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CONNECTIONS, COHOMOLOGY AND THE
INTERSECTION FORMS OF 4-MANIFOLDS

S. K. DONALDSON

I. Introduction
The Yang-Mills gauge fields, which were first introduced in Mathematical

Physics, can be used to obtain strong results about the differential topology of
4-manifolds. In a previous paper [12] simply connected manifolds with definite
quadratic intersection form were studied through the associated moduli spaces
of "instanton" solutions to the Yang-Mills differential equations. Here we
shall extend these methods to discuss the existence of smooth, simply con-
nected, 4-manifolds with certain indefinite intersection forms. A companion
article [14] will discuss non-simply-connected manifolds (about which results
have recently been obtained by Fintushel and Stern [16]) and we shall develop
here a number of techniques to be used in that article and also in other
applications [13].

If X is a closed oriented 4-manifold, then the intersection of 2-cycles defines
a unimodular bilinear form on the free group: H2(X; Z)/Torsion. Changing
the orientation of the 4-manifold reverses the sign of the form and we shall
adopt here the opposite convention to [12], that is, eventually we consider
"anti-self-dual" connections—this fits in better with the conventional orienta-
tion of complex surfaces. With this convention the Theorem of [12] becomes:

(1.1) Theorem A. If X4 is smooth, compact, and simply connected and with
negative intersection form (a a < 0 for all a in H2), then the form is equivalent
over the integers for the standard example:

( - l ) θ ( - l ) θ ••• θ ( - l ) .

Of course, the point of this is that many nonstandard definite forms exists;
for example, the positive definite root matrix Es and its multiples ±n Es.

The nonsingular forms over the real numbers are classified by rank and the
number b+ of positive eigenvalues in a diagonalization. According to the
Hasse-Minkowski classification [23] the only other invariant for indefinite
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unimodular forms, over the integers, is the division into odd and even types.
These forms all appear in the two families:

odd: n (1) 4- m(-l).
even: ±nEs + m(® J).
Each of the odd indefinite forms can be realized as the intersection form of a

suitable connected sum of copies of the complex protective plane, so the
interesting problems regarding existence of manifolds concern the even forms.
For simply connected manifolds this even condition on the intersection form is
equivalent to the presence of a spin structure.

Thus we consider the family of forms:

1
0

The hyperbolic form (? £) is realized by the manifold S2 X S2 and the next
simplest known example, beyond connected sums of S2 X S2's, is the intersec-
tion matrix - 2 £ 8 + 3(J J) of a complex K3 surface K. All the smooth, simply
connected, spin 4-manifolds that are known are homotopy equivalent (and
even homeomorphic) to connected sums of these basic examples. It is a
well-known general conjecture that, indeed, no other homotopy types are
realized. The results of this paper go a small way in the direction dealing with
the cases when the number b+ of positive parts is 1 or 2. We shall establish:

(1.2) Theorem B. // XΛ is a smooth, simply connected, spin 4-manifold
whose intersection form has one positive part, then the form is equivalent over the
integers to (® J).

(1.3) Theorem C. // the intersection form of such a manifold has two positive
parts, then it is equivalent over the integers to ({* J) Θ (J J).

(1.4) Remarks, (i) That these manifolds are homotopy equivalent to the
basic examples S2 X S2 and S2 X S2#S2 X S2 follows from the Theorem of
Milnor-Whitehead. By the classification of Freeman they are homeomorphic.
Of course, such nonexistence results would not be true for topological rather
than smooth manifolds.

(ϋ) By taking sums with S 2 X S2 's one immediately deduces Theorem B,
and some cases of Theorem A, from Theorem C. However, it is more
instructive to see the proofs separately.

(iii) We can deduce from Theorem C:
(1.5) Corollary. The K3 surface K is (smoothly) indecomposable', it cannot

be expressed as a connected sum K = K'#S2 X S2.
There is, however, a rather simpler and more direct proof of this corollary

which will appear elsewhere [15].
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While the main ingredients of the proofs of Theorems B and C below are the

same as Theorem A in [12] there are also some essential differences which are

easiest to understand by starting with a different proof of Theorem A. In the

proof of [12] a 5-dimensional moduli space M of (anti) self-dual connections

provided a cobordism between a definite manifold X4 and a number of copies

of C P 2 and the result was deduced from the cobordism invariance of signa-

ture. However, as we shall explain in §IΠ(ii) below it is also possible to

compute the intersection form of X directly from this moduli space, using

certain cohomology classes in M. Restrict, now, to spin manifolds and even

forms. Then Theorem A can be summarized as

(1.6) / * S p i n ' simply-connectedj ^ ( ( } _ Q )
v ' \ definite form / v 2 V } '

which is rather trivially equivalent to

, x , v (X spin, simply-connected) ^ ( α i * ai = ° mod2 for
( ' } W \ definite form / ^ all al9 a2 e H2(X; Z ) ) .

This latter formulation is the one we shall generalize to indefinite forms,

starting from the following simple algebraic observation.

If (•) is an even, unimodular form on a lattice L of rank r, then we may

associate to its mod 2 reduction on L Θ Z/2 a "symplectic" form:

ω G Λ 2 (L* Θ Z/2), ω(aι,a2) = aλ a2 mod2,

using the fact that (a a) = 0 mod 2. Just as for symplectic forms over the

reals, the condition that (•) is unimodular implies that r is even, r = 2/?, and

the exterior power

ω'<EΛΓ(L*<2> Z/2)

is nonzero. So, if ωd = 0, then d > p. But, again just as for real forms, the

powers of ω may be regarded as multilinear functions on copies of L ® Z/2.

Thus we have a string of implications:

r = 0<=> {α1 α 2 = 0 mod 2 for all al9 a2 in L },

( 2 4 ( α 1 , α 2 , α 3 , α 4 ) = (aλ α 2 ) ( α 3 * « 4 ) + ( α 2 α 3 ) ( α 2 α 4 )

+ (<*! α 4 ) ( « 2 α 3 ) = 0 mod2 for all al9a2,a3,a4 in L j '

= 0mod2for all ax,a29- , α 6 in L

with similar implications for higher ranks.
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By the classification, the forms (f J) and (J J) φ (1 o) appearing in Theo-
rems B and C are characterized exactly as the even forms with ranks 2 and 4
respectively. So to prove these theorems it suffices to show:

ί ^ s P * n ' s i m p l y ~ c o n n e c t e c l > \ / QΛ(ai•> a2 » α 3 » α 4 ) = 0 mod 2 for all

\ b2

+(X) = l ~

s P * n ' s i m P t y ' c o n n e c t e d ' \ / Qβ ( αi» α 2 ' ' ' ' » α6 ) = 0 mod 2 for all

in

which clearly generalize the basic case (α). We could also formulate corre-
sponding statements for larger values of the number b+ of positive parts of the
form, but these would be incorrect as the K3 surface, with b+= 3, shows.

When the bilinear form (•) is the intersection form of a manifold the
multi-linear expressions <22</(αi>* * Ίad) have a simple geometric meaning
derived from the definition of the intersection product. In a 4-manifold the
integral homology classes can be represented by oriented surfaces Σ1 ? , Σd

placed in general position. Then Q2d(av'' >α</) ̂ s equal (modulo 2) to the
number of configurations of unordered d-tuples Xl9— ,Xd of points in X
such that each surface Σ, contains a point Xj. It is in this way that the
expressions Q2d will emerge (in §ΠI(iv)) from the study of Yang-Mills moduli
spaces.

In [12] a 4-manifold with definite intersection form was manifested explicitly
in its moduli space of gauge fields in the form of concentrated or particle-like
connections constructed by Taubes, and this construction lay at the heart of
the proof. Similarly, to study indefinite forms we make use of further work of
Taubes [25] in which more general "multi-instanton" solutions to the differen-
tial equations are constructed corresponding to a configuration of points or
particles in the 4-manifold. In §§Π and III we will find a way to associate to
each homology class in a 4-manifold X a cohomology class in any family of
connections over X. In as much as we can think of connections as generalizing
the points in the manifold (or particle-like connections) this construction with
homology generalizes Poincare duality. When we consider a cup product of
these cohomology classes—represented by intersections within the space of
connections—the expressions Q2d will appear as the number of boundary
components of multi-instanton solutions. We will thus use homology and
cohomology inside families of connections over X to make the deductions (/?)
and (γ) about the homology of X. This shift from cobordism to homology
marks the main difference in the proof here from that of [12]. In a similar
spirit, homology and cohomology enters into the work of Fintushel and Stern.



4-MANIFOLDS 279

For the proof we also need a more subtle topological construction exploiting
the spin condition on the 4-manifold. While the concentrated connections
modelled on a single point are described completely by this point and a scale
size, in the general case there are extra parameters making up a "link" in the
moduli space. Homologically, these parameters are detected by torsion classes
developed in §§H and IΠ(v) using the index of the Dirac family. At the
geometric level the most arduous part of the work is giving a precise descrip-
tion of these links in §§IV, V, and VI. Their structure is determined by the
harmonic forms on the 4-manifold through constraints that were, again,
introduced in the work of Taubes. In §§IV, V, and VI we work through a
general theory describing the ends of moduli spaces, culminating in Theorem
(5.5). The main motivation is to mimic ideas of algebraic geometry and extend
the Kuranishi deformation theory to "ideal" ASD connections, with formal
point singularities (see §IΠ(ii)). Finally we explain in an Appendix the dif-
ferences that emerge between the gauge fields over manifolds with b£ < 3
(when we can deduce our topological results) and those with b£ > 3 (when
these methods do not yet yield any information).

II. Homotopy and connections

Notation. In this section X is a compact connected, oriented 4-manifold;
P - ^ I a principal SU(2) bundle; and E, qP the vector bundles associated to
P by, respectively, the fundamental representation on C 2 and the adjoint
representation.

II(i). We shall construct cohomology classes in the parameter spaces of
families of connections over X. Ultimately these will be the moduli spaces of
anti-self-dual (ASD) Yang-Mills connections but our topological discussion
will apply to very general families and can be expressed in terms of the
homotopy type of the infinite-dimensional space

(2.1) & = J*/9 {= 3&P xoτ@x)

of equivalence classes of connections on P. This is formed by dividing the
affine space s? of connections by the gauge group & of automorphisms of P
(see [17], [5]). In fact it is easiest to start with the slightly larger space

(2.2) & = s//90>

where @0<@ is the subgroup of automorphisms which fix the fiber PXQ over a
base point x0 in X. This smaller group % acts freely on s/. Any automor-
phism g of P fixes a connection s/ precisely when it commutes with the
holonomy maps of sf along paths in X, so if g is the identity on one fiber it
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will be so on all. An equivalent description is

(2.3) £ = j * X , P , o

and the points of 8# represent isomorphism classes of connections on "based"
bundles, having a preferred identification of PXQ with SU(2). If ^ and s/ are
given suitable Sobolev structures (allowing connections which are not C°°), 88
can be topologized as a Banach manifold and the (weak) homotopy type will
not depend upon the precise Sobolev structure which is chosen (cf. [5], [17]).

There is a standard way of representing the space 88, up to homotopy, as a
function space; generalizing the representation of bundles by homotopy classes
of maps into the classifying space BSU(2) = HP 0 0 of SU(2).

(2.4) Lemma (cf. [5, Proposition 2.4]). There is a weak homotopy equiva-
lence

where Maps p denotes the spaces of based maps in the homotopy class correspond-
ing to the bundle P.

Proof. This can be understood by introducing families of (based) connec-
tions over X parametrized by an auxiliary compact space T.

The homotopy classes of (unbased) maps

Γ-» MsφsP(X,BSU(2))

are in (1-1) correspondence with those of maps

TXX^> BSU(2)

which collapse T X {x0} to the basepoint in BSU(2) and induce the bundle P
on each slice I X {t}. These correspond, in turn, to the isomorphism classes
of SU(2) bundles P over XX T trivialized over T X {x0} and with P\{t]xx

= P.
Just as any bundle over a manifold admits a connection, so the bundle P

admits a "partial connection" A in the X direction. For example, if T is a
sphere, we can choose a connection on P over the maniold X X T. Restricting
to slices, and using the trivialization over T X { x0}, A defines a map

If A v A 2 are two choices of the partial connection on P, the linear family
S&! + (1 — s)A2 induces a homotopy/Ai - fΛl

Conversely, since ^ 0 acts freely on s/ there is a "universal" bundle
P =s/X#oP over I x l (see [10]), trivialized over I x {JC0}. TO any map
/: T -» 8& there corresponds a bundle over T X X by pull back, and homo-
topic maps induce isomorphic bundles.
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We will not make any real use of this description of the homotopy type of
the space of connections 3l. It has been included to emphasize that the
discussion of the cohomology of 38 depends, at bottom, only on the homotopy
type of the 4-manifold X. It does not make any essential use of the smooth
structure (although we are free to do this in our calculations). We will base our
constructions directly on the existence of the universal 5(7(2) bundle IP over
I x Z , the reader should compare [5] and [8]. The key to the paper is the
following definition:

(2.5) Definition. Denote by

~μ:H2(X;Z)-*H2(<2x;l)

the slant product μ(a) = c2(P)/«, where c2Φ) is the usual second Chern class in
H\@x X X; Έ)

The polynomial identities (α), (/?), (γ) of the introduction will be derived
from this map μ. It depends only on the 2-skeleton of the manifold X. If we
represent (as we always can) a 2-dimensional homology class by an embedded
surface Σ <-> X, then μ[Σ] factors through the obvious map—induced by
restriction of bundles and connections—

(2.6) h *p,x'+&z

(There is no difficulty in choosing Sobolev structures so that this map is a
smooth map of infinite-dimensional manifolds.) Notice that while there are
topologically distinct bundles P over Jf-determined by the characteristic class
c2(P) e H2{X\Έ) = Z—this distinction is lost when the bundles are re-
stricted to surfaces.

The universal bundle P defines classes in X-theory as well as ordinary
cohomology and these can naturally be studied using elliptic operators on X.
Indeed elliptic operators may be used to represent cycles in £-homology [4].
Here it would be more strictly correct to formulate the work in terms of
compact families of connections, as in the proof of Lemma (2.4), but to save
notation we will ignore this point.

The fundamental representation of SU(2) associates to P a complex vector
bundle E over $8X X X. If D is an elliptic operator on X, there is a X-theory
index of the family of operators formed by coupling D to the partial connec-
tion on E:

(2.7) ind(Dt)eK(&x)

which is the ^-theory slant product [E]/[Z>]. The slant products in (rational)
cohomology and if-theory are related by the Atiyah-Singer index theorem for
families. In particular if Z is some spinc manifold with a (twisted) Dirac
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operator D, defined by a lifting / e H2(Z;Z) of w2(Z), and if we have a
family E of connection over a product T X Z:

(2.8) Atiyah-Singer index formula [9,1, IV], [10].

ch(ind/)E) = ( i (Z)e '/ 2 ch(E))/[Z] .

We will use this twice—first to give another description of the map μ. If Σ
is an embedded surface in X, then, since w2(Σ) = 0, there is a Dirac operator
3 Σ over Σ (with / = 0) which is self adjoint and so has numerical index 0. The
class

(2.9) ind(3Σ) e K(£Σ)

pulls back to K(3X) by r | . Any complex virtual bundle defines a first Chern
class in H2. More geometrically a virtual bundle defines a complex line
bundle, " the determinant bundle"

(2.10) det([F] -[W]) = (AάimVV) Θ

Thus to every surface Σ in X we get a complex line bundle

(2.11) J^Σ = ( d e t i n d ^ } ) " 1

over ^?; pulled back from the space $Σ of connections over Σ. (Moreover
there is no difficulty in defining these determinant line bundles over noncom-
pact families, unlike the virtual index bundles.)

(2.12) Lemma. μ([Σ]) = cλ(Seτ\
Proof. Over the rationals the characteristic class -c1(JSfΣ) = ch1(index3Σ)

can be calculated by the Atiyah-Singer index theorem for families (cf. [5, p.
582])

ch^indexd) = ch2(E)/[Σ] = \{cf - 2c2)(E)/[Σ]

= -c 2(E)/[Σ] = -μ[Σ].

The result is true over the integers since the space ^ Σ is torsion free [5, p. 542].
Next we define mod 2 cohomology classes using indices of operators which

make essential use of a spin structure on the manifold. If X is a spin
4-manifold there are spin bundles F+, V~ corresponding to the fundamental
representation of the two factors: Spin (4) = SU(2) X SU(2). The Dirac opera-
tor/)* interchanges the bundles:

(2.13) D*: Γ ( F ~ ) ^ Γ ( F + ) .

For each connection A on P we construct an extended Dirac operator:

D* = Γ(F-®C E) -> T(V+®C E).
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Since the group SU(2) is isomorphic to Sp(l), each of the vector bundles V~,
F + , E is a quaternionic bundle. Hence the tensor products have real struc-
tures, compatible with the Dirac operator, and the kernel and cokernel of the
operator are naturally real vector spaces. Thus the index of any family of these
operators gives a real virtual bundle

(2.14) ind(D;) e KO(&).

The Stiefel-Whitney characteristic classes extend to such virtual bundles.
(2.15) Definition. // X is a spin 4-manifold, define cohomology classes as

follows:

ui = w^indD*) e i/'(J;

(2.16) Discussion. Suppose that the 4-manifold X is simply connected.
Then it has the homotopy type of a cofibration

VS2 -> X -> S\

where the wedge of 52 's represent a basis for H2(X). Using Lemma (2.4), just
as in [5, Proposition 2.10], the space of connections is, at the level of
homotopy, fibered:

(2.17) &s*^&x^Π&s>

And, as in Lemma (2.4),

Ssi s Maps(S2,£Sί/(2)) * Q(SU(2)) = ΩS3,

@S4 s Maps(S4, BSU(2)) = Ω3S3.

The rational cohomology of ΩS3 is generated by an element in i/2, which
corresponds exactly to μ[S2]. Thus the map μ when extended to define

μ: Polynomial algebra on H2(X) -> H*(@x)

captures all the (rational) cohomology of the base Prod $S2 of the fibration.
The classes wz have more to do with the fiber Ω3S3—corresponding to

SU(2) connections over the 4-sphere (cf. [8]). If in place of SU(2) = Sp(l) we
consider connections for arbitrarily large symplectic groups Sp(/), then accord-
ing to [3], [8] the classifying map

limΩ3Sp(/) -* BO

of the Dirac index bundle induces the Bott periodicity isomorphism Ω2Sp —
BO. Since the mod 2 cohomology of BO is generated by the Stiefel-Whitney
classes, the classes M; capture all the mod 2 cohomology of Ω3^3 which is
stable with respect to the size of the (symplectic) gauge group. The point of the
spin condition on the 4-manifold is that in this case all such cohomology
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extends from the fiber of (2.17) over the total space. Conversely, if X is not
spin it is easy to see that ύλ does not extend—indeed in the spectral sequence

where μ(2) is the mod 2 version of (2.5).
IΙ(ii). Stabilizers and universal families. The homotopy of the true space of

connections which we need to use is a little more complicated than that of the
space J* of based connections. First, just as we have associated cohomology
classes to the 2-cells (giving the map μ) and the 4-cell (giving the torsion
classes w,), so when we forget the trivialization of the bundle over the base
point we obtain more structure from this 0-cell in X. And just as the 2-cells
and 4-cell lead to a potentially nontrivial fibration (2.17) so the 0-cell interferes
with the previous constructions. Second we meet the new feature that the
isotropy in the gauge group varies between one connection and another and we
have to take special account of the "reducible" connections. It is at this point
that we diverge a little from Atiyah and Bott who used instead ^-equivariant
cohomology to study connections over Riemann surfaces.

To each connection A on P we associate the stabilizer TA<z <g under the
action (2.1). It is a compact Lie group which is identified with a subgroup of
SU(2) = Aut Px by a choice of base point JC0. Γ̂  is the centralizer of the
holonomy subgroup of the connection and always contains the center { ± 1} of
SU(2). Denote by @* c όg the subset representing connections for which
Γ>ί = { ± l } . J t * i s open in 3& and has complement of infinite codimension so
the homotopy type is unaffected by the removal of the reducible connections
&\ά*9 where Γ̂  Φ {±1}.

Dividing by the remaining part &/% = SU(2) of the gauge group gives a
principal fibration:

(2.18) (SU(2)/± 1) = SO(3) -> J * -> &

with base 36* c 3} the equivalence classes of irreducible connections. Equiva-
lently a fibration (in homotopy):

(2.19) J * -> @* -> BSO(3) (cf. (2.17)).

The next three propositions bear on the problem of pushing cohomology
from J** down to ^ * , starting with the " universal" problem of pushing down
the bundle P on I * X I We can in any event push down the SO(3) bundle
g p associated to P, and working over the rationals this would suffice, but we
need to keep track of torsion. Recall that the adjoint representation defines a
homomorphism ί/(2) -> 50(3).
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(2.20) Proposition. If c2(P) is odd there is a lifting of the structure group of

the universal SO(3) bundle over 3&* X X to give a ί/(2) bundle P. If in addition

the 4-manifold X is spin, then we can take P to be an SU(2) bundle.

Proof. Consider the C 2 vector bundle E over J** X X associated to P. The

element -1 in the gauge group ^ (or ^ / % ) fixes all connections but acts as

(-1) on the fibers of E, so the vector bundle does not descend directly.

However, any 4-manifold admits a spinc structure [19], and fixing one of these

gives a Dirac operator

between the twisted spin representations W_, W+. As in (2.8) the numerical
index of this operator when coupled to a connection A on P is:

indD* = c2(P) + ( ( τ ~ / 2 ) / 4 ) e ΊL

= c2(P)-2indD.

Now form the corresponding virtual bundle over the space ^ * and determi-

nant line bundle as in (2.10):

Det(ind D*) = { Λ d i m k e r D *(KerD*)} Θ { Λ d i m k e r D *(KerD A )} *.

Clearly the scalar a in C * acts on E and the induced action of Det(ind D%) is

by α i n d D * . From (2.21), the parity of indDjf is the same as that of c2(P\ so

when c 2 ( P ) is odd, -1 acts as -1 on the line bundle DetίlndDJf) over 3t*.

Pull this back to get a line bundle ^ ( D e t ί i n d Djf)) over l * X l : then -1 acts

trivially on E' = 771*(Det(ind D%)) <E>C E over ΐ * X l and we may descend the

ί/(2) bundle E' to @* X X. If X is spin, then, as in (2.14), we can form the

real line bundle det(ind DJ) and set

(2.22) E r = <(Det( indZ)^)) 0 R E

in which case E7 descends as an SU(2) bundle.

(2.23) Remark. The existence of these bundles is equivalent to, respectively,

the lifting of the second Stiefel-Whitney class of the fibration (2.19) to the

integers and to the vanishing of this class. On the other hand the existence of a

spinc or spin structure on X is equivalent to corresponding properties of

w2(TX). It is not hard to understand this duality in the framework of the

duality correspondence of §111 below. The obstruction w2 e H2(<%*91/2)

coming from the base point fibration (2.19) plays an important part in the

arguments of Fintushel and Stern [16].

(2.24) Definition. Ifc2(P) is odd and X is spin set, then

wz = ^(indZ)*) G # ' " ( # * ; Z/2),

where D£ is the Dirac family on the SU(2) bundle E over 36*.
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If c2(P) is even we do not get a universal bundle over ^ * so cannot define
classes ui in this way; except for the special case of the one-dimensional class.
Since the stabilizer (-1) acts trivially on the real line bundle defined by DA we
can make the following

(2.25) Definition. Ifc2(P) is even and X is spin, let

ux SΞH\36\

be the first Stiefel-Whitney class of the real line bundle pushed down from
det ind DA over 38*.

In the same way, we can push down the two-dimensional cohomology
classes associated to the 2-skeleton of X.

(2.26) Proposition, (i) For each surface Σ c X the complex line bundle JS?Σ

descends from 38$ to 38*.
(ii) The map μ: H2(X; T) -* H2{38*\ T) factors through a linear map:

μ:H2(X;Z)-*H2(3$*;Z).

Proof, (i) Just as in the proof of Proposition (2.20) the line bundle ΛΣ

descends since (-1) e & acts as

( _ l ) i n d ^ = (_!)0 = λ

on the fibers of J^Σ.
(ϋ) Since μ([Σ]) = c^&z) we can define classes μ(Σ) geometrically using

the first Chern classes of the line bundles in (i). The lift μ(Σ) of μ(Σ) to
H2(36*\ Z) is unique, as one sees from the spectral sequence of (2.19), so μ
defines a linear map on homology.

(2.27) Remark. When c2(P) is odd the map μ can also be defined by using
the second Chern class of the 1/(2) bundle P over 38* X X. The fact that the
numerical index of 3 Σ is zero implies that on 36 the line bundles

detind(3Σ έ ) , detind(3Σ £>)

are canonically isomorphic.
Finally we calculate the obstruction to extending the cohomology classes

μ(a) in H2{38*\ Z) to the space 38 of all equivalence classes of connections.
The only important case is when the isotropy group Γ̂  is S1. As explained in
[12], [17] this is the only group which can occur when P is not topologically
trivial; and the connection A is then induced from an Sι connection. In terms
of vector bundles this corresponds to a splitting E = L Θ L"1 so c2(E) =
-cλ(L)2. Similarly it is explained in those references that while the space 38*
of irreducible connections is an infinite-dimensional manifold, the reducible
connections sit as singular points in 38. A neighborhood of the reducible
connection A is modelled on a quotient HR X HC/TA, where i/R, Hc are
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respectively real and complex Hibert spaces (making up the kernel of the

"gauge fixing operator" d$, see §IV) and corresponding to the bundle decom-

position

So Hc c ΩX(L 2) and the action of Γ^ is of weight 2; eiθ e TA acts as e2iθ on

Hc. If Σ is a surface in X the determinant line bundle «^Σ restricts to a

Γ^-equivariant line bundle on Hc. The boundary of a small neighborhood of A

in HC/TA is a copy of C P 0 0 with canonical cohomology generator h. To

determine the restriction of μ(Σ) = cx{5£) to C P 0 0 is the same as knowing the

action of the stabilizer Γ^ on the fiber of JS?Σ over the origin. (The Hopf

bundle on C P 0 0 is induced from an equivariant line bundle / on Hc on which

Γ^ acts with weight 2. Since (-1) acts trivially on oS?Σ the weight of the action

of TA on J£?Σ is even, 2w say. Then the compact group Γ^ acts trivially on the

fiber of JS?Σ Θ L~w over 0—so by averaging we can choose an equivariant

trivialization and on the quotient c1(oSPΣ ® Γw) = 0. Thus μ(Σ) = w Λ e

# 2 (CP°° ;Z) . )

(2.28) Lemma. The cohomology class μ(a) restricts to -(c^L), a) h on the

copy of C P 0 0 surrounding a reduction E = L Θ L~ι.

Proof. The decomposition of E, restricted to a surface Σ, induces a

decomposition

Se^ = (detind(3 Σ £ ) ) " 1 = (det ind3 Σ L ) " 1 ( d e t i n d 3 Σ ^ - i ) " 1 .

By definition the element eiθ e Γ^ acts as eiθ on L and e~iθ on L"1. So Γ^

acts with weight

indd Σ L - ind)3Σ L i e Z

on JSPΣ (cf. (2.20)). By the index theorem (2.20) on surfaces,

ind(3 Σ , L ) = (cx(L)9 [Σ]>, ind(8 Σ f L -i) = -(cλ(L)9 [Σ]>

so the action on «J?Σ has weight 2w = -2(c 1 (L), a).

(2.29) Note. The choice L±ι of line bundle in the splitting determines the

identification Γ^ = Sι and so the sign of h. So the complete formula is

independent of choice.

III. Topology of the ends

In [24], [25] C. H. Taubes has introduced "approximate" solutions of the

ASD Yang-Mills equations over any 4-manifold which are modelled on copies

of the basic instanton solution over R 4 or S4. Here we will explain that this
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construction is closely related to duality in topology and we will go on to
reduce the proofs of Theorems B and C to technical assertions about the
"ends" of moduli spaces.

IΠ(i). Suppose that a manifold Z is expressed as a union of open sets
Z = Zo U Zλ with πτ(Z0 Π Zλ) = {1} and that Ao and Ax are G-connections
on bundles Po, Pλ over Zo, Zλ which are both flat on the overlap Zo Π Zγ. If z
is a base point in Zo Π Zx, then a G-isomorphism

(3.1) P . ( ^ o ) z - ( Λ ) ,

defines, by parallel transport, an isomorphism Po\Zonzι = Pι\zQcιzλ Using
this gluing map to construct a bundle P0U pP1 over Z there is an obvious way
to define a connection, which we denote

(3.2) A0#βAτ

over Z; which restricts to At over Zy. In general the parameter p will be
effective; it is easy to see that the equivalence classes of connections con-
structed in this way are in (1-1) correspondence with cosets:

(3-3) G/TAi X I V

Here the groups Γ̂  cAutP, are the holonomy centralizers, as in §11.
Clearly the same construction can be made with connections over a number of
open sets Zi9 given appropriate identification maps.

Take a standard model for S4 = U4 U {oo} with symmetry group 50(4)
and let / be a connection on the negative spin bundle F_-> S4 which is:

(a) flat in a small neighborhood of oo,
(b) preserved by the S0(4) action on S4 and V_.

(In particular / can be a connection close to the basic ASD connection on V_,
distorted to achieve (a).)

Let S -* X be the 4-sphere bundle over a (Riemannian) 4-manifold X
obtained by adjoining a section at infinity to the tangent bundle S = TX U X^.

Then the SΌ(4)-invariance means that on the spin bundle of each fiber
Sx = S4 there is a way to define a connection isomorphic to /. Furthermore,
by using a spinc structure on X we can define a bundle G over S which is
canonically identified with the spin bundle in the direction of the fibers of
S -> X. For a spinc structure on X is defined by a pair of Hermitian 2-plane
bundles W_, W+; an isomorphism A2W_= A2W+ and a Clifford multipli-
cation:

a:TX
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When | | | 2 = 1 the map αξ preserves the isomorphism on Λ2 and the metrics.
We define G by clutching W_ on the zero section Xo c S to W+ on the section
at oo, X^ by a over the equatorial 3-spheres. Then G carries a partial
connection isomorphic to / on each 4-sphere fiber.

Suppose that Ao is a connection on some SU(2) bundle Eo over X (we
adopt the language of vector bundles here). Then, following Taubes, the
exponential map identifies a small ball Mx in the tangent space (TX)X with a
small ball Nx in X. If we fix a homothety mλ of the fiber (TX)X mapping the
neighborhood of oo where / is flat onto the complement of Mx, then via the
exponential identification Mx = Nx we can use / to define a connection Jλ x

over Nχ9 flat on a neighborhood of dNx.
We can easily fix a standard procedure—using an exponential gauge and a

bump function—for modifying Ao to get a connection A'o flat over Λ .̂ Then
the construction above will "glue in" the connection Jλ x given an identifi-
cation map

to form Af

0#p Jλ X. AS in (3.3) the gluing parameter p is, in general, determined
up to sign by the connection that is constructed. So the gauge invariant
description of the data required is an isomorphism

(3.5) (±p) (QEO)X

 Ξ {^2+,X)X

of SO(3) bundles.
However, when Ao (hence A'Q) is reducible, with extra symmetries Γ̂  , we

get a correspondingly smaller family of connections. In particular if Ao = 0,
the trivial flat connection, the variable p can be cancelled by Tθ = SU(2).
Fixing the scale size λ Taubes construction gives a map

(3.6) Ί\X-*96'X, x -> θ#Jλx.

This is a family of connections over X (with c2 = 1) parametrized by X itself
and concentrated on the diagonal in X X X. We can write down a bundle E τ

over X X X which carries this family, just as in §Π(ii). Let

*Πγ. Λ ?\ Λ —* A

be projection onto the first factor, the "parameter factor." As x varies, the
4-balls {x} X Nx = Mx sweep out a neighborhood N of the diagonal Δ in
XXX. The bundle (m^yG on N is identified with π?W+ on the boundary
of N, and the U(2) bundle Eτ is formed by clutching with this natural
identification.
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At the bundle level this construction is much the same as that of the
-theory fundamental class of the diagonal Λ c l x l [6].
In the latter case the retraction S Ξ± X^ defines a direct sum decomposition

The Thorn class (in ^-theory) of the tangent bundle is given in this decomposi-
tion by

G - π*{W+) e K(S)

which maps to 0 in K(X^). So the AT-theory diagonal class is

(3.7) Έτ - π*(W+) eK(XX X).

In the same way the second Chera class of this Taubes family is related to
the diagonal class in ordinary cohomology,

(3.8) Lemma. The composite map

H2(X;Z) A ( ^ * ; Z ) ^ H2(X;Z)

is the Poincare duality isomorphism.
Proof. To calculate τ*μ we have to know the cohomology class c2(Έ.T) e

H4(X X X; Z) (by Remark (2.27)). Consider

H4(XxX, XX X\Δ) - H2(X X X) -> H4(X X X\Δ),

where the first group is infinite cyclic, with generator the Thorn class mapping
to the diagonal class A in H4(X X X).

Now c2(ΈT) - vf(c2(W+)) maps to zero in H4(X X X\Δ)9 because E Γ

and πf(W+) are isomoφhic on the complement of the diagonal. So

c2(Έτ) = πtc2(W+) + nL

for some integer n, and restricting to a fiber {X} X X shows that n =
c2(V_9 S

4) = 1. So τ*μ(a) = c2(Eτ)/a = (π*c2(W+) + Δ)/α = Δ/α which
is the Poincare dual of a.

(3.9) Remark. It is clear from this description that a similar "Taubes map"
at the level of connections is defined for any even-dimensional spinc manifold,
just as in X-theory. In the case of 2-manifolds this gives, in effect, the classical
Abel map of a Riemann surface into its Jacobian.

IΙI(ii). At this stage we can give a slightly different proof of Theorem A,
for definite manifolds, using homology. For, as explained in [12], [17], there is
a 5-dimensional moduli space M of anti-self-dual connections on a bundle with
c2 = 1 associated to any (negative) definite simply connected manifold X4. It
can be supposed to be an orientable manifold except for some singular points
labelled by the reductions of the bundle, so by ±e, where e e H2(X\Z\
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e2 = - 1 . Chopping off these singular points gives boundary components

sitting in the standard way inside the ClPf5 of Lemma (2.27). We can find a

compact manifold-with-boundary M inside M which, in addition to the

C P 2 ' s , has a boundary component diffeomorphic to X itself. The boundary

map

T: X - M C < # *

is clearly homotopic to the map discussed above, since the connections in the

boundary were constructed as deformations of the approximate solutions.

Thus the image τ[X] is homologous in the space ^ * to the projective spaces

CP e

2 surrounding the reductions in M. So for any homology classes al9 a2 in

H2(X;Z)

aλ- <x2= (P.D.αJ u(?.Ό.a2)[X]

( ) (by Lemma (3.8))

= 2 Σ M («i) u /*(«2) [ c p e ] ( u s i n § t h e homology M)

= 2 Σ (±)<«i^><«2^> (using Lemma (2.28)).

At the last stage we have to introduce an unknown sign ( ± ) because we do not

know how the orientations of M at different points compare. (This will be the

main problem considered in [14].) But this equation is plainly enough to tell us

that the negative definite intersection form of X is standard. If X is spin, so

the form is even, no reductions can appear and using mod 2 homology we get

implication (a) of §1.

If the homology classes al9 a2 are represented by surfaces Σl9 Σ2 in X, then

the cohomology classes μ(αχ), μ(«2)> restricted to the finite-dimensional part

M of ^ * , are represented by codimension 2 submanifolds VΣ, FΣz—zero sets

of sections of the line bundles «SfΣ , J^Σ . The duality relationship (3.8) means

that on the boundary τX c Mo we can choose the sections so that

(3.10) VΣιnτX=τΣr

So a cochain representative for μ(ax) U μ(a2) is given by the 1-dimensional

submanifold

(3.11) N= VΣιΓ) F Σ 2 C M

whose boundary consists of the intersection points ΣιΓ\Σ2 and contributions

from the internal projective spaces.
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For the proofs of the new Theorems B and C in this paper we shall use the
relative homology classes carried by more general moduli spaces. The "ends"
of these may be extremely complicated and vary in an essential way with the
choice of the Riemannian metric on the 4-manifold. We will be able to extract
information from these spaces by defining particular representations—like the
VΣ above—for the cohomology classes μ(Σ) in which the support of the
cochain is minimized. This will come from a more concrete form, Proposition
(3.20) below, of the duality principle Lemma (3.8). First we will recall what can
be said about the ends of the moduli spaces in a very general way, using
Uhlenbeck's compactness theorem.

IΙI(iii). Denote by Mk the moduli space of ASD connections on a bundle
with c2 = k > 0 over a compact Riemannian 4-manifold X. It is no more
difficult to define a compactification Mk of this space than to take the
corresponding step in the case k = 1 considered above. This exploits the basic
property that for an ASD connection the Chern-Weil integrand Tr(.F2) (which
represents 8ττ2c2) is identified with the Yang-Mills action density \F\2.

Define an "ideal ASD connection" of Chern class k to consist of a pair
(A;xl9 , xt\ where A is an ASD connection with c2 = k - I and (xv , x()
is an unordered /-tuple of points of X, not necessarily distinct. Associate to
such a pair an action density given by the measure

(3.12) \FA\
2 + 8π2 £ δx,.

α = l

and say that two ideal ASD connections are equivalent if the connections are
gauge equivalent in the usual sense and the action densities agree. Thus the
equivalence classes of ideal ASD connections are parametrized by a union of
products

Put a topology on this union by saying that a sequence of ideal ASD
connections converges to a limit ([A], xl9 , x^ if

(3.13) (i) The action densities converge as measures on X, and
(ϋ) On each precompact open set in X\ {xv -9xι) the connections

converge to A in C00 after a suitable sequence of gauge transformations.
This criterion for convergence passes to subsequences and gives unique

limits, so does define a topology. Arguing exactly as in [12], [17], Uhlenbeck's
theorem shows that the space of ideal ASD connections with c2 = k is
sequentially compact. Let Mk be the closure of Mk in this space of idealized
connections. It is not hard to define a metric on Mk, extending a standard
metric on Mk, hence Mk is compact and Hausdorff; but we will not discuss
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this here. Indeed we will really only use the topology of Mk as a convenient
language. Note that, by definition, Mk is "stratified" by subsets,

(3.14) Mkl = Mk n(Mk_ι X Sι(X))9 0 < / < k\

that the topology induced on each stratum is the usual one, and that the unions
Mkl U Mkl+1 U UMkJc are closed.

The diagonals in the symmetric products make it tricky to describe a base of
neighborhoods in Mk of an ideal connection (A; xv- , JC7). Suppose however
that the points xv- ,Xj (j < /) each have multiplicity 1 in the /-tuple
(xl9 - - , X/) and that ε, r > 0. Then there is a neighborhood Woί {A χl9 , JC,)
in Mk on which there are well defined local "center" and "scale" maps

(3.15) W^ Ωα c X, W^ [0,λ) c R +

for a = 1, , y; xα e Ωα; Ωα disjoint. These can be defined exactly as in [12,
§111.3], [17, §8]. Moreover we can suppose that every connection ΆinW can
be put in a gauge such that on the complement of the r-balls about the points
pa{A') (a = 1, , j) and xβ (β = j + 1, , k) in X it is within ε of A in
some suitable fixed Sobolev norm. More generally, if U is a precompact subset
of Mk_ι there is a neighborhood W of 1/ X (JC1? , xt) on which local centers
and scales are defined and in which any connection is within ε of a connection
in U away from the pa(A'\ xβ.

For the rest of this section assume that the manifold X is simply connected
and has indefinite intersection form, as in Theorems B and C. In §VI it is
explained that this means we may suppose each Mk (k > 0) is a smooth
manifold containing no reducible connections and that Mo is a point.

Let Σ be a smooth surface in X. It is conceivable that an irreducible ASD
connection over X may restrict to a reducible connection over Σ. But for each
such connection we can certainly find a finite set of loops in I o n which the
connection restricts irreducibly. It follows easily from the weak compactness
principle that, given k, we can choose a finite set of loops achieving this
condition for all connections in all Mt (0 < / < k). By adjoining thin, null
homologous, 2-tori containing these loops, we can without loss suppose the
surface Σ chosen—in a given homology class—so that the moduli spaces Mι

(0 < / < 0) map into the infinite-dimensional manifold J^f under restriction.
The trivial connection MQ maps to a nonmanifold point of ^ Σ but as in the
proof of (2.27) the line bundle «£?Σ extends over this "degree 0" reduction; it
makes sense to talk of a smooth section there, by working equivariantly in 3t^.

(3.16) Lemma, (i) There is a smooth section s of the line bundle J?Σ over

<%Σ \ {nonzero degree reductions} such that for every I < k the pulled-back

section of r*(«£?Σ) over the moduli manifold Mι vanishes transversely on a

codimension 2 manifold F Σ Π M,.
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(ii) // Σ 1 , , Σd are surfaces in X, we may choose sections sf of the bundles

££Σ , as in (i), such that all the multiple zeros

vΣi nvΣi n -" nvΣι n M,

are cut out transversely.

Proof, (i) The point here is that the section s "depends" only on the
restriction of the connections to Σ, but we will apply transversality on the
finite-dimensional moduli manifolds.

First, we can suppose that the space SSΣ is formed of L\ connections (which
carry the topology [5]) and so is modelled on Hubert spaces. This means that
by ([22], Π,§3, Theorem 2 and Corollary) it is possible to find a countable
collection {sa} of sections of £PΣ with locally finite supports such that at each
point some section sa is nonzero.

Now consider the set of sections s = Σxa- sa parametrized by an infinite
vector (xa) in /°° (say). Every point in the union of the restrictions U/A*Σ(^/)
has a neighborhood / c <%Σ meeting the support of only finitely many sa and
with one section, sλ say, nonzero in /.

Using sx to trivialize S£Σ over / we may locally represent a section s pulled
back to the moduli manifolds, as

,)
/ s/s\

By Sard's Theorem the set of regular values of this composite is dense in C.
Equivalently the set of η1 in C, such that

s + *ΪΛ = Σ * A + iJΛ

vanishes transversely when pulled back to LIrΣ(/), is dense, and a fortiori the
set of vectors (xa) in /°° which define such sections over / is dense. Since only
finitely many of the sa have supports meeting / it is clearly also an open
subset of /°°. Now cover the moduli manifolds by the pull-backs of countably
many such neighborhoods and apply the Baire category theorem in /°° to find
the required section s. (ii) is proved similarly.

We will next relate the various submanifolds VΣ Π Mt of the moduli spaces
with the points of the 4-manifold X itself which appear in the compactifica-
tion. This uses a homotopy lifting property for concentrated connections
together with the following lemma.

(3.17) Lemma. Suppose (Ϊ>, v') is a pair of spaces with H°(v, v') = Hι{v, v')

= 0, H2{v, v') = Ί-OL andp2: V2 -> v is a space over v containing a subspace Vv

Let px = p2\V\ and V( = pjι(v'). Suppose that the map p2 has the following

lifting property: For any map f of a simplex into Vλ and homotopy of the
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composite p2° f in v there is a lifting to a homotopy of f in the larger space V2.

Similarly, suppose points of the fiber pϊ\x) may be joined by paths in P2

ι. Then

any class in H2(VU V{) which extends to H2(V2, V2) is a multiple ofpf(a).

The proof (omitted) is a simple adaptation of the standard case when

Vλ—V2. In our application v will be an open tubular neighborhood of a

surface Σ in X and v' <z v the complement of a smaller closed tubular

neighborhood. The spaces Vl9 V2 are sets of concentrated connections, and V2

should be thought of as a slight thickening of Vv

In detail, suppose that s is a section of the bundle J?Σ as in (3.16) and U a

precompact open subset of the connections £$2v over the twice-sized neighbor-

hood 2v9 such that s does not vanish on the closure of v (i.e., restricting

connections to Σ). Suppose U is connected and contains the product connec-

tion θ. Since U is precompact there is a constant C such that over each small

r-ball in 2v any connection in U may be represented by a connection matrix A

with

Let ε r be small positive numbers and N > 1; define a set VN r ε of pairs

([Λ], JC) in Ά\v X v by the following three conditions.

(i) The restriction of [A] to \ ( Σ Π (Br(x)) is within ε of the restriction of

some connection in U (in a suitable gauge, and relative to the L2 norm over

(ii) Over the annulus defined by radii (r/2, r) centered on JC, [̂ 4] is

represented by a connection matrix with

P | | c o < N C r, pi le* <N-C.

This condition (ii) means that if r is small relative to C N, then there is a

well-defined "relative c 2 " of the connection A over Br(x) c 2v. That is we use

the given gauge to homotope to the flat connection over the annulus and then

take the relative Chern class of the deformed connection.

(iii) The relative c2 of the connection over Br(x) is 1.

Let p: VNrε -> v be the projection of ([Λ], x) to JC, and V^rε = p~ι(v'). If

r < r{v) and ε < ε(U) the section s of JSPΣ does not vanish on V^ r ε and the

pair ( iP Σ , s) defines an element of H2(VNrε, V^rε) = line bundles over VNrε

trivialized over V^ rε.

(3.18) Proposition. If ε < ε(U,N) and r < r(v, ε, N), then the class defined

by (J^s, s) is the lift by p of the fundamental class in H2(v, v').

Proof. We show that for these parameters the spaces VN^r^ε/2 c F 2 Λ Γ + 3 r ε

satisfy the hypothesis on Vλ Π V2 of Lemma (3.18). This uses a basic fact about

gauge fixing of families. For any η > 1 and compact family S of gauge
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equivalence classes of connections over a standard annulus, sufficiently close
to the flat connection 0, we can choose "representatives" As e s//SU(2) = Γ#,
continuously so that

The construction is a simple patching over the space S. Scaling the annulus to
radius r this means that, using property (ii), if ([A], x) varies in a compact
subset of VN r ε / 2 we can continuously choose equivalence classes of connec-
tions A* over 2v which extend A\2v\Br(x) and representable over Br by small
matrices:

\\A*\Br\\co < (IN + 1) Cr, \\A*\Br\\cι < {IN + 1) C, say

(to do this multiply in the chosen gauge by a standard bump function).
If r is small, relative to ε and N, A*\Σι will still be within 2ε of a connection

in U when restricted to Σ (in L2 norm). Suppose xt is a path in v starting at
x0 = x (all parametrized by a map / of a simplex) and use the Riemannian
parallel transport to identify the balls encountered along xt by maps
xt\ Br(xt) -> Br(x0). Similarly use the parallel transport defined by A*—first
along xt and then radially in the balls, so that A\B ( j c ) and x*(A*\B ( Λ.Q )) may
be regarded in a gauge invariant way as a pair of connections on the same
bundle. Finally piece these together by a partition of unity to define a
connection At equal to A* outside Br(xt). We can do this in such a way that
At lies in V1N+3re, and the procedure defines the path lifting of homotopies
assumed in Lemma (3.17). The verification of fiber connectivity is similar,
using condition (ϋi) that the relative Chern class is 1.

Thus Lemma (3.17) implies that the class defined by (J?Σ,s) is some
multiple of p*[v, v'\ To check that this multiple is 1 use the Taubes construc-
tion to define a section T: V -> Vv exploiting the fact that [θ] e U. This
extends to a map T: Y -> 38 γ X Y, where Y is the standard 2-sphere bundle
over Σ containing v as an open subset. We know by Lemma (3.8) that
τ*(c1(«27

Σ)) G H2(Y) is the class dual to Σ. But since the section s does not
vanish on τ(Y\v) the corresponding relative class is equally the relative
fundamental class of Σ; thus completing the proof.

Now let W be a neighborhood of U X (xv- , xt) in Mk, as before, where
U is precompact open in Mk_ι. Suppose s is a section of a line bundle J?Σ, as
in (3.16), not vanishing on U. Abusing notation, we can extend the restrictions
of U to a tubular neighborhood of Σ to a connected set containing the
product connection and for codimension reasons we can suppose s does not
vanish on this larger set. If none of the points xa lie on Σ then it is clear that
Wean be chosen to avoid the zeros of S. If just one, say xl9 of the points lies
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on Σ (and has multiplicity 1) and p: W -* Σλ c X is the local center, then for
λ sufficiently small the section s defines a class in H2(W, W): W =
p-'iΏ, Π v').

(3.19) Corollary. The class in H2(W, W) defined by s isp*[Ql9 Qx Π v'\
This follows from the fact that by taking λ small we can map W into any

IΙI(iv). Now we are able to explain the generalizations of the proof
described above for the definite manifolds of Theorem A to Theorems B and
C. Recall first that on a simply connected 4-manifold X the associated SU(2)
moduli spaces have "virtual" dimension given by the Atiyah-Hitchin-Singer
formula

(3.20) d i m M * = Sk - 3(1 + b+(X)), k>0,

and, as mentioned above, for indefinite manifolds we can assume that Mk is a
smooth manifold of this dimension, once k > 0.

Theorem B. (b+= 1).
We use the 10-dimensional moduli space M2. The natural compact closure

M of this will involve contributions from Mx and Mo, M1 is 2-dimensional
and since X is simply connected, M0 = { θ} is a point.

Choose four surfaces Σv Σ 2, Σ 3, Σ 4 in general position in X and transverse
sections ^ of the line bundles JS?Σ as in Lemma (3.17).

Thus

N = M2c\v^n vΣi n FΣ3 n FΣ4

is a smooth manifold of dimension 2.
What are the ends of NΊ By dimension count every intersection

is empty. This means that no point ([̂ 4], x) e Mλ X X can be in the closure of
N since x lies on at most two of the surfaces. Similarly N avoids the points
([^4]; JC, x) in Mo X S2(X). The ends of Λf are covered by open subsets

N(xy) = NΠ W(xy)

where x e Σ. n 2Σy, y e Σk Π Σι ((i,j,k,l) a permutation of (1,2,3,4)),
and Wx is a neighborhood of ([0]; x, j^) as in (3.15) with two local centers
and scales. Clearly if the centers are constrained to small sets Ωα, the number
of these ends N(xy) is equal to the number

β 4 ( [Σi] , [2 2 ] , [Σ 3 ] , [Σ 4 ] )

of the introduction (mod 2).
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We shall show in §IV that the local center maps are of maximal rank.

Thus, by Proposition (3.18) we can take the preimages by the local center

maps of the surfaces in X to represent the cohomology classes over W^xy)—we

can assume that the VΣ Π W{xy) are the connections whose local centers lie

exactly on Σ, . Then N(xy) consists of connections whose two local centers are

at JC, y. In §§IV, V, VI we will prove that N(x y) may be described as follows

(see Corollary 5.6 and §V(i)).

(3.21) Proposition. The surfaces Σt and the metric on X can be chosen so that

each of the ends N(xy) has the form R + X L{xy), where the "link" L(xy) is a

circle. Moreover uγ{L^xy)) = 1 (cf. Definition 2.25).

Given this proposition we straightaway deduce (/?) of the introduction,

hence Theorem B, by the pairing

0 = Uι(dN) = Q4(Σl9Σ2,Σ39Σ4) mod2,

where N is the obvious truncation of N defined using the description of (3.21).

Theorem C. (Z>+= 2).

This follows exactly the same pattern. Represent homology classes in X by

surfaces Σ 1 ? , Σ 6 and argue with

N = M3DVΣ -" VΣ

a 3-dimensional manifold. The same transversality arguments show that we do

not need to consider the spaces Ml9 M2 when describing the ends of N. In just

the same way we reduce to a collection of open sets N(xyz) c N associated to

points of intersection x e Σ i D Σj9 y e Σ^ Π Σh z e Σm Π Σn and the num-

ber of these is Q6(Σl9 , Σ 6 ) mod 2.

We shall prove:

(3.22) Proposition. The surfaces Σz and the metric can be chosen so that

every set Nxyz has the form R + X L{xyz), where the link L{xyz) is a 2-torus.

Moreover u2(L(xyz))= 1.

Then we deduce Theorem C, via γ, by the pairing

III(v). Excision and the index of families. As a first step towards the proofs

of Propositions (3.21), (3.22) stated in the previous section we will now

calculate the mod 2 cohomology classes w, defined in Definitions (2.24), (2.25)

on a space of parameters which will contain the "links" of the moduli spaces.

Suppose that, in the set-up of §IΠ(i), a 4-manifold X is a connected sum

X = X0#X1 and that Ut c Xi are the complements of balls with X = Uo U Uv

If v40, Ax are connections on bundles Po, Pλ over Xo, Xλ which are flat on the

complements of the Ut and U0Π Uv we can form the sum of the connections
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A0#p Al9 determined by a bundle gluing map p. Let the base point of X be in
Xo and form the family A(p) of based connections over X parametrized by
( ± p ) e S Ί / ( 2 ) / ± 1—a copy of RP 3 .

If Xo and Xx are spin manifolds, each of the individual connections Ai over
Xt defines a Dirac operator with a numerical index:

(3.23) Lemma. The index of the family Z>(p) of operators over X parametrized
by UP3 is mo + mx- rj, where η e KO(UP3) is the Hopfline bundle.

As a special case of this we can take the trivial connected sum of manifolds
X = X#S4 to obtain the Taubes construction gluing in the bundle with c2 = 1
over S4. More generally we can consider a family parametrized by / gluing
maps—defining a point in (RP3)7—associated to points xl9- ",xι in X. These
attach / copies of the basic (approximate) "instanton" to some fixed connec-
tion Ao over X. We have:

(3.24) Lemma. The index of such a multi-instanton family is ηλ + η2

+ +TJ, 4- m0, where rηi e KO((UP3)1) is the Hopf line bundle corre-
sponding to the ith factor.

To motivate the proofs of these lemmas consider the case in Lemma (3.24)
when the index m0 is 0 and we form the multi-instanton family with very small
scale sizes, so that the curvature is highly concentrated near the / points xt.
Then one can show that KerZ)f is 1-dimensional (and the cokernel is 0). The
norm of the harmonic spinors making up KerZ)̂ * is concentrated near the
points xt and to each of these points we can associate a 1-dimensional
subspace of KerDjf —consisting of sections which are small near Xj (j Φ i).
Then Lemma (3.24) asserts that as p varies each of these 1-dimensional spaces
forms the nontrivial bundle over the corresponding copy of UP3. Direct
arguments on these lines have been made by Atiyah and Jones [8, V] and by
Taubes [26], and in the companion article [14] such methods will be used to
study the orientation class of Yang-Mills modili spaces. But for the two
lemmas here we can work quite formally using the Atiyah-Singer "excision
axiom" for indices of families. This means that direct analysis is avoided; that
being built into the Atiyah-Singer axiom and their proof using the machinery
of pseudo-differential operators.

Proof of Lemma (3.23). According to [9, I, IV, V] the assignment of the
index to a family y of (real) elliptic operators factors through a linear map

ind: KR(Y X TZ) -> KO(Y)

using the symbol of the family. The index map obeys an excision property. If
U is an open subset of X which is identified with a subset of another manifold
X*9 then the family index of any element in KR(Y X TU) can be computed
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equally via the composites:

KR(YX TX)

KR(YX TU)

(the KRΛheoτy here has compact supports so pushes forward under open
inclusions).

Consider first the family D ( 'p ) of operators defined over the disconnected
manifold X0\lXλ in the same fashion as the D(p) family. So connections are
fixed on bundles P o , Px\ the bundle P o has a fixed base point and the
parameter p is a choice of identification (P0)XQ = (Pι)x- Hence restricting to
Xv this family of based connections is precisely one of the fibers of 9$x -> SSX.
The index of the Dirac family has a constant contribution m0 from Xo and a
twisted contribution mλ η from Xv This twisting comes about precisely
because the element - 1 in the center of the gauge group acts as (-1) on the
bundle E hence on the bundle valued harmonic spinors, just as in Proposition
(2.20).

Using the excision property we can next see that for a fixed p 0 the numerical
index

i n d D ( p o ) e Z

is m0 + mv This is done by first excising the connections to reduce to the case
of trivial bundles and ordinary Dirac operators, then comparing with the
model case of the 4-sphere SΛ = S4#S4, whose Dirac operator has index 0.

Finally consider the difference of the symbols σp, σpo of D ( p ), D ( P o ) (σpo

viewed as a constant family over IRP3). Using the identification of the bundles
over Uo c Xo we can lift [σp - σpj back to KR(UP3 X TU0) and obtain the
same element there as we do from [σp — σpj. Hence

ind D ( p ) = ind(Z) ( p ) - D{po)) + ind Z)(
( P o )

indί> ( 'p ) = mo

as required.
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The multi-parameter version (3.24) is proved in exactly the same way (or by
repeated application of (3.23)) when we recall that the basic (anti) instanton on
S4 has c2 = 1, hence spinor index 1.

When the connection ^40 is the trivial flat connection θ with centralizer
subgroup SU(2) c ^ we obtain in this way a multi-instanton family of based
connections, flat away from xv , xh parametrized by

UP3 X ••• XRP 3 ^ J ί .

/

Inside this family the fibration $* -> βfi*, forgetting the base point, is
represented by the left action of SO(3) on UP3 X XUP3. So the quotient
may be represented by (say) that first / — I UP3 factors. Denote by tt

(i = 1, , / — 1) the mod 2 class corresponding to the cohomology generator
in the z'th factor.

(3.25) Lemma. In this representation the classes defined in (2.24), (2.25) pull
back so that

(i) / = 2p even, uλ = tλ + t2 + + t2p_v

(ii) / = 2p + 1 odd, the term tιt2 t2p appears in u{ with coefficient 1.
Proof, (i) Over the transversal to the SO(3) action defined by fixing the

last coordinate:

: H>χ(τh + η2 + +i | 2 l ,_ 1 + m0 1) (by (3.24))

(ii) Over the transversal:

w, = w,((indZ>)

= w ^ η ! + η 2 + +i)2p + m0 + l ) ^ ! η2p).

Now m0 is even since it is the index of 2 copies of the basic Dirac operator on
X, hence the total Stiefel-Whitney class is

= (1 + Σ)(l + Σ + /J( l + Σ + /2)(1 + Σ + t2p),

where Σ = Σ^t^ The term in tγt2 r2/7 of this is the same as the corre-
sponding term in
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which has a coefficient equal (mod 2) to det A, where

/0 1 1 - . . \
4 = 1 0 1

\1 1 0 . . . /
But (1 + A)2 = 0 mod 2, so A2 = 1 and det ,4 = 1 mod 2.

IV
ΓV(i). Deformation of instantons. In this section we develop techniques to

handle the concentrated "particle-like" connections, introduced onto general
4-manifolds by Taubes, which arise in a natural way when we define the
compactifications of §IΠ(iii). The goal is to produce a combination of the
moduli description in the simplest case of [12], [17] with more general construc-
tion considered in the second paper of Taubes [25]. This will give a way to
describe the structure of the sets W of §IΠ(iii) covering the ends of Yang-Mills
moduli spaces; in at least enough generality for the proofs of Propositions
(3.21) and (3.22).

The strategy adopted in [12] was designed to throw the main burden of
analysis onto Taubes' Implicit function theorem and the Atiyah-Singer index
theorem. The first of these gave a way to construct solutions and to deform a
solution in a family; the second could be used to show that this family was
maximal and so gave a local description of the moduli space. The same
strategy could be extended to the more general problems that we face here, but
the method becomes excessively cumbersome. Thus we adopt here a different
approach based upon an "alternating method" for solving P.D.E.'s. J. Roe has
pointed out that this is quite like the method used by Schwarz to construct
harmonic functions on Riemann surfaces [1]. The method has the advantage of
minimizing real analytical problems at the expense of some complexity of
organization. We alternate between solving equations over a 4-manifold X and
equations over the model S4, exploiting conformal invariance to pass back and
forth. This has the further advantage that the discussion applies equally well to
connections over general connected sums, and for greater clarity we will carry
out the main part of the work in this setting, to be explored further in [15].

Of course it is not at all surprising that the results we obtain are just what
one would be led to expect from those of Taubes, and there are probably many
different ways to arranging the material. In particular there is work of Itoh [20]
going in this direction.

We begin with a review of the standard deformation theory of an ASD
connection A, modelled on the Kuranishi theory of deformations of complex
structures (for more details see [21], [7], [12], [17]). Associated to A is the
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Atiyah-Hitchin-Singer deformation complex

(4.1) a^-oHa^oKfl,),

which is an elliptic complex whose finite-dimensional cohomology H\, H\
may be identified with the harmonic subspaces

H\ = K e r ( ( ^ Φ d+): Ω1 - Ω° Φ Ω2

+),

tfj^Ker^ Ω ^ Ω 1 ) .

The covariant constant sections H% of gP make up the Lie algebra of the
centralizer Γ̂ .

For any small a the nonlinear gauge fixing equation

(4.3) d*a = d*(exp(u)(A + a) -A) = 0

has a small solution u. Thus the slice Kerd f̂ c Ω1(g/>) cuts every orbit of the
gauge group near [A]e (s//&). It is a genuine local transversal if HA = 0;
otherwise one must divide further by the action of Γ .̂ The ASD equations for
A + a on the slice are elliptic.

Let VA be any lifting of HA to Q2+(QP). Using the inverse function theorem
it is possible to define smooth maps on a neighborhood of 0 in H\\

( 4 4 ) je/Zj

which are Γ^-equivariant and solve the equation

(4.5) F+(A+p) = d+

Ap+[pΛp

Conversely any small solution a of

dfr = 0, F+(A + a)<=VA

corresponds to a point p of H\Q. Thus a local model for the moduli space of
gauge equivalence classes of ASD connections, near [^40], is given by dividing
the zeros of the finite-dimension map φ by the action of TAQ.

The map p -> p is close to the identity:

(4.6) |/>-/>|<const|/>|2

a - ̂  const \p\.

Dual to the parametrization by p -> p it is possible to find a local coordinate
7r mapping from a neighborhood of the origin in Ω^gp) to H\Q such that
p •-> TT-o p defines a local diffeomoφhism. One way of doing this is to take the
ZΛinner product with a suitable subspace UA of the sections of Ώ1(QP\ not
meeting the perpendicular complement of H\. By the unique continuation of
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these harmonic forms [2] UA, VA can be chosen to have supports in any given
open set.

Finally, the "leading" term in this local Kuranishi model can be described
explicitly. If ω e HA is any solution of the adjoint equation d%ω = 0, then
from (4.5)

<<*,dΪP+[pΛp] + ) = <ω> IP Λ ^ ] + >

using (4.6). For small p the map p -> (ω, Φ(p)) is approximated in C1 by the
quadratic term qω(p) = (ω, [/? Λ /?] + ) and it follows that if zero is a regular
value of the total map

then the moduli space has an isolated singularity at [Ao] with a neighborhood
modelled on the zeros of q (having dividing by Γ̂  ).

We will show that there is a similar theory for describing the deformations of
an idealized ASD connection associated to one of the other strata in the
compactification Mk of §IΠ(iϋ), at least away from the diagonals in the
symmetric products. If W is a neighborhood of the point ([A]; xv , xt) as in
(3.15), with all the xa distinct and / local center and scale maps, then

λ = sup λα

is a measure of the size of W. Since we are only interested in a neighborhood
system we can take λ small—all our results will apply under this assumption.

IV(ii). We now pass rapidly over the arguments needed to place an ASD
connection A representing a point in W, with / local concentrations of
curvature, in certain (nonunique) standard gauges. Then we can set up the
problem of describing the moduli in a form which applies to general connected
sums.

The same estimate of curvature decay used in ([12, Theorem 16], [17, §9])
implies that, for any given 8 > 0, there are small r-neighborhoods of the
centers xi in which the curvature is bounded by

for d(y, xj > λ3/4 (r, C independent of λ,).
This means that for a K > 0 it is possible to construct an "exponential

gauge"—just as in [17, Proposition 9.38]—over the intersection of such a
neighborhood with X\B(xi,K)jλ~i), representing the connection by matrices
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satisfying

So if δ < 1 and r, λ are small, these connection matrices may be supposed
uniformly small. Over the complement of fixed 2r-neighborhoods of the xi9 A
can be put in a gauge such that it becomes as close as we please to a
connection Ao representing a point in U c Mk_ι. Patching the two gauges
together as in [17, Proposition 9.33] gives:

(4.8) Proposition. For any Kv ηλ > 0, // λ is sufficiently small it is possible
to choose representatives of the gauge equivalence classes [A], [Ao] over
X\\J[B(xi9 #i/λ~) such that: A=A0 + a, P I I L ^ X U ^ * , , / ^ ) ) < ηv

The "gauge fixing" equation (4.3) is in divergence form. The solutions may
be regarded as the zeros of a smooth map of the Banach spaces

I*'X L2'-+(lmdχo) <z L%
(Λ Q\
V ' ' (ua)->d

for any fixed p > 2 (cf. [28, Theorem 2.5]). The derivative of this map at (0,0)
is

(4.10) (u,a)-dχjt-Δλou

and the implicit function theorem assures the existence of a small solution u
for any small ά.

The difference element ά of Proposition (4.9) is initially defined over the
complement of the balls B(xi9 A ŷX"), but in the space L2p it may equally well
be extended by zero over all of X. Choosing ηλ small enough for the implicit
function theorem to operator over X, then restricting back to the complement
of the B(xi9 Ax^"), we get a connection Ao + α, gauge equivalent to A with
d%α = 0 and ||Λ||L2|, < const ηv

The choice of the particular function space L2p which we use throughout is
not very important. Any fixed p > 2 would do but it is more convenient to
take p large and we will suppose p > 6. The difference element α is the
solution of an elliptic system, it is smooth over X\\JB(xi9 Kl]Jλ~i) and once
the L2p norm is small all other norms are essentially equivalent. Note that the
"gauge fixing" above will not in fact fix a unique representation for the
connection over X\\JB(xi9KιJλ~i); setting up the equation over X has the
effect of imposing certain nonlocal boundary conditions.
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For each center of concentration xi the local scale λz can be used to define

an "approximately conformal" map from a small ball B(x(, AΓ2/λ~) to the

copy of the standard round 4-sphere Sx = (TX)X. U {oo}, just as in [12,

§§HL3, III.4]. The image of Sx, is the complement of a ball centered at oo of

radius O(]/λ]/K2). Over compact subsets of SXf\{oo) the rescaled connec-

tions so obtained can be made arbitrarily close to the basic (anti) instanton

connection / ( / ) on the negative spin bundle over Sx.. Arguing over these

4-spheres exactly as over the original 4-manifold X above, shows that the

rescaled connections can be placed in standard gauges. To summarize:

(4.11) Proposition. Let p > 2 and let Kv K2, η2 > 0 be fixed. Any gauge

equivalence class [A] G Wwith λ sufficiently small may be expressed in the form

of data

(A0 + a, /<'•> + < 0 , g ( 0 ) ,

where A 0 represents a connection in U and

(i) a is defined over X\\J B(xt, A^^TJ") and satisfies d*oa = 0, I M I ^ ^ <

h

(ii) Each a'(i) is defined over the complement of a ball 2?(oo, A^/λ") c Sx and

satisfies

d^a{0 = 0,\\a{0\\L2P(Sχj)< η2.

(iii) The transition function g(/) is a map from the annular region of common

definition of the connections to the copy Hom((P{k_l))x, (W+)Xx) of SU(2).

(Here we use the standard radial gauge fixing to spread frames for the bundles

over small open sets, so in local trivializations:

I + a'{i) = -rfg(og(l) + g(i)(Λ0 + fl)g("ij.)

In Proposition (4.11) the 4-spheres carrying the rescaled connections and the

original 4-manifold X appear symmetrically. We will now make a long

digression to analyze ASD connections in similar standard gauges over general

connected sums. We start by imposing simplifying but restrictive hypotheses

but it will be easy, in §IV(vi), to modify these so that the analysis applies to the

connections of (4.11).

Suppose that Xo, Xx are oriented, compact 4-manifolds with Riemannian

metrics which are flat in fixed small balls and that we use an identification of

these balls to define a "conformal connected sum" XO#XV Thus if £ is a local

oriented Euclidean coordinate centered on x0 in Xo and η on xλ in Xλ the

identification map on an annular region is by the conformal equivalence

(4.12) η = λξ/\ξ\\
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Here £ -» ξ is any reflection and λ is a parameter which will eventually
be made small. More invariantly the data needed to define such a sum
is a pair (λ,σ), where λ > 0 and σ is an orientation reversing isometry
(TX0)XQ -> (TXλ)Xι, analogous to the p of §IΠ(i). Since the identification map
is conformal the connected sum can be given a metric compatible with the
conformal structures of the X(.

Define a pair of thin "shells" Rl9 R_x in the manifold Xθ9 as in Diagram
(4.13). The radii defining the walls are Ar%/λ, N}/λ, N~ι}/λ9 kN-1^. Here
the factor k defining the shell thickness is fixed at any convenient value—say
k = 0.9—while the factor N defining the separation of the shells has to be
chosen reasonably large for the proof to work; as we shall see any value of N

DIAGRAM (4.13)
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with

< 4 1 4 >

will do.
The configuration (4.13) is preserved by the identifying map (4.12) so the

shells Rv R_λ in Xo become identified with corresponding shells in Xλ whose
sizes are reserved. For simplicity we use the same names Rv R_λ for the shells
in each manifold; Rλ the outer shell in Xo and the inner shell in Xv Let
Uo c Xo be the complement of the ball |£| < k]/λ/N and ϋo = U0\R_λ the
complement of |£| < ]/λ/N. Define Uv Ux c Xλ symmetrically, so that XQ#Xλ

is covered by the pair of open sets t/0, Ul9 overlapping in an annular region
bordered by the thin shells.

Suppose that Ao, Aλ are ASD connections on SU(2) bundles Po, Pλ over
XQ, Xλ satisfying the condition

(4.15) Hypothesis. H\ = H\ = H\ = 0.
For any η 3 > 0 consider the set of connections over X0#Ar

1 representable in
the standard form analogous to (4.12)

A = (A0 + a, Ax + a'9 g),

{ a defined over t/0; d%a = 0, ||α||L^(^0) < η 3,

a' defined over Ux; d*a' = 0, Hflltf'i*) < Is*

(SoAx + a' = -dgg'1 + g(A0 + a)g~ι in local trivializations.)
(4.17) Theorem. If Aθ9 Aλ satisfy Hypothesis (4.15) and if η3 and λ are

sufficiently small, the gauge equivalence classes of ASD connections over X0#Xι
which can be represented in standard form (4.16) are smoothly parametrized by a

copy of Hom((Po)x0, (P1)Xι)Λ±l) = SO(3).
The next three sections make up the proof of (4.17). The proof will, of

course, give more: this family of ASD connections is close to one of the
families discussed in §IΠ(i) parametrized by the identification map on the
overlap.

IV(iii). Shifting the support of an error term. Fix p > 6 as in §IV(ii) and
regard the map on sections of bundles over Xo,

(4 18)
(b,a)^(d*<Bd+)Aob+[b,a] +
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as a smooth map of the Banach spaces L{ X L2p -> Lp. The partial derivative
in the fe-factor at (0,0) is defined by the elliptic operator (d * Θ d+)Ao which is
supposed invertible by (4.15). So if a is small in L2p and σ e Ω+(Qp0) is small
in Lp, there is a small solution b to

(4.19) dίb = 0, dt b+[b, a] + + [b Λ b] + =-σ.

We will apply this when α is initially defined (and smooth) over Uo c Xo

and such that the self-dual curvature σ = F+(A0 + a) is supported in the
outer shell Rι c Xo. Put δ = H/V^ΛQ 4- Λ)||LOO(^ O ), SO

\\F+(A0 4- a) \\Lp(x0) < constδ λ2/p.

For any hλ > 1 we may find a cut-off function ψ_x with Jψ_x supported in the
inner shell R_l9 supp ψ_x c £/0, ψ_x = 1 on ϋo, such that

(4.20) . . . . . . i N

If δ is not large and λ is small, we extend a by 0 to Xo and solve (4.19) for b.
Then let T be the self-dual curvature of the smooth connection Ao + a + ψ_x

6 over Λ :̂

= F + (i4 0 + β) + ^(ψ.xft) +[β,ψ.!ft] + + ψ^ίft Λ 6)

This is supported in the shell R_lt where

T = rfίψ.! Λ b) + +ψ_1(dAo + b +[a,b] + + ψ.χ(ί> Λ b)

So

(4.21)

Restricting to ί/0, the effect of the procedure is to replace a connection with
self-dual curvature σ supported in Rλ by another having self-dual curvature T
supported i n R _ v

(4.22) Lemma. For any h2 > 1 α«J ^ > 0 ^ cα/i /i/iέ/ η 4 > 0 such that if
δ < K3, \\a\\L2P < η4, and λ is sufficiently small, then:

(ii) \\b\\L2P(Xo) < q XP+WP) δ (wΛere cλ depends on Ao, k, N, η4).
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Proof. The more delicate estimate (i) will be derived from the corre-
sponding linear elliptic equation.

Suppose b is the solution to

dfb = 0, d+

Ab = -σ.

Then b is expressed in terms of σ and the kernel L{x,y) of the operator
(d* θ d~)A

ι over the compact manifold Xo:

b(x)=f L(x,y)σ(y)dμy.

So if x G R_l9

(4.23) Mx)\

where \L(x, y)\ denotes the "operator" norm of the map L(x, y): (A\)y
1 )^. The sup norm of σ is δ and

where ω3 is the volume of the unit 3-sphere. On the other hand by making λ
small the singular kernel L(x, y) can be made arbitrarily close to the corre-
sponding kernel Lo over Euclidean space: \L(x, y)\/\L0(x, y)\ < ^h~2, say,
for* G R_l9 y G Rv

Identifying the kernel Lo is a matter of linear algebra. If G is the flat-space
Greens function

G(x,y)=j- —±—2, x,yeU\
*ω3 \χ - y\

then G I = (^)(d+d*)~ι on Ω^. (Here H denotes the flat space parallel
transport of 2-forms and the factor \ appears because in Euclidean coordinates

on Ω .̂.) Hence

Lo(0, y)(Φ) = -^d*\iφ • j ^ j (for Φ e Λ2

+)

drAίΦ\

« 3 \ r 3 / '

so |L0(JC, y)\ = 1/ ]/2 ω3\x - y\\ Now d(Rlf R^) = (N - iV"1) }/\, hence
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so, from (4.21),

N - N 4 S .

To incorporate the nonlinearity in (4.19) put b = b + β so that

(d* + d+)Aβ = -{[a,b] + + (b A b) + ) .

We only need a rough estimate of β: for example, we have

Λ b)+ \\Le

l<CθnSt(\\a\\Ln\\b\\Ln+\\b\\ln)

by the Sobolev embedding L\ -» L12. Then using (4.19) we can certainly get

\\b\\Ll ^ const||σ||L3 < constδ λ2/3

for small λ, η 4 . Then

\\β\\i«< constδ λ2/3.

Choose hλ close to 1 and then absorb the nonlinear term \\β\\ into the
leading term (since λ2/3 «: Jλ) to get (i). Similarly (ii) comes from:

\\b\\L2P < const ||&||L}*/'+' < const ||σ\\4p/P+2 < constλ(^+2/2^>δ.

(4.24) Remarks, (i) If, in (4.19), the sections σ, a depend smoothly on a

parameter /, the solution b will also, and

Arguing with this differentiated expression just as before gives, for small
enough λ, τj4,

11 < C λ ' + W I — II +1—1
ί | | ^ J yil σί ||Loo || σ/ ||z

(ii) If M is a fixed number < N, then by arguing exactly as in the proof of
Lemma (4.22) we get a bound on the restriction of b to the ball BM =

0, My/λ) c Xo:
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IV(iv). Constructing solutions by the alternating method. If the parameter

λ, defining the conformal structure of the connected sum, is sufficiently small,

then Lemma (4.22) can be used repeatedly to construct a family of ASD

connections y4(oo)(p) over XO#XX parametrized by Hom((P0) Xo, (Pι)Xl).

We use an iterative cycle to improve an initial "approximate" solution to the

equations (compare [24], [17, §7]). Suppose that at the nth stage we have

defined a connection A(n)(p) for every p e Hom((P 0) J C o,(P 1)X i), represented

in the notation of (4.16) as

where we suppose an, a'n defined over ί/0, Ux respectively, but not necessarily

satisfying the gauge fixing equations d%a = 0, d%a! = 0 nor the ASD equa-

tions, p is the "constant" transition function in the sense of (4.16)(ϋi). Assume

also that the following inductive hypotheses hold for fixed K3 and h2 such

that h2KN < 1.

(4.25) (i) The self-dual curvature of A(n\ σn = F+(A(n\ is supported in

R(-ιy with uniform norm:

and 8n < K3.

(ii) ||fln||£2p(Y ^ and H ^ H L 2 * ^ ) a r e ^ e s s than η4, where η4 is the constant of
Lemma (4.22), which we suppose also to give the symmetrical result over Xv

If n is even and λ is small, pass to the (n + l)th stage by using Lemma

(4.22) over Xo to replace an by

a modification supported in Uo. Define a'n+ι by modifying a'n over UΌ Π Ux to

preserve compatibility under the fixed transition function defined by p. If n is

odd do the same with the roles of the manifolds XQ, Xx reversed.

The inductive hypothesis (4.25) means that we can use (4.22) to estimate the

change in norm of the "error term" σn. If n is even, then

since the conformal factor of the identifying map (4.12) exceeds N2 on

R_x = supp(σ r t + 1), and σw + 1 is a 2-form. So

(4.26) δn+1 < (h2KN)8n.
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The calculation is the same for n odd. Thus if λ is sufficiently small and the
inductive hypothesis (4.25) holds at all stages up to the «th, we get

(4.27) δn*ζ(h2KN)"δ0

—an improvement since h2KN < 1.
The iteration can be started by defining a connection

"cutting off Ao, Aλ by a function ψ1? symmetrical with ψ_1? in the exponen-
tial gauges which, together with p, identify the bundles Po, Px over f/0 Π Uλ\

e o = ( ^ - l ) - i l o + ( l - * i ) - p - ^ i P ,

a'o = ψx p^oP"1 - Ψi Λι-

The connection A^0) has self-dual curvature supported in Rλ and, since the
connection matrices of Ao, Ax are O(]/λ) on the overlap,

Take AΓ3 = c5(^40, Aλ). Once λ is small the inductive hypotheses are satis-
fied by A°(ρ) and the geometric decay (4.26) means that at no subsequent
stage will they be violated through the failure of (4.25)(i).

Similarly, if (4.25) holds at stage n, then by Lemma (4.22)(ii)

(4.29) \\an+ι -an\\L2P(Xo) < c 1 λ ( ' + 2 / 2 ' ) « ι r

Since the identifying map (4.12) has a bounded distortion factor on Uo Π Uv

independent of λ, the L2p norms of Xo, Xλ compare uniformly on the
overlapping region and we get a corresponding bound

(4.29)' | K + 1 -

Thus, given K3, if we take λ so small that

is less than η4, then using (4.28) the iteration continues indefinitely and it
follows from (4.29) and (4.29)' that an9 a'n converge to define an ASD
connection
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Moreover (4.29) and (4.29)' give

(4.30) \\aJL2,'\\a'J\L2,<c7 X'+1™ say.

This effectively completes the constructive part of Theorem (4.17), and the
family of ASD solutions here is completely analogous to those found, in the
case when Xλ = S4, by Taubes. It remains to prove that the solutions are
distinct, can be put into standard form, and that any other ASD solutions in
standard form are gauge equivalent to one of this family.

(4.31) Lemma. Under the hypothesis (4.15) two of the ASD connections
Λ(oo)(p), A^°°\ρ) are gauge equivalent if and only if p = ±p.

Proof. On the one hand, it is clear that Aco(ρ\ A°°(-p) are gauge
equivalent, indeed we could work throughout with the associated SO(3)
bundles where the center +1 disappears.

Conversely if we apply the bound on derivatives with respect to parameters
(4.24)(i) (with t parametrizing a path in H o m ^ i ^ . ,(Pχ)x )) at each stage of
the iteration, then we deduce, just as above, that

(4 32) "*
< constλ(*+2/2*>|/> -p\.

On any compact 4-manifold, possibly with boundary, the Sobolev embed-
ding L\p -> C° is a compact map. It follows from this that if A is any
connection over the "manifold with a hole" X0\B(X0,kN~1'Jλ), there is a
constant cλ such that, for any section u of the Lie algebra bundle

where πx(u) is the projection of the value of u in the fiber over some fixed
point x to the vector space (H%)x of covariant constant sections. It is a simple
exercise to show that if the connection A extends over all of Xo the constants
cλ can be made independent of λ (cf. the proof of Lemma (4.49) below).
Similarly, by arguing as in [12], we get the corresponding statement for gauge
transformations. If A is a connection over X, there is a constant c(A) such
that any bundle automorphism g defined over the complement of
B(x0, kN~ιJk) factors as g = γ g with y ^ TA and

\\g-l\\c°<c(A)\\dAg\\L2P.

Suppose there is a gauge transformation between A(oo)(p) and A(cc)(p) repre-
sented by g0 over Uo and gλ over Uv compatible on the overlap. Thus

dAo8o = £o0oo(p) " ^oo(p)goλ over I/o,

o v e r ui-
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Composing with {±1} = Γ^ = TAι if necessary we may without loss of
generality suppose, using (4.30) and (4.32),

< (c(A0) + ciAjXwd^goWϊ, + \\dAigι\\L2P)

< constdlα^ίp) - ao0(p)\\L2P + | | < ( p ) +

< const λ(p+2/2p)\p - p\.

But compatibility on the overlap means that p = giPg^1 over ί/0 Π Ux so

| p - p | < const λ(p+2/2p)\p - p\

and, for small λ, this implies p = p.
The construction in §IV(v) below will be slightly simplified if a small

modification is made to the connections before putting them in the standard
form. For any fixed M with 1 < M < kN we can prove, as in Remark
(4.24)(ii), that in the annulus defined by the radii kM'1^, k~lMy/\ the
uniform norms of ^ ( p ) , β^(p) are each O(\/λ). Thus a^ip) can be cut off,
to tf£(p) say, over Xo so that F+(A0 + α£(p)) is bounded by K4, indepen-
dent of λ, and supported in a shell defined by radii kM~ιyJ\, M~l}/λ. We do
the same over Xx, so that the connections Ao + α£(p), Ax + a'*{ρ) are
defined over XOy Xx and the transition function between them is defined over
an annulus slightly smaller than Uo Π Uv However, the parameter N could
always be taken arbitrarily large (cf. (4.14)) so, abusing notation, we will
suppose by rechoosing N from now on that Ao + α£>, Aλ + a'£ have self-dual
curvature supported in shells Rx, R_v where, in Xθ9 R^ has inner and outer
radii k2]/λ/N, k}/λ/N and Rλ has radii k^Ny/λ, k~2N^K. In the construc-
tion scheme of §IV(v) below the old shells Rv R_x will carry the leading
"error term" and the new shells Rl9 /?_i will carry a lower order term.

The bound (4.30) implies that

so using the implicit function theorem in (4.9) we find gauge transformations

exp(w0) of P0over Xθ9

exp( ux) of Pλ over Xλ,

putting the connections into standard gauges

Ao + a(p) = e"°{AQ + β ), d%a(p) = 0,

Ax + a'(p) = e*{Ax + a'*), d*a'(p) = 0,
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with

(4.34) | |α(p)||L2,, \\a'(p)\\L2P9 | |no | |L2,, | |W l | |L ?, ^ c 8 λ ^ + 2 ^ > say.

So we have constructed a family of equivalence classes of ASD connections
(Ao + a(p\ Ax + a\ρ\ g(ρ)) in the standard form (4.16) parametrized by

( ± p ) e H o m ( ( P 0 ) X o , ( P 1 ) J C l ) / ± l .

(It is clear from the construction that this family is homotopic, and indeed
close in L2p norm, to the family of §IΠ(i) formed by first distorting Ao, Aλ to
be flat near x0, xv)

Finally, we will show that the transition function

g(ρ) = e~Uι o p o e"° over Uo Π Uι

is very close to the original gluing parameter p. Indeed for any connection
(Ao + a, Aλ + a\ g) in the standard form (4.16), g is interpreted as a map

1/oΠU^ Hom{(P0)XQ, ( Λ U = SU(2).

The transition relation gives

\dg\ < \A0\ + \AX\ + \a\ + \a'\.

(Here Ao, Ax denote the "connection matrices" in radial gauges spread out
from JC0, xv) Thus, using the Holder inequality,

\\dg\\LPφonϋι)< const(y/λ[Vol(U Π Uλ)]ι/p

(4.35) + ( | | f l | | ^ + I I*ΊIL") * V o l(t>o π U,)1^)

< const n 3 λ1//?.

Then the Sobolev embedding L{ -> C° implies that the variation of g is
small:

(4.36) |Var(g)| < const η3

(compare [12], [17]). (The extra powers of λ can be found by rescaling UQ Π ϋx

to a uniform size; cf. the proof of Lemma (4.43) below.)
Fix a rule for assigning an "average value" or center of mass g e

HomftPo)^,^)^) to the map g. For example this could be defined by
projecting the C. of M. in the copy of U4 containing Hom((P0)Xo, (P{)Xι) onto
the unit 3-sphere. The only property we need is that if g = h for two maps g,
Λ, then \\g — h\\L<χ> can be estimated by the derivatives of g, h.

The average value g(p) for our family of ASD connections (4.33) is close to
p. The bounds (4.34) and (4.35) give

(4.37) |g(p) - p| <
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Similarly, if the derivative (3g(p)/3p) is interpreted by using the action of

Aut(Po)Xo to trivialize Γ(Hom((Po)x0,(i>i),I)), then

- 1

(4.38)

< const

< const
00

dp

+
C°

L2^

c°

9 α ^ o

3p

+

K\\L>>

using Remark (4.24)(i) as in the proof of Lemma (4.31). It follows that

P •-> g(p) defines a diffeomoφhism of Hom((P0)Xo, (Pι)Xι).

IV(v). Constructing gauge transformations. The proof of Theorem (4.17) is

finished in this section by constructing a gauge transformation between any

ASD solution in the standard form (4.16) and one of the family produced in

§IV(iv). This is done by an alternating construction in which the leading

estimate is precisely complimentary to Lemma (4.22). The iterative cycle is now

a little more complicated because we have to consider the gauge fixing

equations as well as the ASD equations themselves. This reflects the fact that

we are really working with the middle term of the deformation complex (4.1).

The iterative cycle will be based on the following procedure for transferring

gauges between the manifolds, supposing always that λ is sufficiently small.

(4.39) The transfer procedure ("From Xλ to JT0"). Let B = (Ao + b, Ax +

b\ A) be any connection in the standard form. Recall that this means that b

and br are defined over ϋo and Uλ respectively, whereas in the family

(Ao + a{p\ Ax + a\p\ g(p)) constructed in §IV(iv), a(p\ a\p) define ASD

connections over the larger sets Uθ9 Uv Moreover we have extended a{p\

a'{p) over Xo, Xλ to define connections whose ASD curvature is supported in

the shells R_v Rλ and uniformly bounded by K4.

Since the map p •-> g(p) is a diffeomorphism, there is a p such that

g(p) = h. The composition s = g(p)~ι ° h is an automorphism of P o | ^ n # .

Use this to define a new gauge equivalent connection s(A0 + b) over ύo Π Uv

The difference of two connections transforms tensorially so

(4.40) s(A0 + b) = Ao + a 4- g~\V - a')g.

Use the RHS of this formula extend s(A0 + b) over R_x c Xo (g, b\ a' are

defined there).

Now make two modifications, by cut-offs, to this procedure to get a new

connection Ao 4- £* over all of Xo; gauge equivalent to AQ + b over Uo. First,

the equality of g(p), h together with (4.36) imply that s is everywhere close to

\ P . Put s = exp(Φlogs), where Φ is a cut-off function equal to 0 on the
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complement of U and to 1 on the complement of ϋ. We can arrange that
\dΦ\ < const/ ]/λ. Extend s by 1 over ϋ; the connection s(A0 + b) is equal to
s(A0 + b) near the inner ring i ? 4 c Xo. Second, cut off the tensorial dif-
ference term in (4.40) to define a connection

over R_v The two constructions piece together to give a globally defined
connection Ao + b over Xo. Finally if (as will be the case when η3 is small; cf.
the proof of Lemma (4.43) below) ||ft||L2,(Jro) is small enough to apply the
implicit function theorem to (4.9), make a gauge transformation exp(w*) over
Xo so that exp(w*)(Λ0 + b) = Ao + b* and d^b* = 0.

In this way we get a new representation for the same gauge equivalence class
[B] over XQ#XX in standard form:

Q is defined over all of Xo with self-dual curvature
supported in R^ U Rv and \\F+(A0 + ft*)|/? J| < K4 since Ao + b* is gauge
equivalent to AQ + a(ρ) over R_v Applying the transfer procedure twice, once
from Xλ to Xo then from Xo to Xv we can without loss suppose that our
original representatives b, b' were extended in this way over Xo, Xv

More generally suppose that at the «th stage of the iteration we have found
representations

(4.41) (Λo + ft,, ̂ + « ,* ,)

in standard form for [B], and that ρn is defined by hn = g p . For brevity write
an, a'n for a(ρn), a'(pn). We assume that, in the same fashion as above, bn,
b'n are defined over XQ, Xx with d*bn, d%Vn = 0 and that F+(A0 + bn\
F+{Aλ + b'n) are supported in Λ ^ U R_v Rx U Ax respectively. Put

χH = F+(A0 + bH) - F+(A0 + an),

(4.42) εn = \\Xn\RjL~(X0)>

and define χ'Λ, ε'n, ξ'n symmetrically over Xv Note that χΛ|Λ_i = F+ί^o 4- bn)
since the Ao + a(ρ) are ASD over Uo.

Start the iteration with b, b'. Then, if n is even, pass from the nth to the
(n + l)th stage by applying the transfer procedure (4.39) from Xγ to XQ, and
if n is odd pass to the next stage by the corresponding transfer from Xo to Xv

The next lemma gives bounds on the error terms ε, ξ for the new represen-
tations; for simplicity suppose n is even.



4-MANIFOLDS 319

(4.43) Lemma. For any h3 > 1, K5 > 0 we can find η5 > 0, c9 > 0

/ Pn||^<*0)> II^H^cΛi) < ηs»
 ε» + < + ?» + £ < *s» α n ί ί λ «

ciently small, then the following bounds hold.

0) e» + i < (h3KN)eΛ + c9 • ζ'n.

(ϋ) («) £,+i < c9

(iii) (a) \\bn-

(β) \\K-

(y) \\bn+1 ~ aH

(δ) | | « + i - <

Proof. Begin with (ϋi)(α), ()8) which refer only to the connections at the
Hth stage. They follow exactly as in Lemma (4.22)(ϋ) from the equations

dX(bn - an) = χn +(an Λan-bnΛ bH) + , d*o(bn - aJ = 0

(and symmetrically over Xλ) once η5 is small enough to get an estimate of the
quadratic term.

Now pass to (i). εn+ι is the norm

< kWJF+iA, + ψ.x(^ - <)) I* J W

where we have used the definition of bn+ι in the transfer procedure to pass
back to Xx by the transition function gn = gPn. The factor k~ΛN4 enters from
the comparison of the norms of Xo, Xλ restricted to R_v

On the manifolds Xλ the difference b'n — a'n can be estimated, using the
kernel V for (d* θ rf+)^J, in terms of χ'n. This is just the same as in Lemma
(4.22) but with error term χ'n supported now in an "inner" ring Rx U Rx c Xv

The calculation of the leading linear term is now

'(x'«)Uj< m a x |^
X€E R _γ

Only the coefficient of ε'n is really important; this is

r-1\3 Λ
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which gives a contribution from ε'n to

of

, k~4-l N
h 3 , ϊ Γ 7ε« < A 3 ^ ε «

U(k~ι-1) (N-N-1)3

up to positive powers of λ. Similarly the contribution from the χn\~Rι is <
const ζ'n.

Next consider the inequalities (ϋ)(α), (β), for the "secondary" £, f' terms.
Let us adopt the notation of (4.39), so that s/c + bn+ι over Xo (which is
Ao + b* in (4.39)) is found by first forming a connection A0 + b and then
making the gauge transformation exp(w*). The p-variable then has to be
adjusted from ρn to pn+1 to preserve the condition hn+ι = gp (= gw+i)

The variations of gπ, hn over Uo Π L̂  are small by (4.36). We will show
that, together with the equality of gw, hn, this implies a bound:

(4.44) ||g;1ΛM - l| |co < constλ< '- 2 ^( | |a n - bn\\L^xo) + H - K\y,{Xι)).

This is completely straightforward but we will include the argument here since
the corresponding step in the proof of Lemma (4.31) was not given in detail.

First rescale the small annulus ϋo Π Uλ by a factor 1/ \/λ to a standard
Riemannian model Π. On Π the Sobolev embedding L\p -> C° implies the
existence of a constant such that for functions (or vector-value functions) w:

( I \ 1/2/7

(/π ikii2')
Now suppose that g,Λ are two maps Π -> HomίίPo)^^^)^) = S 1 ^ ) = 5 3,
with small variations and g = h = 1. Then g = exp(ι ), /* = exp(vv), say, and
since exp defines a diffeomorphism with small metric distortion factor on the
small ball containing Im(ί ) and Im(w), norms of g, Λ, g — h are equivalent
with those of υ, w, v — w. Similarly

— l||c° < const /

Thus over Π, if g = Λ,

:-i\2p

Transforming back to Uo Π Uλ with g = gn9 h = hn gives

\\gnhn~
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But the derivatives of g and h can be expressed in terms of the different
connections over Xo, Xλ using the transition relationship

gn(
Ao + a

n) = Aι + a'Λ

W i , u , , ., =* [dgngn

ι - dhnhn

ι)
h Λ + ftJ = A + K)

so

< k - «l + k - M + 2(μol + kl)|g;1*l, - i | .
Since we know that the L2p norms of the (connection matrix) Ao and of an are
small (cf. (4.28), (4.34)), we can rearrange the terms to get (4.44).

Now the connection Ao + Ί> was defined by cutting off the transform of
Ao + bn by g~ιhn. Since the gradient of the cut off Φ is 0 ( 1 / ]/λ) we have

\\b ~ bn\\L2P(Xo) < const! | | ^ - a'n\L2P{Xι) + \\bn - an\\L2P(Xo)

by (4.44) and part (ϋ)(α), (β). So

and if T) 5 is small enough that we can apply the implicit function theorem to
fix the gauge we get a gauge transformation exp(w*) with

(4.45) \\u*\\ϋl>{x0) < c o n s t λ ^ + 2 ^ ( ε n + ξn + e ; +

Our new triple (Ao + bn+1, Ax + b'n+ι, hn+1) is

(exp(w*)(^0 + b), A, + ^ , A

where s is g^1^^ cut off to lP as in (4.39). It follows from the bounds (4.44),

(4.45) on (s - 1) (hence o n ί - 1 ) and on M* that hn+ι - hn is bounded by a

constant times λ(p+2/2p)(εn + ε'n 4- ζn + fπ'). By (4.38) we get a similar bound
o n Pn+i ~ Pn

(4.46) \pn+ι - pn\ < constX' + 2 ™(e n + < + fn + ^ )
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Now

f»+i = IK^+Uo + an+1) - F+(Ao + bn+ι)) \\L-iXo)

< \\F+(A0 + l Λ + β ) - F + ( Λ 0 + fl||+1) ||Loo(^o)

+ \\(F+(A0 + fl||) - F + ( Λ 0 + bH+ι)) I ̂  | L β o ( W .

By construction F+(A0 + ΛΠ) = F + ( i 4 0 + *) I Λ_I a n d ^o + *» ^o + * Λ +i a r e

gauge equivalent by u*. On the other hand the first term is bounded by a
constant times | p π + 1 — p j . So we get (ϋ)(«):

ξH+ι < const|pM + 1 - p j + K4'\\u*\\L°°

The bound on ζn in (ii)(/?) is similar and (iii)(γ), (δ) follow from (α), ()8)

replacing w by « + 1.

We may use this lemma, just as in §IV(iv), to show that if h3KN < 1 and λ

is small, the iteration continues indefinitely and the error terms tend to zero

geometrically. Notice that only one of the pairs of error terms (επ, ζn), (εr

M, ζ'n)

are improved at each step; but over two steps we get, for small λ,

with r < 1. Finally (4.46) implies that the pM's converge to a p^ and it follows

immediately from the bounds of Lemma (4.43)(iii) that A{ρCΛ) is gauge

equivalent to B over XO#XV This completes the proof of Theorem (4.17).

IV(vi). Generalizations. The first of the conditions assumed for Theorem

(4.17) which we will relax is that the metrics on Xo, Xx be flat in the

identifying region. If m 0 , mx are any Riemannian metrics on Xo, Xl9 then a

connected sum, as an explicit manifold, can be defined in the same fashion as

before using geodesic coordinate systems centered on JC0, xv The data required

(λ > 0, σ: (TXo)Xo -» {TXλ)x^ is the same and we can define regions Uo, Uλ

etc. just as before. The simplest notion of approximation of metrics to use is

based upon "quasi-conformality." We will say that a metric on AΓ

0#ΛΓ

1 is

conformally ε-close to m 0 , mλ if there are functions /0, fx on t/0, Ux such that

( 4 4 7 ) \\(mι-fi'm)\υi\\L^xl.mι)
<β'

It is easy to see that metrics m exist which are conformally C λ—close to the

mi9 where C is a constant depending on the curvatures of the Riemannian

metrics m0, mv For convenience we can suppose that the metrics f;m\υ are

extended over the compact manifolds Xt and that a uniform bound like (4.47)

is preserved.
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Consider the ASD connections over X0#Xl9 defined with respect to such a

metric m, which can be put into the standard representation (4.16), where the

gauge fixing equations d%a = 0, d%a' = 0 are formed by using the original

metrics m,-. The discussion of §IV(ϋ) is modified so that in place of (4.19) we

put the equations

dl,mb = 0, d+

AoJomb +([a,b] + b Λ b)+Jom = -a

having the indicated dependence on the metrics. The relevant linear operator is

d% M θ d\ f m which can be written as

where μ is a tensor whose uniform norm is of the order ε. Thus the operator

norm of the perturbation μ d^QmQ: L{ -> Lp is O(ε). If (d$o θ d%) is an

isomorphism, then so is the perturbed operator, once ε is small, and we can

solve the nonlinear equation just as before. Suppose that ε < K6 Jλ for fixed

K6>0.

In comparing the solution b to the nonlinear equation with the approxima-

tion b given by the kernel of ( d * θ d + )^,m 0 t h e r e i s a n e w contribution

coming from the change in metric. We have

( d * θ d + ) A o , m o β = - ( [ a , b ] + + ( b Λ b ) + ) - μ - d - A ^ m b

from which we deduce

| | iB| |L . < constλ2/3 8 + \\(d* θ d+tf0(μ • d^mb) | L β β

< const λ 2 / 3 . δ + ̂ 6 . & \\d-Ao,mb\\L8

< const(λ2/3 8 + K6 v/λ λ1/3 δ)

< const λ 2 / 3 8

so the statement of Lemma (4.22)(i) is still correct. The alternating construc-

tion of §IV(iv) gives the same geometric decay. To start the construction make

initial modifications to the connections Ao, Aλ to get nearby ASD connections

with respect to the metrics fι•• m. The modifications needed have L\p norm of

the order ε | |/^.| |L2,, hence of order y/λ. This means that if we now define A{0)

by cutting off these modified connections, the bounds (4.28) are preserved. So

the construction of connections in §IV(iv) goes through as before and the

construction of gauge changes in §IV(v) needs essentially no modification. In

sum we have:

(4.48) Proposition. Given metrics m0, m1 on Xo, Xλ, a constant K6 > 0,

and mrASD connections At satisfying hypothesis (4.15), then the statement of

Theorem (4.17) holds for ASD connections defined with respect to any metric m

which is conformally K6 Jλ close to the mr
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Next we relax hypothesis (4.15)—that the deformation complexes of the
connections At be acylic. This involves combining the construction described
above with the descriptions, summarized in §IV(i), of the moduli of ASD
connections over the individual manifolds.

Choose liftings VAQ, VAι of HAQ, HAι to forms supported away from the
points Xo, Xλ and let p0 •-> p0, pλ -> px be the local deformations of (4.4),
parametrized by H\Q, HAγ. Let ττ0, irx be maps from Ω 1 (Q P O ), Q\qPl) to HAQ9

HAI transverse to the deformations. These should depend only on the restric-
tions to regions away from the points xi—for example induced by L2 projec-
tion with subspaces UAQ9 UAχ supported away from the identification region.

We wish to describe the equivalence classes of connections over X0#X1

representable in the standard form. Generalizing §IV(i) we solve, in place of
(4.19), equations of the form

(4.49) d*b = 0, dχb+[b,a] + + [bAb] + +φ = σ,

where φ e VAQ. The extra variable means that the linearized equation has a
unique solution so the inverse function theorem applies again. Lemma (4.22) is
unaltered since the kernel representation has the same form. In addition we get
that |φ| is O(8). The alternating construction of §IV(iϋ) goes through to
construct a family of solutions to the corresponding "infinite dimensional
part" of the ASD equations (compare [25, §111]). But now rather than having a
single parameter p, the iteration is started with a family A°(p, pQ, pλ) defined
by cutting off Ao + p0, Ax + pv For small p0, pι we get a limiting connection

Λ°°(P>Po,Pi) = ( Λ + Po + 0oo> aι + Pi + a'oo> P)

such that

(4.50) F+{A«(p9 p09 Pl)) = φo(p, Po> Pi) + Φ I ( P , Po> Pi),

where φt(p, p0, px) e VA. The norms of a^, a'^ satisfy the same estimates
(4.30), similarly for the derivatives with respect to the parameters p, /?0, pv

The holonomy centralizers Γ^^ TAi can be made to act as symmetries of this
family A(oo)(ρ, p0, px) and in place of Lemma (4.31) we put

(4.51) Lemma. Once λ, \pi\i \pt\ are sufficiently small a pair of connections

^ ( o c )(P» Po<> P\\ ^°°(P, PQ , PI) are gauge equivalent if and only if the parameters

differ by the action of TAQ X Γ^.

Proof. On the compact manifold Xo we can find a constant c such that
for any element u e Ω°(QPQ) and decomposition dAu = a + h with h e
Ker(d*o θ dX) = H^ the inequality | \h\ + \u\ \co < c(\\a\\L2P + | τ τ » | ) holds
(cf. Lemma (4.31)). Now suppose that u and a are only defined over ί/0 c Xo.
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By rescaling the shell R_x to a. standard size (as in Lemma (4.43)) we get a

bound on the variation of u relative to the exponential gauge:

Var(n|Λ J < constλ^-^dlαll^ + ||Λ||).

So if u is the mean value of u\R χ and we cut off u to get u' = u 4- ψ_x(w - w),
then

o . 1 ) (n - fi).

So dAu
f = h 4- α', where

α' = ψ_xα +(ψ_i -

So, since V o l ^ ^ ) < const, λ2,

Hα'H^ < ||α||L2, + const.

and if λ is small we deduce that for a constant c'', independent of λ,

\\h\\ + \\u\\co<cϊ\\α\\L2, + \πx(u)\),

since the uniform norms of u,uf differ by at most Var(w|Λ ).

This implies the corresponding nonlinear result: If g0 = exp(w0) is a gauge

transformation between connections over Uo:

Λo + /?0 + α, A0 + p0 + α,

and if \po\, \po\, \\α\\L2P, \\α\\LiP are small, we can write g0 = γ0 go w i t h

Yo G TA0 and

IΛ " Po\ + llgo " 111 < const.llα - α||L2,.

Then, just as in Lemma (4.31), if there is a gauge equivalence between

Λ ( M ) ( P , / V Λ M < « > ( P , P 0 ^ I )

we may, without loss, suppose it represented by g0, gγ with

l ^ o - ^ o l +\Pi-Pi\ + l l ί o - ill + l l f t - 111

|p - p| + |/?0 - po | + |p x - px\)

and since p = giPgΰι when λ is small the only solution is p = p, p0 = /?0,

Pi =Pv
Next find small gauge transformations putting this family of connections

into standard gauges just as in (4.33), (4.34). Everything is now parametrized

by p, p0, p1 where /?, e H\ are small. In place of (4.37), (4.38) we prove now

that the map

(p>Po>Pi) -> {S(p>Po>Pι)> *oα(p>Po>Pi)> *I<*'(P>PO>PI))
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defines a diffeomorphism close to the identify from one neighborhood of

Hom((P0)Xo,(Pι)Xι) x{0} x{0) c Hom((P0) ; t o,(Λ)x1) X H\o x H\

to another. Then §IV(v), which was the hardest part of the proof of Theorem
(4.17), needs almost no change. If B is any solution of the ASD equations
representable in standard form, we define a sequence of representations (4.41)
inductively and define (ρnΛPo)nΛPι)n) so that

—which will always be possible if ||fcJ|L2,, ||^||L2/>, and λ are small. The error
terms εw, frt, ε'n, ζ'n are defined in just the same way as before.

The statement of Lemma (4.43) needs no change. In the proof we have to
consider the equations

dXiK - an) = χn +{an Λan-bnΛ bn) - eu^e~u\

dl(bn - an) = 0.

Here φ o ε ^ (with |φo | = O(η5)) is the extra term of the kind that arose in
(4.49) and eu° is the gauge transformations used as in (4.33) to fix the gauge
over Xo. The norm ||wo||co is o(λ) by (4.34). We also know that πo(&π) =

It is clear that, once η5 is small and so eu° uniformly close to 1, the
nite-dimen

linear maps
finite-dimensional subspace eu°VA e~u° is transverse to Imd^. If we define

α: VAo - VAo, t: VAo - ^ ( o ) ^

by the equation υ = d^ (tv) + eu°(av)e~u°9 then

\\tv\\L2P < const||w0 | |co | |ϋ| | , \\av - v\\ < const||w0 | |co \\v\\.

(All norms on VAQ are, of course, equivalent.) For fixed u0 there is a kernel
L ( " o ) such that c = L (Mo) χ solves the linearized version of (4.51):

And since Z/^χ = L(0)χ + t(χ - d\Lφ)χ) the kernels L^\ L(0) differ by a
smooth kernel whose uniform norm is bounded by a fixed multiple of ||wollc

o>
hence is o(λ). This means that we get the same bounds on bn - an as before
and the construction of gauge transformations by the alternating method can
proceed.

Finally this discussion can be combined with that for varying metrics and
proves the following generalization of Theorem (4.17).
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(4.53) Theorem. Let m 0 , mγ be Riemannian metrics on Xo, Xλ and Ao, Aλ

be ΛSD connections defined with respect to those metrics. Suppose Kβ > 0; then

if η3 and λ are sufficiently small and if m is a metric on XO#XX which is

conformally K6 Jλ-close to the mi9 there are

(i) A TAQ X Γ 4 i invariant neighborhood N of

X {0} X {0} c H o m f t P o ) ^ ^ ) X H\o X H\

and

(ii) ATA X TA equiυariant map

such that the gauge equivalence classes of m-ASD connections over XO#XV

representable in standard form (4.16), are parametrized by

x r,Γ

A leading term in the local defining equation Φ = 0 of Theorem (4.53) can

be identified explicitly. In addition to the quadratic part in the parameter /?0,

px there is a new contribution, involving the bundle clutching parameter p, of

precisely the same kind as that considered in [25, §5].

The family A(co)(p, p0, px) is expressed in the form

and F+(v4 ( o o )) = φ 0 4- φv where φ^p, /?0, pλ) e P^.. We will use the following

bounds on the small deformations a^, a'^ (all can be proved readily by

cutting off and using estimates for the elliptic equations over the compact

manifolds, just as we have done many times above):

| | f l J | L 2 , | K | | L 2 < constλ3/2,

II^OOIIL1' IÎ OOIIL1 ^ const λ ,
(4 54)

K o U ) l < c o n s t λ 2 / | £ | 2 ifv/λ < | £ | ,

KX*))! < const λ 2 / |η | 3 if \/λ < |η | .

For simplicity suppose that the Riemannian metrics m0, mx are flat in the

identifying region, as in §IV(ii). Let ω be an element of (Ker</jfo c Ω2 (QPQ))

= HA and S be the 3-sphere in Xo with center x0 and radius Jλ. The value of

the map φ0 can be detected by the pairing with all such harmonic forms and

<φ o ,ω) = -j Tr(φ 0 Λ ω) = - j f Ίτ(F+(A0 + p0 + α j Λ ω)
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by (4.50). Here XQ is the subset of Xo obtained by removing the small ball
interior to S, and we have used the fact that φ0 is supported away from JC0.
Now, since p0 = p0 + O(\p0\

2),

<φo,ω> = -f Jr((d+o(po + aj + />0 Λ p0) A ω)

The quadratic term in p0 is the same, up to O( |^ 0 | 2 λ2), as that in the
description of the moduli around [Ao] itself. A new term comes from the fact
that XQ has boundary S, so, integrating by parts,

/ Tr(rfJo(po + aj A ω) = / Tr((p0 + aj A ω).
Jxi Js

The 3-sphere S lies within the annulus Uo Π Uλ where, relative to the local
trivializations,

A + Pi + *« = PUo + Po + βoo)P"1

Now fs Tr(^40 Λ ω) is O(λ3) since the connection matrix Ao satisfies

d+A0=O\A0\
2 = θ(λ) inX0\X0'

and, in the local trivialization,

dω = O\A0\ = O(y/λ)

so we may throw the integral over S onto an integral over S onto an integral
over Xo \ XQ with uniformly small integrand. Thus

/ Tr((/>0 + O Λ ω) = / T r ( ( ^ + px + a'J) A p~ιωp) + O(λ3).
s s

To evaluate the last integral we regard S as a small 3-sphere in Xλ, so Al9 pλ

are Lie algebra valued 1-forms defined over the interior Xγ \ X[ of S. All the
1-forms are O(Vλ), the 3-volume of S is O(λ3 / 2) so to find the integral to
order λ3 we need to know ω\s to order λ. In the local coordinate system on Xo

(cf. (4.12)) we can write

where ω(x0) e Λ2

+(Γ*^o)X o Θ (QPQ)XO and M: (ΓXo)^ - Λ\(T*Xo)Xo (8)
(g PO)JCQ is linear. We define a pair of 2-forms ω', ωr on a neighborhood of xx in
Jfx both equal (to order λ) to p~ιωp when restricted to S.

First, let ω'(η) = p-^co^o)0 + Mση]ρ. Here p'^ίxo) 0 ^ is the ^//-self-
dual form on Xx obtained from ω(x0) by the orientation reversing map σ:
(TXo)Xo -> (TXX)XQ and the bundle identification p. Similarly Mσ is defined
by conjugating M with σ. The form ωr is closed and since a point of S
represented by £ in one coordinate system is represented by σ(ξ) in the other,
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Thus

Ύτ(d~(Aι + px) A ω') (since dω = 0)
x\xf

Ίτ(F_(Aι +px) A ω') + O(λ3) + ^ ( λ 2 ^ ! ! ) .

But

F_{Aλ + Pι)(v) = F-{A\ + />i)(*i) -f (linearin 17) + O(λ),

and in the integrals over the 4-ball the contributions from linear terms in η
vanish by symmetry. So

= ( 4 ω 3 ) T r ( F _ ( ^ + p^x,) p'^p) λ2 + O(λ3)

Second, let r be the orientation preserving identification map τ(η) =
λσ~1(η)/|η|2, and let ω" be the closed self-dual form

defined over the fixed region 0 < \η\ < 1, say. Thus |ω"(τj)| < const λ 2/|η| 4

and, integrating again,

ί Tr( β ^ Λ p'ιωp) = / Tr(Λ^ Λ ω")+ L Ίx{af A dA.ω").

The first-term is O(λ4) and since dΛ.(ω") < \A'\ |ω r/ | < const λ 2/|η| 3, the
second is bounded by a multiple of

In sum,

<Φo(P> A»/>i)>ω> = <lω(p>Po>
)

where

( 4 5 6 ) -4(ω3) λ2Tr(F(Λ
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Rather than using this directly on connected sums we now end this long
digression and return to the concentrated instanton connections which moti-
vated the description in this section.

V. Algebraic models for the ends of moduli spaces

V(i). The discussion of §IV(iii)-(vi) extends in the obvious way to describe
connections over connected sums XQ#(X1# #X/)9 where Xl9- , Xt are
attached to Xo by identifications around distinct points in Xo. In particular we
can take Xo to be the Riemannian 4-manifold X of §111 and Xl9--'9Xt to be
4-spheres. The connection ^40 is some ASD connection, when Chern class
k — /, over Xo and on each copy of S4 we take the standard instanton with
c2 = 1. Then we are back in the setting of Proposition (4.11). It is easy to see
that the metric on the connected sum which is defined to be conformally
equivalent to the fixed metric on X is conformally (const λ)-close to the
standard metrics on the round 4-spheres, SXj. Here λ = max1<i<l\i is the
basic measure of "maximal concentration." If λ is small, then the construction
of §IV(iv) goes through to produce a "small" family of solutions to the ASD
equations modulo the obstruction space H\. The vector space Hf is zero so
there are no obstructions from the 4-spheres.

Take the transversal maps πl9 , πh giving local coordinates on the moduli
spaces over the Sx.'s to be those defined by the local centers and scales on X.
Transferring Theorem (4.53) to this framework we find some fixed r > 0 and a
TA -equivalent family of connections A°°(n) parametrized by a manifold

Nr = Π Ήom(EXι,(W+)x,Xl)\ x(BΓ(0) c Ή\)

(5-1) '/ /

[ Π K,(*<) C

Here xi9 λ ; are fixed, as in §IV. The local centers and scales of the con-
centrated connections move because of the parameters pv , pt in the Sx

moduli spaces but the motion is restricted to be of size rλ f by the scaling in the
construction.

We define a projection Π as in §IV(vi). Any ASD connection B represented
in standard form with Tl(B) e Nr/2, say, is gauge equivalent to one of the
A(oo\n). Since n •-» HA(oo\n) defines a diffeomoφhism close to the identity,
there is in Nr/2 a copy of

Π Hom{EXι(W+tX)Xl)) x(Br/2(0) c H\)
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parametrizing connections with centers and scales equal to the xi9 λz. The

ASD connections in this family correspond to the solutions of a TAQ X ( ± 1)

X X ( ± l ) equivariant equation: ( Φ = 0 G i / j j . By Proposition (4.11) any

concentrated ASD connection in Wχ with these centers and scales can be put

in standard form and so is gauge equivalent to one in the family constructed.

Now we can let the centers xi move over disjoint open sets Ωf c X and the

λ, move in an interval (0, ε) to get a "large family" parametrized by a manifold

N. It is convenient to exploit the fact that the bundle identification spaces

Hom(Eχ9 (W+9χ) ) are copies of the 3-sphere so that the identification

parameters and scales can be combined into a number of copies Gx \ {0} of

IR 4 \ {0}. If we adjoin an extra point in each factor corresponding to λ, = 0

we get a parameter space

(5.2) N <zN = ΩXX ••• xΩ,X L x X L 2 X ••• XL, x ( # r / 2 ( 0 ) c H\o)

with symmetry group Γ ^ X { ± 1 } X { ± 1 } X ••• X { +1} . The extra points in

N give exactly the parameters needed to describe concentrated connections in

the other strata, i.e., points of W ΠMkJ for j = / + 1, , k. Moreover the

natural extension of the map Φ to N, obtained by ignoring points whose

associated scale λ, is zero, is continuous as one sees by arguing in the manner

of (4.55) (cf. Lemma (5.4) below).

Let ω be an element of H\. The explicit "quadratic part," (4.56), of Φ

simplifies, since over S4 the curvature of the basic instanton is minus the

identity map. Let T r ^ c o ^ , ) ) denote the natural pairing between

and

Then put

(5.3) qω(n) = %-n2 £ λ^Tr(p,ω(^)) + (PoΛpo,ω).
i = l

We know that part of the end of Mk is parametrized by the zero set of Φ in N.

Similarly, if some of the points JCZ are removed we have other local models for

the ends of the moduli spaces My (j < k). A priori these are unrelated to Φ

but it is not hard to check that in fact the extension of Φ to N behaves nicely

with respect to the stratification. A neighborhood of ([^40], JC1?- ••,*/) in the

topological space Mk is modelled on the zero set of Φ in N, divided by

TAQ X ( ± 1 ) X X ( ± l ) Like Φ the functions qω(n) extend to N continu-

ously; indeed for fixed centers xi (/ = !,-••,/) the map qω is quadratic in the
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vector space parameters Gx and H\o, and the variation with the centers is
smooth.

(5.4) Lemma. The function (Φ, ω) onN is Cι and if we put (Φ, ω) = qω + Λ,
then

(ii) \dh/dPo\ is O(λ3 + \po\
2 + \po\ λ2),

(iii) \dh/dPi\, \dh/dxt\, λJΘΛ/θλJ are O(λ] + |/70|λ
2).

PAΌO/. The details of this are left to the reader. First, to establish (i) the
account at the end of §IV(vi) must be modified to take account of the small
difference in metrics on the overlapping region. Second, the function Φ here
differs slightly from that in §IV(vi) because of the changes Pi,— ',Pi in the
"small family" which were made to get connections with prescribed centers
and scales but these are O(λ2) which can be absorbed into the stated error
term.

Third, get the derivative bounds in parts (ii), (iii) by arguing just as in
§IV(vi) with the differentiated versions of (4.54) obtained as in Remark
(4.24)(i). This is simplest for the derivatives dh/dp0, dh/dpt. To bound dh/dXj
and θλ/θλ, it is best to change our point of view—since translations of space
do not define differentiable actions on Lp functions. Rather than explicitly
changing the centers and scales, use a family of diffeomorphisms to keep the
configuration Rl9 R_λ fixed and vary, in compensation, the metric on the
manifold and the connection Ao. Then differentiate through the construction
scheme again. The bounds of part (iii) essentially imply that Φ is differentiable
on iV, since the qω are.

To summarize, we have the following general description:
(5.5) Theorem. A neighborhood of the point ([Ao], xl9- -,*/) in Mk is

modelled on the quotient by TAo X ( ± 1) X ( ± 1) X X ( + 1 ) of the zero set of
a map

Φ: N -> VA = # * ,

stratified by the coordinate hyperplanes. Moreover for ω e HAQ, (Φ, ω) is
approximated by qω in the sense of Lemma (5.4).

Using this and standard arguments it is possible to read off a description of
the manifolds themselves in many cases, given sufficient transversality in the
algebraic model. We will deduce Propositions (3.21), (3.22) in this way using
the next corollary.

(5.6) Corollary. Suppose H\ = 0 and the points xl9 , xt are such that the
zero set L of the associated projective equations
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is cut out transυersally. Then if Ω1, ,Ω/ are small, a neighborhood of

([A0],xv •-,*/) in Mk has the form of the quotient by TAQ X {±1} X {±1}

X ••• X{±1} of

(cone over L) X Ω1 X Xί2/5

where the Ω, factors represent the local centers in X.

This is an immediate consequence of (5.4) and (5.5). If the centers are fixed
and the maps are restricted to small spheres (Σλ2 = constant), then Φ is close
in C 1 to the map obtained from the qω's under the linear isomorphism
VA = H\ defined by L2 projection. The latter vanishes transversally so the
zero sets are isotopic in the ambient sphere by a small projection.

V(ii). If the connection Ao is the flat product connection θ, then the model
equations (5.3) take a particularly simple form. The harmonic forms in
Ω+(gPo) = Ω + Θ SU(2) are tensor products of the ordinary self-dual harmonic
forms with constant sections of SU(2) and the identification parameters p, and
scales λ, define maps

R.-Xyip,)-1:^),,-* SU(2).

The system of equations qω = 0 (5.3) is equivalent to the equation

(5.7) Σ * ,(«(*,)) = 0, ω^Jίf+

2(X) c Ω

Suppose that there are no solutions of this equation with any of the R(

vanishing (that is λz = 0 except for the obvious case when all are zero. Then
the only strata M} X Sι~J(X) meeting a small neighborhood of ([0], JC, , x{)
in Mk are Mι and [θ] X Sι(X). Choosing bases, if we normalize the last
variable Λ/ to be 1 we get simultaneously a transversal to the Tθ = SU(2)
symmetry and to the scale invariance λ,, -> tXt. Provided the zero set L of
these normalized algebraic equations is cut out transversally, then by Corollary
(5.6) the link of the symmetric product close to (xl9 ,X/) in the moduli
space will be modelled on L. It is now very straightforward to find what this
link should be in the two cases / = 2, / = 3 of Propositions (3.21), (3.22). In
each case we have to assume some general position properties of the harmonic
forms to get a good link and in the next section we check that these can always
be supposed to hold. Then the proofs of Theorems B and C will be complete.

Case 1. bjiX) = 1, / = 2. The self-dual harmonic forms are spanned by a
single element ω and the points xl9 x2 are in good position if ω does not
vanish at either. Under this assumption the link L is a circle, for the
normalized equations (5.7) take the shape
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The solution set corresponds to a translate in SO(3) of a 1-parameter subgroup

γ = StabfaiXi)) which represents a generator of π^SOQ)) = Z/2. Hence if

xl9 x2 are in good position we deduce Proposition (3.21) from Lemma (3.25)(i)

since uι(L) = tx(y) = 1.
Case 2. b2(X) = 2, / = 3. If ωv ω2 span Jί?+(X), then the points xl9 x2,

x3 are in good position relative to the harmonic forms so long as no two of the

pairs of vectors ( ω ^ c,), ω 2(*, )), -i,2,3 are homothetic. In this case there are no

solutions with vanishing scales. We show that this condition also implies that

the link is a torus, homologous to a product γx X γ 2 of generators γ, in the

R + X SO(3) factors. Proposition (3.22) follows from this since

u2(L) = t1t2(y1 X γ 2 ) (by Lemma (3.25)(ϋ))

= Ί(γi)ί 2 (Y2) = l

Write the equations (5.7), relative to bases, as

(5.8) M1vι + M2v2 + υ3 = 0, Mλwλ + M2w2 + w3 = 0

(so υi9 w, e R 3 and Ml9 M2 G R + X 50(3)). Consider first the special choice

of vectors

/ 5 9 x ϋ i = ei> υ2 = 0, ^3 = -*i>

wλ = 0, w2 = ^ 2 , w3 = -e2.

Then the equations (5.8) become Mιe1 = el9 M2e2 = e 2, and define a torus

γx X γ 2 . The set T of vectors (υv v2, v3\ wl5 w2, w3) such that two pairs (υ,-, wf )

are homothetic has codimension 2, hence it does not separate the space (IR3)6

of these "coefficients" in the algebraic equations for Ml9 M2. So if the

equations are everywhere regular—for "good" coefficients not in T— the

general result will follow by continuity.

This last calculation is very like that in [25, Lemma 8.5]. Fix vv v2, wl9 w2 in

U3 and consider the map

1 2 / \M1wι 4- M2w2

We must show that if (ϋl9wτ)9 (v2,w2) are not homothetic, then F is every-

where of maximal rank. Without loss consider the point Ml9 M2 = 1 (using the

symmetry of the problem). Here the differential of F is represented by

dF: U X R 3 XU X U3 -> R 3 X R 3 ,

1 ? yl9 h29 y2) = (h^ + } ' 1 X P 1 + Λ2^2 + >;2 X ϋ 2 ,

X wx 4- Λ2w2 4- >̂ 2 X w2)
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with adjoint

(dF)*(p,q) = (vx'p + wx q9 vι X p + wx X q,

υ2-p + w2- q,v2Xp + w2X q).

It is an easy exercise to show that for any pair of vectors p, q in R3, not both
zero, all the solutions of the simultaneous equations

v - p + w q = 0, υ X p + w X q = 0

are mutually homothetic. Thus since (υl9 wx), (υ2, w2) are not homothetic, dF is
suijective and our algebraic equations are of maximal rank.

VI. Variation of harmonic forms

To finish the proofs of Theorems B and C we check that the moduli spaces
satisfy two genericity properties. For generic Riemannian metrics on a mani-
fold whose intersection form is negative definite Freed and Uhlenbeck [17, §3]
prove that the moduli spaces are smooth manifolds except for the presence of
quotient singularities, inherited from the ambient space 81 x, which are associ-
ated to reductions of the bundle. We have seen in §IΠ(ii) how these reductions
fit into our cohomology point of view. There is a simple reason why the
corresponding singularities are absent for typical Riemannian metrics on
manifolds with indefinite forms. This can be understood in terms of the
"periods" of the harmonic representatives of the two-dimensional cohomology,
and one should expect these reductions to have some topological significance
in families of metrics of dimension b+2 (cf. [13]).

Similarly, in §V(ii) the "links" in the moduli spaces were described under
the assumption that the pointwise values of these harmonic forms were in good
position. We check that this will be true for typical metrics and points.
Discussions of both these properties exist already: Freed and Uhlenbeck's
transversality theorem proves the absence of reductions and there is material
on the variation of the pointwise values of the harmonic forms in [27].

Note that these general position properties are not especially significant for
our topological deductions since the "explicit" models (e.g., Theorem (5.54))
can always be perturbed by hand without affecting the homology discussion.
But it is tidier not to have do this.

Consider a Riemannian 4-manifold X with b2(X) = p and so a p~
dimensional subspace ^ 2 c H2(X;U) consisting of the cohomology classes
whose harmonic representative, relative to the metric, is self-dual. If L is a line
bundle over X the unique Yang-Mills connection on L has curvature the
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harmonic representative of cx(L). The line bundle admits an ASD connection
if and only if cx{L) lies in the subspace 3%*}-, the annihilator of 3^2 under the
fixed cup product form on H2. If Jίf} contains no points in the integer lattice
H2(X;Z)/Ύoτsion c H2(X;U) (except 0), then no ASD connection on an
SU(2) bundle with c2 > 0 can reduce to an Sι bundle. More precisely there
are no self-dual reductions of a bundle with c2 = h so long as 3^} contains no
lattice points e with e2 = -h.

The harmonic subspace Jtf2 defines a "period map" P from the space of
conformal structures on X to the open subset G of the Grassmannian
Gτp(H2) consisting of /?-planes on which the cup product form is positive
definite. Each lattice point e (e2 < 0) defines a codimension p submanifold
We c G made up of the /?-planes annihilating e, and the union of the We with
e2 fixed is locally finite in G. We will show that the period map is transverse to
the submanifolds We. It then follows in a routine way that if the form is
indefinite any metric can be perturbed slightly to avoid singularities from
reductions and similarly that if, say, b2

+(X) = 1, then any path of metrics can
be perturbed so that reductions occur at a discrete set of points (cf. [13]).

To verify this transversality we compute the derivative of the period map P.
A conformal structure on X is specified by its self-dual subbundle

Λ2

+c A2

X, a A a > 0 Vα G Λ2

+.

Relative to a fixed base metric the space of conformal structures is
identified—via the graph of the map—with bundle maps

(6.1) μ:Λ2

+-*Λ2_, \μ(a)\<\a\.

So the tangent space to the conformal structures at the given point is the vector
space Hom(Λ2

+, Λ2_) (cf. [11], [27]).
Similarly, the tangent space to G c Gτp(H2) at the corresponding point is

the space Hom(^+

2 Jf2) and if the point lies in We, so e e JP}, then the
normal bundle of We is identified with J^f2. The quotient map TG -> NWe is
M -* M*{e).

(6.2) Lemma. The derivative of the period map at this point is

dP: Hom(Λ2

+, Λ2_) -> H o m ( ^ 2 , JT 2 ), dP(μ)(ω) = ττ_/x(ω),

where π_: Ω2.-* Jίf3 is L2 projection.

The transversality of P and We follows directly from this and the fact that a
harmonic form which vanishes on an open set is identically zero [2]. The
composite of dP with the quotient map to the normal bundle is
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and an element ω e J?2 is in the cokernel if and only if

(μ*e,ω) = (μ,e Θ ω) = 0 Vμ

which implies ω = 0.
The calculation for Lemma (6.2) can be combined with that for the point-

wise variation of harmonic forms. Let S: Ωl-» Ω + be the operator, defined
with respect to a given metric

(6.3) S(a) = G+{d*d)a

where d%: Ω3 -> Ω + and G+ is the Greens operator for d%d on Ω+. S is a
conformally invariant singular integral operator. As the conformal structure
varies the self-dual harmonic forms vary, both globally as a subspace in H2

and pointwise as sections of Λ2_. Using L2 orthogonal projection to identify
the jtiC2 for nearby metrics with that for a fixed base metric, and similarly
fiberwise projection to identify the Λ2

+ subspaces, the derivative of the SD
harmonic forms pointwise can be interpreted as a map

Hom(Λ2

+, Λ2_) -> Hom(^+

2, Λ2

+).

(6.4) Lemma. The derivative of the projections of the pointwise values of the
SD harmonic forms is

μ ^ (ω-» -Soμ(ω)).

To establish (6.2) and (6.4) let / μ define a 1-parameter family of confor-
mal structures and ω be a self-dual harmonic form with respect to the base
point / = 0. We find a lifted family ωt of closed 2-forms such that ω0 = ω,
ώ,|,= 0 ± 3C2 and *tωt = ωr Thus, differentiating and evaluating at / = 0:

*oώ + *oωo = ώ0.

But *0 = μ and ω0 = ω so

ώ0 = μω - φ

with <j> G Ω+, φ ± 3/?2. The variation in the periods dP(μ)(ω) is π(ώ0) = π(μω)
while the variation in the projection of the pointwise values is -φ. Since the ωt

are closed;

dφ = d(μω)

and since φ ± JF2 it follows that

φ = S(μω).

Consider first the case b^iX) = 1. It is obvious that the self-dual harmonic
form ω is nonzero on some dense open set, so there is no problem in choosing
a pair of points in X to get the good link of §V(ii). We will see that moreover,
for generic metrics, ω vanishes transversally on a 1-dimensional submanifold
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in X. This will be the case if the "universal" section Ω of the bundle π?(A2

+)
over the product

X X {conformal structures}

vanishes transverally. Here we are using L2 projection to identify harmonic
spaces J(?+ for nearby metrics and pointwise projection to identify the Λ2

+

bundles, as in Lemma (6.4). Then the derivative of Ω in the μ direction at a
point x is, by (6.4),

μ-> -(Soμ(ω))(χ)

which is surjective. If a e ( Λ 2 ^ were perpendicular to the image and 8a

denotes the corresponding distributional section of Λ2

+, then every section μ of
Λ2.® Λ2_ would be perpendicular to ω Θ 5*(δα), which is absurd.

Similarly, if b2{X) = 2, fix a base ωl9 ω2 for J(?+ and consider the section
Ω of the bundled

77*(Λ2

+Θ Λ2

+) φ 7r*(Λ2

+Φ Λ2

+)

over X X X X {conformal structures}. In each fiber of this (R 3 ) 4 bundle there
is an algebraic subvariety of codimension 2 (with singularities in codimension
8) representing homothetic pairs of vectors. If we know that for all (x, y) in
X X X the map

is surjective, it will follow that for generic metrics the set of (x, y) which do
not lead to a good link form a codimension 2 set in X X X (having isolated
singularities). In particular, we can always choose the surfaces Σf in Proposi-
tion (3.22) to get good links over all configurations of intersection points.

Elements av a2 Ξ (Λ 2

+ ) X , βl9 β2 Ξ (A\)y are perpendicular to (vΩ) x yμ if

(μ, «x β [S*(δaι + δ j ] + ω2 β [S*(δβχ + 8βi)\) = 0.

The reader will be able to show that this cannot happen for all μ, using the
unique continuation theorem.
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Appendix

The motivation for this work was not so much to prove negative results on

nonexistence (or nonsmoothability) of manifolds as to understand what fea-

tures suddenly change as the dimension b2 grows. Here we explain why the

scheme of proof used for Theorems A, B, C breaks down when b2 > 3.

Extrapolating from these proofs one could consider a bundle with c2 = k

over a simply connected manifold with b2 = k - 1. We represent 2 k homol-

ogy classes by surface the Σ, and cut the Yang-Mills moduli space Mk by the

associated submanifolds VΣ representing μ(Σ,) to get a manifold N of

dimension k + 1. Suppose the metric on X can be chosen so that there are

Q2k(ΣV' , Σ 2 Λ ) (mod2) ends of N corresponding to configurations of inter-

section points whose "links" all carry the same nonzero homology class in the

space of connections. Then // there were no other ends of N we deduce that the

intersection form is a sum of k - 1 copies of the hyperbolic form.

This last point is the crucial one and it is here that the picture changes as b2

grows. The ends of N can be covered by open sets W associated to all the

intermediate strata:

Mk_λ XX, Mk_2Xs2(X), -,sk(X).

We can avoid any stratum Mk__t X sι(X) so long as Mk_ι does not simulta-

neously intersect any 2 k — 2/ of the VΣs, which can be achieved by general

position if

dim Mk_ι = 5k - 8/ < 2(2k - 21), i.e. if k < 41.

This is the case if b2 = 0,1,2 (so k < 4); but for larger values of k there may

be additional ends of N associated to the intermediate strata and the homology

contribution of these is a new unknown.

Consider, for example, the manifold X = K#(s2 X s2) with intersection

form -2ES + 4(® I). A choice of Riemannian metric on X defines harmonic

forms and moduli spaces of ASD connections. By using a theorem of Freed-

man and Taylor [18] one can show that there exists a metric on X and ten

surfaces Σ, such that Ql0(Σv- , Σ 1 0 ) Φ 0 but the links of the moduli space

M 5 over the configurations of intersection points are each homologous to a

product yx X γ 2 X γ3 X γ4. Here the yλ represent 1-parameter subgroups in

the SO(3) parameters, as in §V(ϋ), and we know by Lemma (3.25)(ii) that this

product carries nonzero homology since (uA,yx X ••• Xγ 4 ) = 1.

We deduce that for such a metric and representatives Σ, of the homology

classes the moduli space M 4 must simultaneously intersect 8 of the VΣj% say

σ/y = M4Π VΣjΠ ΓiVΣjΠ - Γ)VΣ Π Π VΣιo. If the intersections are

transverse the σ^ are 1-dimensional submanifolds and our description of §V(i)
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shows that the end of N associated to σ/y is a fibration over σ/y with fiber
SO(3) XU+. One can deduce from the equation (u4,dN) = 0 that [Σσ/y] is
nonzero in Hι{38x) for these surfaces and this metric.

In certain situations combinations of topological invariants from the
harmonic forms and moduli spaces give differentiable invariants of the un-
derlying 4-manifold [13]. It seems that the natural generalizations of our
Theorems A, B, C give constraints on these invariants rather than on the
homology of the manifold.
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