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THE POLYSYMPLECTIC HAMILTONIAN
FORMALISM IN FIELD THEORY

AND CALCULUS OF VARIATIONS
I: THE LOCAL CASE

CHRISTIAN GUNTHER

Abstract

An invariant geometric Hamiltonian formalism for multiple integral varia-
tional problems and field theories is presented. The formalism is based on the
notion of a polysymplectic form, which is a vector valued generalization of
symplectic forms. Hamiltonian equations, canonical transformations,
Lagrange systems, symmetries, field theoretic momentum mappings and a
classification of G-homogeneous field theoretic systems on a generalization of
coadjoint orbits are investigated.

Introduction

The subject of this article is the Hamiltonian formalism for multiple integral
variational problems and field theory.

In classical mechanics (see e.g. [1], [3]), the Hamiltonian formalism for single
integral variational problems is the central structure and the base for the
theory of symmetries, for statistical mechanics and for quantum mechanics.
The geometric setting of the Hamiltonian formalism in terms of symplectic
geometry lead to substantial progress, particularly in systems with symmetry
groups, interaction models with gauge fields (minimal coupling), and the
relation between classical and quantum systems. Thus Hamiltonian systems on
symplectic manifolds are now the generally accepted fundamental frame for
the dynamics of particle theories including quantum mechanics.

For field theory such a frame has been missing. Many of the quandries of
quantum field theory may be due in part to the lack of a satisfactory
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Hamiltonian formalism. While locally the Hamiltonian equations for multiple
integral variational problems have been known for a long time, their variant
geometric meaning has never been fully clarified and a concise formalism
based on these equations seems to be still missing.

In this article the Hamiltonian formalism for field theories and multiple
integral variational problems is presented in a global geometric setting. The
power of the Hamiltonian formalism in mechanics is a consequence of some
natural properties of the theory, which an appropriate field theoretic formalism
should share. In order to provide a fundamental frame for field theories, a
multidimensional Hamiltonian formalism should satisfy the following condi-
tions.

H.O. For each field system an evolution space can be constructed, which
describes the states of the system completely.

H.I. The evolution space carries a geometric structure, which assigns to each
function (Hamiltonian density) its Hamiltonian equations.

H.2. The geometry of the evolution space gives 'canonical transformations,'
i.e. the general symmetry group of a system independently of the choice of a
Hamiltonian density.

H.3. The formalism is covariant, i.e. no special coordinates or coordinate
systems on the parameter space are used to construct the Hamiltonian equa-
tions.

H.4. There is an equivalence between regular Lagrange systems and certain
(regular) Hamiltonian systems.

H.5. For one dimensional parameter space the theory reduces to the ordinary
Hamiltonian formalism on symplectic manifolds in classical mechanics.

The formalism presented in this article meets all six criteria and the
construction of the phase- or evolution-space and the Hamiltonian equations is
canonical in the same sense as in mechanics.

The key idea for this generalized Hamiltonian formalism is to replace the
symplectic form in classical mechanics by a vector valued, so called polysym-
plectic form. The evolution space of a classical field will appear as the dual of a
jet bundle, which carries naturally a poly symplectic structure. The poly sym-
plectic form will assign to each function on the evolution space the Hamilto-
nian equations via the 'musical morphisms.' Canonical transformations are
bundle isomorphisms leaving this polysymplectic form invariant.

This paper treats the local case, i.e. the Hamiltonian formalism for fields as
functions or sections in a trivial fiber bundle. The global case, the Hamiltonian
formalism for fields as sections in an arbitrary fiber bundle, will be studied in
the forthcoming second part. In §1, field theoretic phase spaces are introduced
as 'homogeneous cojet spaces,' which are generalizations of the cotangent
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bundles. In §2, polysymplectic manifolds are introduced and the canonical
polysymplectic structure on the cojet bundle is constructed. The Hamiltonian
equations on polysymplectic manifolds are studied in §3. In §4, the equivalence
of Hamiltonian and Lagrangian systems (with the usual restrictions) is proven.
§5 treats infinitesimal canonical transformations that, in the multiple integral
case, are not identical with Hamiltonian systems. §§6 and 7 study systems with
symmetries. In §6 polysymplectic actions are studied, a generalized Noether
theorem is proven, and momentum mappings for fields are introduced. §7
presents a reduction theorem for polysymplectic manifolds and culminates in a
classification of homogeneous polysymplectic spaces by generalized coadjoint
orbits. Finally, in §8, a few remarks on the global case are included.

The polysymplectic approach not only recovers all classical results and
concepts of local field theory in a global and much more transparent theory,
but leads globally and locally to many new results generalizing the Noether
theorem based on canonical transformations, the existence of momentum
mappings, the Lie algebra structure of the space of currents, the reduction
procedure, and the classification of G-homogeneous systems.

There have been several other approaches to Hamiltonian field theories.
None of them satisfies all conditions H.0-H.5. The "3 + 1 formalism" singles
out a special time coordinate and uses methods of infinite dimensional
symplectic geometry [1]. While this is very successful for Galilean systems, the
approach is not covariant, i.e. does not satisfy H.3, and, therefore, causes
problems in relativistic theories.

A natural geometric approach is the Hamilton-Cartan formalism by
Goldschmidt and Sternberg [24] and Ouzilou [39]. Their approach does not
satisfy H.I and H.2. The theories of Garcia and Perez-Rendon and the
'multisymplectic' approach by Kijowski and Tulczyjew, based on a more
general theory by Dedecker, also do not satisfy H.I and H.2. The bibliography
of the present article tries to give a survey of these geometric approaches.

This work was inspired by the symplectic formulation of classical mechanics
[1] and [51] and by the work of Edelen [9] and Rund [48] on a local
Hamiltonian formulation of field theory. The article of Edelen can be seen now
as a coordinate version of the local polysymplectic approach, which is pre-
sented in the present paper.

The mathematical framework developed in this paper is used in a separate
publication to provide a rigorous foundation for field theory. This will also
help to clarify some of the present conceptual problems in quantum field
theory.

I thank G. Emch for his continuous encouragement, his constructive critical
remarks and patient interest during all stages of this work.
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Notation. The notation follows Abraham and Marsden [1] with some

modifications. In particular, we denote by J^M the smooth functions on M

and by SCM the vector fields on M. In general, bundles are denoted by Latin

types and the sections in a bundle by script types. The space of bounded linear

maps between two Banach spaces Q and S are denoted by Lin(Q, S) while

Hom(£, F) is the bundle of fiberwise linear maps between two vector bundles

E and F over the same base.

In the following, let U c Rn be an open neighborhood of the origin, and let

vol be a volume form on U. U will be the parameter space of the theory, in the

case of classical field theory U is a neighborhood in Minkowski-space. Classi-

cal mechanics is included as the special case n = 1. Let Q be an arbitrary

smooth Banach manifold with typical tangent space Q, a reflexive Banach

space. Q is the space in which the field takes its values. As an example, for

scalar fields Q = R. In the special case n = 1, which represents classical

Newtonian mechanics, Q is the configuration space, and U a time interval. In

classical theories, Q is finite dimensional; the infinite dimensional case is

included here for possible applications to quantum field theory.

Fields will be considered as sections in the trivial fiber bundle E = U X Q
ψ

over U, i.e. as maps U -> Q. Denote by p: E -> U the canonical projection.

1. Homogeneous jets and cojets

Since the field equations contain the values of the fields and their first

derivatives, the space Q of all field values together with all derivatives of fields

φ : U -> Q will be made into a manifold, which is a generalization of the

velocity space in classical mechanics. This is done by the following standard

procedure:

1.1. On the set of smooth maps ψ:U -> Q an equivalence relation - is

defined by:

ψx - ψ 2 if a n d only if T0\px = Γoψ2.

Γoψ denotes the tangent map of ψ at the origin O e U c Rn.

The equivalence classes [ψ] are the one-jets of smooth maps U -> Q.

Define InQ as the collection of all these equivalence classes. By standard

arguments I"Q is a smooth vector bundle over Q, with typical fiber Lin(R", Q)

(the bounded linear maps Rn -> Q). InQ is called the homogeneous l-jet

bundle. By construction

ΓQ s Hom((Rw, TQ) ~ TQ ® Rw*,
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where Hom(Rw, TQ) denotes the bundle of linear maps from Rn into the

tangent spaces of Q. Let ΎQ be the natural projection InQ -» Q.

Note. If a base el9- ,e n of Rn is chosen, there is the isomoφhy: InQ =

φ « j ρ . Therefore, elements of InQ can also be interpreted as n-tangentυectors

of Q.

1.2. For any smooth map ψ: U -* Q, Γψ: Π7 -> Γ β is a smooth section

£/ -* 7 π β along ψ and ΓMψ e Hom(R", TQ) for wGί/.

X

Sections Q -> 7 w β are considered to be partial differential operators

, R"*) by X(fXq) = df <> Xq <= Rn* or partial differential equations for

sections ψ: t/ -> β.

ψ: £/ -> Q is a .ro/ttfiYw of X e y 'ec/^ρ iff ΓMψ = Jf(ψ(«)) for all i / e K

1.3. By Frobenius' theorem X e S^ecInQ has a solution, i.e. is integrable

iff for the canonical base 9/9Λ^ 9/9^ n of Rn with injections iλ /w: R

^ R" the vector fields on Q, X° ij9 X° ik, commute for all j , k = 1, , n. In

other words, X is a Lie algebra morphism Rn -> ^*Q. By the theorem of Palais

[40], in this case X has a local solution flow: £/X K-> β, V = V° <z Q,

TuχP(q) = Jf(ψ(?)), ψ M : F ^ ψ t t ( F ) is a diffeomorphism, and ψM+M,(^r) =

1.4. Functoriality of In. If / : Qλ -> β 2 is a smooth map, then Inf: InQλ -»

7 " β 2 , Inf(Xq) = [f ° ψ]/(^) is a vector bundle morphism. (ψ: £/ -> β is the

representative of Xq as in 1.1.) Obviously In is a covariant functor this way.

For n = 1, 7 1 = Γ, i.e. 7 x β = Γβ.

1.5. Definition. Denote by Jfom(Rπ, TQ) = ^ecΓQ the smooth sections

of 7 w β. The 'pointwise' commutator

[X9Y](q)(x):= [X{x),Y(x)](q)9

I J G tfom{Rn, TQ), j c G R " ^ e β ,

defines a Lie algebra structure on Jίfom(Rn, TQ).

1.6. Definition. Let a e j / ^ β be a ^-form on β, and let X e

Hom(Rπ, TQ).

I n P~l

is defined by (Xia)(x) = X(x)ja (J is the inner product or contraction.)

hxa G ^ ( ρ , R M * ) = Λm(RM, Λ/>Γ*β), the Lie derivative, is also 'point-

wise' defined: Lxa(x):= hx^x)a.
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1.7. Lemma. [X, Y]ja = LXYJ<X - YAda, Lxa = Xλda + dXλa, Lxf =

df ° X = 0 iff f is constant along any solution of X.

Sections in InQ play the role of directional fields. In classical mechanics

Jίfom(Rn, TQ) reduces to the vector fields on the configuration space Q. For

the Hamiltonian formulation covectors have to be introduced, the field theo-

retic generalization are cojets:

1.8. Definition. The bundle Hom(Γ<2, R") over Q is called the homogeneous

cojet bundle.

Note. We have Hom(TQ,Rn) = T*Q ® Rn. With respect to a base of R",

[
Denote the sections of Hom(Γρ, R") by J?om(TQ, R"). Hom(TQ, Rn) will in

the Hamiltonian formalism of field theory play the same role as the phase

space in mechanics. In particular, Hom(TQ, Rn) is the dual of Hom(R", TQ);

the duality is given by the trace of linear maps Rn -> Rn:

1.9. Proposition. There are natural isomorphisms

Hom(R w ,Γβ) -> H o m ( Γ ρ , R n ) * , Xq ^ tr( o χq)9

Hom(Γρ,R") -> Hom(R M ,Γρ)*, φq ^ tr(φo . ) ,

where denotes the variable in Hom(Γβ, Rn), resp. Hom(R", TQ), and the trace

is defined as t r l = 1 {normalized). Therefore, the cojet bundle can be inter-

preted as the dual of lnQ.

2. Polysymplectic structures

The keystone of the Hamiltonian formalisms of classical mechanics is the

symplectic structure on the phase space. For field theory we will show that this

statement remains true, provided the symplectic form is replaced by a vector

valued form, which will be called polysymplectic.

In analogy to the canonical forms on the cotangent bundle, the cojet space

HomίΓζ^R") carries a natural Revalued one-form Θo and the associated

two-form Ωo = -dθ0: Let Q be a reflexive Banach manifold. Consider the

canonical projections rg": Hom(TQ,Rn) -> Q and rQ:TQ -» Q, and the tan-

gent map of τ*n: T Hom(Γζ), RM) -> TQ and τ H o m : T Hom(Γρ, R") -*

Hom(TQ,Rn):

T(Hom(TQ,Rn))

τ Hom

Hom(TQ,R")
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A Revalued one-form Θo on Hom(Γρ, R") is defined by

*o{Wm,) = mqoTr$"{Wm9),

where WMq e THom(TQ,R") and mq = τUom(Wmq) e Hom(Γρ,R").

2.1. Definition. Θo is the canonical one-form and Ω o := - J Θ 0 is the canoni-

cal polysymplectic form on Hom(TQ, R").

2.2. Proposition. Ωo w c/αse<i and nondegenerate in the sense that ΩQ : TM ->

Hom(Γρ,R"), Qg(ϋX»F) = Ω 0(i; 1w)(M:= Hom(Γ<2,R")), is injective.

Proof. We introduce natural coordinates on Hom(Γg, R w ) :(#, /?) with

q: ρ D F -^ ^r(F) c Q a chart of Q and

(?,/>): ^ X Lin(Q,Rn) -> ? ( K ) X

Similarly, we introduce the natural coordinates for TM:(q, p,q, p).

In these coordinates we have

O0{q,p\q,ρ) = τM(q>p>q>P)°TτQ*(<iiP>q>P) = {q,p)°{q,q) =p(q)

Therefore, ΩQ(q, p)((qv p^ifo Pi)) = Piiqύ ~ PMi)- H a h n Banach's theo-
rem gives the desired result.

2.3. Corollary. In the natural bundle coordinates the canonical forms on

Hom(Γ<2, R") have the local representation:
n <Λ n >\

Θo = Σ Pidq ® ^ - , Ωo = Σ dq Λ dPi ® j - .

The proof for the following result is similar to the case n = 1 of symplectic

geometry:

2.4. Proposition. 1. Θo is the unique W-valued one-form on Hom(ΓQ,Rw)

such that β*Θ0 = β for any vector valued form β e J / X ( Q , Rn).

2. Iff: Q ^> Q is a diffeomorphism, then

^ Hom(Γρ,R") .

q q q q

n ) = Lin(Rn

9TqQ)* is a diffeomor-

phism and leaves Θo and Ωo invariant, i.e.

( r * / ) * Θ 0 = Θ 0, (/«*/)*Ω0 = Ω0.

As in classical mechanics, the Hamiltonian formalism can be extended to

situations where the phase space is not of the form Hom(Γβ,Rw) for some

manifold Q. This requires the definition of a polysymplectic manifold:

2.5. Definition. A closed nondegenerate Revalued two-form Ω on a mani-

fold M is called a polysymplectic form. The pair (M, Ω) is a polysymplectic

manifold.
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Unlike the case of symplectic forms, the classification of linear polysym-

plectic forms is not trivial. Therefore, two polysymplectic forms are not

necessarily locally equivariant. Since those forms, which can be locally repre-

sented as in 2.3, are of particular interest (those give locally "canonical"

equations), so called standard forms are introduced:

2.6. Definition. A polysymplectic form Ω on a manifold M is called a

standard form iff M has an atlas of canonical charts for Ω, i.e. charts in which

locally Ω is written as the canonical evaluation form on Q X Lin (Q,R").

(M, Ω) is called a standard polysymplectic manifold.

Note. Standard forms take the representation of 2.3 in canonical charts.

Morphisms of polysymplectic manifolds are introduced in the natural way:

2.7. Definition. Let (Mf , Ωy), z = l,2, be polysymplectic manifolds. A

smooth map / : Mx -> M 2 is polysymplectic iff

/ * Ω 2 = Qv

The group of all polysymplectic diffeomorphisms of (M, Ω) is denoted by

Pspl(M, Ω) (the polysymplectomorphism group). Sometimes the elements of

Pspl(M, Ω) are called canonical transformations.

Remark. By 2.4.2, In* defines an embedding

Diff(Q) -> Pspl(Hom(Γρ,R"),Ω 0 ).

2.8. Lemma. Polysymplectic maps are immersions.

Proof. If / is polysymplectic and Tf(υ) = 0, then

(/*Ω 2 ) (ϋ ,w) = Q2(Tf(υ),Tf(w)) = 0 for all w e TMγ.

This implies v = 0 since Ωx = / * Ω 2 is nondegenerate. q.e.d.

The polysymplectic structure provides the procedure which assigns to a

function on M, the Hamiltonian, its associated Hamiltonian equations. The

main tools are the musical morphisms:

2.9. Definition. Let (M, Ω) be a polysymplectic manifold.

Ώb:TM^ Hom(ΓM,R«), tib(vm)(wm) = Q(vm,wm).

Ω # : Hom(R", TM) -* Γ*M, Ω # ( X J = tr(Ω* o χm)9 where (tr(Ω* o χm)).

Jίfom(TM,Rn) = yecHom(TM,R"l υb(m) = ttb(vm).
n

9 TM) -* ^ * M = ^M, X*(m) = Ω#(X(m)).

Note that Ω # is the adjoint map of ίlb by the identification of Hoπ^R", TM)

with Hom(ΓM,R n )* by 1.9.

2.10. Remark. Define the components Ω, of Ω by Ωz = prz o Ω, where

pr z: R" -> R is the /th projection. Then each Ω, is a presymplectic form on M.

Moreover, Ω is standard iff locally:

1. (Ker Ωf) ± = V X Q, V c Q (-1 the polysymplectic annihilator).

2. ΣKerΩ,. = Q* (Q* is the Banach dual of Q).
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3. Canonical equations

In classical mechanics, a symplectic form ω on phase space assigns via the
musical morphism to each function H on phase space a Hamiltonian vector
field b~\dH) =:XW i.e. XHJω = dH. The flow of XH is, in canonical coordi-
nates, determined by the Hamiltonian equations.

For polysymplectic manifolds, a corresponding construction assigns to each
function on the polysymplectic manifold (M, Ω) a system of first order partial
differential equations, the Hamiltonian equations:

For H G &M, dH <ΞsΐιM is a one-form on M. An affine subbundle of
Hom(R", TM) is defined by

Q*-\dH):= [Xm G Hom(R",ΓM)|Ω*(Xw) = dH(m)}.

(Note that Hom(R", TM) is a bundle over M.)
3.1. Definition. ti*~ι(dH) is called the system of Hamiltonian partial

differential equations associated with the Hamiltonian function H. A smooth
map ψ:ί/->M, ί/=ί/°cR", is a solution of tt#-\dH) iff Γwψ G
Ω*-\dH(yP(u))) for all K G ί/.

In order to obtain the classical local formulation of the Hamiltonian
equations we have to restrict ourselves to standard forms. For standard
polysymplectic forms Ω on M canonical neighborhoods of M have the form
M D V^ WxLin(Q,Rn). For ψ:t/-» F, locally ψ is given by ψ(w) =

tf ί / ^ H ' c ζ ) and /?: (7 -> Lz/i(Q,R").

Then Dq:U -> Hom(Rn, ΓPΓ) and Dp:U -+ Lin(Rn, Lin(Q,Rn)). Therefore,
Dp-.UXQ -* End(R"). Thus taking the trace gives tr Dp: U X Q -> R or
trDp: U -+ Q* (Banach-dual).

3.2. Theorem. Let (M, Ω) fte # standard polysymplectic manifold, (p,q)
canonical coordinates for Ω on M, αwJ // G &M a Hamiltonian function.

A smooth map \p:U -+ M is a solution of Ώi^~ι(dH) iff in canonical coordi-
nates ψ(w) = (^(w), p(u)) and

If a base eλ eu of R" is chosen andp(u) = (p^u),- , pn(u)) with respect
to this base, then the equations take the form:



32 CHRISTIAN GUNTHER

These are the classical local Hamiltonian equations associated with a regular

multiple integral variational problem [48]. The equivalence of these equations

with the Euler-Lagrange equations in the regular case will be shown in §4.

Proof. Let X e Λ c H o m ( R w , TM) with X(ψ(w)) = Dψ(u) e

Lin(Rn, Γψ ( ι / )M). Since Ω is a standard form the fibers of TM are isomorphic

with Q X Lin (Q,RW) and in canonical coordinates X can be written as

X(m) = Xq(m) + *,(»!), where Xq(m) e LΪΛ(R", Q) and ^ ( m ) e

t; G 9£M can be written in canonical coordinates as v(m) = q(m) + p(m),

q(m) e ζ), />(»*) e L/JI(Q, Rn). Since Ω # (X) ϋ = tr Ω*° X(v) =

-tτΏb(v)o Xand tib(q, p) - (q, p) = p(q) for (q, p) <Ξ TM one obtains

Now let

Then dH{q, p) = -tτ(Xp(q) - p o Xq) is equivalent to -iτXp = dH/dq and

oH/op = Jjf̂ . q.e.d.

3.3. Example {Scalar field). Let n = 4, ρ = R, and M = R X R4 with

coordinates {q, pv , /?4). Let # ( # l 5 p 1 , , p 4 ) = ^ Σ4/>z

2 + mq2 be a

Hamiltonian on M. The canonical polysymplectic form Ω is given by
4 g

Ω, = Σdq A dpi ® T — .

The Hamiltonian equations for a scalar field

Ψ ( ^ i > ' ' ->XΛ) ~ \Q\Xii''' > XΛ)I Pi\xι>'' '9X4)9''' 9 P4\xi>''' 1 X4))

are

Σ ^Pi , dq ,

^— = mq and 7p- = /?f . q.e.d.

The fundamental object for the field theoretic Hamilton formalism is the

polysymplectic form Ω. Once a polysymplectic manifold (M, Ω) is given, a

field theoretic system is (abstractly) determined and its Hamiltonian systems,

infinitesimal transformations, and symmetries can be studied.

3.4. Definition. Let (M, Ω) be a polysymplectic manifold. Then

«^iocM : = { x G ^ ^ H o m ( R π , TM) \Ω#(*) is closed},

JifM:= [X e ^^cHom(R", TM) |Ω # (X) = dH for some H e J^M (exact)},

^ M : = { X (=SfecHom{Rn,TM)\ti*{X) = 0} =,

For if e ^ M : & H : = [X <ΞJί?M\Ώ,#{X) = dH}.
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Elements of JίfM are the " total Hamiltonian equations" on M. An element

of 9£H is a section of the bundle Sl*~\dH) over M. If X e 2£H is integrable,

a unique solution ψ:U-+M with ψ(0) = m and D(ψ(u)) = X(ψ(w)) is

determined. For Λ^ e .2^, one has J ^ = Xo 4- #M, an affine subspace of

In the conventional case n = 1 of classical mechanics, ^ l o c M and JPM are

the local and global Hamiltonian vector fields and ΉM is reduced to zero.

3.5. Proposition. The map S+'.&M ^> 3PM/VM given by &H= {X+

I X e 3?H } for H e J^M is surjectiυe and the sequence

0 -> R ^ &M -* JPM/VM -> 0

is an exact sequence of R-υector spaces.

We now introduce the concept of energy-momentum tensors.

3.6. Definition. Let (M, Ω) be a polysymplectic manifold, l

and Ώ#(X) = dH for H^&M. H e J^(M,End(Rw)) is called an

momentum tensor of ^ iff tr JH = d/ί.

Remark. // is an energy-momentum tensor iff trdH = tr(XjΩ) + const

by definition of Ω # . For X e J^M, X J Ω is in general not closed unless X is

an infinitesimal polysymplectic flow (cf. §6).

3.7. Proposition. Let M = Hom(Γβ,RM) = T*Q ® Rn α«d feί Ωo, Θo fc^

the canonical forms (cf. 2.1) o« M. Then:

= 0.

) = 0.

3.JTG J^M implies tr(L^Θ0) = -d(H - tr(XjΘ0)).

Proof. 1. (local in canonical coordinates): If Θo = Σpjdq Θ 3/3xf and

+ ΣA^a/8/ι,., then

But Jf e ^ M iff t r (^ jΩ) = 0 iff

where w, are the coordinate embeddings R ^ R". This implies ^ = 0 and

«f = 0. Thus XJΘ0 = 0.

2. tr L ^ Θ Q = tr(dXjθ0 + Xidθ0) is exact iff Xid®0 is exact.

3. tr((dXjθ0) + X J ^ / Θ 0 ) = -έ/ff + trdXjθ 0. q.e.d.
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Remark. These results remain true for standard exact polysymplectic forms.

3.8. Definition. Let M = Hom(Γg,RM), and let Ωo and Θo be canonical

forms. For H e J^M denote by dpH the vertical derivative of H with respect

to the projection TQ*:M -> Q (compare 2.1). Define the inverse Legendre

transformation FH: M -> Hom(R", TQ) by

tr(/w'°Fff(m)) = dpH{m) rri

(i.e. FH is the vertical derivative dpH followed by the isomorphism between

Hom(TQ,Rn)* and Hom(R", TQ) in 1.9). H is called regular iff F # is a local

diffeomorphism, and // is called hyperregular iff Fff is a global diffeomor-

phism.

3.9. Definition. Let H e J^M be regular. Define the action tensor by

G: M -> End R" with G(m) = m o Eff(/w), and the action of i/ by G: M -> R

withG:= trG.

3.10. Proposition. Le/ Jf G J ? M te a Hamiltonian system, Ω#( Z ) = di/,

M = Hom(7"β, Rw) and Θo w the fundamental one-form. Then

1. X J Θ 0 = G.

2. - L ^ Θ 0 + G is the energy-momentum tensor.

The proof depends on the following lemma.

3.11. Lemma. Let Tτ£* : TM = T Hom(Γρ, Rn) -> TQ be the projection in

2.1 and X e SH, i.e. trX-ti = dH. Then

Tτg* oX=

Proof. From 3.2 locally

qdq pdp

and

3 3// 3 8
qdq dp dq dq Q

This gives the result.

Proof of 3.10. 1. By the definition of Θ o : Θo ° X(m) = m ° Tτg* o X and by

the definition of G: G(m) = m °FH(m). 3.11 gives the result.

2. LX0O = dXjθ0 + Xjί/Θo.

tr(L^Θ0 - JG) = trJXjΘ 0 + trXjdβ0 - trd(Xjθ0) = -dH.

3.12. Corollary. H = G + H is the energy-momentum tensor.

Proof, d t r H = d trG - d tr G + dH = dH.
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3.13. Example (Scalar field). M = R X R4 and H(q, pl9- , p4) = \Σ\p2

= q2 as in 3.3. The energy-momentum tensor can be calculated by 3.12.

4

G(m) = moFH(m) form e M, FH = ^ Λ ,
1

4

Gij=PiPj, ~

therefore

1

In the case n = 1 of classical mechanics H is, up to a constant, identical with

the Hamiltonian H.

4. Lagrange theory

Originally the local form of the canonical equations (3.2) was derived as an

equivalent form of the Euler-Lagrange equations associated with a variational

problem with regular Lagrangian. In this section the alternative description of

field equations as the Euler-Lagrange equations on InQ and the relation with

the canonical formalism is studied.

A Lagrangian is defined as a smooth function I"Q -> R. In analogy with

3.8 the Legendre transformation FL of L,

FL.ΓQ-* Hom(Γρ,R"),

is defined by

where φ , ψ E InQ = Hom(R", TQ) and d yL is the vertical derivative of L with

respect to τn:I"Q -> Q. L is called regular (resp. hyperregular) iff FL is a

local (resp. global) diffeomorphism.

The canonical forms Θo and Ωo on Hom(Γ<2, R") can be pulled back to

forms ΘL and ΩL on InQ via FL and for regular FL canonical equations on

InQ can be established; these are the Lagrange equations:

4.1. Definition. Let L: ΓQ -> R be a smooth Lagrangian and let FL: InQ

-> Hom(Γζ>,R") be Legendre transformation. Define Θ L :FL*Θ 0 to be the

Lagrange one-form and ΩL := FL*Ω0 to be the Lagrange two-form.

Clearly ΩL is a closed form and if L is regular, then ΩL is a polysymplectic

form on InQ, moreover, by 2.10, in this case ΩL is standard.
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In generalization of the case of classical mechanics, n = 1, an energy
function E will now be defined, which acts as a Hamiltonian on (InQ, ΩL).
But like in 3.9 in the field theoretic case tensors are obtained.

4.2. Definition. Let L\InQ -> R be a Lagrangian with Legendre transfor-
mation ¥L: /"£> -> /*ρ. Define:

the action tensor byA:ΓQ-> Hom(R", R") with A(φ) = FL(φ) ° φ,
/Λe βc//o« density byA:InQ->R with A = tr A,
ίΛe energy-momentum tensor by E: A — L,
/Λe energy-momentum density by E: tr E.
4.3. Proposition. Lei φ e 77nρ, W fe/ τ r ρ : Γ/wρ -> 7wρ β«J T^ : ΓQ ->

Q fee /Λe natural projections. Then

2. /H natural bundle coordinates on InQ: (#, ^ ) wzY/z yi = Θ^/ΘJC,, ΘL ««J A
are of the form

^ γ-» 3L 3 V-Λ 3 L
β ' = ,? 1 ^'" β 3ϊ; *-,?/•*;•

Proo/.
l.FL*Θ 0(φ) = Θ0(ΓFL(φ))

= τH o moΓFL(φ)oΓT β"*oΓFL(φ) (cf.2.1)

= F L o T / . e ( φ ) . r ( τ β - . F L ) ( φ )

= FL o τ Γ ρ ( φ ) o 7Yg(φ) (since FL is bundle moφhism over 1Q).

3^ 3*,-

4.4. Definition. Let L: ΓQ -» R be a Lagrangian.

Ω " - 1 ^ ) c / " ( / " β )

are the Euler-Lagrange equations associated with L.
4.5. Remark. Γ(ΓQ) = Hom(R", Hom(R", Γβ)) is a bundle over /"g and

by the functionality of /" there are two natural projections τ"nQ:Γ{ΓQ) -»
/ " β and ΓΓQ:I"(I"Q) -> ΓQ:

Γ(ΓQ)
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If ψ is a smooth map U -> Q, then T(Tφ)(u) G Γ(ΓQ), τ/^(Γ(Γψ))(w) =
Γψ(«), and Γτg(T(TχP))(u) = Γ(τρ(ψ(w)))= 7ψ(«). In analogy with the
case « = 1 of ordinary differential equations, a section X:ΓQ -> InInQ is
called a second order .secrto/i of /"/"β iff τ/?,ρ o X = /Ύ£ ° X = 1 / B ρ, i.e., X is
a section for ΊjnQ and /"T^.

An integrable section X:ΓQ -> InInQ is a second order section iff for every
map σ:U-* InQ with 7> = X(σ(w)) for all w G £/ = t/° c R": Γ(τ^ ° σ ) =
σ. Tρ°σ is called the (base) solution of the second order equation X. If
X.ΓQ^ ΓΓQ has the form X(^, JO = (q, y, Xq9 Xy) in natural coordi-
nates, then X is a second order equation iff y = Xq.

4.6. Lemma. Let X:InQ -» InInQ be an integrable section of τ^Q, i.e.

through every point m ^ InQ there exists a solution of σ:U -> InQ of X: Tuσ =

X(σ(u)\ u G U = l/° c R" and σ(0) = m.
If X is a second order section, then X has a base solution -φ.U-^Q with

T(Tψ)(u) = X(Tuψ). In particular, if in natural coordinates X has the form

then Xy e Lin(R", Lin(Rn, Q)) w symmetric.
Proof. Locally σ:U-^InQ has the form σ(u) = (σq(u),σv(u)), where

σ (̂w) G Q and σv(w) G L//ι(Rn,Q). Thus locally ΓMσ = (σ^(w),σ^(w)). If X is
second order, it follows that oy(u) = Dσq(u). This implies bσ^w) = DDσq(u).
q.e.d.

A subbundle (or fibered submanifold) F of InInQ -> I"Q is called a second
order partial differential equation iff every section X of F is a second order
section of ΓΓQ.

Now all preparations for a local formulation of the Euler-Lagrange equa-
tions are made:

4.7. Theorem. // Ω*-1(dE) is a second order equation, then a smooth map
σ: U -» InQ ( ί / = ί / ° c R " ) is a solution of the Euler-Lagrange equation
Qf-\dE) iff, in natural bundle coordinates of ΓQ and ΓΓQ, σ(u) =
(σq(u),σy(u)), u G U, and

(1) £(σ,(«))-σ»,

(2) £DyL{oq(u),σy(u)) - DqL(oq(u),oy(u)) = 0,

where Dq and Dy are the partial derivatives with respect to the coordinate
decomposition Q θ Lin(Rn,Q)DF^ ΓQ.
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// uv- , un is a base of Rn and y, are the components of y e Hom(R", TQ)
— θ " TQ, then equation (2) can be written

y A. %k _ *k = o
~Ί ^W/ 9^/ 9 4

Proof. The proof is a generalization of the proof for the case n = 1 as
given in Abraham and Marsden [1]:

Let X.ΓQ -* ΓΓQ be a section of Q*-\dE), i.e. Ω#(X) = dE. In natural
coordinates, X = (Xq9 Xy) with ^ e L/>z(Rw,Q), Xv G LwίR^L/wί^Q))).
£ = tr A - L. Therefore, D^1 = D(tr A) - DL and by definition of A

DE(q,y) '(ql9yτ) = D(DyL(q, y) -(q^h)) ^ + DyL(q, y) yτ

-DqL(q9y).4ι-DyL(q,y) y1

= DqDyL(q, y)-qλ y + DvDy(q, y) Λ y - DqL(q, y) - qx.

By definition of Ωo

= DFpL(q, y)(q2, y2) • qλ - DFpL(q, y)(qlt yλ) • q2

(FpL(q, y) e Lin(Q X Lin(R", Q)), Lin(Q,R")) denotes the second compo-
nent of FL; note FqL = 1 Q in this notation)

= DqFpL(q, y)-q2- qx +{DyFpL{q, y) • y2) • qx

-DqFpL(q, v) qx q2 - {DyFpL(q, y) • y,) • q2.

Thus

Ώΐ(q, y)(Xg, Xv) -(q, y) = trtiL(q, y) -{(X,,, Xy),(q, y))

= tv{(DqFpL{q,y) • q)o Xq+(DyFpL{q,y)o y)o Xq

-{DqFpL{q, y)°Xq) • q-{DyFpL(q, y)o Xy) q)

= DqDyL{q,y) • q • Xq + DyDyL(q, y) • y • Xq

-DqDy{q, y)-Xq-q- DyDyL(q, y) • Xy • q,

where Xy(x, y) = Xy(x, y), x, y ε R".
Ωf(X) = dE therefore implies

DqDyL{q, y)-q-Xq+ DyDyL(q, y) • y • Xq

-DqDyL(q, y)-Xq q- DyDyL(q, y) • Xy • q

= DqDyL(q, y) q y + DyDyL(q, y) • y • y - DqL(q, y) • q.
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If X is a second order section, then Xq = y. Then the condition Ωf (X) = dE
is equivalent to

-DqDyL(q, y)-yq- DyDyL(q, y) Xy q = -DqL(q, y) $.

I f ^ i ί / ^ F c g i s a smooth map, s(u) = q, Ds(u) = y, then s is a base
solution of X iff

DqDyL(s(u), Ds{u)) ? + DyDyL{q, y) Z)M") q = DqL(s(u), Ds(u)),

or

j^DyL{s{u), Ds{u)) - DqL(s(u), Ds(u)) = 0,

which is the Lagrange equation, q.e.d.
Note. If L is regular (i.e. DDL is nondegenerate), then setting q = 0 in

Ωf(X) = dE implies Xq = y. Thus one has:
4.8. Corollary. If L is regular, then Ώ,f~ι(dE) is a second order equation.
If L is hyperregular, the Hamiltonian and Lagrangian formulations for

extremals of the variational problem / L vol -> extrem. are equivalent. In
particular H is hyperregular iff L is hyperrregular, and then

A = ZEJΘL = F * L ( Z ^ J Θ 0 ) , LH = FL"1.

Furthermore:
4.9. Proposition. Let L:InQ -> R &e <? hyperregular Lagrangian, H =

E °FL. 77ie/ι r/ze ^/ of base solutions τg o σ : j / -> ρ, 7;σ G Ωf "^ί/E) /or Λ//
M G ί / c R V ^ T ^ ψ ί/-̂  β, ΓMψ G Qf'\dH) for ψ: ί/ ^ J*β, o/ r/ze
Lagrange and Hamiltonian equations are equal. Furthermore, FL mψί solutions
of Ωf-\dE) into solutions of Ω*-\dH). Finally, Qf-\dE) = FL*(ti$~ι(dH)).

Remark. Even when L is regular, Ωf~ι(dE) and Ω* - 1 (J^) may have
solutions U ^> InQ or t/ -> 7*ρ, which are not derivatives of base solutions
U -> ρ. Therefore as Hamiltonian systems, i.e. as first order equations,
Qif~ι{dE) and Ω,Q~ι(dH) have more solutions than the Lagrange equations in
4.7. Nevertheless, in the hyperregular case, FL still gives a 1-1 correspondence
between all solutions of Qf~\dE) and Ω$-\dH). Then solutions of Q$~l(dH)
which correspond to base solutions of the Euler Lagrange equations are
characterized by

FLoΓ(τ |oψ) = ψ forψ: l/->/*β.
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5. Hamiltonian vector fields, Poisson brackets

One of the important properties of the Hamiltonian formalism in mechanics

is the fact that the canonical equations describe the flow of infinitesimal

morphisms, i.e. Hamiltonian vector fields. In the Hamiltonian formalism for

field theories the relation between canonical equations and infinitesimal

morphisms is more complicated: every polysymplectic flow is the flow of a

poly-Hamiltonian system X e Jί?locM, but not every integrable poly-

Hamiltonian system X e Jf]ocM has a polysymplectic flow, since, for r e R",

X(r) e 3CM is in general not an infinitesimal polysymplectic transformation.

In this section, the relation between infinitesimal symmetries and poly-

Hamiltonian systems is studied.

5.1. Definition. Let (M, Ω) be a polysymplectic manifold

be the local Hamiltonian vector fields (or infinitesimal morphisms), let

3CΉM\= {v e&M\υja = dF for F:M -> Rn]

be the Hamiltonian vector fields, and let

«(MR"):= {Fe^(M,R")\dF(m) e ImageΩ* for all m e M)

be the currents.

5.2. Proposition. 1. [#\£M, #\£Af ] c 3fHM are, in particular, KξjΛ,

and 3C HM are Lie subalgebras of 3CM.

2. The map &h(M,R") -> ΘCHM, F -> Qh~\dF) := υF is well defined and

the sequence of R-vector spaces

0 -> R" ̂ ^h(M,Rn) -+&HM -> 0

is exact. (Compare with 3.5.)

If one considers Rn as a commutative Lie algebra, a natural Lie algebra

structure is induced on &h(M,Rw), such that the sequence in 5.2 is an exact

sequence of Lie algebras. This leads to the introduction of Poisson brackets:

5.3. Definition. Let (M, Ω) be a polysymplectic manifold,

" ) :

G}:= Q(vc,vF) = LVG = -LV(F

( , } are called the Poisson brackets. ^h(M,R") is called the algebra of

currents.
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5.4. Lemma. Let /, g G , R").

2. d{f, g] = tr([Z/? Z J J Ω ) - tr(ZfjLzp - ZgjLZ/Ω);
3.{F,g} = Qiffgis constant along the trajectories ofvF;
4. {F,G} = 0 iff G is constant along the trajectories of υF and reverse;
5. {F9 g) = 0 /// tτ(dFoZG) = tr Q(vF9 Zg) = 0;
6. IfX G JfM, trXjΩ = d//, /Λέw

L ^ = XJJ// = ^Jtr(XjΩ) = 0.

5.5. Remark. Let v G 3£HM, V - Ω = d/% and for a base w1?- , wrt of Rw

let pτi: R" -> R be the z'th projection. There is a natural injection ϋi\&HM ->

J f M such that Ω#(w ;(ί;F)) = ^/(prz ° i
7 ), wy is given by the embedding TM ^

ΓM = Θ^ΓM.

5.6. Proposition (/oαz/ characterization of 9£HM and #"Λ(M, R")). L^/

(M, Ω) be standard.

(a) Le/ φ ^ sfι(M, Rn) be a Rn-valued one-form on M. Then φm G Ωft(ΓmM)

/or m^Miff, locally in canonical coordinates, φ(q, p) = l(q) - p(r) for some

I G Q* ® Rw, r e β Therefore ψ has the coordinate representation

T, 0, 0 \

0

0

-<*„, o, o,

: Γ M -> R w/7A = /.

(b) v G 9£HM. c:(-ε, ε) -* M is a trajectory of v = vF iff in canonical

coordinates c(t) = (q(t), p(t)) and

da 3F dp, dF-

(because of (a)) dFj/dpi = r for all i = 1, -,n).

6. Polysymplectic actions and symmetries

One of the most important advantages of the Hamiltonian formalism is the
fact that the general symmetry group Pspl(M, Ω) of a system has a simple
geometric characterization and is defined without reference to the choice of a
Hamiltonian. In other words, only in the Hamiltonian formalism can canonical
transformations be defined.

Indeed, the most powerful results in classical mechanics are obtained for
Hamiltonian systems with symmetry, and the progress in symplectic geometry
in the last two decades covers mainly systems with symmetry groups: geomet-
ric quantization the orbit classication, and completely integrable systems are
some examples.



42 CHRISTIAN GUNTHER

From the results in the last sections, similar achievements can be expected

from the Hamiltonian formalism for field theories. In the following the most

important results in that direction will be outlined: the polysymplectic version

of the Noether theorem, the concept of momentum mappings, the reduction

procedure, and finally the classification of polysymplectic homogeneous spaces

as coadjoint orbits.

These results are not only interesting by themselves and important for

classical fields but they indicate clearly a new way to quantum field theory: via

the poly-Hamiltonian theory.

Let (M, Ω) be a polysymplectic manifold, and Pspl(M, Ω) c Diff(M, Ω) the

group of polysymplectomorphisms (cf. 2.6). For a smooth action Λ: G X M ->

M of a Lie group G with Lie algebra LG, denote by λ: LG -> 3CM the induced

infinitesimal action, i.e. for υ e LG, λ(v) is a killing vector field. Frequently in

the following λ(ί ) will also be denoted by v.

6.1. Definition. A polysymplectic action of a Lie group G on (M, Ω) is a

smooth action Λ: G X M -> M with Λ*Ω = Ω for all g e G. Therefore Λ is

a homomorphism G -> Pspl(M, Ω), and the infinitesimal action is a Lie

algebra map

X.LG^&^M.

Λ is called a strongly polysymplectic action iff λ(υ) e 9CHM for all υ e LG.

F G. JFh(M, Rn) is an infinitesimal generator of v = λ(v), v ^ LG iff Ϊ JΩ =

dF.

The Noether theorem in classical mechanics states that infinitesimal genera-

tors are conserved quantities. In field theory the relation between infinitesimal

generators and conservations laws is based on the following theorem:

6.2. Theorem. Let Λ : G X M -> M be a strongly polysymplectic action on

( M , Ω ) , H ^ ^M a G-inυariant function, and ψ:U —> M a solution of the

Hamiltonian system Ω*~ι(dH). Then for every infinitesimal generator F of A one

has

Proof.

= trLZfίF = tτ(ZHJdF)

(v G LG,?;JΩ = dF)

= -LVH = 0.

6.3. Remark. If ψ: U -» Q is considered to be a section in the trivial

bundle U X M, i.e. ψ: U -> U X M, and F is considered to be a bundle

morphism over 1U9 F:U X M -> TU = U X RM, then F ° ψ is a vector field
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on U and the equation in 6.2 becomes

div(Foψ) = 0

Therefore, 6.2 is one version of the classical Noether theorem, which says: The
infinitesimal generators of canonical transformations induce conserved cur-
rents. The equation div(F ° ψ) is in this context a continuity equation.

The conventional form of the Noether theorem on / *Q will be given below
using the concept of momentum maps.

A group action Λ: G X M -> M induces a Lie algebra morphism
λn:Lin(R\ LG) ^ Hom(R\ ΓM) by λ"(/) = λ°/. (Since the Lie algebra
structures are pointwise for M G R " defined, λn is a Lie algebra morphism.)

Let G act strongly polysymplectic on (M, Ω). For a base (el9 , en) of R",
\"(f)(ei) = λ(f(eι)G%'HM, /ELm(Rw,LG). Let i ; . G Λ ( M , R " ) be the
infinitesimal generators of λ(/( *>,)), i.e. λVO^jΩ = dFt. Then for any J C G R "

one has λ"/(x)jΩ = diΣXjF^. Therefore, if one defines Ef by

Ey : M -> End(R") is an energy-momentum tensor. (Ef is uniquely determined
up to a constant.)

6.4. Remark. The definition of λn shows that, for any polysymplectic
action, J(λw(/)jΩ) = 0 for all f <Ξ Lin(Rn, LG). If the action is strongly
polysymplectic, there exists E with

λ"(/)jΩ = dEf.

In particular tr((λM/)jΩ) = Ω# °(λ7) = dH for H = rtE^ Therefore λ" is a
morphism λn: Lin(Rn, LG) -» JfM.

If I E ^fM is integrable, then there exists a local flow φ:U X M -> M,
(7 c RM, with Dφ(m) = ^((Xm)). But this flow is in general not a polysym-
plectic flow as is easily seen from the poly-Hamiltonian equations (3.2): The
components (3/7//3wy)(w) are not determined by the Hamiltonian H, therefore
there exist X e ZH and έ e R " with X(b) £ ^"Λf. Polysymplectic actions
are therefore special cases of poly-Hamiltonian flows.

The map E:Lin(R", LG) -> J^(M,End(R")) is called a momentum-tensor
map associated with the strongly polysymplectic action. The trace of E is a
generalization of the momentum map in symplectic geometry. This will be
specified in the following definitions.

6.5. Definition. Let Λ : G x M - > M b e a (strongly) polysymplectic action.
A map
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is a momentum map of Λ, iff d(μ(v)) = λ(v)iΏ, for all v e LG, i.e. the
diagram

commutes.

6.6. Remark. There is a dual characterization of the momentum map via

λ":

μ": Lin(R", LG) -»&M is a momentum map iff

d(μ"(f)) = tτ(λ"(/)jQ) = Ω*(

i.e. the diagram

λ"

Lin(R",LG)

commutes. Here λ" = pτo\n with pr :Jί?M -+Ji?M/tfM the natural projec-

tion, μ and μn can also be considered as maps

μ:M -

Therefore μ and μ" can be identified by the isomorphism 1.9. One obtains:

6.7. Proposition. 1. μ and μn differ only by the isomorphism Lin(Rn, LG)*

— Lin(LG, Rw) and can therefore be identified.

2. If E is a momentum-tensor map, then μ = trE is a momentum map.

3. A polysymplectic action is strongly polysymplectic iff it has a momentum

map.

Using the concept of a momentum map, the Noether theorem can be

formulated in a more elegant way:

6.8. Proposition {Noether). Let Λ : G X M -> M be a polysymplectic group

action with momentum μ, H e J^M a G-invariant function, and ψ: £/ -> M a

solution ofX e &H c ^fM, i.e. t r (^ jΩ) = dH, Tφ(u) = X(ψ(u)). Then

tΐd(μoφ) = 0

Proof.

tτ(d(μo-φ)) = tv(dμoTχP) = tr(XjΩ^(λ)) = λj dH = 0.
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Comment. As in 6.3 this result gives conserved currents, therefore 6.9 is a
generalization of the Noether theorem. In the case Ω = -dθ (exact) and for
actions leaving Θ invariant (e.g. point transformations in the classical case
M = I*Q, Ag = I*λg9 A: G X Q -* Q action) one obtains:

6.9. Proposition. Let Ω = - J Θ , Λ: G X M -> M be an action leaving Θ
invariant. Then Θ ° λ: M -> Lin(LG, Rn) is a momentum map.

Proof.

)jθ) = Lλ(l;)θjλ(ι;)j</Θ

= λ(ι;)jΩ since Lλ ( l ) )Θ = 0.

This leads to the common version of the field theoretic Noether theorem:
6.10. Theorem. Let A:G X M -> M be a strongly polysymplectic action on

(M, Ω). Assume Ω = -dθ and Θ is G-invariant. Let H G ̂ M be a G-invariant
function and ψ a solution of ίl#~ι(dH). Then

λ(ί;))° ψ = 0 for all v e LG.

Thus Θ © λ allows one to calculate in this case the constants of motion explicitly.

7. Reduction and polycoadjoint orbits

The reduction procedure by Marsden and Weinstein and the classification of
symplectic homogeneous spaces by coadjoint orbits by Kostant and Souriau
belong to the major achievements in Hamiltonian mechanics.

In this section, we extend these results to polysymplectic manifolds. Most
preparations for such an extension were already done in the last two sections.
Therefore, we will be able to prove the desired results by a direct generalization
of the ideas of Marsden-Weinstein and Kostant-Souriau and obtain a reduc-
tion procedure for polysymplectic group actions and an orbit classification of
polysymplectic homogeneous spaces.

Let Ad: G X LG -> LG be the adjoint action. We denote by Ad" the
induced action on Lin(Rn, LG):

Ad" : G X Lin(Rn, LG) -* Lin(Rn, LG),

Adg(f)(x) = Adg(f(x)), / G Lin(R», LG), x (Ξ R«, g e G.

The dual of Ad" is denoted by Ad#:

Ad# :G X LG* ® R" -> LG* 0 R", Ad*(α) = α°Ad^.
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From the standard formula

λ(Adgw) = Λ*(λ(w)) (or simply Adgu = Λ*κ)

(using the notation λ(u) = u, u G LG, g G G, λ inf. morphism of Λ) one

obtains

Λ*λ"(/) = λn{Adn

gf) for all g E G , / G Un(Rn

9LG).

7.1. Proposition. Lei Λ: G X M -> M be a strongly polysymplectic group

action with momentum map μ: M -> Lin(LG,Rn) = LG* ® R". Assume M is

connected. Then the map

M -> LG* 0 R " , w H-> μ(Ag/w) - Ad*(μ(/«)),

w α constant on M for all g e G.

/. Let g e G, w G LG, and u = λ(w) G .^"M. Then

J Ω ) = -Λ*(</μ(iO)

Since Λ* u = Ad g w it follows by the definition of μ that

j (μ(Ad g w)) = A d ^ j Ω = -rf(μ(iι)o A g) = d(μ o A g) • n),

which is the desired result.

7.2. Corollary. There is a smooth map χ,

χ : G -» LG* ® R", χ(g) = μ(Λgm) - Ad*(μ(»i)),

/7A the following properties:

1. x w α 1-coςycfe, i.e. for all g, Λ E G ,

χ(gΛ) = A d * ( χ ( g ) ) + χ ( Λ ) .

2. 7%e bilinear map φ on LG, φ := L χ :LG -* LG* ® Rn, φ:LGx LG -> R",

WΛ 2-cocycle, i.e. φ(u,[υ,w]) + φ(ϋ,[w, w]) + φ(w,[w, ί;]) = 0 for allu,v,w G

LG.

3. Moreover,

Lχ(u) = Tμ(u(m)) + μ(m)o adu,

for all m G M, M, ί; G LG, μ(u),μ(v)
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Proof. 1. For g, h e G we have

χ(Ag) = μ o Λ Λ g ( m ) - Ad£ g μ(m)

= μo Ag(Ahm) - Ad* <> μ(Ahm) + Ad* <> μ(Ahm) - Ad*Ad* <> μ(m)

3. Lχ(n) = Tχ(u3) = T(μoA.(m)) - Ad*( ) μ(»i) ue

= Tmμ°TeAφ(tn) >u - TeAd*φ)oμ(m) u

(since μ(m) is linear on LG)

= Tmμou(m) + μ(m)oadu

which implies the first formula of 3.

J JWJΩ = υJ-d(μ(u)) = -Tμ(v) υ = μ(adu υ) - Lχ(u) υ

= μ{[u,υ]) - Lχ(u) >υ.

Finally, by definition of μ, {μ(u),μ(v)} = -WJΣ JΩ, which implies the last

expression.

2. Follows simply from 3.

7.3. Theorem. Let A:G X M -> M be a polysymplectic action with momen-

tum map μ: M -> LG* ® R". Then the map

Ξ:GXLG*®R^GXLG*0 R", Ξ(g, η) = χ(g) + Ad*η,

is an affine operation of G on LG* <8> R" such that

LG* (8) R"

commutes for all g G G, z'.e. μ w G-equiυariant.

Proof. Since

Ξ(g*, η) = χ(gA) + Ad*τ? = χ(A) + χ ( g ) ° A d Λ + Ad* o

= χ(A) + A d * ( χ ( g ) + Ad A) = Ξ(A, Ξ(g, T,)),

Ξ is an action.

In addition,

Egoμ(m) = χ(g)

= μ(Agm) - Ad*(μ(m)) + Adjμ(m) = μ o A g(m).
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7.4. Remark. As in the conventional case n = 1, for semisimple G or if

Ω = -d& and Θ is G-invariant χ will be zero and therefore, χ will be zero and

therefore Ξ = Ad*. In these cases μ is a Lie algebra morphism.

For a degenerate vector valued two-form Ω on a manifold N denote by

CN: Ker Ω the characteristic bundle of Ω. For closed Ω, CN is involutive.

7.5. Lemma. Let Λ: G X M —> M be a polysymplectic action with momen-

tum μ:M -> LG* ® R", let η e LG* <S> Rn be a (weakly) regular value of μ

(cf. Marsden and Weinstein [35]), and let Gη: {g e G | Ξgη = η] be the isotropy

group of η. Then for all m e μ"1(i]) the following holds:

1. Γ J μ " 1 ^ ) ) = orthΩ(Γm(G in)).
2. Γw(Gη m) = C J G m) = Cm(μ-\η)).

The proof is the same as for the symplectic case.

7.6. Definition (The reduced phase space). Let Λ: G X M -> M be poly-

symplectic action with momentum μ. For η G LG* ® RΛ let Gη be the

isotropy group of η with respect to the action Ξ : G X LG* ® R " ^ LG* ® R".

Then, by 7.3, μ'H7?) is Gη-invariant and one can define

Mη is called the reduced phase space.

7.7. Theorem. Let A:G X M ^> M be a polysymplectic action with momen-

tum map μ:M -> LG* <S> R", and let η e LG* Θ Rw be a (weakly) regular

value of μ. Then there exists uniquely a polysymplectic form Ωη on Mη =

μ~ι(η)/Gη with />*Ωη = /*Ω, where p^'.μ'1^) -» Gη is the natural projection

and iη: μ~ι(η) ^ M is the natural injection.

Proof. Since Gη acts freely and regularly on μ~λ(η), μ~ι(η) is a submani-

fold of M and pv is a submersion. Define Ωη(7/?η(ι;w), 7/?η(wm)) = Q,(vm,wm).

Then Ωη is well defined by Lemma 7.5(2). Because of dp*Ώη = p*dΏη = 0,

Ωη is closed. Because of 7.5, TPη(m)Mη - Tmμ-\η)/Tm(Gη m) =

Tmμ-\η)/Cm(G m) and ς η ( m ) M η = Cm(G m)/C w (G m) = 0. Therefore

Ωη is nondegenerate, which proves the theorem.

7.8. Example. Let G be a Lie group and L: G X G -> G the left transla-

tions action. I*G = Hom(ΓG,R") = G X (LG* ® Rw) since TG is trivial. Let

I*L:G X I*G -> I*G be the induced action. The momentum map corre-

sponding to I*L is the projection

μ:I*G^ LG* 0 R\

Therefore, as in the symplectic case;

μ-ι(η)/Gη = G/Gη = G TJ c LG* ® R",

and G η is a polysymplectic manifold.
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Similar to the symplectic case the polysymplectic form Ωη on G η can be
explicitly computed (cf. Abraham and Marsden [1]):

Ώη(ξ(v)ηΛ(u)η) = -η([u,v])

for η G LG* Θ R" and ξ:LG -> %(G η) the infinitesimal action of G on
G η c LG* ® R".

Remark. In analogy with the symplectic case, LG* Θ Rn can be considered
as a manifold with a Polypoisson structure.

Let A:G X M ^> M be a transitive strongly polysymplectic action, i.e.
(M, Ω) is a poly-Hamiltonian G-space and let μ: Λf -> LG* ® R" be the
momentum map. With the same kind of arguments as in symplectic geometry
the following can be shown for η e LG* <S> R" (cf. Wallach [55]): The map
μ: M -> G c η c LG* Θ R" has the properties:

1. μ(g m) = g μ(m).
2. μ*Ωη = Ω.
3. μ is a covering map.
This implies
7.9. Theorem. Lei ( M , Ω) fee α homogeneous poly-Hamiltonian G-space.

Then there exists η e LG* Θ R" swcλ //*#/ /Λe momentum map μ:M^>G ηis

an equiυariant covering map.

This result has a similar meaning for field theories as the classical result for
particles: it allows us to classify homogeneous polysymplectic G-spaces or, in
physical terms, it gives a classification of free and elementary field systems.

8. Remarks on the global case

In the previous sections, the Hamiltonian formalism was developed for fields
as functions, i.e. sections in a trivial bundle E = U X Q -> U over some open
neighborhood U c R". In the global case fields are considered to be sections in
a fiber bundle (£, π, B) over some manifold B. Physically this case describes a
general relativistic field theory. The fundamental object for the global Hamil-
tonian formalism is J*E:= Hom(VeτE,π*TB), the bundle over E of re-
valued one-forms on YevE. With the same construction as in §2, J*E is
shown to have a canonical Γi?-valued two-form

Ω :YQXJ*E X Ver/*£ -> TB.
The mechanism of §3 assigns to every function H on J*E a section in the
bundle Hom(ττ*TB, VeτJ*E) of linear maps TB -> VerJ*E.

But in contrast to the local case these sections cannot be interpreted
as partial differential equations. In order to interpret sections in
Hom(π*TB, YeτJ*E) as partial differential equations a connection on J*E
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has to be chosen. This allows us to identify Hom(π*TB, YeτJ*E) with the
first jet bundle Jλ(J*E) of J*E and therefore allows us to assign to a function
H on J*E a section in Jι(J*E) which represents the desired Hamiltonian
equations. Thus in the global case the Hamiltonian formalism requires the choice
of a connection in J *E and leads therefore necessarily to a gauge theory.

In the case of a regular Hamiltonian the so obtained gauge Hamiltonian
equations are equivalent to the conventional Lagrange equations for gauge
theories (see Bleeker [5]). The case of ordinary (nongauge) Lagrange systems
appears then as a special case (with a particular connection chosen). The
Hamilton-Cartan form can be easily expressed in terms of Ω, //, and a volume
on B.

Symmetries are in the global case treated in the same spirit as in the local
case (§§6 and 7). Since a symmetry group may operator nontrivially on the
base B of E one obtains two types of conserved quantities: The conserved
currents (see 6.2 and 6.3) from the "vertical part" of the operation on J*E,
and conserved quantities associated with the energy-momentum tensor from
the "horizontal part" of the action on J*E -> B. The classification of free
elementary systems leads to orbit in the bundle Hom(LG, TB). See also the
appendix.

The global case will be treated in detail in the forthcoming second part.

Appendix. Correspondences between classical mechanics,
local and global field theory in the Hamiltonian formalism

Classical mechanics

Parameter space R

(time)

dt time form

Configuration space Q

Configuration bundle R X Q

Evolution space R X T*Q

Phase space T*Q

Symplectic form

ω 0 on T*Q

Canonical one form d0

General symplectic

phase space (Λ/, ω)

Presymplectic evolution

space (R X Λ/, p*ω)

Hamiltonian H

Field theory (local)

ί / c R " (local space time)

vol standard volume on U

Space of field values Q

local field bundle U X Q

UX ί*Q

I*Q

polysymplectic form

Ωo on ί*Q

Canonical Revalued

one form Θo

Polysymplectic manifold

(Λ/,Ω)

(UX Λ/,/?*Ω)

H

Field theory (global)

Bn - dim. manifold

(space time)

vol volume on B

[(typical) fiber of values Q]

Field bundle

(E,p,B) (fiber Q)

J*E

[typical fiber of J*E over B]

[polysymplectic structure

on fibers of J*E]

[Canonical Γ5-valued

one form Θo on fibers]

[typical fiber of a

polysymplectic fiber bundle]

Polysymplectic fiber

bundle (£,Ω)
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Classical mechanics

Time dependent

Hamiltonian / / e f ( R

H (Energy)

Musical morphisms

Hamiltonian vector field

Hamiltonian vector fields
as infinitesimal generators

Hamiltonian Equations

υ = ω*(dH)

Observable 3^{M)

Time dependent

observables^Λ/ X R)

Poisson brackets { , }

Momentum map

μ:Λ/-> LG*

Coadjoint orbits in LG*

Conserved quantities
= 0

Field theory (local) Field theory (global)

H G 3^{U X M) space-time H e 3?E
dependent

Energy-momentum tensor H Energy-momentum tensor H

Hamiltonian system

Infinitesimal canonical
transformation v &9£V

Hamiltonian Equations

") currents

X M) or

M,R")

{ , }(5.3.)

Momentum map

μ : M - LG* <8> R"

Orbits in LG* ® R"

Currents F G^h(M
withdiv(Foψ) = 0

etc.

R")

Hamiltonian system

c 3fecHom(π*TB, Ver£)
Infinitesimal canonical
transformation v e ferHΈ

Gauge Hamiltonian Equations

,TB) currents

Momentum map

μ:Έ -+ Uom(LG,TB)

Orbits in Hom(LG, TB)

Currents F <^&hr( Έ, TB)
withdiv(Foψ) = 0

(The list can be continued to the Lagrange formalism.)
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