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SINGULAR ANGULAR MOMENTUM MAPPINGS

MARK J. GOTAY & LEN BOS

Abstract

We algebraically reduce the system consisting of a nonrelativistic particle
moving in R" with vanishing angular momentum β. After analyzing
the conical structure of the constraint set ί/~1(0), we use algebraic
geometric techniques to explicitly construct the reduced Poisson algebra of
rotationally invariant observables. This procedure enables us to completely
identify the effects of the singularity in J~ι{0) on the system. We then
group-theoretically reduce the system and compare our results with those
obtained algebraically.

0. Introduction

In celestial mechanics, rotational invariance allows one to eliminate four
variables from Lagrange's equations. This procedure, Jacobi's celebrated
"elimination of the node," has been generalized by Marsden and Weinstein [8]
to the case when an arbitrary symmetry group acts on the phase space of a
Hamiltonian system. The idea is as follows.

Consider a constraint of the form </= constant, where # is a momentum
mapping for the group action. Then one may reduce the number of degrees of
freedom of the system by dividing out the symmetries of the constraint set.
Subject to certain technical assumptions, Marsden and Weinstein showed that
the resulting "reduced phase space" of invariant states is in fact a symplectic
manifold.

However, in many interesting situations the Marsden-Weinstein reduction
procedure is not applicable and one must use instead the algebraic reduction
technique of Sniatycki and Weinstein [12]. This yields a "reduced Poisson
algebra" of invariant observables which contains all essential components of
the reduced canonical formalism.
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Here, following Jacobi, we reduce the system consisting of a nonrelativistic
particle moving in U" with fixed angular momentum </= /, where </: U2n ->
so(«)* is the momentum map for the cotangent action of SO(n) on the phase
space U2n. When / Φ 0 the constraint set #~ι(l) is smooth and the reduced
canonical formalism is given by the symplectic structure on the Marsden-
Weinstein reduced phase space. This case, which is classical and well under-
stood, is discussed in [1]. In this paper we consider the critical case of zero
angular momentum. Then / is "singular" in the sense that <f~ι{G) fails to be
a manifold, and reduction must now proceed on the algebraic level.

Certain adapted coordinates were used in [4] to compute the reduced
Poisson algebra when n = 2. For n > 2 the situation is somewhat more
complicated and requires substantially different techniques (although the re-
sults are similar) and it is this case which is essentially our subject here.

We begin in §1 by analyzing the structure of the constraint set f'1^) and
then carry out the algebraic reduction procedure of Sniatycki and Weinstein in
§§2-4. Next in §5, we construct the orbit space </"1(0)/SO(«) which surpris-
ingly turns out to be a symplectic F-manifold as well as a singular symplectic
manifold. Finally, we compare the group-theoretic and algebraic reductions of
this system in §6. A number of tangential results and proofs are relegated to
the Appendixes.

This paper is the third in a series (cf. [4] and [5]) devoted to studying the
algebraic reduction procedure, both in itself and vis-k-vis its group-theoretic
counterpart. This work indicates that these two reductions are often very
closely related, so that one may ask under what conditions they will be
equivalent for singular momentum mappings (in the nonsingular case equiva-
lence is immediate [12]). It is likely that many of the techniques of this paper
can be generalized to other group actions and should therefore prove useful in
establishing such equivalence.

1. The structure of the constraint set

The phase space for the particle is T*Un = U2n with coordinates (x,p). The
standard symplectic form on U2n is

n
(1.1) ω = £ dPk Λ d*k

and the associated Poisson bracket on C°°(R2n) is

(1.2) {/,g}= Σ [f,gU.Pk,
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where

[/,*]„.,:- (df/du)(dg/dv) -(df/dv)(dg/du).

The cotangent action of the rotation group on the phase space is (A, (x,p))
-^ (Ax, Ap). Upon identifying so(π)* with Un(n~l)/2, the Ad*-equivariant
angular momentum map for this action may be written

(1.3) /(x,p) = x Λ p .

We first claim that /:R2n -> R" ("" 1 ) / 2 has rank n - 1 everywhere on
/"HO) except at 0. As

D/(x,p) -(u,v) = u Λ p 4- x Λ v

we may partition the Jacobian of β into two n(n — l)/2 X n blocks [̂ 4|2?],
where A is the matrix of the map φ ) = u Λ p and B that of b(\) = x Λ v.
Now suppose (x, p) e</~1(0) so that x = sq and p = tq for some unit vector q
and scalars s, t not both zero. Then A = tC and B = -sC for some matrix C.
Since clearly kerC = (q> has dimension one, it follows that rk[Λ|2?] =
τk[tC\-sC] = n - 1. Thus /~\0) c U2n is an (n + l)-dimensional manifold
everywhere except possibly at the origin, where, according to general principles
[2], we expect it to have a conical singularity.

Henceforth it is convenient to regard U2n = Cn with coordinate z = x + /p.
Then the SO(w)-action on C n is (A, z) -> Az and β becomes

(1.4) / ( z ) = (;/2)(z Λ z).

Theorem 1.1. f~ι(0) is a (complex) cone over UP"'1, i.e.,

Proof. First note that </(λz) = | λ | ^ ( z ) . Now consider the fibration:

C -> C n

(1.5)

The constraint z Λ z = 0, when written in terms of affine coordinates υt = zi/zn

on C P " ' 1 , becomes a set of reality conditions

In other words,

where / is the natural inclusion. Furthermore, if [y] e RPn~ι, then z = y + 0/
belongs to f~\Q\ so ττc actually maps f~ι(0) - {0} onto R ? " " 1 . q.e.d.
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Before proceeding with our study of </~ι(G) we need some topological
results. View S\ Sn"\ and S2n~ι as the unit spheres in C, Un

9 and C",
respectively. Let Sι X z Sn~λ be the double antipodal identification of Sι X
Sn~ι given by

(1-6) (λ,y) ~ (-λ,-y),

and define p r ^ S 1 XZ i S"1"1 -> R P " " 1 by prc([λ,y]) = [yl, where [•] de-
notes ~ equivalence classes. Then it is straightforward to check that the
S ̂ action

(1.7) (H,[λ,y])->[ηλ,y]

o n S 1 X z S"1"1 makes

Sι -> S1 X ^ S " " 1

(1.8)

into a principal circle bundle.
Now consider the Hopf fibration

o l _^ ς<2n-l

(1.9)

associated to (1.5).
Theorem 1.2. The fibration (1.8) is just the restriction of (1.9) to UPn~ι in

CPn~\
Proof. Consider the injection S: S1 X Zi Sn~ι -> S2n~x given by

(1.10) [ λ , y ] - λ ( y + 0/).

A short calculation shows that the diagram

s f l x Z 2 S n - 1 — ^ — s2"-1

commutes and, moreover, that S is equivariant with respect to the 5fl-actions
on S1 XZ z S"1"1 and S 2"" 1. Thus S is a principal bundle map and it follows
from [13, §10] that (1.8) is equivalent to the pullback of (1.9) t o R P " " 1 via i.
q.e.d.
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From Theorems 1.1 and 1.2 we have that

f-\ϋ)c\s2n-1 ~ sι χZ2s
n~\

i.e., spherical sections of </~1(0) are twisted π-handles and are thus connected.
Furthermore, since π^S1 XZi Sn~ι) « Z and π^UP1 X R ? " " 1 ) « Z Θ Z 2

for n > 2, we see that

sι x ^ r 1 * UP1 x upn-\

The bundle (1.8) is therefore nontriυial if n > 2. The exception is when n = 2,
in which case S 1 X ^ S 1 * Γ2.

Remark. ./"HO) may also be viewed as a real cone over R P 1 X RP"""1;
this is intimately related to the algebraic geometry of Segre embeddings. As
these results are not relevant to our later work, they are presented in the
Geometric Appendix.

2. The representation theorem

We now begin the algebraic reduction procedure. Reverting for the time
being to real coordinates, let !g be the ideal in C°°(R2w) generated by the
n(n — l)/2 components JftJ = xtpj — Xjpt of β. The first step is to compute
the quotient C°°(R2ll)/3ί which, if f~\0) were a manifold, would simply be
Coo(</-\0)). Instead we have the next best thing:

Representation Theorem. C°°(n2n)/% « W°°(f-\0)% the smooth func-
tions on ^~ι{ϋ) in the sense of Whitney.

Here, a function on /~\0) is "smooth in the sense of Whitney" if it is the
restriction of a smooth function on U2n.

Proof. It suffices to show that / e S iff f\/~\0) = 0. The obverse is
immediate. For the converse, suppose /1 <3^~1(0) = 0. We will prove that there
exists an open set U about each m e U2n such that /1 U e !g | U. The theorem
then follows by patching these local results together with a partition of unity.

There are three cases to consider:

(i) m ej?-\Q),
(ϋ) m ef-\% mΦO,

(iii) m = 0.
Case (i). Choose U such that U n/-\0) = 0. Let / 2 denote Σ/; 2 . Since

/ 2 Φ 0 on U, g = (/1U)//2 is smooth on U. Then
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Case (ii). Choose U such that O ί U . Since β has rank n - 1 at m, we
may use n - 1 of the fijy say ^ -,</„_!, as coordinates on U. By
Hadamard's Lemma, / |(U Π,/"1^)) = 0 implies that /1 It = Σ ^ Λ , - / ) for
some smooth functions ar

Case (in). By a theorem of Malgrange-Martinet [9, §3.5], we need only
show that the Taylor series Γ 0 /e ίg0, where £$0 is the ideal generated by
{ΓOί3^7 —t/ij} i n the ring of formal power series at the origin. We first define
some notation and state several algebraic facts.

Let

(2-1)

ίoik =

For any

V ,

ί21

such i

9ik

n, and set

"• M <
ΊZn J

, define the row

P(0

= χk

= u7

sum

" I

and

P(Oof

Σ /u.
* - l

-fc
ί to be

k = l

ι 2 X n

and the column sum χ(ι) of / to be

x ( 0 = [«ii+ «2i» ••.'!» +'2»1

Consider the polynomial ring U[q] = U[qn, , qln\ Any P G U[q] may be
written in the form

where each at e R and #' = ςr{γ qfy.
If § is the ideal in U[q] generated by the polynomials /ijy we have

V(§)={q:P(q) = 0 VP G §} =/"1(0).

Now, /(K(β)) = {P e R[?]:P(9) = 0 V 9 G K($)}. In the Algebraic Ap-
pendix we establish that

(2.2) /(F(φ)) = φ.

Moreover, we have the explicit representation

(2.3) / ( F ( φ ) ) = JP = Σ ^ ί : Σ β, = 0 f o r a l l r G R 2 , k G R M .
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With these results we are ready to prove case (ϋi). Write

(2-4) Tof=Σaiq
ί= £ &

/ /=0

where

si- Σ ( Σ a

is the homogeneous part of the /th Taylor polynomial of / at 0. We may
further decompose this as

(2.5) Sι,= Σ Σ «,Λ
Ί + Ίz-/ \ P(0-r /

*i+ + *„ = ' χ(i)-k'

We claim that Sj> e § for all /. Indeed, define g: Un+2 -> R by

(2.6) g(Mχ, , wrt+2) = f(un+ιu, wn+2u),

where u = (uv- , wπ). Since wn+iu and wM+2

u a r e linearly dependent,
un+ιu A un+2u = 0, that is, (wπ+1u, wM+2u) G / ^ O ) . But as / I / ' H O ) = 0,
g s 0 on R π + 2 , and so Γog = 0. Now if Γo/ is given by (2.4), then, according
to (2.6), Tog consists of sums of terms of the form

Σ a, uk

n»)

each of which must vanish. Thus for any fixed r and k we must have

Σ *,«o.

By (2.3) and (2.5), then, Sj> ε J(K(φ)) for all /. From (2.2), S^Gφ for all /.
In summary, we have shown that

1=0
Σ flj

with flj/ij homogeneous of degree /. Since each ^t- is homogeneous of
degree 2, we may assume that each f\. is homogeneous of degree / - 2. Thus

= Σ [
\ /=0
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where, for each (ί, j), Σ/lo//y *s a formal power series. By the Borel extension
lemma [6, p. 98] these series are Taylor series. Thus, finally, Tof e ^ 0 .

3. Resolution of the singularity

Returning to complex notation, we have established that COO(C
W^iy^iO)). However, this representation of the quotient is not very con-
venient. Before proceeding with the reduction we obtain a more manageable
representation by resolving the singularity in the constraint set.

A. The universal line bundle. View C P " " 1 as the set of all complex lines /
through the origin in C n. Let

C ^ Γ

Cpn-1

be the universal line bundle over C P " " 1 . We may identify Γ as the subset of

cpn~ι χ c w given by

Γ = { ( / , Z ) G C P M - 1 x C " : z e / } .

By composing the inclusion with the projection on the second factor we obtain
the projection φ: Γ -* C n. Then [7, p. 28]

(i) φ-\0) * C P " " 1 ;
(ϋ) φ: Γ - φ'^O) -> C n is a diffeomoφhism.

Γ is called the blow-up of Cn at 0; dimR Γ = In.
Theorem 3.1. The complex line bundle Γ is associated to the Hopf fibration

(1.9).
Proof. Consider S2n~ι X sι C, where the S^-action is given by

(T?,(Z,H>)) -> (ηz,ηw).

Define a map S 2 "" 1 X sι C -• Γ by

[z,w] -^ ([z],wz),

where we view [z] as a line in Cn and wz as a point on [z]. A straightforward
check shows that this is a bundle isomorphism, q.e.d.

Now let 1 be homogeneous coordinates on C P " " 1 . Then Γ is defined in
C P " " 1 X C" by the equations

(3.1) 1 Λ z = 0.

For later purposes, it is convenient to work this out in coordinates
(vi>' * •> υn-\^) on CPn~l XC", where the vt = ///„, i = 1, , n - 1, are
affine coordinates on C ? " " 1 . Then (3.1) becomes

(3.2) Zj = ϋjZn, y = 1, - , / i - 1 , ϋiZj - υjzi = 0, iJΦn.
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Note that, using the first of these relationships, the second reduces to an
identity. In view of (3.2) we may use (v, z):= (vv - -9vn_l9 zn) as coordinates
on Γ. The induced projection φ: Γ -> C n is now

(3.3) φ(v,z) = (zv,z).

B. Blow-ups. We define the blow-up, X, of /'\0) in Γ to be

where the bar denotes Zariski closure (over U). It follows from (3.5) below that
X is an {n + l)-manifold. Note from (ϋ) above that

is a diffeomorphism, where ψ = φ \ X. We view X c Γ as the nonsingular
model f o r / - ^ c C .

However, even though Γ is algebraic in C ? " " 1 X C", X is not algebraic in
either Γ o r C P ^ x C . Indeed, consider

Clearly X c Jt~\ϋ) but χ-\0) contains in addition all of the "exceptional
divisor" φ'^O). In charts, Jf is given by

(3.4) *,j(*,z)-l

The problem is the factor \z\2. From the definition of X, however, we see that,
locally, Xis algebraic: it is determined in Γ by the equations

(3.5) Όi = ϋi9 i = l,. . , Λ - l .

Note that, in the determination of X, the first equations of (3.4) are redundant.
These observations allow us to explicitly identify X in Γ. Since the defining

equations (3.5) for X are reality conditions, it follows that X is just the
restriction of Γ toUPn~ι in C P " " 1 . The diagram

n-l

UP"-1

summarizes our results, where the horizontal arrows on the left are all blow-up
projections, those on the right are bundle projections, and the vertical arrows
are inclusions.
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The question remains, however, as to which complex line bundle over
UPn~ι the blow-up ^corresponds. Recall that the set of (isomorphism classes
of) all possible complex line bundles over a manifold M is parametrized by
H2(M,Σ). On C ? " " 1 , Γ is characterized by its Chern class c(Γ) = -1 in
H2(CPn~\ Z) * Z. Since X = /*Γ we have that c(X) = * (-l), where * * is
the induced map on second cohomology. Now H2(UPn~ι, 1) « Z 2 for n > 2,
so that there are only two line bundles on UPn~ι. Thus, X is trivial iff ί* is
trivial on second cohomology. But in the Topological Appendix we show that
/* is surjective. X is therefore the nontriυial complex line bundle over IR P " " 1 .
When n = 2, on the other hand, X is necessarily trivial.

Using the results of §1 and §3.A, we are now ready to construct X. Since
(i) Γ is associated to S2*"1,

(ϋ) X is the pullback of Γ to RPn~\ and
(iii) S1 X 2 2 Sn~ι is the pullback of S 2 "" 1 to UPn~\

we expect that X is associated to Sι X Zi Sn~ι. In other words, the diagram

2n-1
associate

pullback j pullback

S1 X z S" 1 " 1 Γ—+X
*-2 associate

should commute. Using [13, §10] we see that this is indeed the case.
Thus from general principles we have that

x= (s1 x^r
where the S^-action is given by

Theorem 3.2. X » Sn~ι X Zi C.
Here the Z 2-action is (μ, (y, w)) -> (μy, μw) with μ = ± 1.
Proof. The map [[λ,y],w] -> [y, λw] defines the required isomorphism

( 5 1 X Z 2 5 w ~ 1 ) X 5 i C ^ S'1"1 X Z 2 C. q.e.d.
The blow-up fibration is thus

C -> Sn~ι XZiC

UP"'1

where the projection is [y, w] -> [y]; compare (1.8).
C. The Representation Theorem revisited. As noted earlier, the represen-

tation C°°(C")/^ « W°°(/~ι(0)) is not suitable for our puφoses. We use the
blow-up X of f~\ϋ) to represent C°°(CW)/S by its more tractable isomorph
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c C^iX). A precise characterization of this kind of subalge-
bra may be found in [3], but this is not actually needed here.

4. The reduced Poisson algebra

We are finally ready to reduce the Poisson algebra (C°°(C "), {•,•}). Rewrit-
ten in terms of z and z, the bracket (1.2) becomes

(4.1) { / , * } - 2 ι f [f,ght.,k.
& = 1

We must first identify the SO(«)-invariant elements of C°°(Cn)/S Ab-
stractly, these are the classes [/] such that {/, /tJ} \f~\ΰ) = 0 for all
1 < i, j < n. Equivalently,

(4.2) {/,/,7}°Ψ = 0.

Let i 7 = / o ψ e Ψ*W/ΓOC(ί/~1(0)); we will write out these equations explicitly in
terms of F on X.

Before doing so we change coordinates on Γ. Since X c Γ is defined in the
(v, z) chart by (3.5), it is convenient to set

u = (v 4- v)/2, w = (v - v)/2.

The I c Γ i s given by w = 0, and we may therefore use (u,z) as coordinates
on X. Then (3.3) yields

(4.3) ψ(u,z) = (zu,z).

From (4.3) we have

u, = z(9//3z,. o ψ) + z(a//3z,. ψ), i = 1, , n - 1,
n - l

dF/dz = Σ «,(3//3*, Ψ) + 3//3^ ° Ψ-
(4.4) ,_i

n - l

dF/dz = Σ «,(3//3z,oψ) + a//θznoψ.
1 = 1

Also, substituting (1.4) into (4.1) we obtain

(4.5) {/,/,,} = [zflf/9zj + zidf/dzj-(zJdf/dzi + z,3//3z,.)}
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Combining (4.5) and (4.4), the invariance conditions (4.2) become

ufiF/duj - UjdF/dtii = 0, /, j <n,

(4.6) w,(z3F/3z + zdF/dz) - dF/dut - w, Σ M ^ / 9 " * = °>
k = l

i < n, j = n.

This is a system of n{n - l)/2 linear homogeneous partial differential
equations on the (n + l)-manifold X. Denote the correspondϋng distribution
by Φ; we claim that dimR © = n - 1. Indeed, consider the matrix of 2) with
respect to {dz,dI9dUi,- ,3M }. It is readily verified that the kernel of this
matrix is spanned by the vectors

(l + l u ^ O , ^ , - . - , * ^ ) ' and (θ,l + |u|2, zul9 , zun_$.

Hence the dimension of the kernel is two and the rank of the matrix is,
therefore, AZ + 1 — 2 = « — 1. Since dimR X = n + 1, this system of equations
has at most two functionally independent first integrals. In fact, there are
exactly two: z(l + |u | 2 ) 1 / 2 and z(l + |u | 2 ) 1 / 2 .

Let g ^ ψ*Woo(</~1(0)) denote the subspace of rotationally invariant ob-
servables. It corresponds under ψ to those functions in PΓoo(</"1(0)) which are
constant along the orbits of SO(«) on /~ι{ϋ). We have proven:

Theorem 4.1. Let F ^ ψ*WΛOO(/-1(0)) Then F e g iff

(4.7) F

This characterization of g can be substantially simplified. Our main result
is

Theorem 4.2. Let F e C°°(X). Then F e g iff

(4.8) F = F(z 2 ( l + |ιi|2), |z | 2(l + |u | 2), z"2(l + |u| 2)).

Proof. Fix F(u, z) G g. We first claim that F is even in z. Now F e
^•p^oo^-i^o)) s o that there exists an / e C°°(Cn) such that F = / ° ψ. Since
F is rotationally invariant

(4.9) / U z ) = / ( z )

for all 4̂ e SO(w) and z G / ' " 1 ^ ) . In particular, for each z we may choose A
in such a way that Λz = -z. Then (4.9) reduces to /(-z) = /(z), i.e., / \/~\0)
must be even. Since ψ maps A" onto ί/~1(0), this and (4.3) imply that

F(u,-z) = F(u,z)

as was to be shown. But then [9, p. 144] and (4.7) yield (4.8).
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For the converse, first observe that

z 2 (l + |u|2) = ψ*(z z),

(4.10) ^ | 2 ( l 4- \a\2) = ψ*(z z),

z 2 (l + |u|2) = ψ*(z z).

Then it is obvious that any F e C°°(X) of the form (4.8) smoothly factors
through ψ. The result now follows from Theorem 4.1. q.e.d.

Thus the requirement that F e \p*W°°(Jf~l(0)) in Theorem 4.1 is superfluous.
Theorem 4.2 enables us to directly identify g as a subspace of C°°(X) without
having to pass through the intermediary ψ*WΛOO(</"1(0)). This, ultimately, is
why we resolved the singularity in the constraint set.

It remains to compute the reduced Poisson bracket on g. Since J is
equivariant, the Poisson bracket { , } on C°°(Cn) descends to a bracket
[ , 1 on g c C»(Cn)/% given abstractly by

I [ / U * ] l - [ { / , * } ] •
On X this translates into

(4.11) lF,Gί = {/,g}oψ,

where/,g6 C°°(Cn) are such that F = /<> ψ and G = g° ψ. Taking(4.8) into
account, we calculate

(3//3z,) ψ = w/(l + \a\2)dF/dz, i = 1, , n - 1,

along with the corresponding complex conjugate equations. Substituting these
into (4.1), (4.11) yields

It is immediate that [ , ] is nondegenerate.
We may further simplify matters by again changing coordinates (u, z) ->

(u, γ = z(l + |u | 2 ) 1 / 2 ) . Then we have

(4.12) g= {FeC«>(X):F=F(y\\y\\y2)}

and the bracket becomes

(4.13) lF,G} = 2i[F,G]-Ύ,γ.

The pair (S>I >• 1) i s the reduced Poisson algebra of SO(Az)-invariant
observables for our particle with zero angular momentum. From this structure
one may recover the entire reduced canonical formalism, albeit on the alge-
braic level (i.e., invariant observables) rather than that of manifolds (i.e.,
invariant states).
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5. The structure of the orbit space / "1(0)/SO( n)

To ascertain the geometric significance of the reduced Poisson algebra it is
useful to also perform a group-theoretic reduction of the system. Here we
compute the "Poisson algebras" of the orbit space </~1(0)/SO(«), and in the
next section we compare them to (g, [ , ]).

We first observe that the nontrivial orbits of SO(«) on f~\0) are all
diffeomorphic to Sn~ι.

Theorem 5.1. S'ι(0)/SO(n) * C/Z2.
Proof. Fix q G S"" 1 and consider the map Q: C -> C n given by

(5.1) <2(λ) = λq.

Clearly, Q(λ) ^/~\0) Π S^~\ We claim that as λ varies with |λ| fixed,
β ( λ ) hits every orbit in f~\0) Π S^~\ Indeed, every element of f~\ϋ) Π
Sfχ"~ι may be written in the form ηy for some complex η e S 1 and some real
y G Sjx]"1. Then, since SO(n) acts transitively on S""1, we have

w = v\y\(y/\y\) = v\y\Aq = A(Q(v\y\))

for some A e SO(«). Furthermore, Q(λ) and Q(ξ) both lie on the same orbit,
i.e., λq = ξAq for some A e SO(«), iff | = ±λ. It follows that Q induces an
isomorphism </"1(0)/SO(«) « C/Z 2 , where the latter denotes the identifica-
tion λ λ. q.e.d.

Aside. Since every z e^/" 1^) may be expressed as z = λ̂ 4q for some
λ G C, A e SO(«), and fixed q e 5"1"1, we may explicitly realize the projec-
tion p \Z~\0) -> C/Z 2 as follows:

p(\Aq) = [λ].

Now consider R Pι c C/Z 2 . Then

/ " 1 ( 0 ) Π

and we therefore obtain the orbit fibration:

n-l ->/-!(()) Π

•I
R P 1

This gives additional insight into the structure of <f~ι(ϋ)\ compare (1.8) and
(G.2).

Thus the orbit space </~\0)/SO(n) is actually a F-manifold [14]. Coinci-
dentally, it is possible to view C/Z 2 as a genuine C°°-manifold, diffeomorphic
to C, by endowing it with the unique C00 structure which makes the projection
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C -» C / Z 2 differentiable. We may therefore proceed in either of two ways,
depending upon which manifold structure we take on </"1(0)/SO(«).

Now use Q to pull the symplectic form (1.1), which on C n is

n

« = (1/20 Σ dzk A dzk,
k = l

back to C. Since |q| = 1 we obtain

ζ)*ω = (1/2/)dλ A dλ

which is just the standard symplectic structure on C. Since Q*ω is invariant
under the reflection λ -> -*λ, we may obviously regard </~1(0)/SO(«) as a
symplectic V-manifold [14]. If, however, we take the C00 structure on C/Z 2 ,
then Q*ω projects to a singular symplectic form on C/Z 2 . We may then
regard < / " 1 ( 0 ) / S O ( Λ ) as a singular symplectic manifold.

The corresponding "Poisson algebras" of </"1(0)/SO(«) can be described
as follows. In either of the above cases every smooth function / on C/Z 2 may
be uniquely represented by an even function / e C°°(C). According to [9, p.
144], such a function must be quadratic in λ, λ. Thus, if we regard C/Z 2

 a s a

F-manifold, then the algebra 33 of smooth functions on </~1(0)/SO(n) has the
explicit representation

(5.2) a S « { / e C

On the other hand, if we regard C/Z 2 as a C00-manifold, then such an / must
also smoothly factor through the projection C -> C/Z 2 so that / = /(λ2,λ2)
only. Thus, denoting C*(f-\ΰ)/SO{ή)) by E, we have

(5.3) E « { / e C " ( C ) : / = /(λ2,λ2)}.

In either case, the Poisson bracket of two smooth functions /, g on C/Z 2 is
represented by

(5.4) 2 i [ / , g h i λ .

There are consequently two "Poisson algebras" (33, 2z[ , ]^λ) and
(S, 2i'[ , ]χ λ ) associated to #~\ΰ)/$O{n). The first is the usual nondegener-
ate Poisson F-algebra defined by a symplectic F-structure. The second, al-
though nondegenerate, is singular in the sense that E is not closed under the
bracket (5.4). The fact that neither of these Poisson algebras is the Poisson
algebra of a symplectic manifold is a reflection of the presence of the
singularity in ./^(O).
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6. Comparison of algebraic and group-theoretic reductions

Despite the fact that the group-theoretic reduction of §5 is singular, it yields
results which are surprisingly similar to those obtained algebraically in §4. We
now show that, when we regard #~ι(ϋ)/$O{n) as a symplectic F-manifold,
the Poisson F-algebra (33,2i[ , ] λ λ ) of /-ι(0)/SO(n) is isomorphic to
CSΛ ' ,* I) Furthermore, when we regard /~ι{0)/SO{n) as a singular sym-
plectic manifold we find that (&,2z[ , ]χ λ ) and ($,[ , ]), although not
isomorphic, are closely related.

Theorem6.1. ( g , [ . , • ] ) * ( » , 2 i [ v ]-λ,λ).

Proof. Fix q e S " " 1 as before, and use Q to lift elements of 33 to
SO(w)-invariant functions on C ". From (5.1) and (5.2) we obtain

(6.1) 33 * {/£ C°°(C"):/ = /(z z, z z, z z)}.

Now, according to (4.12), the reduced Poisson algebra (g, l , 1) consists of
functions F e C°°( X) of the form

Since each such F must smoothly factor through ψ, it follows from (4.10) that
F e g iff F = / o ψ for some / e C 0 0 ^ " ) of the form (6.1). Thus 95 « g.
Clearly, from (4.3) and (5.4),

[F,G]~2/[/,g]- λ , λ

and the result follows, q.e.d.
Thus, when we regard J?~ι(0)/SO(n) as a symplectic F-manifold, the

algebraic and group-theoretic reductions coincide. On the other hand, when we
regard </"1(0)/SO(n) as a singular symplectic manifold, (5.3) and Theorem
6.1 imply that © is strictly a subspace of g, so that (β,2/[ , ]χ λ ) can be
identified with a singular subalgebra of (g, [ , ]). However, it is remarkable
that (g, [ , ]) is in fact the closure of (S, 2*[ , ]χ λ ) in the following sense:

Theorem 6.2. g = C:= <E + [C, e]-λ > λ + [CJC, e]-λ,λ]-λ,λ + • .
Proo/. We first claim that the above infinite series truncates with the result

that

(6.2) e

To this end, let /, g e (£; then a computation reveals that

(6-3) [/,g]x,λ

Using this, we have
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for some k e (£. Then another computation yields

which, as each term is in ©, is also in ©. The claim follows by iterating this
result.

Next, we establish that g = (£ 4- |λ|2(£. The inclusion E c g + | λ | 2 £ fol-
lows immediately from (6.2) and (6.3). For the reverse inclusion we need only
show that |λ|2K c [(£, (£]λ λ and thus by (6.3) that g c [g, S]λ2 χ2. But for
/ e ϊ , let Λ(λ2, λ2) = //(λ2, λ2)dλ2 e S. Then

and we are done.
We now show that g « E + |λ|2© thereby completing the proof of the

theorem. For this we use Theorem 6.1 to identify $ with 93; then only the
inclusion 93c(£ + |λ|2(£is nontrivial. Reverting to real notation, set λ = a +
ib and let F <= 93. Then by (5.2) F = F(a2 - b2, ab, a2 + Z>2), i.e., there exists
an / G C°°(R3) such that F(a9 b) = f(a2 - b2, ab9 a

2 + b2). Let i>(α, 6, c) =
c2 - (α 2 + 4b2). Applying the Mather Division Theorem [6, p. 95] with
distinguished variable c to f yields

f(a,b,c) = g(a,b) + ch(a,b) + P(a9b,c)k(a,b)

for some g,h,ke C°°(U2). Thus

jr( f l > ft) = f(a

2 - b2, ab, a2 + b2)

= g(α 2 - b2, ab) + (α 2 + ί>2)Λ(α2 - ft2, oft) + 0,

which, upon going back to complex notation, proves that F G β + |λ | 2 S.
q.e.d.

Thus for a particle in Un with zero angular momentum, one may construct
the reduced canonical formalism in either of two ways: algebraically or
group-theoretically. The group-theoretic reduction yields two reduced Poisson
algebras, one regular and the other singular. The fact that the regular Poisson
algebra is isomorphic to that constructed algebraically indicates that the
K-manifold approach is both the correct and most natural one [J. Arms,
private communication]. Moreover, an examination of other examples shows
that in general it is not possible to consider the orbit space ί/~1(0)/G as a
smooth manifold with a singular symplectic structure. Thus the existence of the
second Poisson algebra is peculiar to this system. Regardless, this singular
algebra is effectively "repaired" by the algebraic reduction procedure which
closes it into the regular Poisson algebra (g,[ , 1) of all SO(«)-invariant
observables for the particle.
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Algebraic appendix

We follow the conventions of §2.
Let φ be the ideal in U[q] generated by the polynomials

and set

91 = j P = Σ arf' Σ *j = 0 for all r ε U2 and k ε R" .
I i P(/)-Γ )

χ(/) = k'

Our goal is to prove
Theorem A.I. 7(K($)) = 91.
Proof. Consider P ε /(V( §)). Let g: Un+2 -> R be given by

where u = (« l 5 , un). Since MΠ+1U and wπ+2u are linearly dependent and P is
identically zero on K(φ) we have that g is identically zero on R n + 2 . But if
P = Σ έi^', then

and hence, for any fixed p(i') = r and χ(i) = k',

Σ β ι - o .
p(i)-r

χ(O-k'

Thus /(F(φ)) c «. We now proceed to show that 2ί c φ c
Suppose that now P ε 21. Without loss of generality we may take P to be of

the form

P= Σ atq*.
p(ι)-r
χ(ι)-k'
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Let j be such that p(y) = r and χ(j) = k'. As P e 31,

P= Σ *,-(?'~9 y).
p(ι)-r

χ(O-k'

It therefore suffices to show that q* — qJ ^ § when p(/) = p(y) and χ(z) =

X(7)
By the division of factors common to qι and qJ, we need only consider pairs

i and j where

ist = 0 ifjst>0 a n d j , t = 0 ifist>0,

and then by symmetry we may assume that

< - ' . / u v:. iim ° v;. °*
o o Λ,« + I

But the column sums χ( i ) and χ(j) are equal, hence

in ••• ilm 0 ••• 0 0 ••• 0

o ••• o j U m + 1 ••• j 1 M o ••• oj

3 ••• 0 Λ.M+1 ••• Λ M 0 ••• 0

r
u
 ••• i

lm
 0 ••• 0 0 ••• 0

with, as p(i) = p(7), 'π + +'Ί m =Ji,m+i + + Λ M
Then it is not difficult to see that, using terms of the form

0 •••
0 •••

0 1
0 -1

T
s

0 •••
0 •••

0 -1
0 1

T
t

0
0

we can write a telescoping series

+ (>- iι)-(i-h- h)
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where each of the bracketed terms has positive entries and each ik = i(sk9 tk)
for some sk and tk. Defining lk = i - iλ- -ik, the corresponding tele-
scoping series for powers of q yields

q'-qJ= Σ Wk-4'M)>
& = 0

where lk- lk+1 = ik+v

It is easy to verify that if lk - lk+ι = i(sk+ι,tk+ι), then qlk - qlk+ι is a
polynomial multiple of </Sk+1,tk+1

 an<^ hence a member of φ. As φ is clearly a
subset of /( V{ φ)), the result follows, q.e.d.

The proof of the theorem actually establishes
Corollary A.2. 7(F(φ)) = φ.

Geometric appendix

Our analysis in §1 centered about the fact that f~λφ) is a complex cone
over UPn~ι c C ? " " 1 . But it is apparent from (1.3) that /~\0) is also a real
cone over some subvariety of R P 2 " " 1 . Here we study the structure of the
constraint set from the real point of view.

Theorem G.I. <f~\0) is a real cone over U Pι X U P " " 1 , i.e.,

/ " 1 ( 0 ) = CR(UPι XUPn~ι).

Proof. Consider the real analog of (1.5), viz.

IR ^ U2n

(G.I) 4 *R

View (x,p) as homogeneous coordinates on UP2n~ι and label them collec-
tively by qik as in (2.1). Also let λ,, i = 1,2, and yk, k = 1,••-,«, be
homogeneous coordinates on UPι and R P " " 1 , respectively.

Now recall that the Segre embedding

S:UPι XUPn~ι -+UP2"-1

is defined by qik = λ,^ . Denote by φ the homogeneous ideal in U[q]
generated by the polynomials qikqμ - quqjΊr Then [11, Proposition 2.12] shows
that

S(UPιXUPn-ι)=

in R P 2 " " 1 . But from (1.3) and (2.1) it follows that

and the theorem is proven, q.e.d.
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Mimicking the analysis in §1, we now study the double covering

JPΓR
UP1 X UP"1-1

where prR([λ, y]) = (IλJ, [y]) and the Z 2-action is given by (1.7) for η = ± 1.
The real analog of (1.9) is the double covering

(G.3)

Rp2n-1

associated to (G.I).
Theorem G.2. The fibration (G.2) is the pullback to UP1 X UPn~ι of the

fibration (G.3) by the Segre embedding S.
Proof. First note that the diagram

1 n-l S 2n-l

(G.4)

UP1 X UP"'1-

commutes, where, in real notation (cf. (1.10)), S is given by [λ, y] -> (λxy, λ2y).
Since S is equivariant with respect to the Z 2-actions in (G.2) and (G.3), the
desired result follows from [13, §10].

Remark. Diagram (G.4) shows that S doubly covers the Segre embedding
S.

Topological appendix

Let /: UP"'1 -• CPn~ι be the natural inclusion [y] -> [y + 0ι]. We show

that the induced map £*:H2(CPn~ι,Z) -• H2{UPn~ι,Έ) is suqective when

n>l.
Consider the short exact sequence

(T.I) 0 - * Z ^ Z - ^ Z 2 ^ 0
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and the induced cohomology diagram:

H2(CP"-\Z2) — — H2(UP"-\Z2)

(T.2)

H2(CP"-\1) —*h

First observe that both vertical arrows are surjections; this follows from the
long exact cohomology sequences associated to (T.I) and the facts that both
i J 3 ( C P n - \ Z ) and d*:H2(RP"-\Z2) -> H3(UPn-\Z) are always trivial.
Furthermore, recall that both Jtf2(CPΛ"1,Z) and H2(RPn"\Z2) are isomor-
phic to Z 2 for n > 2. These results imply that the bottom arrow in (T.2) is
surjective iff the top arrow is.

In fact, the top arrow is an isomorphism. To see this, factor

where jk:RPn+k~ι -> UPn+k is given by

Λ ( I ( Λ > ' "" > Λ+*)D = I(Λ» > yik-i* 0,

for 1 < k < n and c R P 2 " " 1 -> C P " " 1 is defined by

Since each yfc is essentially an inclusion, we have from [10, §8.5.10(a)] that
j?:H2(RPn+k

9Z2)~ H2(UPn+k-\Z2). Moreover, [10, §8.5.10(b)] estab-
lishes that c * : / / 2 ( C P π " 1 , Z 2 ) « ^ 2 ( I R i ) 2 / ι - 1 , Z 2 ) . Thus t*:H2(CP"-\Z2)
~ H2(RPn-\Z2).
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