SINGULARITIES OF A SIMPLE ELLIPTIC OPERATOR

H. P. MCKEAN

1. Introduction

Consider the operator $A: f \rightarrow-\Delta f+\Lambda(f)$ acting upon real functions of $x \in D$ with $f(x)=0$ for $x \in \partial D . D \subset R^{d}$ is a d-dimensional domain. Λ : $R \rightarrow R$ is a convex function in the strict sense: $\Lambda^{\prime \prime}(f)>0$. Let $0<\lambda_{1}(D)<$ $\lambda_{2}(D) \leqslant \lambda_{3}(D) \leqslant$ etc. $\uparrow \infty$ be the spectrum of $-\Delta \mid D$. Ambrosetti-Prodi [1] and Berger-Church [2] proved that if

$$
-\infty<\Lambda^{\prime}(-\infty)<\lambda_{1}(D)<\Lambda^{\prime}(+\infty)<\lambda_{2}(D)
$$

then A is a global fold, i.e., up to diffeomorphisms front and back, it has the form ${ }^{1}$

$$
\left(f_{1}, f_{2}, f_{3}, \cdots\right) \rightarrow\left(f_{1}^{2}, f_{2}, f_{3}, \cdots\right)
$$

This attractive result prompted McKean-Scovel [4] to study the simplest example in which $\Lambda^{\prime}(R)$ crosses the whole spectrum of $-\Delta \mid D$: to wit, $d=1$ and $D=(0,1)$ with $\Lambda(f)=f^{2} / 2$, in which case A is the simple operator

$$
B: f \rightarrow-f^{\prime \prime}+f^{2} / 2 \text { subject to } f(0)=f(1)=0
$$

The present paper completes the description of the singularities of B.
Singular locus. This is the locus where the differential $d B=-d^{2} / d x^{2}+f$ $\equiv F$ is not $1: 1$; it consists of a countable number of sheets $M_{n}(n \geqslant 1)$ indicated in Figure 1, marked off in function space by the vanishing of one of the (necessarily simple) eigenvalues

$$
-\infty<\lambda_{1}(f)<\lambda_{2}(f)<\text { etc. } \rightarrow \infty
$$

of F; in other words, $f \in M_{n}$ if and only if $F e=0$ has a solution $e=e_{n}$ with $e(0)=e(1)=0$ and $n-1$ more interior roots $e(r)=0(0<r<1) . M_{n}$ is a smooth connected surface of codimension 1 with normal vector $\nabla \lambda_{n}=e_{n}^{2}$, the
eigenfunction being standardized by $\int_{0}^{1} e_{n}^{2}=1$ and $e_{n}^{\prime}(0)>0 . M_{1}$ is convex, while for $n \geqslant 2, M_{n}$ has $n-1$ principal directions of negative curvature; in fact, the spectrum of the second fundamental form at a point of M_{n} comprises the reciprocals of the distances to the other sheets in the direction e_{n}^{2}, these being reckoned negative for the higher sheets and positive for the lower.

Figure 1

Local folds and cusps. F is of corank 1 at singular points $f \in M_{n}(n \geqslant 1), e_{n}$ being the null direction. For $n=1, e_{1}$ is transverse to the sheet as it is of one signature which prevents the vanishing of

$$
I_{2}=\int_{0}^{1} e_{1}^{3}=\text { the inner product of } e_{1} \text { with the normal } e_{1}^{2}
$$

It follows that the map B is a local fold. More complicated singularities appear on M_{2} already; in fact, M_{2} and the higher sheets exhibit one and the same pattern of singularities, so we will deal with M_{2} only. M_{2} is most easily

Figure 2
described as the class of functions $f=e_{2}^{\prime \prime} / e_{2}$ formed out of any realistic second eigenfunction, as in Figure 2. In particular, $e_{2}, e_{2}^{\prime \prime}$, and $e_{2}^{\prime \prime \prime}$ but not e_{2}^{\prime} vanish at the ends, $e_{2}(r)=0$ at one more place $0<r<1, e_{2}^{\prime}(r)<0$, and $e_{2}^{\prime \prime}(r)=0$. From this description, it is plain that $I_{2}=\int_{0}^{1} e_{2}^{3}$ is mostly different from 0 along M_{2} so that e_{2} is transverse to the sheet and the map B is a local fold, as for $n=1 . I_{2}$ does vanish on a sublocus $L_{2} \subset M_{2}$ which is (1) nonvoid since e_{2} may be taken antisymmetrical about $1 / 2$; (2) smooth and of codimension 1 in M_{2} since, ${ }^{2}$ with $e=e_{2}$, the gradient $\nabla I_{2}=-3 e\left(F-\lambda_{2}\right)^{-1}\left(e^{2}-e I_{2}\right)$ is independent of the normal e^{2} along $L_{2} ;{ }^{3}$ and (3) connected, by inspection. The type of singularity of B along L_{2} differs according as $e=e_{2}$, which is tangent to M_{2} along that locus, is or is not tangent to L_{2} as well, i.e., according as

$$
I_{3}=-3 \int_{0}^{1} e_{2}^{2} F^{-1} e_{2}^{2}=\text { the inner product of } e_{2} \text { with } \nabla I_{2}
$$

vanishes or not: if $I_{3} \neq 0$, the map is a local cusp, i.e., up to diffeomorphisms front and back, it takes the form

$$
\left(f_{1}, f_{2}, f_{2}, \cdots\right) \rightarrow\left(f_{1} f_{2}+f_{1}^{3}, f_{2}, f_{3}, \cdots\right)
$$

while if $I_{3}=0$, which takes place along a sublocus L_{3} of codimension 1 in L_{2}, then the singularity is more complicated. McKean-Scovel [4] left the matter there. The full description of these higher singularities comes next.

[^0]Higher singularities. Let X be the vector field determined by $X f=e_{2}$. Then, with $I_{1}=\lambda_{2}$ and $e_{2}=e$, you have

$$
\begin{array}{ll}
I_{2}=\int_{0}^{1} e^{3}=\int_{0}^{1} \nabla I_{1} e=X I_{1} & \text { on } M_{2} \\
I_{3}=-3 \int_{0}^{1} e^{2} F^{-1} e^{2}=\int_{0}^{1} \nabla I_{2} e=X^{2} I_{1} & \text { on } L_{2}
\end{array}
$$

and, more generally,

$$
I_{n+1} \equiv X^{n} I_{1}=X I_{n}=\int_{0}^{1} \nabla I_{n} e \quad \text { by definition, for } n \geqslant 3
$$

see the table at the end of the paper for I_{4} and I_{5}. Define $L_{1}=M_{2}$, $L_{2}=L_{1} \cap\left(I_{2}=0\right), L_{3}=L_{2} \cap\left(I_{3}=0\right)$, etc., so that, for any $n \geqslant 1, L_{n+1}$ is the sublocus of L_{n} where $e=e_{2}$ is tangent to L_{n}.

Theorem. Each of the loci $L_{1} \supset L_{2} \supset$ etc. is a nonvoid, smooth, connected submanifold of codimension 1 in the preceding locus. $L_{\infty}=\cap L_{n}$ is void so each point of M_{2} belongs to $L_{n}-L_{n+1}$ for just one value of $n \geqslant 1$, the map B having at such points a local singularity of the type described by Morin [5], with normal form

$$
\left(f_{1}, f_{2}, f_{3}, \cdots\right) \rightarrow\left(f_{1} f_{2}+f_{1}^{2} f_{3}+\cdots+f_{1}^{n-1} f_{n}+f_{1}^{n+1}, f_{2}, f_{3}, \cdots\right)
$$

i.e., for $n=1$ a fold, for $n=2$ a cusp, etc.

The important features of the singularities along L_{n} / L_{n+1} are as follows. $d B=F$ is of corank 1 so B may be brought into the local form

$$
\begin{equation*}
\left(f_{1}, f_{2}, f_{3}, \cdots\right) \rightarrow\left(h\left(f_{1}, f_{2}, f_{3}, \cdots\right), f_{2}, f_{3}, \cdots\right) \tag{1}
\end{equation*}
$$

by application of diffeomorphisms front and back, in which the first coordinate represents the singular direction $e=e_{2}$; in particular, $\partial / \partial f_{1}$ represents the field $X: f \rightarrow e_{2}$ and $\partial h / \partial f_{1}$ is a smooth nonvanishing multiple of $\lambda_{2}(f)$, as a routine comparison of differentials will confirm. Now $f \in L_{n}-L_{n+1}$ if and only if
$\left(\partial / \partial f_{1}\right)^{m} h$ vanishes for $m=1, \cdots, n$ but not for $m=n+1$, the successive vanishings taking place on smooth nested loci each of codimension 1 in the preceding.

The final point is that
the gradients $\nabla\left[\partial h / \partial f_{1}\right], \cdots, \nabla\left[\partial^{n} h / \partial f_{1}^{n}\right]$ are independent on the locus indicated in (2).
(1), (2), and (3) are precisely the conditions for B to have a singularity of the type displayed above (see Golubitsky-Guillemin [3, pp. 174-179]).

Summary. B exhibits folds, cusps, and, more generally, Morin-type singularities of any degree $n+1 \geqslant 2$ along nested subloci of codimension n on any singular sheet M_{2}, M_{3}, M_{4}, etc.

Higher dimensions. (3) is equivalent to 2(1) below: $\nabla I_{1}, \cdots, \nabla I_{n}$ are independent on L_{n}. This, and its generalization 2(2), is all you need to extend the result to higher dimensions $d \geqslant 2$. A proof was not found, but see the end of $\S 2$ for comment.

2. The proof

The chief items to be checked are the following:

$$
\begin{equation*}
\nabla I_{1}, \cdots, \nabla I_{n} \text { are independent on } L_{n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla I_{n+1} \text { is independent of } \nabla I_{1}, \cdots, \nabla I_{n} \text { on } L_{n} \tag{2}
\end{equation*}
$$

$X: f \rightarrow e_{2}$ can be integrated without obstruction and
$\lambda_{2}[\exp (t X) f]$ is analytic in $t \geqslant 0$.
(2) implies (1) but it is convenient to prove them in the stated order. This is postponed to the end.
The loci are nonvoid, connected, and smooth. (1) implies that each of $L_{1} \subset L_{2} \subset L_{3}$ etc. is a smooth submanifold of codimension 1 in the last, provided it is nonvoid. We assume that L_{n} is nonvoid and connected as is known already for $n=1$, and prove that L_{n+1} is the same. (2) permits us to form the vector field

$$
Z f=\frac{\text { the coprojection of } \nabla I_{n+1} \text { upon } \nabla I_{1}, \cdots, \nabla I_{n}}{\text { its length in } L^{2}[0,1]}
$$

and it is easy to see that you can integrate freely in L_{n}, i.e., $\partial f / \partial t=Z f$ can be solved backwards and forwards if $f_{0} \in L_{n}$, the solution $f=\exp (t Z) f_{0}$ being confined to L_{n} in view of $Z I_{1}=\cdots=Z I_{n}=0$. Now $Z I_{n+1}=1$, so I_{n+1} vanishes just once along each stream line of the flow; in particular, L_{n+1} is not void. Besides, any two points of L_{n+1} can be joined by a path in L_{n}, the latter being connected, and each point of this path can be swept along by the Z-flow until it hits L_{n+1}, producing a new path with the old end points but lying wholly in L_{n+1} : in brief, L_{n+1} is connected. A bit more detail about the flow may be welcome: $\left|Z f_{2}-Z f_{1}\right|$ is majorized by a multiple of $\left|f_{2}-f_{1}\right|_{\infty}$ in the small. This ensures local solvability. The global solvability follows easily from $|Z f|_{2}=1$ and (2).
L_{∞} is void by reason of analyticity. The same reasoning shows that X : $f \rightarrow e_{2}$ can be integrated without obstruction. This is part of (3) and the rest of (3) is easy, too. Let e_{0} be the solution of $F e_{0}=\lambda e_{0}$ with $e(0)=0, e^{\prime}(0)=1$,
and adjustable λ. Then

$$
\begin{gathered}
e_{0}(x)=x+\sum_{n=1}^{\infty} \text { the integral operator } \int_{0}^{x} d a \int_{0}^{a}[f(b)-\lambda] d b \\
\text { applied } n \text {-fold to } x,
\end{gathered}
$$

and this is analytic in λ and f, by inspection. The number λ_{2} is the second, necessarily real and simple, root of $e_{0}(1)=0$ for fixed f; as such, it is analytic in f, and this feature is inherited by

$$
e_{2}=\frac{e_{0} \text { computed for } \lambda=\lambda_{2}}{\sqrt{\int_{0}^{1} e_{0}^{2}}}=X f
$$

Now it is routine to check that $\lambda_{2}\left[\exp (t X) f_{0}\right]$ is analytic in $t \geqslant 0$, finishing the proof of (3). The application to L_{∞} is this: $f_{0} \in L_{\infty}$ means $X^{n} \lambda_{2}=0$ for $n \geqslant 0$. Then $\lambda_{2}\left[\exp (t X) f_{0}\right]=0$ for $t \geqslant 0$ by analyticity, and this is impossible: with $f=\exp (t X) f_{0}$, you find $(B f)^{*}=d B f^{*}=F e_{2}=\lambda_{2} e_{2}=0$, violating the fact that $B f=B f_{0}$ has only a finite number of distinct solutions [4]: in short L_{∞} is void. The discussion is finished except for the proofs of (1) and (2).

Proof of (1). $\quad I_{n+1}=X I_{n}=\int_{0}^{1} \nabla I_{n} e_{2}$ for $n \geqslant 1$, whence

$$
\nabla I_{n+1}=\left(e_{2} \cdot \nabla\right) \nabla I_{n}-e_{2}\left(F-\lambda_{2}\right)^{-1}\left(\nabla I_{n}-e_{2} I_{n+1}\right)
$$

in view of the variational formula

$$
\begin{aligned}
I_{n+1}^{\cdot} & =\int_{0}^{1}\left[\nabla I_{n}^{\cdot} e_{2}+\nabla I_{n} e_{2}\right] \\
& =\int_{0}^{1}\left[e_{2} \nabla^{2} I_{n} f^{\cdot}-\nabla I_{n}\left(F-\lambda_{2}\right)^{-1}\left(e_{2} f-e_{2} \int_{0}^{1} e_{2}^{2} f^{\cdot}\right)\right] \\
& =\int_{0}^{1} f^{\cdot}\left[\nabla^{2} I_{n} e_{2}-e_{2}\left(F-\lambda_{2}^{-1}\right)\left(\nabla I_{n}-e_{2} \int_{0}^{1} e_{2} \nabla I_{n}\right)\right] .
\end{aligned}
$$

Now $e_{2}(x)>0$ for $0<x<r, r<1$ being its only interior root, and with $e=e_{2}$ for brevity, a brief computation confirms that

$$
\left(F-\lambda_{2}\right)^{-1}: g \rightarrow-e \int_{0}^{x} e^{-2} \int_{0} e g \text { for } x<r, \text { modulo } e
$$

Besides,

$$
(e \cdot \nabla) e=-\left(F-\lambda_{2}\right)^{-1}\left(e^{2}-e \int_{0}^{1} e^{3}\right)=-F^{-1} e^{2} \quad \text { for } f \in M_{2} \text { and } I_{2}=0
$$

so you can evaluate $\nabla I_{1}, \nabla I_{2}$, etc. as follows:

$$
\begin{aligned}
\nabla I_{1}= & e^{2} ; \\
\nabla I_{2}= & \left(e \cdot \nabla-e F^{-1}\right) \nabla I_{1} \quad \text { if } I_{1}=I_{2}=0 \\
= & -3 e F^{-1} e^{2}=3 e^{2} \int_{0}^{x} e^{-2} \int_{0} e^{3} \quad \text { for } x<r \text { modulo } \nabla I_{1} ; \\
\nabla I_{3}= & \left(e \cdot \nabla-e F^{-1}\right) \nabla I_{2} \text { if } I_{1}=I_{2}=I_{3}=0 \\
= & -6 e\left(F^{-1} e^{2}\right) \int_{0}^{x} e^{-2} \int_{0} e^{3}+6 e^{2} \int_{0}^{x} e^{-3}\left(F^{-1} e^{2}\right) \int_{0} e^{3} \\
& -9 e^{2} \int_{0}^{x} e^{-2} \int_{0} e^{2} F^{-1} e^{2} \\
& -3 e F^{-1} e^{2} \int_{0} e^{-2} \int_{0} e^{3} \text { for } x<r \text { modulo } \nabla I_{1} \text { and } \nabla I_{2} \\
= & 12 e^{2} \int_{0}^{x} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3} \\
& +3 e^{2} \int_{0}^{x} e^{-2} \int_{0} e^{3} \cdot \int_{0}^{x} e^{-2} \int_{0}^{3} e^{3} \text { with the same proviso. }
\end{aligned}
$$

The pattern has been set: if $f \in L_{n}$ and if $x<r$, then, modulo lower gradients, ∇I_{n} is a sum of iterated and/or multiplied double integrals of the form

$$
e^{2} \int_{0} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3} \cdots \int_{0} e^{-2} \int_{0} e^{3} \quad(n-1) \text { fold }
$$

see the table for I_{n}. The proof is by induction, starting from $n=1 . \nabla I_{n}$ is taken in the stated form on L_{n} :

$$
\nabla I_{n}=\sum e^{2} \int_{0} e^{-2} \int_{0} e^{3} \cdots \int_{0} e^{-2} \int_{0} e^{3}(n-1) \text { fold }+\sum_{j<n} c_{j} \nabla I_{j} .
$$

$e \cdot \nabla-e F^{-1}$ is now applied at $L_{n+1} \subset L_{n}$ to produce the desired expression

$$
\nabla I_{n+1}=\sum e^{2} \int e^{-2} \int_{0} e^{3} \cdots \int_{0} e^{-2} \int_{0} e^{3} n \text {-fold }+\sum_{j \leqslant n} c_{j}^{\prime} \nabla I_{j}
$$

by virtue of the following remarks:
(a) Modulo lower gradients, $e \cdot \nabla$ produces from the sum of $(n-1)$ fold integrals a new sum of n fold integrals plus a fixed multiple of the old sum, which is nothing but ∇I_{n}.
(b) $-e F^{-1}$ does the same except the added term is simply a multiple of $e^{2}=\nabla I_{1}$.
(c) $\left(e \cdot \nabla-e F^{-1}\right) \nabla I_{j}=\nabla I_{j+1}$ for $j<n$.
(d) The numbers $c_{j}(j<n)$ are smooth functions of f, as you will check inductively, and these contribute, under the action of $e \cdot \nabla$, the quantity $\left(\int_{0}^{1} \nabla c_{j} e\right) \nabla I_{j}$ to the expression for ∇I_{n+1}.

The proof of (1) can now be finished: if ∇I_{n+1} is dependent upon $\nabla I_{1}, \cdots, \nabla I_{n}$ at a point of L_{n+1}, then with new coefficients $c_{j}(j \leqslant n)$,

$$
\begin{aligned}
& \sum e^{2} \int_{0} e^{-2} \int_{0} e^{3} \cdots \int_{0} e^{-2} \int_{0} e^{3} n \text { fold } \\
& \quad=\sum_{1 \leqslant j \leqslant n} c_{j} \sum e^{2} \int_{0} e^{-2} \int_{-0} e^{3} \cdots \int_{0} e^{-2} \int_{0} e^{3}(j-1) \text { fold }
\end{aligned}
$$

for $x<r$. But the product of e^{2} and a $(j-1)$ fold integral is of the form $\left[e^{\prime}(0)\right]^{j+1} x^{d}[1+o(1)]$ at $x=0$ with $d=2+3(j-1)=3 j-1$, and as no cancellation can occur between such quantities, so $c_{1}, c_{2}, c_{3}, \cdots, c_{n}$ are seen, in that order, to vanish, and a contradiction is obtained.

Proof of (2). ∇I_{n+1} is now computed, not as before on L_{n+1}, but at any point of L_{n}. The resulting expression

$$
\nabla I_{n+1}=(e \cdot \nabla) \nabla I_{n}-e F^{-1}\left(\nabla I_{n}-e I_{n+1}\right)
$$

contains just one novel term $I_{n+1} \times e^{2} \int_{0}^{1} e^{-2} \int_{0} e^{2}$ not seen in the former computation; luckily, it is of degree 4 at $x=0$ and 4 is not of the form $3 j-1=2,5, \cdots$ so that the former conclusion (to wit, the independence of $\left.\nabla I_{n+1}\right)$ is unchanged.

Higher dimensions. The present proof of (1) is hopeless in higher dimensions: it depends upon expressing the operator $F^{-1} e^{2}$, modulo e, in the form $-e \int_{0}^{x} e^{-2} \int_{0} e^{3}$ near $x=0$ in case $\int_{0}^{1} e^{3}=0$, and this has no counterpart.

Example. $D=(0,1) \times(0,1 / 2) \subset R^{2}$. The operator $F=-\nabla-8 \pi^{2}$ has ground state $\lambda_{11}=-3 \pi^{2}$, simple 2 nd eigenvalue $\lambda_{21}=0$ with eigenfunction $e=e_{21}=2 \sqrt{2} \sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)$ subject to $I_{2}=\int e^{3}=0$, and

$$
F^{-1} e^{2}=\sum_{(m, n) \neq(2,1)} \pi^{-2}\left(m^{2}+4 n^{2}-8\right)^{-1} e_{m n} \otimes e^{2} e_{m n}
$$

with $e_{m n}=2 \sqrt{2} \sin \left(\pi m x_{1}\right) \sin \left(2 \pi n x_{2}\right)$ for general $m, n \geqslant 1$, from which it is easy to see that $F^{-1} e^{2}=c e+o(e)$ is not possible near any of the sides of D : for example, if this happens along $x_{1}=0$, then $\partial F^{-1} e^{2} / \partial x_{1}=2 \pi c \sin \left(2 \pi x_{2}\right)$ for $x_{1}=0$ and $0<x_{2}<1 / 2$, and explicit computation reveals that this is not so.

Acknowledgment. The work presented in this paper was performed at the Courant Institute with the support of the National Science Foundation under Grant NSF-MCS-76-07039.

3. Table

The functionals $I_{1}=\lambda_{2}, I_{2}=\int_{0} e^{3}$, etc. and their gradients are recorded up to I_{5}.

n	I_{n} on L_{n-1}	∇I_{n} on L_{n}	$\nabla I_{n} \text { on } L_{n} \text { for } x<r .$ modulo lower gradients
1	λ_{2}	e^{2}	e^{2}
2	$\int_{0}^{1} e^{3}$	$-3 e F^{-1} e^{2}$	$3 e^{2} \int_{0}^{x} e^{-2} \int_{0} \mathrm{e}^{3}$
3	$-3 \int_{0}^{1} e^{2} F^{-1} e^{2}$	$\begin{aligned} & 3 \times 4\left(e F^{-1}\right)^{2} e^{2} \\ & +\left(F^{-1} e^{2}\right)^{2} \end{aligned}$	$\begin{gathered} 3 e^{2} \times 4 \int_{1}^{x} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3} \\ +\left(\int_{0}^{x} e^{-2} \int_{0} e^{3}\right)^{2} \end{gathered}$
4	15 $\int_{0}^{1} e\left(e F^{-1}\right)^{2} e^{2}$	$\begin{aligned} -15 & \times 4\left(e F^{-1}\right)^{3} e^{2} \\ & +2\left(F^{-1} e^{2}\right)\left(F^{-1} e F^{-1} e^{2}\right) \\ & +e F^{-1}\left(F^{-1} e^{2}\right)^{2} \end{aligned}$	$\begin{aligned} 15 e^{2} & \times 4 \int_{0}^{x} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3} \\ & +2\left(\int_{0}^{x} e^{-2} \int_{0} e^{3}\right)\left(\int_{0}^{x} e^{-2} \int_{0} e^{3} \int_{0} e^{-2} \int_{0} e^{3}\right) \\ & +\int_{0}^{x} e^{-2} \int_{0} e^{3}\left(\int_{0} e^{-2} \int_{0} e^{3}\right)^{2} \end{aligned}$
5	$\begin{aligned} & -15 \\ & \times 6 \int_{0}^{1} e\left(e F^{-1}\right)^{3} e^{2} \\ & +\int_{0}^{1}\left(F^{-1} e^{2}\right)^{3} \end{aligned}$	$\begin{aligned} & 45 \times 8\left(e F^{-1}\right)^{4} e^{2} \\ & +4\left(F^{-1} e^{2}\right)\left(F^{-1}\left(e F^{-1}\right)^{2} e^{2}\right) \\ & +4 e F^{-1}\left(F^{-1} e^{2}\right)\left(F^{-1} e F^{-1} e^{2}\right) \\ & +2 e F^{-1} e F^{-1}\left(F^{-1} e^{2}\right)^{2} \\ & +2\left(F^{-1} e F^{-1} e^{2}\right)^{2} \\ & +\left(F^{-1} e^{2}\right) F^{-1}\left(F^{-1} e^{2}\right)^{2} \end{aligned}$	

References

[1] A. Ambrosetti \& G. Prodi, On the inversion of some differentiable maps between Banach spaces with singularities, Ann. Mat. Pura Appl. 92 (1972) 231-246.
[2] M. Berger \& P. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem (1), Indiana Univ. Math. J. 28 (1979) 935-952.
[3] M. Golubitsky \& V. Guillemin, Stable mappngs and their singularities, Springer, Berlin, 1973.
[4] H. P. McKean \& J. C. Scovel, Geometry of some nonlinear differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (1986), to appear.
[5] B. Morin, Formes canoniques des singularites d'un application differentiable, C. R. Acad. Sci. Paris Sér. I Math. 260 (1965) 5662-5665, 6503-6506.

Courant Institute of Mathematical Sciences

[^0]: ${ }^{2}\left(F-\lambda_{2}\right)^{-1}$ acts upon the annihilator of $e=e_{2}$. The computation of ∇I_{2} rests upon the variational formula $\left(F-\lambda_{2}\right) e \cdot=-\dot{f} e+\lambda_{2} e$ in which $\lambda_{2}=\int_{0}^{1} e^{2} \dot{f}$.
 ${ }^{3} \nabla I_{2}=-3 e F^{-1} e^{2}$ along L_{2} so that $\nabla I_{2}=c e^{2}$ implies $-3 e^{2}=F c e=0$.

