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INVARIANTS OF CONFORMAL LAPLACIANS

THOMAS PARKER & STEVEN ROSENBERG

The conformal Laplacian D = d*d + (n - 2)s/4(n - 1), acting on func-
tions on a Riemannian manifold Mn with scalar curvature s, is a conformally
invariant operator. In this paper we will use D to construct new conformal
invariants: one of these is a pointwise invariant, one is the integral of a local
expression, and one is a nonlocal spectral invariant derived from functional
determinants.

We begin in §1 by describing the Laplacian D and its Green function in the
context of conformal geometry. We then derive a basic formula giving the
variation in the heat kernel of D. This formula is strikingly simpler than the
corresponding formula for the ordinary Laplacian given by Ray and Singer
[15].

The heat kernel of D has an asymptotic expansion k(t, x, x) ~
(4πt)~n/2Σak(x)tk. In §2 we prove that a(n_2)/2 is a pointwise conformal
invariant of weight -2, i.e. it satisfies a(n_2)/2(x; λ2g) = λ2a(n_2)/2(x\ g),
where g is the metric and λ is any smooth positive function. In particular, this
shows the existence of a nontrivial locally computable conformally invariant
density naturally associated to the conformal structure of an even dimensional
manifold. The key to the proof is to consider the parametrix of the Green's
function, which is obtained from the heat kernel by an integral transform. One
finds that a(n_2)/2 occurs as the coefficient of the first log term in this
parametrix, and its conformal invariance then follows directly from the confor-
mal invariance of the Green's function.

In §3 we show that / an/2 is a global conformal invariant (the calculations in
§4 show that it is not a pointwise invariant). The proof is a direct calculation of
the invariant of / an/2 using equation (1.10).
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In §4 we explicitly compute the conformal invariants J an/2 f°Γ n = 2,4,6
and a(n_2)/2 f°Γ n = 2,4,6,8. These computations are quite complicated when
n = 6 and 8; they depend on the work of Gilkey [10] and connect nicely with
the recent work of Fefferman and Graham [9]. We begin by reviewing the
short list of explicitly known conformal tensors. For the conformal Laplacian
acting on scalars, the invariant a(^n_2)/2, « < 8, is a sum of these conformal
tensors. For the bundle Laplacian, a{n_Ί)/2 contains additional terms; these
have led us to discover a new conformal tensor (Theorem 4.1). It is jointly
associated to the conformal structure of M and the hermitian structure of the
bundle, and is natural and regular in the sense of [1]. The invariants f an/2,
n < 6, can then be expressed in terms of the Euler class of M and integrals of
conformal tensors. In dimension 4, f a2 is particularly interesting: it has a
topological lower bound which is realized if and only if M is self-dual.

We were led to consider a(n_2)/2 and f an/2 by the work of Branson and
Θrsted [6]. Specifically, they (and Schimming [17] and Wύnsch [19] indepen-
dently) proved that a{n_2)/2 is a conformal invariant for the wave operator.
They then argued that the same result holds for the heat operators, and
checked this for n = 2,4. They also conjectured Theorem 3.1 which they have
now proved by different methods [7].

In §5 we consider conformal deformations of the functional determinant of
D. We prove that the determinant is a conformal invariant in odd dimensions
(Theorem 5.3). This gives a new global conformal invariant, constructed from
the spectrum of D. In even dimensions the determinant is not conformally
invariant, but we obtain interesting invariants by considering the ratio of
determinants. Specifically, we use the solution of the Yamabe problem on a
spin manifold to construct conformal Laplacians DL, ΠR on left and right
spinors. The ratio detDL/detDΛ is then a locally smooth function on the
space of all metrics which we explicitly compute (equation (5.6)). Furthermore,
the "conformal anomaly" d log(detDL/detDΛ) is a conformally invariant
1-form on each conformal class (given by integration against the Λt-polynomial
as a differential form in the curvature). The invariance of this conformal
anomaly reflects a dichotomy: on each conformal class either detDL/detDΛ is
invariant (we give examples of this), or this ratio has no critical points in the
conformal orbit.

The unifying feature to the invariants of this paper is the zeta function
associated to the conformal Laplacian. Roughly speaking, the invariants in §2
is the residue at s = 1 of the local zeta function ξ(s, x\ the invariant of §3 is
ζ(0), and the conformal anomaly is d(ζ'L(O) - ξR(0)).
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1. The conformal Laplacian

The conformal Laplacian on an ̂ -dimensional Riemannian manifold (M, g)

is

(1.1) Πg=d*d+ as,

where s is the scalar curvature of the metric g and a = (n — 2)/4(n — 1).

This operator arises in the well-known formula describing the conformal

behavior of scalar curvature: changing the metric conformally to gx = e2fg

transforms as to

a s = e-(n + 2)f/2π e(n-2)f/2

(cf. [3]). Hence Πgι 1 = e-{w+2)fΠge
wf, where w = n/2 - 1. Using this to

express Πg2 1, g2 = e2hgx, in terms of Πg and Dgι leads to

\i.ί) e °ug°e -ugι.

This formula is best understood in the context of conformal geometry.

Recall that a conformal structure on M is an equivalence class of metrics

with g 0 ~ gx if gλ = e2fg0 for some f e. C°°(M). Equivalently, it is a reduc-

tion of the oriented GL(n) frame bundle of Γ*M to a bundle Fc whose

structure group is the conformal group CO(n) = R* X SO(n). For each

w G R we have a representation w: A •-> (det^)*^" of CO(n), and hence a

trivial real line bundle Lw = FcxwR associated to the conformal structure.

Each metric g 0 within the conformal class determines an SO(n) subbundle

F c Fc and an identification igw: Lw -> L° = M X R. Changing the metric to

e2fg changes F to e2fF (multiplication within the fibers of Fc) and changes igw

to e~wfi w . The number w is called the weight of L" and sections of Lw are

functions of weight w.

Equation (1.2) shows that when w = Λ / 2 - 1 the operator

(ig w+2)~ι °Πg°igw is invariant under conformal changes of metric. Thus

setting w = n/2 - 1 we obtain a Laplacian D: T(LW) -> T(LW+2) which
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depends only on the conformal class, and a commutative diagram

T(LW)

(1.3)

for each metric g in the conformal class.

More generally, if (E,h) is a hermitian vector bundle over M, then a

hermitian connection v on E gives a conformal Laplacian

and a diagram corresponding to (1.3). Here V *V is the trace Laplacian of V

and g, given in local coordinates by -(detg)~1/2V/g'7(detg)1//2Vy. Note that

V is taken independent of g; conformal invariance fails if one tries to identify

V with the Levi-Civita connection (which is defined when E is associated to

the orthogonal frame bundle).

Now suppose that (M, g) is compact. Let GJx, y) be the Greens function

for Πg. The identification igw: Lw -> L° = R determines a constant section

\dx\w = (ig3wy
ιl e T(Lι) with the property that \dx\n = dυg is the volume

form determined by the metric. The conformal Green's function is the section

of the exterior tensor product bundle Lw IS Lw over M X M defined by

G(x9y) = Gg(x9y)\dx\wn\dy\w.

For each h e T(LW+2) in the image of D the convolution taking h to

f(x) = JG(x9y)h(y) is a well-defined operator T(LW+2) -> Γ(LW) which

solves the equation D/ = Λ. The conformal invariance of G(x, j>) implies that

(1.4) <v, g (* ,)0 = Gg(jc,^) exp[-w(/(jc) + / ( ^ ) ) ] .

Most of our theorems will involve the heat kernel of D . This is the

distribution kg(ί, x, y) on [0, oo) X M X M which satisfies

/ x (dt-\-Πs)ke(t,x,y) = 0, t>09

(! 5 ) /

As is well known (cf. [13], [15]) kg exists, is smooth for t > 0, satisfies

k(t, x, y) = k(t, y9 x), and is a semigroup in t under convolution. For φ e

C°°((O,/]XM)

φ(t,x)= ( ds f k(t - s,x,z)(ds

(1.6) J M

+ lim f k(ΐ - δ,x9z)φ(δ,z)dυ(z).
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This is seen by writing the first integral on the right as a limit of integrals over

[δ, / — 8] X M, integrating by parts and using (1.5).

The following variational formula will be important later.

Lemma 1.1. Let gE = e2εfg be a smooth l-parameter family of metrics, and

kε(t, x, y) the heat kernels for 3, + Πgε. Then

-7-kε(t,x,y)\ε=0

(1.7)

= - ζ ds jj{z)[ko{t - J,X,Z)3,Λ(J,Z, y) + "]Λ(z),

where <-> denotes the same term with x andy reversed.

Proof. Set D^ = e-wεfΠewεf. Then Dε = e~2€fU[ by (1.2). Differentiating
the expression (3, 4- Πe)kε = 0 gives

(3, + Π)k = 2fΠk0 + Ώ'JcQ = -2/3Λ " w(/D - Πf)k0,

where the dot denotes d/dε at ε = 0. For φ = k, the last term in (1.6)

vanishes, as can be seen by using the product rule for d/dε and the convolu-

tion property of k. We can then symmetrize (1.6) in x and y, noting that

k(t, x, y) = \[k(t, x, y) + k(t, y, x)\ This gives (1.7) plus the additional term

-wΓ ds ί {k{t-s,x,z)[f{z)n-Uf{z)]k{s,z,y)+ ~ ) dυ(z),
J0 JM

which vanishes since D is selfadjoint.

2. A local invariant

Near the diagonal o f M x M the heat kernel k of D g on a hermitian vector

bundle E with compatible connection v has a parametrix

(2.1) PL(t>x>y) = {4πt)~n/2e-r2/4t £ ak(x,y)tk,

where r = dist(jc, y\ and for each L and t < 1

(2.2)

for some cx > 0 (cf. [13], [15]). On the diagonal, the coefficients ak(x, x) e

Γ(End(£)) are regular local invariants of weights -2k as in [1]. This means

that: (i) ak(x, x) is given by a universal expression in the metrics of M and E,

the connection coefficients of V, and their derivatives, (ii) ak is invariant
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under the action of the group of all bundle automorphisms, (iii) when the

metric g is scaled to λ2g, λ e R , then ak changes toλ~2kak.

Now the ak(x, x) are invariants of the Riemannian structure of M con-

structed from the conformal Laplacian, and one might ask whether they are

conformal invariants, i.e. does (iii) hold when λ is a smooth function? Unfor-

tunately this is not the case because the distance function r—which is crucial

to the expansion (2.1)—is not well behaved under conformal changes of

metric. Indeed, while ao(x, x) = 1 is invariant, aλ(x, x) is a multiple of the

scalar curvature so is not conformally invariant. There is, however, one notable

exception:

Theorem 2.1. Suppose that n = dim M is even and let w = n/2 — 1. Then

the Έnd(E)-valued density aw(x) = aw(x, x)dυg(x) is conformally invariant of

weight —2, i.e.,

(2.3) aw(x) = e^aw(x),

where the left-hand side is computed from the metric g = e2^g.

Remark. In contrast, the heat kernel expansion (2.1) for the usual Laplacian

d*d contains no conformal invariants: in the conformal normal coordinate

systems used in [12] the heat kernel of d*d agrees with the euclidean heat

kernel to arbitrarily high order.

Before proving Theorem 2.1 we note that there is a close relationship

between the heat kernel parametrix (2.1) and the parametrix of the Green's

operator (cf. [8]). We shall give an elementary proof below. Consider a general

second order self adjoint elliptic operator D = V *V + (lower order terms) on

T(E) over a compact Riemannian manifold M. Standard elliptic theory shows

that there is a complete basis of L2(E) consisting of smooth eigenfunctions

{φ,} of D whose eigenvalues are real, discrete, and bounded below. Hence

L2(E) decomposes as the direct sum of the finite dimensional spaces L2_(E),

LQ(E) spanned by the eigenf unctions with negative and zero eigenvalues, and

the infinite dimensional space L\(E) of eigenfunctions with positive eigenval-

ues. The inverse of D: L\(E) θ L2_(E) -> L\(E) θ L2_(E) is then given by

convolution with the Green's function G(x, y) = G+(x, y) + G~(x, y), where

(2.4) G+(x,y)= Σ λ-k

ιΦk(x)®Φt(y)
λk>0

and G~ is the corresponding sum over {λΛ: <c 0}. Similarly the heat kernel

k(t,x, y) of D is k = £ + + A:0 + k~9 where

(2.5) k+(t,x,y)= Σ e-ίλ'φk(x)®φ*k(y)
λk>0

and k~, k° are the corresponding sums over {λ^ < 0} and (λ^ = 0}.
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Theorem 2.2. In a neighborhood of the diagonal of M X M, the Green 9s

function of D has an expansion

I P(x, y) -\- Φ0(x, y), nodd,

P(x, y) -(4π)~n/2aw(x, y) logr2 4- Φλ(x, y), n even,

where Φo and Φx are bounded, w = n/2 - 1, and

(2.6) P(x,y) = (4πy"/2 £ ak(x9)

Proof. First note that k~ and k° have asymptotic expansions as t -> 0

which involve only nonnegative powers of ί; hence k+(t, x, y) has a parame-

trix which agrees with (2.1) for L < n/2. Now (2.4) and (2.5) imply that

(2.7) G+(x,y)= Γ k+(t,x,y)dt.

For L = [n/2 - 1]:

(a) The function φx(x, y) = / 0

1 / 4 (A:+- /?L)(/, JC, y) dt is bounded by (2.2).

(b) Setting λ = r2/4t we have

+ Φi(x,y)>

where

Φi{χ^y)=ί λ~1exp(-λ)rfλ + ί λ ' ^ e x p ί - λ ) - l) dλ
J\ Jr2

is a smooth function.

(c) The function φ3(jc, y) = ff/Λ k+(t, JC, y)dt satisfies ( ^ + D v)φ 3 =

2k+{\/4, x, y). Since k+(l/4, x, y) is a smooth function o n M x M , elliptic

theory implies that φ3(x, y) e C°°(M X M).

(d) Set N = [(n - 3)/2]. It is straightforward to check that Φ4(JC, y) =

/ί/4 ^ ( ^ x> y)dt i s bounded and that /0°° PN(t, x, y) dt is the function P(JC, y)

of (2.6).

Now when n is odd, N = L and (2.7) and (a)-(d) above give G(x, y) =

i^x, >̂ ) + Φo(^, J7), where Φo = G~+ φx 4- φ3 - φ4 is a bounded function.

When n is even, L = N + I and we similarly obtain

G(x,y) = ̂ ( x , ^ ) -(4ττ)"/7/2ύ!vv(Λ:,>y)logr2 4- Φ^x, ; ; ) ,

where Φx = G~+ φx 4- φ2(47r)"w/2βvv(x, y) + φ3 - φ4 is bounded.

Proof of Theorem 2.1. Fix JC G Λf. We know (2.3) holds when / is constant,

so we may assume that /(JC) = 0. The metrics g and g are then equal at x.

Fixing an orthonormal frame of TXM and applying the exponential maps of g
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and g gives normal coordinate charts ε, έ: R" = TXM -> U M with έε" 1 = Id

+ O(r2). From (1.4) we have

while Theorem 2.2 gives

ε*Gg(x, y) = ε*P(x, y) - (4τryn/2ε*aw(x, y) logr2 + 0(1)

and a similar formula for ε*Gg(x, y). Now combine these, expanding exp(w/),

ε*ak{x, y), and ε*ak(x, y) in their Taylor series at x. The result is

r2~"Q -(4v)-/2[aw(x,x) - aw(x,x)] log'2 = 0(1),

where r2 = \y\2 and Q is a polynomial in y. This implies that aw{x, x) =

3. A global invariant

Let {ak} be the heat kernel coefficients of the conformal Laplacian on a

bundle E. In this section we will show that on an even dimensional manifold,

ftτan/2(x, x)dυg is a conformal invariant (here tr denotes the trace in the

fiber of E at x).

To fix notation, let (Mn,g) be a compact Riemannian manifold and let

Θg = {e2fg\f G C°°(M)} be the set of metrics conformal to g. For each k, the

formula Jk(g) = JMtτak(x,x)dvg defines a function Jk: Θg -> R.

Theorem 3.1. 77*e differential of Jk: Θg -> R w (« - 2Λ)tΓΛΛ, i.e.

In particular, if n is even, then Jn/,2 ~ fM^τan/2 ίiS a conformal invariant.

This theorem is proved by calculating the term-by-term variation in the heat

kernel asymptotics. A direct approach requires careful analysis (cf. [5], [7]). We

will instead use the zeta function which is needed in §5. It is defined by

where ( λ ^ are the eigenvalues of D counted with multiplicity. Taking the

Mellin transform gives

(3.1) £(*)= Σ I ^ Γ ' + W T Γ ' ' " 1 / *k+(t9x'9x)dxΛ9
λ,.<0 Γ ( * ) ^0 JM

where k+ is the heat kernel (2.5). It follows that ξ(s) is analytic for Re(s) » 0

and has a meromoφhic continuation to C with only simple poles (cf. [15]).
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Now write k+= k - k° — /c~ as in (2.5). Noting that

f tr(k° + k-)(t,x9x)dx= Σ e~X>t = #{λ, <0} + O(t),
J λ,<o

and that T(s) has a simple pole at s = 0 with residue 1, we have

f ( 0 ) = # { λ < 0 }

, . _ . + R e s o / V - I ώ [ / ' txk(t,x9x)dx- # { λ ; < 0 } + O(
(3.2) Λ) 1/Λ/

= Res0 ί1 r 5" 1/ tτk(t,x,x)dxdt- #{λ / =
^0 JM

Substituting in the parametrix (2.1) gives

(3.3) ζ(0) = ( 4 π Π / w tran/2 - #{λ, = 0}.

Similarly, one finds (cf. [16]) that when n = dim M is even

( f c 1 1 ) ; /M f A : = 1,2, , | ,

- i ) Σ Iλf |\/ f ( )

and when n is odd

(3.5) R e s n / 2 _ J ( ί ) = ( 4 τ r ) - f [ r ( ^ - A : ) ] 1 / t r α y t ) /c = 0,l,

We can now prove Theorem 3.1. First suppose n is even. Because dimkerD
is conformally invariant (by 1.2) equations (3.3) and then (3.2) give

δfJn/2 = (4ττ)/ί/2δ^(0) = (4τ7)w/2 Res0 Γ ts~ι f trδfk(t, x9x) dxdt.

From (1.7)

δf( trk(t,x9x)dx= Γds ί -2f(z)[ (k(t-s9x9z)9dsk(s>z>x))x>
JJM J0 JM JM

where ( , ) is the inner product in the fibers of E. The innermost integral on
the right is

tτe-(t-s)πdsk(s, z, x) = -ire- ( '- s ) DΠk(s, z, x)

= - trΠe-(t-s)πk(s, z9 x) = trθ,Λ(/, z, z).

Hence

0 Γ t*f -2f(z) ixd,k{t,z,
J0 JM
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Finally, plugging in the parametrix (2.1) yields

(3.6) 8fJn/2 = Resof -2f(x)Σ . "ΰ ^ / 2 trα.(x,x) dx = 0.

This computation is easily modified to give

= 1,2, , § ,

7M

(3.7) δf(-fc) = (-l

α n / 2 + , + ( l - ^ ) δ E |λ,Γ,

if dim M is even, and

(3.8) δResV 2_kξ(s) = (4π

A = 0,1,2, •

if dim M is odd. The theorem follows from equations (3.4)-(3.8).

4. Conformal invariants: Examples

In this section we will explicitly calculate the conformal invariants of

Theorems 2.1 and 3.1 for dimensions 2, 4, 6, and 8. These invariants are

polynomials in the curvature tensor RiJkl (= \d/dxk, (V/Vy — VjV^d/dx^

in our conventions) and its covariant derivatives. Few such conformally

invariant curvature polynomials are known. However the results of §2 give new

invariants of this type. We will write down the simplest of these.

For n > 4 the space of curvature tensors decomposes under the action of

O{n) into three irreducible pieces corresponding to the scalar curvature

s = R'Jjj, the traceless Ricci curvature Bij = Rk

ikj - (s/n)gij9 and the Weyl

curvature

ZΓϊigjiBik ~ gjkBit + gikBjΊ - gilBjk)

The Weyl curvature is conformally invariant, and we can construct conform-

ally invariant scalars by completely contracting powers of Wijkl\ examples

include \W\2 = WiJklWijkl and the invariants

*i6 = WiJklWklpqWpqij9 BlΊ = WιjklWιpkqWJplq
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which will appear frequently (here, and below, repeated lower indices have
been contracted with the metric). Recently Fefferman and Graham [9] have
shown the existence of a series of increasingly complicated conformally in-
variant scalars. They explicitly computed the first of these; in dimension n it is

where ΔW is the tensor with components Wijklpp (this also appears in [11]).
Theorem 2.1 also gives a series of conformally invariant scalars an/2_λ(x, x).

Moreover, when applied to the conformal Laplacian on a hermitian vector
bundle E, Theorem 2.1 shows the existence of a series of conformally invariant
scalars tτAn/2_ι(xyx) naturally associated to the conformal structure of M
and the hermitian connection V on E. These are polynomials in the Rieman-
nian curvature, the curvature FiJ e End(£) of V, and their covariant deriva-
tives. Since tτAn/2_1 is a multiple of an/2_ι plus terms involving Fij9 the sum
of the terms involving FtJ is itself conformally invariant (cf. (4.5)). The first
such example is rather obvious (it is essentially \F\2 when n = 6). As we will
see below, the next example (n = 8) has the form

(4.2) a,(F,AF) + a2\vF\2 + a 3 t r v , F 0 V ^ + aAs\F\2

for some constants ar It is natural to guess that this is the n = 8 case of a
conformal invariant ΩM which, like the Fefferman-Graham invariant, exists in
all dimensions. Assuming this, we can find the at as follows.

Under a conformal change of metric g •-> g = e2fg the bundle curvature F
is unchanged and the Christoffel symbols become

Computations then show that

e-6f[(F,AF)-(2n-6)A +(n - 4)B

-{In - 8)C-4Z> + IE],

+ 6Λ - 6B + ( 2 « - 8)C + 4D

/ ^ F ί t +(« - 4)2C +(2/ι -

s\F\2 ~ e~6'[s\F\2 - ( « - 1)(« - 2)A + 2(n -
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where A = \df\2\F\\ B = (df • F,vF), C = \dJFίk\, D = ̂ JFiFkFkj, and

E = d*df - \F\2. Requiring that (4.2) be conformally invariant gives an over-

determined system of equations for the at. These have a solution, giving us a

new conformal invariant:

Theorem 4.1. In dimension n > 2

K- (» - 4)<F,ΔF>+ ί ^

- *
s3 j ιj K ικ n —

w a conformally invariant scalar of weight 6.

In dimension 4, Ω4 = IVJF^J^F^ = 8 | D * F | 2 is a multiple of the square of

the norm of the gradient of the (conformally invariant) Yang-Mills action

j\F\2. In dimension 10, \F\2 is conformally invariant of weight 4 and

Ω 1 0 = - 3 D | F | 2 .

We can now calculate the heat kernel coefficients at(x, x) for the conformal

Laplacian (1.1). According to Gilkey [10]

ao(x,x) = 1,

( \ 4 ~ n

{n - 6)(5n2 - 18/ι + 4) J

Sn(n-l)2 " \

There is a similar expression for a3(x, x) involving 17 curvature invariants; it

is computed in the appendix. The formulas become even longer when one turns

to the conformal Laplacian on a vector bundle of rank k. As above we denote

the heat kernel coefficients for the bundle Laplacian by At(x, y) and those of

the scalar Laplacian by at{x, y). Gilkey's results show that the traces of the

\xA0(x, x) = /c, iτAx{x, x) = kaλ(x, x),

trA2(x,x) = ka2(x,x) + — \F\ ,

jc, JC) = ka3(x,x) + ̂ 6 ( F , ΔF> + 4 | v F | 2

(4.5) + KVjFijVkFik - 6 KFijFjkFki + 2 tr WijklFi}Fkl

1 6 - ( ) ( )

T *BFA ' 4n(n-l)
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Comparing (4.1), (4.3)-(4.5), and (A.I) yields the following surprisingly simple
formulas.

Proposition 4.2. The heat kernel coefficient An/2_ι(x, x) for the conformal
Laplacian on a bundle of rank k satisfies

\τAλ(x,x) = 0, n = 4,

+ ±\F\\ π = 6,

, x) = ~ y (81Q8 - 352£17 -

F F I n = &

Each term in these expressions is a conformally invariant scalar. The heat
coefficients for the conformal Laplacian on functions are obtained by setting
k = 1 and F = 0 in (4.6).

The integral invariant of Theorem 3.1 involves the Euler characteristic of M,
which is

χ(M) = (4 W ) - 2 \jM \W\2 - 2\B\2 + \s\

(4.7) χ ( M ) = (4^)' 3 ±j -UB17 + 4Bl6 -

i /Γ D D T/ΓX Λ _i_ O D D D _ι_

'τvΰiinkιVvikiιQ -r jnur$jklSki -r —ί
IJ Ki IKJl J. IJ JK Λ. f ^

in dimensions 4 and 6 respectively. From (4.4), (4.5), (4.7), (A.2), and (A.3) we
obtain

Proposition 4.3. The invariant In/2 = (4π)~n/2fMtϊAn/2(x, x) dvg of Theo-
rem 3.1 is

(4.8)

Again, each term is conformally invariant.
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The result of Proposition 4.3 is particularly interesting when n = 4. On an

oriented 4-manifold the curvature tensors Wijkl and FtJ decompose into

self-dual and anti-self-dual pieces Wtfkl and Ftf. The Pontrjagin numbers of

M and E are then given by

= ΊΓτ( \F+\2-\F-\2dvg.
M

We can always orient M and E so that pλ(M) > 0 and pλ(E) > 0. From

(4.8) we obtain:

Theorem 4.4. The heat kernel for the conformal Laplacian on a rank k vector

bundle E over a compact orientable Riemannian 4-manifold has an asymptotic

expansion satisfying j k(t, JC, X) — (4πt)~2 vol(M) + I2 + O(t)9 where

I2 = —-2\ irA2(x9x)

= —^—Ί f fc|*F-|2 + 10|F-| 2

• A .
480

Hence 480 I2 > k[\px(M)\ - fχ(Af)] + S0\p1(E)\ for any metric and connec-

tion on E —> M, and equality holds if and only if E -> M (oriented appropriately)

is a self-dual bundle over a self-dual 4-manifold.

Self-duality is, of course, a conformally invariant condition on 4-manifolds.

5. Functional determinants and nonlocal invariants

Consider a general bundle conformal Laplacian D with v negative eigenval-

ues (counted with multiplicity). Motivated by the observation that -f '(0) is

formally Σ log λ/5 one defines the determinant of D by

J ( - l ) V ί ' ( 0 ) ifkerD={0},

\0 ifkerD#{0}.

The determinant is a smooth function of the metric (cf. [14]). This is seen by

choosing an a > 0 not in the spectrum and writing

£(*)= Σ |λ,Γ+ Σ λ r ;
λ, < a Xj> a

both summands are then locally smooth functions even near metrics with

nontrivial kernel.
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In this section we will show that detD is a conformal invariant on odd
dimensional manifolds. For even dimensional spin manifolds, we will intro-
duce conformal Laplacians ΠL and ΠR on left and right spinors, and show that
the variation of detDL/detDΛ is a conformally invariant one-form on each
conformal class of metrics. For special metrics, this ratio is itself a conformal
invariant.

We first calculate the variation of f'(O) for the conformal Laplacian D on a
vector bundle E. Let

\xk(t,x,x) ~ {4π)~n/2Σ \xak(x)tk~n/1

k

as top dimensional forms. For an orthonormal basis {ψ,} of kerD, define the
"local Betti number" β{x) to be β{x) = Σ^ψ^x)!2 dυg(x).

Proposition 5.1.

Wo) =
f -2f(x)β{x),

JM

- β ( x ) | , neven,

n odd.

Proof. Let F.P. denote the finite part at s = 0. Then

F.P\T{S)ζ(s)\ = F.P.[T(s)(m + *f'(0) + O(s2))}.

Since ξ(s) depends smoothly upon the metric within the conformal class and
8ξ(0) = 0 by Theorem 3.1, we have Sξ'(O) = δ(T(s)ζ(s)) at s = 0. By (3.1),

λ,<0

>'+ f tτk+{t,x,x)
J

dt

for Re(s) » 0, so by Lemma 5.2 below

δ/Γ(0)= Γ f f -2/( Σ 3,eλ1Φ,<
Jo JM \ λ i < 0 5 = 0

The integral over M is of exponential decay in t, so we may switch the order of
integration and integrate by parts to obtain

δ/Γ(0)= - / 2 / U Σ eλ.'k.(*)|2 + tr*+(ί,x,

+ f If sΓ t>-4 Σ eλ'%(x)\2 + tτk+(t,x,x)
JM J0 \ λ < 0

5 = 0
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The integrand of the first integral is zero at / = oo for all s, and is O(ts~n/1)
for / finite and hence zero at t = 0 for Re(s) » 0. The second integral is
j M 2f(x)sT(s)ξ(s, x)\s=0, where the local zeta function ξ(s, x) is defined by

tt*,χ)= Σ \ΦΛ*)\2\K\~'
XnΦ0

for {φn} an orthonormal basis of the λM-eigenspace [16]. The proposition
follows as in (3.2) and (3.3).

Lemma 5.2. (a) δfMtτk±(t,x,x)dx = -2tfMf(x)dtivk±(t, x, x)dx.
(b) δΣλi<oe

λ<' = -2tdtfMΣλι<of(x)eλ't\φi(x)\2dx.
Proof. Let {φ, (ε, x)} be a basis of the negative eigenspace of Ueiefg which

is orthonormal with respect to the L2 inner product ( , ) of the metric g. Then
0 = (φi9φj), where the dot denotes d/dε at ε = 0. Hence

δί trk-(t,x9x)dx = δ Σ (φ/,M>/>
JM λ,<0

= Σ 2(φ|.,fc/φ/) + (φ|.,fc/φ|.>.
λ,<0

For each / the first term is 2e~λ't(φi,φι) = 0, and by Lemma 1.1 the second
term is

-2Γ ds
0 λ ;<0 λ ;<0

This gives (a) for k~, and hence for k~+ k° (since δ(dimkerD) = 0). We
showed in §3 that (a) holds for k, so it holds for k+ by subtraction. Part (b)
follows easily after noting that the above calculation is valid on each negative
eigenspace.

Since v is a conformal invariant, the variation of ζ '(0) is the variation of
— logdetD if detD Φ 0. Thus Proposition 5.1 gives δ^detD and produces our
first invariant: detD on an odd dimensional manifold. (Note that this is
nonzero on a conformal class admitting a metric of positive scalar curvature).

Theorem 5.3. (a) // dim M is odd, det D is a conformal invariant.
(b) //dim AT = n is even, S/detD = -(4τ7)"w / 2detD fM2f(x)tτan/2(x).
Let J( denote the space of metrics and consider a conformal orbit Θg =

{e2fg: / e C°°(M)} c ^ . Choose a vector field X=(Xg,g) e T(TΘg) «
C°°(M) X Θg. If detD Φ 0, (b) above defines a 1-form w = d log detD on Θg

by

(5.1) ω(*)(g) = -2(477)^ /^ Xg t r ^ / 2 .
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Physicists call ω a conformal anomaly. What is anomolous is that, naively, one
might expect that the determinant of an invariant operator to be invariant.
However, D: T(E ® Lw) -> T(E 0 Lw+2) is an operator between two different
bundles. Hence the eigenvalues and the determinant depend on an identifica-
tion Lw = Lw+2 (which is equivalent to a choice of metric). The 1-form ω
measures the variation in this identification.

It has recently been shown that the existence of other similar anomalies (e.g.
the chiral anomaly discussed by Atiyah and Singer [2]) is forced by topological
considerations. In contrast, the conformal anomaly has no such topological
content (Θg and Jί are contractible).

To introduce the Laplacians which produce an invariant in even dimensions,
we have to discuss the Yamabe problem. The Yamabe invariant μ of a
conformal class Θ is

where Vg is the volume of (M, g). By the solution of the Yamabe problem [3],
[18], [12] in each conformal class there is a metric g0 which realizes this
infimum; it has constant scalar curvature sQ = μVgo

/n. Moreover, this metric is
unique if μ < 0 and we normalize by requiring Vgo = 1.

Now C^iM) acts on Jί via conformal transformations. Since M and
C™(M) are contractible, the fibration Jί -*Jί/C™{M) admits global sec-
tions. Indeed, the solution of the Yamabe problem provides a smooth section
over the set of conformal classes with μ < 0. When μ > 0 the lack of
uniqueness in the Yamabe problem complicates matters, but we can still define
local sections as follows.

Fix a metric g0 of constant scalar curvature μ and volume 1 and set
p = A/n — 2. For each nearby metric g, the Yamabe problem is equivalent to
solving the nonlinear elliptic eigenvalue problem Πεf= aλfp+ι (then fpgE

has constant scalar curvature λ). By linearizing this equation and applying the
implicit function theorem one can show that the Yamabe problem can be
uniquely solved for volume 1 metrics in a neighborhood of g0 provided
i(n + 2)μ/(n - 1) is not an eigenvalue of ΠgQ. Thus for generic g0 we obtain
a smooth local section σ: U'^> Jt whose image consists of metrics of volume 1
with constant scalar curvature s = μ depending smoothly on g.

Now let (M,g) be a compact oriented spin manifold. We will use this
neighborhood U to parametrize two smooth families DL, ΠR of conformal
Laplacians on the bundles SL, SR of left and right spinors. Let [h] denote the
conformal class of a metric h. Define a map from U to connections on the
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frame bundle by

[ A ] •-> the Levi-Civita connection for σ [ h ]

This connection lifts to connections v L , VΛ on SL, SR (the spin bundles are

constructed with respect to σ[A]). Define

by

V * V +

for any g e [A], Define D Λ similarly.

Thus defined, D L (g) and D Λ (g) are nonnegative operators. Indeed, this

property is conformally invariant, and holds for metrics of constant scalar

curvature because the Lichnerowicz formula jί2 = V *V + s/4 for the square

of the Dirac operator implies that

<5 2> a-"^*wrr)-*2--φi)
on SL and SR. Furthermore, if μ Φ 0, then s Φ 0 in (5.2) and D L , ΠR are

positive operators.

Corollary 5.4. Let Θg be a conformal orbit with μ Φ 0 and let άg(x) be the

A-polynomial as a differential form in the curvature. Then in the notation of (5.1)

Proof. Apply Proposition 5.1, noting that by Gilkey's Theorem [1] η =

*Άan/i(χ)"" an/2(x)] i s a PontΓJagin form and hence a pointwise conformal

invariant [4]. We may thus assume that the scalar curvature s is constant. Then

(5.2) gives e~tπ = e~^2etys, where γ is a constant, so

1- Σ ψ
k + l=n/2

By Gilkey's Theorem again, only the term with k = n/2 is nonzero. The heat

equation proof of the Atiyah-Singer Index Theorem shows that (4π)~n/2η =

ά(x) and completes the proof.

Equation (5.3) shows that <ilog(detDL/detDΛ) is a conformally invariant

1-form on Θg9 dual to -2ά(x) under the integration pairing. Furthermore, it

shows that the ^4-polynomial as a differential form (not just a cohomology

class) arises naturally from the spectral analysis of the operator D L and DR.
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Whenever μ Φ 0, D L , DR are invertible and d e t D L / d e t D Λ is a smooth,

locally well-defined function of the metric. We will next give an explicit

formula which shows that this ratio extends smoothly to the metrics over U

with μ = 0.

Theorem 5.5. Let M be oriented so A(M) > 0. The ratio F(g) =

d e t D L / d e t D Λ is a smooth locally defined function on the space of metrics. If

So = σ([gD = e~2fS w ίne conformal metric of constant scalar curvature and

volume 1 then

(5.4)
detD L

detDn
-μ

4(« - 1)
exp

M

Proof. First suppose that μ Φ 0 (by a theorem of Kazdan and Warner [3,

Theorem 6.20] there is an open set of metrics with μ < 0 when n ^ 3).

Integrating (5.3) along the line g, = e2tfg0, 0 < t < 1, and noting that ά(gt) =

ά(g) yields

(5.5) F(g) = F(go)expf -2fάg.

By (5.2) the eigenvalues of (Πgo)LtR are those of 0 2 shifted by -μ/4(n - 1).

Since the nonzero eigenvalues of jJ2 match up (jί gives an isomoφhism of these

eigenspaces),

where 7VL and NR are the multiplicities of ker 0 2 on SL and SΛ. Hence

(5.6) F ( g 0 ) = detD L /detD Λ =\-\μ/{n - l)\A(M\

Finally, when μ = 0 we set F(g0) = 0 if A(M) > 0 and F(g0) = 1 if

A(M) = 0, and define F(g) by (5.5). This agrees with the limit as μ -> 0 of

(5.6) and smoothly extends (5.4) across metrics with μ = 0 (recall that μ

depends smoothly on g near g 0).

Remarks. 1. Lichnerowicz's formula implies that μ > 0 can occur only if

A(M) = 0.
2. In dimensions n = 2 mod 4, the two spin representations of Spin(π) are

conjugate. Hence there is a conjugate linear isomorphsm c: SL -> SR between

the spin bundles of the constant scalar curvature metrics with c2 = 1 and

Vc = 0. This implies that D L and ΠR have the same spectrum, so det D L /det ΠR

is always one for these metrics. Note that ά(x) = 0 in this case.
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The conformal invariance of the 1-form (5.3) means that either the function
detDL/detDΛ has no critical point on a given conformal class, or else this
ratio is itself a conformal invariant. We now give some families of metrics for
which the latter holds.

Proposition 5.6. (a) detDL/detDΛ = 1 for a locally conformally flat metric.
(b) Let M = T\ G/H be a locally homogeneous spin manifold of volume 1

whose metric is induced from a G-inυariant metric on G/H. Then detDL/detDΛ

is invariant under volume preserving conformal variations, and is equal to

Proof, (a) If the Weyl tensor vanishes, we have ά(x) = 0 and A(M) = 0,
so the right-hand side of (5.4) is 1.

(b) The G-invariance of the metric implies that ά(x) is constant, and when
gt is a volume-preserving family of metrics the integral of X = gt is zero.
Hence (5.3) is zero and (5.5) becomes F(g) = F(gQ), and the proposition
follows.

We may also consider conformal Laplacians acting on spinors with values in
a bundle E. Set

where {eι } is Clifford multiplication by an orthonormal basis of one-forms
of E with respect to a bundle metric Λ, V is a fixed connection compatible
with h and a metric g of constant scalar curvature on M, Ftj is the curvature
of V, and s and the adjoint V * are computed with respect to g. This
Laplacian is conformally invariant and satisfies D — j)f — \s/(n — 1), so the
results of this paper remain valid for D (except that D may have nonzero kernel
if μ > 0) by replacing ά(x) with ά(x)ch(x), where ch is the Chern character
of E.

Finally if n = 2p the signature operator D = d + d* on /?-forms has the
Bochner formula

= v * v _

Here W is the Weyl tensor, and for an orthonormal frame of one-forms {0,}

with dual vector fields {Xt}, af = 0yΛ and αy = ix The space of complex

/?-forms decomposes into the ±1 eigenspaces 2P

+ of ip2*. If we consider

= V*V -
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acting on Ω .̂ (weighted appropriately), then •+= (D±)2 — \s/{n — 1). Since
the operator L = dd* — d*d matches up the nonzero eigenspaces of D2 on
Ω .̂, the results of this paper also carry over to D + (except for the μ > 0 case as
above) with ά(x) replaced by Hirzebruch's L-poΓynomial L{x). This gives a
nontrivial conformal anomaly on nonspin manifolds of dimension 4k.

Appendix

The results of §4 require an explicit expression for a3(x, x) in terms of the
Weyl, traceless Ricci, and scalar curvatures. This is obtained by a long
calculation, summarized here.

Applying Gilkey's results [10] to the conformal Laplacian (1.1), n > 2, we
obtain a3(x, x) = (4π)~n/2ΣciAi, where the 17 curvature invariants {At} and
their coefficients { ci} are listed in the first two columns of Table I. (Note that
the curvature RiJkl used in [10] differs from ours by a minus sign, and that the
heat kernel coefficients tabulated in [10] are for the operator V *V - E, so in
our notation E = - as.)

Each At is a polynomial in the scalar, Ricci, and full curvature tensors, and
there is a corresponding polynomial Bt in the scalar, traceless Ricci, and Weyl
tensors. These {Z?,} are listed in Table II. The formulas converting the {̂ 4,} to
the {Bt} appear in the last column of Table I. Using these, we find that
έϊ3(jc,jc) = {Aπ)-n/2{l\yιΣdiBi, where the {</,.} are listed in Table II for
dimension n, then for dimensions 6 and 8. Thus for n = 8, a3(x, x) is

(A.I) (4T7)3 7!

The formula for a3(x, x) for n = 6 (3rd column of Table II) is more com-
plicated, but its integral simplifies because the functions

Cx = Bl9 C2 = B2 + B6, C3 = B3 + BΊ,

Q = B4 + 2?8, C5 = B5 + B9,

Q "— « + « - JZΓiB ~ -^ΓB + »
,

1 B - - i

n
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TABLE I

Ax = ΔΔs r 6(3 - 14α) Bx

A2 = |V5| 2 17 - 168α + 420α2 B2

/ί3 = |V/?/ / |
2 - 2 Γ ' l

3
n

- 4 4 * 2 2

= iv/?ι2 9 ^ ^ h z * 3

= 5Δ5 28(1 - l l α 4- 30α 2) B6

1
= RU^RU -8 β 7+-fl6

= RijvkVjRik 8(3 - 14«) below

= <K,Δ/O 12 S 9 + - 4 ^ 5 7

( ^ - α + 6«2-12α3) Dio

, 14 1
/ ί 1 1 = 5 | Λ / y | 2 _ _ ( i _ 6 f l £ ) Bn + -B10

Ί 14 4
Λ12 = S I Λ I " Γ C 1 ~ 6α) J51 2 + _ g π 4- —

1̂3 = RιjRjkRki g •" H2α Bl3 + ~Bn " 2^\o

AlA = RijRuRuj, y - 112a below

^6

3
44

80
Λ17 = R.jkiRipkqKjpic, -9- below

1̂5 = RijRiklmRjklm ~ belθW

TΛ — V,V,, repeated indices are contracted with the metric, and R — Rl

ΰ B o + V ^ 2 B » ~ 7 7 1 ^ 13 " ( l ) („ - 2 β« +

1 4(2/; - 3)

β 1 2 4

ί^ T ) B - + „ ( „ - ί)(n - 2 ) β " + ,,:(,,_ 1)

" ~ 2 ( " - 2 Γ ( » - 2 ) 3

3 „ , 3(» - 4) „ - 2

2 « ( π - 1 ) B » + „ ( „ - ! ) ( „ - 2 ) ί » +

 l | 2 ( l l _ 1
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Invariant

TABLE II

Coefficient n = 6 n =

Bx = ΔΔs

B2 = |V5| 2

B3 = \vBiJ

ft = sΔs

BIJΛBI/

#8 =

#9 =

#10 :

Bn=s\B\2

Bl3 = BijBJkBki

#15 =

288Λ?2 - 128M + 16

4«2(/7-l)2

- 4

9

i f - 8

2n{n- I ) 2

(Λ? - 8)

( n - l ) ( ι » - 2 )

12

-(n - 8)(35κ4 - 308K 3 4 688κ2 - 184y? - 96)

Ί2n2(n- 1
( w - 8)(7«3 - 17«2-

- ( Λ - 4 ) ( 7 π H
3 Λ ( Λ - 1)

4(Λ - 8)(11«3 - 28«2

- 2 Λ +

- 2 )
- 16)

4 32«
2 7 ( Λ - 1 ) ( Λ - 2)

4 ( « - 8 ) ( 5 K 2 - 4 H - 4 )

24)

-24)

BijWiklmWJklm

WjjkιWkιmnWmnij

WijklW,pkqWJpkq

ϊ K n - 2 )

44

9
80

9

5

- 4

45

- 4

9

- 2

5

12

5

12

2

135

- 7 6

75

- 5 8

45

- 6 4

15

76

15

_8

3

44

9

80

9

each satisfy / C, ίfog = 0. One then sees that

(A.2) a3(x,x) ^ χ + 6Ω6 + fβn + f

- 9

112

- 4

9

0

0

12

0

- 1 2

7

0

0

0

44

9

80

9

where Ωrt is given by (4.1), χ is the integrand of (4.7), and 5£ = -6CX - 2C2

+ 20C3 + 12C4 - 17Q + 60C7. Similarly, the integral of the heat kernel coef-

ficient trA3(x, x) (equation (4.4)) simplifies because

FijFjkFki + 2

Π ~ 2
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satisfies / tr ηn dvg = 0. For « = 6we then have

tτA3(x,x) = ka3(x,x)

( A ' 3 ) = 7^0 [9Ω6 - 32 trFtJFjkFkι + 2tiWiJkiFuFkl] + 2 t r η 6 .
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