — 88,/ — 88" .
Computations then show that
(F,AF)~ e [(F,AF)—(2n - 6)A +(n — 4)B
~(2n—8)C — 4D + 2E],
|vE| - e“”fthl2 + 64 — 6B +(2n—8)C + 4D],
V,F N Fy o e[V F v Fy +(n - 4)°C +(2n - 8) D],

SIFI = e [s|FI = (n = 1)(n = 2)4 + 2(n - VE|,
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where 4 = |df||F|>, B = (df - F,VF), C=3,fFyl, D=23,fF,¥,F,, and
= d*df - | F|?. Requiring that (4.2) be conformally invariant gives an over-
determined system of equations for the a,. These have a solution, giving us a
new conformal invariant:
Theorem 4.1.  In dimensionn > 2
(n-4)°

Q, = (n—4(F.AF) + —¢

IvF [
(4.3)

10 —
+

n—4 2
3 tl.Vka ik n_1S|F|

is a conformally invariant scalar of weight 6.

In dimension 4, Q, = 2V,F, v, F, = 8|D*F |? is a multiple of the square of
the norm of the gradlent of the (conformally invariant) Yang-Mills action
[|F|% In dimension 10, |F|?* is conformally invariant of weight 4 and
Q0= —30/F|%

We can now calculate the heat kernel coefficients a,(x, x) for the conformal
Laplacian (1.1). According to Gilkey [10]

ag(x,x)=1

4—n
al(x,x)=T2(—n_—ﬁs,
GO () = g W = =51 + 3= 6;

(n —6)(5n% — 18n + 4)
8n(n—1)°

There is a similar expression for a;(x, x) involving 17 curvature invariants; it
is computed in the appendix. The formulas become even longer when one turns
to the conformal Laplacian on a vector bundle of rank k. As above we denote
the heat kernel coefficients for the bundle Laplacian by 4,(x, y) and those of
the scalar Laplacian by a,(x, y). Gilkey’s results show that the traces of the
A;(x, x) are:

trdy(x,x) =k, trd,(x,x)= ka,(x,x),

tr 4, (x, x) = kay(x, x) + lmz,

trA;(x, x) = ka(x, x) + —=|6(F, AF>+4|VF|

180
(4.5) Tuv; FijF,k 6trF Fy F + 2t W, FF,
16 (n—4)(5n + 8) 2
n— 2 trBuFlkF) 4n(n _ 1) SIFI
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Comparing (4.1), (4.3)-(4.5), and (A.1) yields the following surprisingly simple
formulas.

Proposition 4.2.  The heat kernel coefficient A, ,,_,(x, x) for the conformal
Laplacian on a bundle of rank k satisfies

trAl(x,X) - n= 4,
trd,(x,x) = 180|W| + 2;F| i
46
40 (xx) = 5 7, —_ (810, — 352B,, — 64B,)
1
+—1-2—0(Q At F,F,F, + 2W,;F,F,), n=8.

Each term in these expressions is a conformally invariant scalar. The heat
coefficients for the conformal Laplacian on functions are obtained by setting
k =1and F = 0in (4.6).

The integral invariant of Theorem 3.1 involves the Euler characteristic of M,
which is

1 2

X(M) = () 75 [ W= 2Bl + 5

(47) x(M)=(4n) L [ —16B,, + 4B\, — 12B, W,, W,
12 M 16

ij v ikim"? jkim

2 2 6 2 4
+6B,;B, W, ,q + 3B;; jkBk,.+§s|W| —gslBl +%s

in dimensions 4 and 6 respectively. From (4.4), (4.5), (4.7), (A.2), and (A.3) we
obtain

Proposition 4.3.  The invariant 1, ,, = (47)~"/*[y tr 4, ;5(x, x) dv, of Theo-
rem 3.1is

[(41'”2)0 /, klw|® + 10|F|2]—k——x§£g),

(4.8)

L=g [3OX(M) (47)" f 549, + 204B,, + 47B,
720(4 7)” 3fM9Q ~ 32uF,

i F + 20 W, FFyy.

Again, each term is conformally invariant.
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The result of Proposition 4.3 is particularly interesting when n = 4. On an
oriented 4-manifold the curvature tensors W, ;,, and F;; decompose into
self-dual and anti-self-dual pieces W7, and F,*. The Pontrjagin numbers of

M and E are then given by
B IR P
pu(M) = [ W[ =W [doy, pi(E) = [ |F* [ =F [ do,.

We can always orient M and E so that p,(M)> 0 and p,(E) > 0. From
(4.8) we obtain:

Theorem 4.4. The heat kernel fsi ihe conformal Laplacian on a rank k vector
bundle E over a compact orientable Riemannian 4-manifold has an asymptotic
expansion satisfying | k(t x,x) = (4mt)"?vol(M) + I, + O(t), where

f trd,(x, x)

"'162

960 l

+m[|pl(M>|— $x0n)] + 21 p(E)]

Hence 480 I, > k[|py(M)| — $x(M)] + 80| p,(E)| for any metric and connec-
tion on E — M, and equality holds if and only if E — M (oriented appropriately)
is a self-dual bundle over a self-dual 4-manifold.

Self-duality is, of course, a conformally invariant condition on 4-manifolds.

5. Functional determinants and nonlocal invariants

Consider a general bundle conformal Laplacian O with » negative eigenval-
ues (counted with multiplicity). Motivated by the observation that —{’(0) is

formally ¥ log A, one defines the determinant of O by
—1)Y% ¢ i =

det D = (=1)°e%(0) %fkerEl {0},

if kerO# {0}.

The determinant is a smooth function of the metric (cf. [14]). This is seen by
choosing an a > 0 not in the spectrum and writing

()= X I+ T

Ai<a Ai>a

both summands are then locally smooth functions even near metrics with
nontrivial kernel.
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In this section we will show that detO is a conformal invariant on odd
dimensional manifolds. For even dimensional spin manifolds, we will intro-
duce conformal Laplacians O, and Oy on left and right spinors, and show that
the variation of detO, /detO, is a conformally invariant one-form on each
conformal class of metrics. For special metrics, this ratio is itself a conformal
invariant.

We first calculate the variation of {’(0) for the conformal Laplacian O on a
vector bundle E. Let

trk(z,x,x) ~ (47)""*Y tra,(x)t*= "/
k
as top dimensional forms. For an orthonormal basis {{;} of kerd, define the
“local Betti number” B(x) to be B(x) = Z,|¥,(x)|* dvy(x).
Proposition 5.1.

/ 2f(x)[(477)-"/2tra,,/2(x)—,B(x)], n even,
8¢(0) ="
[, ~2()B(), n odd.

Proof. Let F.P. denote the finite part at s = 0. Then

F.P.[T(5)¢(s)] = F.P.[F(s)({(O) +5¢(0) + 0(s2))].

Since {(s) depends smoothly upon the metric within the conformal class and
8£(0) = 0 by Theorem 3.1, we have 8{'(0) = §(I'(s){(s)) at s = 0. By (3.1),

T(s)§(s) = foo DY e)‘"+ftrk+(t,x,x) dt
0 A; <0
for Re(s) > 0, so by Lemma 5.2 below

8,5°(0) = /(;00 ts[fM —Zf( Y a,e""|<t’i(x)|2 + 3,trk+(t,x,x))}dt

A; <0

s=0

The integral over M is of exponential decay in ¢, so we may switch the order of
integration and integrate by parts to obtain

8'(0) = — fM 2f[t‘( Y e)‘i’|¢,-(x)]2 + trk+(t,x,x)”’=w

Ai<0 t=0 |s=0

+ fM 2f[sf0OO t‘_l( Y e)"’|4>,-(x)|2 + trk*(t,x,x)”

A;<0

s=0
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The integrand of the first integral is zero at ¢ = oo for all s, and is O(¢°~"/?)
for ¢ finite and hence zero at ¢+ = 0 for Re(s) > 0. The second integral is
Jar 2f(x)sT(5)¢(s, x)|,_,, where the local zeta function {(s, x) is defined by

Ss,x)= X e ()AL

A,#0

for {¢,} an orthonormal basis of the A, -eigenspace [16]. The proposition
follows as in (3.2) and (3.3).

Lemma 5.2. (a) 8/, trk *(¢, x, x)dx = —2t[,, f(x)9,trk *(¢, x, x) dx.

(b) 8T, < g™ = =213, [y, T, <o f(x)eM[,(x) | dx.

Proof. Let {,(¢, x)} be a basis of the negative eigenspace of 0,2, which
is orthonormal with respect to the L? inner product { , ) of the metric g. Then
0 = {¢,,¢,), where the dot denotes d/de at & = 0. Hence

8/ trk=(t,x,x)dx =8 Y (¢, ko)
M

A,<0

= Z 2<¢i’k1‘i’i> + <¢'1’i‘t¢i>-
A; <0
For each i the first term is 2¢ " */(¢,,¢,) = 0, and by Lemma 1.1 the second
term is

—2[Cds ¥ (N, 07N = =200, X (fo k).
0 <o A, <0
This gives (a) for k~, and hence for k~+ k° (since 8(dimkerd) = 0). We
showed in §3 that (a) holds for k, so it holds for k™ by subtraction. Part (b)
follows easily after noting that the above calculation is valid on each negative
eigenspace.

Since » is a conformal invariant, the variation of {’(0) is the variation of
—logdetO if detO # 0. Thus Proposition 5.1 gives §,detd and produces our
first invariant: detd on an odd dimensional manifold. (Note that this is
nonzero on a conformal class admitting a metric of positive scalar curvature).

Theorem 5.3. (a) If dim M is odd, detO is a conformal invariant.

(b) If dim M = n is even, §,det0 = —(47)~"/*detO [y, 2f(x)tra, ,(x).

Let # denote the space of metrics and consider a conformal orbit 0, =
{e*g: fe C(M)} c . Choose a vector field X = (Xg, g) € I[(T0,) =
C*(M) X 0,. 1If detO # 0, (b) above defines a 1-form w = d logdetO on 0,
by

(5.1) w(X)(g) = —2(477)‘3[M X, - tra, ,.
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Physicists call w a conformal anomaly. What is anomolous is that, naively, one
might expect that the determinant of an invariant operator to be invariant.
However, 0: T'(E ® L*) - ['(E ® L**?) is an operator between two different
bundles. Hence the eigenvalues and the determinant depend on an identifica-
tion L* = L**2 (which is equivalent to a choice of metric). The 1-form w
measures the variation in this identification.

It has recently been shown that the existence of other similar anomalies (e.g.
the chiral anomaly discussed by Atiyah and Singer [2]) is forced by topological
considerations. In contrast, the conformal anomaly has no such topological
content (0, and . are contractible).

To introduce the Laplacians which produce an invariant in even dimensions,
we have to discuss the Yamabe problem. The Yamabe invariant p of a
conformal class @ is

[S,dv

. s “Vs
p=inf —=—>=,

€0 —2/n
geo V,

where V, is the volume of (M, g). By the solution of the Yamabe problem [3],
[18], [12] in each conformal class there is a metric g, which realizes this
infimum; it has constant scalar curvature s, = quﬁ/ " Moreover, this metric is
unique if p < 0 and we normalize by requiring V, = 1.

Now C*®(M) acts on # via conformal transformations. Since .# and
C*®(M) are contractible, the fibration A4 — #/C*(M) admits global sec-
tions. Indeed, the solution of the Yamabe problem provides a smooth section
over the set of conformal classes with p < 0. When p > 0 the lack of
uniqueness in the Yamabe problem complicates matters, but we can still define
local sections as follows.

Fix a metric g, of constant scalar curvature p and volume 1 and set
p = 4/n — 2. For each nearby metric g, the Yamabe problem is equivalent to
solving the nonlinear elliptic eigenvalue problem O,f = aAf?*! (then f7g,
has constant scalar curvature A). By linearizing this equation and applying the
implicit function theorem one can show that the Yamabe problem can be
uniquely solved for volume 1 metrics in a neighborhood of g, provided
i(n + 2)u/(n — 1) is not an eigenvalue of O, . Thus for generic g, we obtain
a smooth local section 6: U — # whose image consists of metrics of volume 1
with constant scalar curvature s = p depending smoothly on g.

Now let (M, g) be a compact oriented spin manifold. We will use this
neighborhood U to parametrize two smooth families O;, Oz of conformal
Laplacians on the bundles S;, Sy of left and right spinors. Let [#] denote the
conformal class of a metric 4. Define a map from U to connections on the
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frame bundle by
[#] ~ the Levi-Civita connection for o[ /]

This connection lifts to connections V,, V, on S;, S (the spin bundles are
constructed with respect to o[ 4]). Define

O.: (S, ® L*) > T(S, ® L¥*?)
by

0u(8) = V2VL + g y(s)

for any g € [A]. Define O, similarly.

Thus defined, O,(g) and O,(g) are nonnegative operators. Indeed, this
property is conformally invariant, and holds for metrics of constant scalar
curvature because the Lichnerowicz formula 2 = v *v + s5/4 for the square
of the Dirac operator implies that

4(n—-1)

on S; and Si. Furthermore, if p # 0, then s # 0 in (5.2) and O,, O, are
positive operators.
Corollary 5.4. Let 0, be a conformal orbit with p. # 0 and let a,(x) be the
A-polynomial as a dszerentzal form in the curvature. Then in the notation of (5.1)

(5.3) {dl (detDL)(X)]: —2/M X,-a

(5.2) 0= v*v+4(n )s—;V

detO

Proof. Apply Proposition 5.1, noting that by Gilkey’s Theorem [1] n =
trfal ,(x) — af,(x)] is a Pontrjagin form and hence a pointwise conformal
invariant [4]. We may thus assume that the scalar curvature s is constant. Then
(5.2) gives e '@ = e~ ¢!, where v is a constant, so

4
1= ¥ ulatt- o)L
k+i=n/2 :
By Gilkey’s Theorem again, only the term with k = n/2 is nonzero. The heat
equation proof of the Atiyah-Singer Index Theorem shows that (47)~"/?q =
a(x) and completes the proof.

Equation (5.3) shows that dlog(detO, /det0,) is a conformally invariant
1-form on 0,, dual to —24a(x) under the integration pairing. Furthermore, it
shows that the A-polynomial as a differential form (not just a cohomology
class) arises naturally from the spectral analysis of the operator 0, and O.
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Whenever p # 0, O,, Oz are invertible and detd, /detO; is a smooth,
locally well-defined function of the metric. We will next give an explicit
formula which shows that this ratio extends smoothly to the metrics over U
with p = 0.

Theorem 55. Let M be oriented so A(M)> 0. The ratio Fi (g) =
detd, /detOy is a smooth locally defined function on the space of metrics. If
go = o((g]) = e~ g is the conformal metric of constant scalar curvature and
volume 1 then

A(M)

(5.4) detO, 4(n—1)

exp fM —2f-a,.

Proof. First suppose that p # 0 (by a theorem of Kazdan and Warner [3,
Theorem 6.20] there is an open set of metrics with p <0 when n > 3).
Integrating (5.3) along the line g, = e?”g,, 0 < ¢ < 1, and noting that a(g,) =
a(g) yields

(55) F(g) = F(go) exp | =2fa,.

By (5.2) the eigenvalues of (O, ), r are those of p? shifted by —p/4(n — 1).
Since the nonzero eigenvalues of $? match up (9 gives an isomorphism of these
eigenspaces),

(§ = $r)(z) = (N, = Np)|=dm/(n = 1)|
where N, and Ny are the multiplicities of ker §2 on S, and Si. Hence

(5.6) F(go) = detO, /detOy =]~ u/(n = 1) [

Finally, when p =0 we set F(g,) =0 if ff(M) >0 and F(gy)=1 if
A(M) =0, and define F(g) by (5.5). This agrees with the limit as g — 0 of
(5.6) and smoothly extends (5.4) across metrics with p = 0 (recall that p
depends smoothly on g near g;).

Remarks. 1. Lichnerowicz’s formula implies that p > 0 can occur only if
A(M)=0.

2. In dimensions n = 2 mod 4, the two spin representations of Spin(n) are
conjugate. Hence there is a conjugate linear isomorphsm ¢: S; — S, between
the spin bundles of the constant scalar curvature metrics with ¢? = 1 and
V¢ = 0. This implies that 0, and O, have the same spectrum, so detd, /detO,
is always one for these metrics. Note that a(x) = 0 in this case.
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The conformal invariance of the 1-form (5.3) means that either the function
detO, /detO, has no critical point on a given conformal class, or else this
ratio is itself a conformal invariant. We now give some families of metrics for
which the latter holds.

Proposition 5.6. (a) detO; /detO, = 1 for a locally conformally flat metric.

(b) Let M =T\ G/H be a locally homogeneous spin manifold of volume 1
whose metric is induced from a G-invariant metric on G/H. Then detO, /detO,
is invariant under volume preserving conformal variations, and is equal to
| = dn/(n = DD,

Proof. (a) If the Weyl tensor vanishes, we have a(x) = 0 and AM)=0
so the right-hand side of (5.4) is 1.

(b) The G-invariance of the metric implies that d(x) is constant, and when
g, is a volume-preserving family of metrics the integral of X = g, is zero.
Hence (5.3) is zero and (5.5) becomes F(g)= F(g,), and the proposition
follows.

We may also consider conformal Laplacians acting on spinors with values in
a bundle E. Set

L (n=2)

O=v* +F
VIV R Ee el

where {e’ - } is Clifford multiplication by an orthonormal basis of one-forms
of E with respect to a bundle metric 4, ¥ is a fixed connection compatible
with % and a metric g of constant scalar curvature on M, F,; is the curvature
of v, and s and the adjoint Vv * are computed with respect to g. This
Laplacian is conformally invariant and satisfies 0 = 8% — 1s/(n — 1), so the
results of this paper remain valid for O (except that 0 may have nonzero kernel
if p > 0) by replacing a(x) with a(x)ch(x), where ch is the Chern character
of E.

Finally if n = 2p the signature operator D = d + d* on p-forms has the
Bochner formula

2 * _ * *
D —V V VV,-jk,aiajaka,-l- S.

4(n—1)

Here W is the Weyl tensor, and for an orthonormal frame of one-forms {6,}
with dual vector fields { X;}, a¥ = ,A and a; =/ x,- The space of complex
p-forms decomposes into the +1 eigenspaces % of i P**_If we consider

n— 2)
0,=V*V = Walaafa + 4(( — l)
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acting on Q4 (weighted appropriately), then O , = (D J_r)z — 45/(n — 1). Since
the operator L = dd* — d*d matches up the nonzero eigenspaces of D? on
27, the results of this paper also carry over to O , (except for the p > 0 case as
above) with a(x) replaced by Hirzebruch’s L-polynomial L(x). This gives a
nontrivial conformal anomaly on nonspin manifolds of dimension 4k.

Appendix

The results of §4 require an explicit expression for a;(x, x) in terms of the
Weyl, traceless Ricci, and scalar curvatures. This is obtained by a long
calculation, summarized here.

Applying Gilkey’s results [10] to the conformal Laplacian (1.1), n > 2, we
obtain a,(x, x) = (4m)"/*Lc,A,, where the 17 curvature invariants { 4,} and
their coefficients { c;} are listed in the first two columns of Table I. (Note that
the curvature R, ,, used in [10] differs from ours by a minus sign, and that the
heat kernel coefficients tabulated in [10] are for the operator v *v — E, so in
our notation E = —as.)

Each A, is a polynomial in the scalar, Ricci, and full curvature tensors, and
there is a corresponding polynomial B, in the scalar, traceless Ricci, and Weyl
tensors. These { B;} are listed in Table II. The formulas converting the { 4;} to
the { B;} appear in the last column of Table I. Using these, we find that
a;(x,x) = (4w)~"/%(1")~'Ld,B,, where the {d,} are listed in Table II for
dimension n, then for dimensions 6 and 8. Thus for n = 8, a;(x, x) is

L 0B, - 2B, + 2, + 128
(A1) (4n)* 711l 9 7

9
9
+9B; — 4B, + 4B, — 11—232 .
The formula for a,(x, x) for n = 6 (3rd column of Table II) is more com-
plicated, but its integral simplifies because the functions
C,=B,, CG=B,+B;, C;=B;+ B,
C,= B, + By, Cs= B+ By,

2
—(n—2 1 n
Ce = "—(4"%32 +By— s —7Bu— ;—5But B
_(n=2)(n-3), n-3 3 1
G = an?(n - 1) B, n—2(B3 B,) + 15
1 1 1
“'2‘;1'312_ 5315("' ZB16+B17
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TABLE I
A, = AAst 63 — 14a) B,
A, = |vs|? 17 — 168a + 4204° B,
Ay = VR, -2 By + %Bz
n—1
Ay = ViR,V R;; -4 B+ ——B
n
4 2
_ 2
As =|VR| 9 By + ——=B; n(n-l)Bz
A = sAs 28(1 — 1la + 30a?) B,
1
A; =R, AR -8 B7+;Be
Ay = RV, VR, 8(3 — 14a) below
4 2
= +
Ay = (R,AR) 12 By + ——B; TR
Ay = 5° 70(% —a+6a’-124°) By,
14 1
Ay = isijlz —‘3‘(1 - 6a) B, + ;BIO
14 4 2
= s|R|? —1 -
Ay; = s|R| 3(1 6a) Bu+n—28“+n(n—1)Bm
208 3 1
A3 = Ri,/R/kRki ——9—- + 112a B3 + ;B“ + _ZBIO
64
Aa =R ;R Ry 3 - 112« below
16
Ajs = Riniklm Rjklm - “3' below
44
A16 = RijkIRklnmRmnij ? below
80
Ayg =Ry R g Ry 9 below

*A = v,v,. repeated indices are contracted with the metric. and R = R, Skl

2

By, +

By,
n?(n—1) 10

A, =——B +-1—B + 2 By — 2n By; - Y B
B =278 T pTe T gt (n-2)° Bon-1)(n-2)
2 2n -3 1
A"'“B“_n—ZB”+;z(n—l)Bn-Fn—zBm.
4 2(n - 4) 1 4(2n - 3)
Ay = By + B, + By + =B, +
15 15T T2y ba (n - 2)2 13T, n(n—=1)(n-2)
12 24 8(n—-4
Ao =B+ 5 Bis + 7Bia + ( 2313
< (n=2)y (n=2)
6 24 4
+ By, + By > Bio-
n(n-1) 12 n(n-1)(n=-2) n ni(n-1) v
3 3(n-4 2(8 = 3n
Ay = By; - ,,—7815"' ( 2314“' ¢ 1) Bix
- (n=2) (n-2)
3 3(n - 4) n—2
( Bl()‘

N 2n(n—-1) "7

n(n-1)(n-2) B+

ni(n - l)2
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TABLE 11
Invariant Coefficient n=6 n=38
8 6
B, = AAs —3(n_1) 3 0
Sn® — 76n + 288n% — 128n + 16 -4 | -9
By = losl? R S | m
4n*(n-1)
_ ) _,,n—-20
B, IVB--I 2(n_2) 7 4
B V,B,AVA B’/ —4 _4 _4
=|vW|? 9 9 9
B, = sAs __f_—_g_z _Tz 0
2n(n-1)
8
B; = B;AB,; —8("__2) 4 0
—4n(n - 8) 12
By = B;;vV, B, (n—1)(n-2) 5 0
By = (W, AW) 12 12 12
5 —(n — 8)(35n° — 308n> + 688n? — 184n — 96) | 2
BIO =39S N 3 ﬁ 0
2n*(n—-1)
n—8)(n® — 1% — 2n + 24 -76
= S|Blz ( )( S ) = 0
3n(n—-1)(n~-2)
_ ) —(n—=4)(n + 16) -58 | —-12
Bio = siw In(n—1) 4 | 7
4(n — 8)(11n® — 28n” + 32n — 24) - 64
—_ 0
Bis = By Bu By 2(n ~ 1)(n = 2) 5
4(n - 8)(5n% — 4n — 4) 76
B BAI ijkl ( )( 2 E 0
3(n - 1)(n -2)
n -8 8
B Br/u/lklm jkim - T n— 2) 3 0
44 44 44
B = ”/ijk/u/klmnwmnij 9 9 9
80 80 80
Byy = WiikiWipkaWipkq 9 9 9

each satisfy [ C;dv, = 0. One then sees that

(A2) a;(x,x)=

1
(47)’ - 7!

-5
18

68

- X + 6Q¢ + 3

—B,; +

47
9

B+ €],

where 2, is given by (4.1), X is the integrand of (4.7), and 5¢ = —6C, — 2C,
+ 20C; + 12C, — 17C, + 60C,. Similarly, the integral of the heat kernel coef-
ficient tr 4;(x, x) (equation (4.4)) simplifies because

1 1
.= 7 ViES i Fy = VE Ny + FyF o + S WFFy
n—2
2B Fi F, et n(n — 1)sF;'jF;'j
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satisfies [ trm, dv, = 0. For n = 6 we then have

(A.3)

]
[2]
3]
(4
[5]
(6]
(7]
(8]
[9]
[10]
[11]

(12]
(13]

[14]
(15]
[16]

(17]

(18]

(19]

trA;(x, x) = kas(x, x)

1 A
= %[996 — 32U F;Fy Fyy + 20 W, F, Fy | + 2tr .
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