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LOWER BOUNDS FOR λx ON A
FINITE-VOLUME HYPERBOLIC MANIFOLD

JOZEF DODZIUK& BURTON RANDOL

1. Introduction

Suppose M is an w-dimensional hyperbolic manifold having finite volume V,
and denote by λx the first positive element in the discrete spectrum for the
problem Δ/ + λ/ = 0 on M. If Λf is compact and n = 2, it is known [13] that
there exists a constant c > 0, depending only on the genus of M9 such that
λj > c/, where / is the total length of a smallest (in the sense of total length)
collection of simple closed geodesies separating M. If M is compact and
/i > 3, it is known [12] that there exists a constant c > 0, depending only on w,
and such that λx > cK~2. The 2-dimensional infinite volume case is discussed
in [10].

In this paper we will discuss lower bounds for λx in the finite volume case.
Our results agree with those of [13] and [12] in cases covered by those papers.
Our main purpose, however, is to illustrate a simple and general approach to
this question, which depends on lower bounds for the first Dirichlet eigenval-
ues of some of the basic building blocks for hyperbolic manifolds.

In more detail, the Margulis lemma [2], [3], [6], [7], [9], [11], [14], implies that
there exists ε(n) > 0, such that M is the union of two not necessarily disjoint
subsets A and B, a thick and a thin part, for which:

1. A is not empty, and the injectivity radius at each point of A is greater
than ε(n) > 0, so V > υι(n)> 0. For n > 3, A is connected.

2. B is either empty or is a disjoint union of pieces, each of which is either:
(a) A closed embedded tubular neighborhood N of a simple closed geodesic

γ, for which we may assume, by taking ε(n) small enough, that the radius of
#, i.e., the distance of any point on 3Λ̂  to γ, is greater than 1, or
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(b) of the form [a, oo) X F, where F is a compact flat (n - l)-dimensional

manifold. The metric on such a piece is y~2((dxι)
2 + +(dxn_x)

2 + {dy)2\

where (xv- •,*„_!) e F a n d j> e [0, oo).

In both cases (a) and (b), we may assume that the volume of a piece is

greater than υ2(n) > 0.

Remark. In the class of finite-volume Λf, the subset B contains pieces of

the type described in (b) if and only if M is not compact.

Definition. We will call the pieces of B, if present, the thin components of

M.

Definition. Suppose T is a thin component of M of the compact type,

based on the geodesic γ. Denote by p the radial variable of Γ, i.e., the distance

of a point of T from γ, and suppose the radius of T is R. We will call the

subset of T for which R - 1 < p < R the shell of T. If T is of the noncom-

pact type, we will call the subset of T given by [a, a + 1] X F the shell of T.

Note that if T is of the compact type and n = 2, the shell consists of two

components, both of which are topologically cylinders.

The ε(n) of the Margulis lemma can be chosen so that the shell of each

component of B is also contained in A, and we will henceforth suppose that

this is the case. Additionally, in what follows, all functions will be real-valued.

We begin with three lemmas which deal with various aspects of the Dirichlet

problem for thin components.

Lemma 1. Suppose T is a thin component of M. Then λλ(T) > {{n - l )/2) 2 ,

where λ x ( Γ ) is the first Dirichlet eigenvalue for T {the set of test functions over

which the Rayleigh quotient is minimized consists of continuous piecewise C 1

functions which vanish on dT and whose L2 norm over T is 1).

Proof ([4], [8]). Assume initially that T is of the compact type, and is

based on the geodesic γ. Introduce Fermi coordinates for T based on γ. A

point x = (/, p, σ) of T is then specified by its position t on γ, its distance p

from γ, and a point σ e S"~2. The metric in these coordinates is given by

) 2 ( c o s h 2 ) ( Λ ) 2 + U ) 2 +(sinh 2 p)(dσ)\(ds)2 = (cosh2p)(Λ)2
 + U P ) 2 +(sinh2 p)(dσ)\

and the volume element is (sinhw~2pcoshp) dtdpdσ ([2], [4]). Suppose / Ψ 0 is

a function which vanishes on the boundary of T.

Now (jτ f2)2 = {js,,-2 dσfi dtf0

R f2 sinh"-2pcoshpdp)2, where / =

length(γ) and R is the radius of T.

Integrating the inner integral of the last expression by parts, and using the

fact that / vanishes on 8Γ, we find that

I /> / ?/2sinhw-2pcoshpJp = (2/(/i - 1)) ί* ff siniϊ'-'pdp
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where the derivative is taken with respect to p. Since sinhp < coshp, the last
quantity is less than (2/(Λ - l))/0* | ff '|sinh"~2p cosh pdp. I.e.,

Iff2) <(2/(#i-l))2(/

By Schwarz's inequality, (fτ \ff'\)2 < (fτf
2)(fτ (/ ') 2 ), so since | / ' | 2 <

2, we conclude that ((« - l ) /2) 2 (/ 7 / 2 ) < /Γ |V/|2, which proves the
result for the case of compact T.

If T is of the noncompact type, we use the fact that \λ is the infimum of the
Rayleigh quotient taken over all C00 functions with compact support in the
interior of Γ, and then invoke McKean's argument [8], integrating by parts in
the ^-direction, to show that any such Rayleigh quotient is greater than

Lemma 2 {approximate version of Lemma 1). For each n, there exists a

constant δ > 0 such that if T is a thin component of M with shell S, and iff is a

function defined on T and satisfying:

(a)/ r |/|2 = c> 0,
(b) fs IV/I2 < δc,

(c) Js l / (*) | 2 < δc,
then /Γ |V/|2 > (c/2X(π - l)/2)2.

Proof. Assume initially that T is of the compact type, and let R > 1
denote the radius of T. Consider the function F on T which is defined in
Fermi coordinates by

F(/,p,σ)=/(/ ,p ,σ) (p < R - 1)

= ( * - p ) / ( f , p , σ ) (R-l^p^R).

By (c), if δ is small enough, most of the contribution to the integral in (a)
comes from T - S. Thus, for small δ, fτ F2 > (3/4) c, so it follows from
Lemma 1 that fτ \VF\2 > (3/4)((* - l)/2)2c.

On the other hand,

\vF\2= f
Js

1/212

= 0{8c) by(b)and(c).



136 JOZEF DODZIUK & BURTON RANDOL

Thus, for sufficiently small δ,

/ Iv/f = / |v/|2>(c/2)((κ-l)/2)2,
Jτ-s Jτ-s

which clearly implies the lemma.

If T is of the noncompact type, an essentially identical argument leads to

the desired conclusion.

Lemma 3. Suppose n = 2 and T is a thin component of the compact type

having radius R, and with associated closed simple geodesic y of length I. T is

then topologically a cylinder. Denote by I\ and Γ2 the two boundary components

of Γ, which are topologically circles. Suppose f is a function on T for which

where x* is the reflection of x through γ. Then Jτ |V/|2 > c2l/4.

Proof. In the disk model of H2, with cartesian coordinates x and y, lift γ

to a segment γ = {(x, j;)|0 < x < d\ y = 0}, which projects to γ in a 1-1

manner except at the endpoints. T then lifts to a four-sided figure Γ, whose

intersection with the domain defined by 0 < x < d we will denote by Q. Q is a

quadrilateral figure bounded on its sides by two vertical Euclidean segments,

and on its top and bottom by arcs of the locus of points at hyperbolic distance

R from γ. Denoting by F the lift of / to Γ, we have

|VF | 2 ,
Q

where the integrals are taken with respect to the hyperbolic volume element.

Now in two dimensions, these integrals are conformal invariants and hence can

be computed with respect to the Euclidean volume element. Since d ~ \l, the

lemma now follows from Fubini's theorem, the fact that (dF/dx)2 +

(dF/dy)2 > (dF/dy)2, and the fact that if - l < α < 6 < l and \F(a) -

F(b)\ > c, then fa

h \F'(x)\2dx > c2/2, since

2. Lower bounds for λx

Case 1: n > 3. The constants which arise in our discussion of this case

depend only on n. Now if n > 3, the thick part A of M is connected. Denote

by φ a normalized eigenfunction corresponding to λ^ I.e., Δφ + λλφ = 0,

fM\ψ\2 =
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Suppose B is an embedded ball in M of a given radius, and suppose
fβ |Vφ|2 = j B \dψ\2 < ε> where d is the exterior derivative operator. Then
since Δ*(</φ) = d(Δkφ) = (-λλ)

k dφ, where Δ is the Laplacian on forms, it
follows that Σ,%m.0\\Δk(dφ)\\2 < cxε

1/2 for a fixed N, where the L2 norms are
taken over B. It thus follows from the Sobolev lemma that \dψ\ = |Vφ| < c2ε

ι/2

for all points of 5/2, the ball concentric with B of half the radius of B. Now it
is easy to see that any two points of A can be connected by a chain
Bλ/2,- \Bk/2 of overlapping balls such that k < c3V, with the B/s em-
bedded balls of identical radius, depending on Λ, for which each Bj intersects
at most a finite number β of other B/s. It follows that

But

ιl/2

so since k < c3K, it follows that if a > 0 is a small constant, and if λx < aV 2,
then the oscillation of φ on A is < cΛ(a/V)ι/1. Thus, if supxeA\φ(x)\ >
c 4 (α/K) ι / 2 , then φ must be of one sign on A, which we may take to be
positive. If the thin part B is empty, this is an immediate contradiction, since
fat Ψ = 0 O n the other hand, if B is not empty, then it follows that φ(x) < 0
for some x e B. Denote by T the component of B containing x. Since φ > 0
on 3Γ, we conclude that φ is a Dirichlet eigenfunction for a subset of Γ, and it
then follows from Lemma 1 and the domain monotonicity of Dirichlet
eigenvalues that λx > ((n - l)/2)2.

If supv€Ξ/<|φ(x)| < c 4 (α/K) 1 / 2 , most of }M φ2 = 1 comes from the thin
components, and it follows easily that fτψ

2 > c5vol(Γ)/F for some thin
component T. Thus, if we take c = vol(Γ)/K and S = c6a in Lemma 2, we
find that j τ |Vφ|2 > \ vol(Γ)/F> cΊV~ι

9 which for small a contradicts the
assumption that λx < aV~2. We are thus led to the following theorem:

Theorem 1 (cf. [12]). IfM is as above and n > 3, then there exists c(n) such
that λx > c(n)V~2.

Case 2: n = 2. In our discussion of this case, we will assume that the volume
V of M is fixed, and the constants which arise will be understood to depend on
V.

Now from our point of view the only essential difference between n = 2 and
n > 3 is that the thick part A may not be connected. If A is connected, the
argument of Case 1 leads to the estimate of Theorem 1. Assume that A is not
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connected. Then the argument of Case 1 shows that if λλ is small, the

oscillation of a normalized eigenfunction φ over the set A cannot be too small

or we will arrive at a contradiction. I.e., if λx is small, the oscillation of φ over

A must be > c8 > 0. At the same time, the argument used in Case 1 also

shows that the oscillation of φ over each component of A must be small if \x

is small. It follows easily from these facts that there exists c9 > 0 such that if

λ! < c9, then there is a collection Tl9--,Tk of thin components of the compact

type, with associated closed simple geodesies γ l 5 ,yk separating M, and for

which the oscillation in the sense of Lemma 3 of φ across each Tj is

> c 1 0 > 0. Assuming λx < c9, it then follows from Lemma 3, adding up the

ITJ |Vφ|2 's, that λx ^ ±clo(lx + +/*), where / = length(γ, ). We are there-

fore led to the following theorem:

Theorem 2 (cf. [13], [10]). There exists c = c(V) > 0 such thai if M is as

above and n = 2, then \x > cL, where L is the minimal length of a separating

chain of simple closed geodesies. (If A is connected, then L cannot be small. Also,

L can be bounded above in terms of V (cf. [1]).)

We conclude by showing that in the 2-dimensional case the methods of this

paper can also be applied to derive counterparts of the estimates for higher

eigenvalues discussed in [13] for the compact 2-dimensional case.

Let n = 2 and let M be as before. Then M is topologically a compact

surface of genus g with p punctures, and V = 2π(2g + p — 2). For k > 1,

denote by Lk the minimal total length of a chain C of disjoint closed simple

geodesies separating M into k + 1 components. If no such chain exists, set

Lk. = 1. (It is well known that no such chain exists for k > 2g + p - 3.)

T h e o r e m 3 (cf. [ 1 3 ] ) . There exists c > 0 such that λ k > c L k .
By the minimax principle [5, pp. 409-410], Theorem 3 is a direct conse-

quence of the following lemma:

Lemma 4. Assume k < 2g + p - 3. Let P be any one of the pieces

Λ/j, , Mk + λ into which C separates M, and let μλ be the eigenvalue for the

problem ΔΨ + μΨ = 0 on P, subject to fPΨ = 0 and zero Neumann data on the

boundary geodesies of P. Then there exists c > 0 such that:

1. // there exists a chain of disjoint closed simple geodesies separating P, then

Mi > cLk + ι.

2. // there does not exist such a chain, then μx ^ c. (Note that such a chain

cannot exist for k = 2g + p - 3.)

Proof of Lemma 4. Case 1. Let L be the length of a chain of the above type

which separates P. Then it is easy to see that L> m~ιLk, where m is the

number of geodesies in the chain C corresponding to Lk, since otherwise L

would be smaller than one of the geodesies γ in C, and replacement of γ by L
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would result in a smaller value of Lk. In particular, (m + \)L > Lk + L >
LA + 1, or L ^ c n L A + 1 , since it is well known that m < 3g + p - 3. Now let P
be the double of P along its boundary geodesies, and extend the Neumann
eigenfunction Ψ on P to P by reflection. Using the methods and notation of
the proof of Theorem 2, applied to Ψ and Py it is then evident that we can
ignore any cylinder Ύ} associated to a boundary geodesic of P, since the
extended Ψ has no oscillation across such a Tj. The proof of Theorem 2 then
shows that there exists c' > 0 such that μx > c'L ^ cLΛ + 1.

Case 2. If no separating chain of the required type exists, then the proof of
Theorem 2, coupled with the fact that we can ignore any Tj associated to a
boundary goedesic of P, completes the proof of the lemma.
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