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Introduction

This article is the author's exercise in attempting to understand Hitchin's
work on the classification of compact Kahlerlian twistor space [21]. The
motivation is from Langer's question on whether there is a self-dual metric on
the connected sum of the complex protective planes.

A classification theorem in Riemannian geometry is the following [15], [22]:
If X is a compact self-dual Einstein manifold with positive scalar curvature,
then X is isometric to the Euclidean 4-sphere S4 or the complex projective
plane CP2 with the Fubini-Study metric.

We ask whether there is any self-dual metric with positive scalar curvature
on a compact simply connected manifold which is not conformally equivalent
to these standard metrics on S4 or CP2. Our answer is contained in the
following two theorems:

Theorem A. Suppose that X is a compact simply connected self-dual manifold
with positive scalar curvature. If the signature ofXis equal to zero or one, then X
is conformally equivalent to the Euclidean 4-sphere or the projective plane with
Fubini-Study metric.

Theorem B. (i) There exists a one-parameter family of self-dual conformal
classes on CP 2#CP 2 , the connected sum of two complex projective planes with
usual orientation.

(ii) Each of these conformal classes contains a metric with positive scalar
curvature.

(iii) Each of these conformal classes has a two-dimensional torus as the identity
component of the group of conformal transformation.
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(iv) The twistor space of each of these conformal classes is a small resolution of

the intersection of two quadrics in C P 5 given by

Qo = {z e CP5: 2z2

0 + 2z2 + \z\ + \z\ + z4

2 + z\ = 0},

β ^ ί z e CP5: z\ + z\ + z2

2 + z\ + z\ + z\ = 0}

/or <z real number λ swcA ίΛtf/ 2 > λ > \.

(v) Lei ίλe conformal class associated to the number λ be denoted by C λ.

Suppose that X is a compact simply connected self-dual manifold with positive

scalar curvature. If the signature of X is equal to two, then X is conformally

equivalent to C P 2 # C P 2 with a C λ.

A useful corollary of Theorem A is that the conformal class of the Fubini-
Study metric is the unique self-dual conformal class on the projective plane
admitting metrics with positive scalar curvature. However, the proof of Theo-
rem B will occupy most of our time.

It is well known that self-duality on a manifold is a conformally invariant
property, arid that the conformal structure is uniquely determined by the
holomorphic structure of the twistor space [3], [20], [28]. Therefore, our basic
method is to exploit Hitchin's techniques in [21] to look for the candidates of
twistor spaces and then use the Penrose transform to construct self-dual
conformal classes on CP 2 #CP 2 . As the second step is standard, to prove
Theorem B our major task is to take the first step. In [21], Hitchin showed that
the only compact Kahlerian twistor spaces are CP3 and the flag manifold of
lines in CP2. During the course of the proof, he found that if a self-dual
manifold has Kahlerian twistor space and has signature 2, then the twistor
space is identified with the complete intersection of the two quadrics. But this
identification given by the Kahlerian assumption is not compatible with the
topological assumption that τ = 2. Bearing this observation in mind, our
objective is a singular model of a twistor space. The singularity is related to
and hopefully is determined by the topology of the manifold CP 2 #CP 2 .

In the first three sections, we shall always suppose that we are given a
compact simply-connected self-dual manifold X with positive scalar curvature.
In §1, basic definitions will be given and useful information, e.g. a topological
classification and a vanishing theorem of Hitchin, will be collected. In §2, we
imitate Hitchin's method of studying the linear system | - 2 ^ Ί when the
signature of X is not bigger than two. As many technical observations in this
section are simple refinements of Hitchin's argument in [21], we shall not give
every detail. Instead, we shall concentrate on proving Theorem A. Theorem A
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is true because when the signature is small, the system |- \K\ provides us
enough degree of freedom to show that its associated map Φ is an embedding.
This is true even if one replaces the assumption of simple-connectivity by that
of vanishing first betti number.

In §3, we study the case when the signature is equal to two. From the work
in §2, we shall see that the obstruction for the map Φ to be an embedding is
essentially from a collection of curves on which the bundle K~1/2 is trivial. The
image of these curves are singular points on the projective model of the twistor
space. We shall introduce four holomorphic line bundles on the twistor space
to locate these curves. These bundles are determined by the topology of X and
in fact determine the singularity of Φ(Z). Their interrelation is so rigid that
they determine the algebraic type of the image of the twistor space. The key
observation is Remark 3.3.

After determining the only possible singular model of the twistor space, we
change our viewpoint in §4. Our aim is to use this model to construct a
self-dual conformal class on CP2#CP2. Away from the singularity, it is easy
to use the Penrose programme to work out the construction on an open set
especially when we have Hurtubise's work as a reference [24]. A metric in the
self-dual conformal class will be expressed in terms of coordinate functions. It
has apparent singularity. But with the picture in §3 in mind, we are able to
resolve the coordinate singularity. Then in §5, after proving several general
observations on the sign of the scalar curvature of a self-dual metric, we use
the solution of Yamabe's problem to show that we have a self-dual conformal
class on CP 2#CP 2 in which there is a metric with positive scalar curvature.
Theorem B is then the collection of Theorems 5.4, 5.5, 5.6, and 3.5.

In §7. Appendix, we shall give an explicit construction of the moduli space
of self-dual S0(3)-connections over the connected-sum of two complex projec-
tive planes.

Our basic reference is Atiyah, Hitchin and Singer [3]. Concerning the
holomorphic geometry of twistor spaces, readers are referred to [21]. The
references for algebraic geometry are [16] and [23].

For convenience, when the bold capital letters denote holomorphic line
bundles, the usual italic capital letters will denote the corresponding divisor
classes. For example K"1 is the anticanonical bundle and -K is the anticanoni-
cal class. H will always denote the hyperplane bundle on a projective space or
a nonsingular rational curve.

Acknowledgment I am most grateful to N. J. Hitchin for his teaching and
encouragement. I would also like to thank the Croucher Foundation of Hong
Kong for financial support when I was in Oxford from 1981 to 1985.
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1. Preliminaries

Let X be an oriented Riemannian manifold such that (i) it is compact,
connected and simply-connected, and (ii) it is self-dual and has positive scalar
curvature.

To determine the topological type of this manifold, we can write down the
Weitzenbόch formula of the exterior derivative restricted to the anti-self-dual
2-forms. Using this formula, we can apply a Bochner type argument involving
the above geometrical assumption to show that the intersection form on the
second cohomology is positive definite. After Freedman and Donaldson's work
[11], [14], it is now well known that the manifold X has to be homeomorphic
to the 4-sphere or the connected sum of the complex projective planes with
natural orientation. Therefore, the homeomorphic type of X is uniquely
determined by its signature T. The Euler characteristic χ of X is given by
X = 2 + T.

When T = 0, the conformal structure of X can easily be recognized because,
in this case, X is necessarily conformally flat. According to Kuiper [25], a
compact, simply-connected, conformally flat 4-manifold is conformally equiva-
lent to the Euclidean 4-sphere. To determine the conformal structure on X
when T = 1 and r = 2, we shall study the twistor space over X.

By definition, the twistor space Z over an oriented Riemannian 4-
dimensional manifold is the total space of the projective spin - ^-bundle
P(V_). The fibration is called the twistor fibration. An almost complex
structure on the twistor space is defined as follows: The space of 1 -forms is
split into vertical and horizontal parts by the induced connection. The vertical
(l,0)-form at a point z in the fiber P(V_)X is chosen to be the (l,0)-form of
the fiber CP1 at z. On the horizontal part, the space of (1,0)-forms is chosen to
be (\+)x ® v, where V+ is the spin + ^-bundle and v is any nonzero - \
spinor defining the point z in P(V_)X. Here we are using the isomorphism
between the complexified bundle of 1-forms over X and the tensor product of
+ \ spin and - \ spin bundles. It is known [3] that this almost complex
structure depends only on the conformal class of the metric and when the
metric is self-dual, this almost complex structure is integrable. Then in our
case, the twistor space Z is a compact complex manifold. Note that the fibers
are holomorphic rational curves with normal bundle H θ H.

On the twistor space, there is a canonically defined bundle: If we remove the
zero vector of the spin - \ representation space V_ of the Lie group SU(2) X
SU(2), and identify a vector υ to -v, then we have a manifold (F_\ 0)/Z2 on
which SO(4) acts. This action defines an associated fiber bundle over X. This
bundle is pulled back onto the twistor space to be a principal C*-bundle. The
usual complex multiplication defines an associated line bundle K1/2 which is a
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holomorphic line bundle such that (K 1 / 2 ) 2 = K, the canonical bundle on the
complex manifold Z. From this tautological construction, one can check that
K1 / 2 is restricted to be H " 2 on each fiber and that the second Stiefel-Whitney
class of the underlying S0(2)-bundle of K1/2 is precisely the second Stiefel-
Whitney class of the manifold X: w2(K1/2) = w2(X). This equality is under-
stood through the Leray-Hirsch Theorem [32].

There is also a canonically defined structure on Z: The - \ spin space V_ is
a quaternionic representation space of SU(2) X SU(2). The quaternionic struc-
ture induces a fixed point free antiholomorphic involution on the twistor space.
Following Atiyah, this involution is called a real structure and we may ask
whether a complex surface in Z is real or not and talk of the conjugate divisor
of a divisor, and so on. For example, as the fibers are invariant under the real
structure, then these copies of complex projective lines are called real twistor
lines. One may also spell out the definitions to see that K1/2 is a real bundle.

A useful aspect of the above construction is that the complex structure of the
twistor space determines the self-dual conformal structure on X. Explicitly, we
can consider the twistor space as a complex 3-fold fibered by a real family of
complex projective lines, each with normal bundle H Θ H. From a theorem of
Kodaira, one knows that each of these lines belongs to a complete local
4-complex parameter family Xc and that there is a canonical isomorphism
between the space of holomorphic sections of the normal bundle of a fiber Lx

and the tangent space at the parameter x. Then the quadratic cone of normal
sections that vanish at some point of Lx gives Xc a complex conformal
structure. This is the infinitesimal analogue of a family of lines intersecting at a
point. Restricted to the parameter space X of real lines, the complex structure
gives a positive definite conformal class. This conformal class is exactly the one
we use to construct the complex structure on the twistor space. Therefore, we
can determine the conformal structure on X by determining the holomorphic
structure of the twistor spaςe. This correspondence between self-dual confor-
mal geometry on X and the structures on twistor space is called the Penrose
correspondence. Now let Cj be the jth Chern class on Z. Making use of the
fact that Z is an 52-bundle over X, one can prove [21] that

c{ = 16(4 - T), CXC2 = 24, c3 = 4 + 2τ.

Here we see that the Todd genus of Z is equal to 1.
Note that the bundle Kn/2 is restricted to be a bundle of negative degree on

each real twistor line when n is a natural number. Therefore, Kn/2 does not
have nontrivial global holomorphic sections. In particular, one can use Serre
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duality to check that # 3 ( Z , Θ) vanishes. As the Todd genus of Z is equal to 1,
then

hι(Z, 0) = -1 + *°(Z, 0) + Λ2(Z, 0) = A2(Z, 6?) = hι(Z, 0(K)).

As the scalar curvature of the self-dual metric on X is positive, Hitchin's
vanishing theorem [20] shows that h\Z,Θ(K)) = 0. Therefore, h\Z,Θ) and
h2(Z,Θ) are both equal to zero. It follows that every second integral cohomol-
ogy class is the first Chern class of a unique holomorphic line bundle on Z.

Let α1?- ,α τ be the generators of H2(X,Z) such that ataj = δ,y. They are
pulled back to the twistor space. Then we have the following cohomology
class:

£j =

Neither \cλ nor ̂ Σ}=1εyαy is integral class, but the equality w2(K1/2) =
implies that \cλ + 2Σεyαy is an integral class and hence is the first Chern class
of a unique line bundle Dεiβ2... ε .

Theorem (Hitchin [20]).Yi) Λό(Z, Θ(Kn'2)) = 0 /or β// Λ > 1,
(ii) AX(Z, Θ(Kn/2)) = 0 /or α// n > 1,
(iii)A2(Z,β?(Dεi ...βτ)) = 0.
We have indicated the proof of (i). For the proof of (ii) and (iii), the reader is

referred to Corollary (3.8) in [20]. We shall use this set of vanishing theorems
so often that we may not mention them when they are in use.

2. The linear system \-\K\, when T < 2

Given any holomorphic line bundle D on the twistor space with first Chern
class d, its Euler characteristic χ(Z, 0(D)) is defined to be

χ ( Z > ί ( D ) ) = I ( - l ) V ( Z 1 ( P ( D ) ) .
j

According to the Riemann-Roch formula,

χ(Z,0(D)) = Id3 + \d2cλ + hd{c2 + c2) + i q c 2 .

From this formula and Hitchin's vanishing theorem, we deduce that

Under our assumption that T < 2, the bundle K"1/2 has nontrivial sections.
We shall use - \K to denote the divisor class corresponding to K"1/2 and
|- \K\ the complete linear system of effective divisors linearly equivalent to
- \K. The associated map of |- \K\ is denoted by Φ. When s0, , sn is a base
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of the vector space H°(Z, 0(K"1 / 2)), Φ is a map from Z into CPM defined to
be Φ(z) = [so(z): :sn(z)] for any point z in Z.

Lemma 2.1. // S is an effective divisor in the twistor space, then S L > 0
for any real twistor line.

Proof. As Z -» A" is a fibration with real twistor lines as fibers, S must
intersect a real twistor line L. Therefore S L could be nonpositive only if L is
contained in S. It implies that a section s of the divisor bundle S of S vanishes
along the twistor line L. By analyticity, it can vanish along L up to a finite
order k. In other words, when $ is the ideal sheaf of L and N* the dual of the
normal bundle of L, then s is a global section of %k $ 0(S) but is not a
section of %k+ι Θ #(S). Then the A:th derivative of s is a well-defined
nonzero section of the bundle S Θ S^N*) on L, where S*(N*) is the kth
symmetric power of N*. As N = H Θ H, S $ S^N*) can have nontrivial
section only if S has positive degree on L. That is S L > 0.

Since K"1 / 2 is a raz/ bundle, H°(Z, Θ(K~1/2)) is a raz/ vector space in the
sense of [1]. Let V c H°(Z, 0{K~ι/2)) be a raz/ vector subspace such that the
system \V\ has dimension greater than 1. If \V\ has fixed component, a generic
real element D in \V\ has the form D = F + E, where .F is the fixed part of
\V\. If F is considered to be the intersection of all elements in \V\, it is obvious
that F is a real effective divisor on Z. As Z) is real, E is also real and effective.
Using the last lemma and reality, we have F L > 2 and E - L ^ 2. This is
impossible because - £JC L = 2. Therefore, any nontrivial real subsystem \V\
of |- ^AΊ does not have fixed component. Moreover, there are the two
following general versions of Bertini's theorem [33].

Theorem 2.2. Let \V\ be a linear system with dimension n on a compact
complex manifold Z, Φv: Z -» CPM the associated meromorphic map. If \V\
does not have fixed components and dimΦ^Z) > 2, then a generic member of
\V\ is an irreducible subvariety ofZ.

Theorem 2.3. A generic element of a linear system \V\ on Z cannot have
singular points that are not base points of the system.

With these two theorems and the fact that the nontrivial real subsystem of
|- \K\ has no fixed component, one can directly adopt Hitchin's argument in
(ii) and (iii) of Proposition (4.3) in [21] to show the following.

Lemma 2.4. If V Q H°(Z,Θ(K~ι/2)) is a real vector subspace such that
dim|F| > 3, a generic real element in \V\ is irreducible nonsingular.

To describe an irreducible nonsingular element in |- \K\ we have

Lemma 2.5. Suppose that S in \- \K\ is a real nonsingular irreducible
element', then it is the blowing up of a rational ruled surface 2τ-times. This
surface can also be blown down to the projective plane. The fixed component of its
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anticanonical system is a sum of irreducible components of reducible fibers of the

ruling.

Proof. First of all, we claim that the surface S must contain a real twistor
line. To see this, let s be a real section of K"1/2 defining S. Given any x e X,
let Zx be the fiber of the twistor space at x\ then s is restricted to be sx in
H°(ZX, φ(K-ι/2)). Recall that Zx is the projective spinors P(V.)X and K~1/2

is restricted to be H 2 on P(V_)X. Therefore, sx is a homogeneous polynomial
of degree 2 with variables in \_x. Using the symplectic structure to identify \_x

and V_*x, we regard sx as a vector in the symmetric tensor product \}x. As the
bundle V2 is isomorphic to the complexified bundle of anti-self-dual 2-forms
on X and sx is real, then the assignment x -> sx defines a section of
anti-self-dual 2-forms. If s does not vanish identically on any real twistor line,
then each sx is nonzero. After the length of each sx is normalized, we use the
metric on X to identify 2-forms and skew-adjoint endomorphisms on tangent
space. Then a unit anti-self-dual 2-form at a point on X becomes an almost
complex structure on the vector space TXX. Its canonical orientation is
opposite to the original one. Then our section x •-> sx is an almost complex
structure on. X. If c[ and c2 denote the Chern classes of this almost complex
structure, then χ = c'2 and -T = \(c'± - 2c'2). Moreover, the index theorem [4]
gives that χ(Tl0X) = ^(c'2 + c'2) is an integer. It follows that i(x ~ τ )
should be an integer. But χ — T = 2. Therefore the section s must vanish on
some real twistor line L.

Using the adjunction formula on the twistor space, one deduces that the
canonical bundle Ks of the surface S is the restriction of K1/2. As the real
twistor line L is a rational curve such that - \K L = 2, one can apply the
adjunction formula on S to show that L2 = 0. On the other hand, the induced
long exact cohomology sequence of the short exact sequence

shows that hι(S, Θ) = 0. When L is considered as a divisor on the surface 5,
then dim|L| = 1. From Noether's lemma [16], we then know that S is the
blowing up of a rational ruled surface with L as a nonsingular fiber. Actually,
we have to blow up 2τ-many times because

Suppose that F is the fixed component of \-Ks\, this is a real effective
divisor on S. If D is a real element in \-Ks\, then D = F + E, where E is a
real effective divisor. As we can use an exact sequence argument on the twistor
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space to check that dim|-ΛΓ5| > 8 - 2τ > 4, we can always find a D such that
the corresponding movable part E has the property that E L > 0. By reality,
we actually have E L > 2. Yet

DL=-KSL = -\K L = 2,

therefore F L = 0. Since an irreducible effective divisor can have intersection
number 0 with a generic fiber of the ruling only when it is an irreducible fiber
or an irreducible component of a reducible fiber, and a generic fiber can
always deform to another generic fiber, the components of F can only be
irreducible components of reducible fibers.

From the above observation, we see that the proper transform E^ of the
infinity section of the minimal ruled model of S is not in the fixed component
of \-Ks\\ then -Ks E^ > 0. By the adjunction formula, we have E^ > -2.
Now it is obvious that S can be obtained by blowing up CP 2 2τ + 1 times.

Proposition 2.6. When τ < 2, the linear system \- \K\ has no fixed points.
Proof. We have seen the reason why |- \K\ has no fixed component.

Suppose that C is an irreducible curve in the twistor space such that - \K C
< 0, then it is in the base locus of |- \K\. Let L be any real twistor line
passing through the curve C at a point w. Let w be the conjugate point. Then
w is also in the base locus of |- \K\. Picking up any other point z on L, we
use |- \K\Z to denote the elements in |- \K\ containing the point z. Since
every element in |- \K\Z contains three points on L, namely w, w and z, while
- \K - L = 2, every element in |- \K\Z contains L. That is\-\K\z = \- \K\L.
Therefore, dim \-\K\L^ % — 2 τ > 4 . According to the last two lemmas, the
generic real element S in |- \K\L is a rational surface, such that the fixed
component of \-Ks\ is in the reducible fibers. Now - \K C < 0 implies that
the curve C is in the fixed component of \-Ks\. But by construction, this curve
intersects a generic fiber on 5, namely, the real twistor line L. This is a
contradiction. Therefore any irreducible curve C on the twistor space has the
property that - \K C > 0. It follows that for any curve C on any real
nonsingular irreducible element S in |- \K\, -Ks C > 0. In view of Lemma
2.5, we know that S is the blowing up of CP2 2τ + 1-times so that there is no
nonsingular rational curve with self-intersection less than or equal to -3. This
surface is usually called a (degenerate) Del Pezzo surface [9], [29]. As a
particular case of Demazure's work [9], \-Ks\ is proved to have no base point
and a generic element in \-Ks\ is irreducible. As one can see, from the exact
sequence

0 -» 0 -> Θ(K-ι/2) ^ 0 5 (K^) -* 0,
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that the base locus of |- \K\onZ is precisely that of \-Ks\ on S, \- \K\ does
not have base point.

Theorem 2.7. A compact connected simply connected manifold with τ = 1
and a self-dual metric with positive scalar curvature is conformally equivalent to
the projective plane with Fubini-Study metric.

Proof. According to Hitchin [21], if the twistor space of a compact self-
dual manifold is Kahlerian, the manifold is conformally equivalent to the
sphere or projective plane with standard metrics. Therefore, to prove the
theorem, we only have to prove that the associated map Φ is an embedding.

From the last proposition, we see that the map Φ is holomorphic. Under the
assumption that T = 1, we actually have a lot more degree of freedom to refine
the argument in the proof to check that - \K C > 0 for any irreducible curve
C in the twistor space. Then any nonsingular irreducible real element S in
|- \K\ is given by blowing up CP 2 at three general points. As the map Φ is
restricted to be the associated map of the anticanonical system on 5 and this
map on any such S is an embedding, one can easily see that the map Φ is
one-to-one.

To prove that Φ is an embedding, we pick up any point z in the twistor
space. Through this point, there is a unique real twistor line L. A generic real
element of |- \K\ containing z is the blowing up of three general points on
CP 2. This surface intersects the curve L transversely at two points. On the
other hand, one can apply Lemma 2.4 on the system |- \K\L to see that there
is also a nonsingular irreducible real element in |- \K\ containing L. This
surface is also the blowing up of CP 2 at three general points. As the
restrictions of Φ to both surfaces are embedding and Φ is one-to-one, the
differential of Φ at z has full rank. Therefore, Φ is an embedding.

Corollary 2.8. The conformal class of the Fubini-Study metric is the unique
self-dual conformal containing a metric with positive scalar curvature on CP2.

Remark 2.9. When T = 0, Lemma 2.5 implies that a generic real element in
|- jK\ is the blowing up of CP 2 at a single point. Therefore, one can easily
prove that the map Φ is an embedding and hence X is conformally equivalent
to the Euclidean sphere. A careful reader may have realized that the dimension
of |- \K\ is determined by the geometric property of the manifold and its Betti
numbers b}. When we study the system of |- \K\ and its elements, we only
make use of the consequence of the simple-connectivity that bx = 0 rather than
the strong implication that the underlying manifold X is homeomorphic to the
sphere or a connected sum of the projective planes. Therefore, we can slightly
generalize Theorem 2.7 as follows:

Theorem 2.10. // X is a compact connected oriented manifold with
(i) bx = 0 and τ < 1, and
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(ii) a self-dual metric with positive scalar curvature,
then it is conformally equivalent to the Euclidean 4-sphere or the projective plane
with Fubini-Study metric.

3. The system \-%K\9 when T = 2

In this section, we only study the case when τ = 2.
From the last section, we see that the obstruction for the associated map

being an embedding is essentially from the curves C such that - \K C = 0.
Let us call any such irreducible curve an exceptional curve and let © be the set
of all points on exceptional curves. It is easy to check that exceptional curves
are nonsingular rational.

To locate the exceptional curves, we use the bundle DεiC2. This bundle has
nontrivial holomorphic sections. In fact, the system |- \K + iε1α1 4- ^ε2α2 |
has dimension at least 1. Elements in this system will be denoted by Deiβ2. To
save space we shall call this system (εl5 ε2). Since - \K L — 1, aλ L = 0 and
α2 L = 0, one can easily imitate the techniques in the proof of Lemmas 2.4
and 2.5 to see that every element in the system (εx, ε2) is a rational surface. In
fact, it is the blowing up of a ruled surface once or the projective plane twice.
A useful observation is that each D€iβ2 contains a unique real twistor line. Let
us prove that for (1,1): If Dn does not contain any real twistor line, then every
real twistor line interests Dn transversely at one point because D 1 1 L = 1.
Therefore Dn is diffeomorphic to the parameter space of real twistor lines X
via the twistor projection. But the Euler characteristic of X is equal to 4 and
the Euler characteristic of Dn is equal to 5. Hence Dn must contain some real
twistor line L. As the self-intersection number of L on the surface Dn can be
proved to be 1 while distinct real twistor lines are disjoint, then the Hodge
index theorem [16] provides the uniqueness.

Now let us fix one Dn. For any (ε υ ε2), we have the exact sequence:

0 - 0(D e i β 2 Θ DΠ1) - Θ{ΌεJ - ΘDu{ΌεJ - 0.

When (ε υ ε2) Φ (1,1), we can use Lemma 2.1 to check that Deχe2 Θ Dfί does
not have sections. Therefore any nontrivial section of DειE2 is uniquely re-
stricted to be a nontrivial section of Dεiβ2 over Dn. In case (ε υ ε2) = (1,1), D u

on Dn still has nontrivial sections. Let us use D^ to denote a divisor on Dn

defined by this restriction. As cι aj = -4, c2 αy = 0, and, c\ α7 = 0, then
on the surface Dιv we have

(3.1) - i - i Σ ( « A + β, + λy);
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(3.2) Kn D\B2 = \{\cx + ax + 0i2)(-\Cι + αx + « 2 ) ( k 1 + ε Λ + ε2α2)

= -2 + i(«i + e2),

where # n is the canonical class of the surface Dn.
Suppose that C is an exceptional curve such that αx C = 0 and α2 C = 0.

Let Z)u be an element in (1,1) such that Dn intersects C. This is possible
because the system (1,1) has nonzero dimension. But Dn C = 0. Then the
curve C is actually contained in the surface Dn. On Dn, we have Kn C = 0.
Now by the adjunction formula and the rationality of C, we have C 2 = -2.
Since Dn is the blowing up of a rational ruled surface once or the protective
plane twice, the existence of the curve C on Dn implies that this surface is the
blowing up of the Hirzebruch surface F2 once away from the infinity section
E^ and E^ is exactly the curve C. If Eo is the divisor class of the zero section
of F2, F is that of a fiber of the ruling and E is the exceptional divisor of the
blowing-up, then every divisor class on Dn is a linear integral combination of
Eo, F and E (see [16]). For example,

C = E^ = Eo - IF and Kn = -2E0 + E.

Let D[_ι = aE0 + bF + cE for some integers a, b and c. Then

0 = Dι_ι C = D[_λ E^ = (aE0 + Z>F + c£) - (£ 0 - 2F) = 6.

But this is not compatible with the consequence of (3.1) and (3.2) that
0 = ( ^ ί - i ) 2 = 2α2 + lab - c2 and -2 = Kn D'ι_ι = -4a - 2b - c.
Therefore, not both of aλ C and α2 C are equal to zero. Then we can always
choose an (εl9 ε2), εi; = ± 1, such that

It implies that the curve is in the base locus of the system (ε1? ε2). Now it is
obvious that exceptional curves cannot be real because when C is the conjugate
of C,

( - i * + K « i + έ*2α2) * C = {\K - i β Λ - \e2a2) C> 0.

Suppose that y is a point in the base locus of the system (el9 ε2) but is not on
the curve C. Then it cannot be on the unique real twistor line L on the surface
Dε i ε 2. For otherwise, this curve L would have been in the base locus of the
system (ε l5 ε2). Let U be the real twistor line through y9 it is disjoint from the
curve C. Through any other point yr on L\ there is a Dεε2 in (εx, ε2)
containing y'. Then Dεε2 must contain the twistor line L' because it intersects
U at more than one point. But the unique real twistor line on Dε ε must
intersect the curves C and C. This cannot be ZΛ This contradiction shows that
C is precisely the base locus of (ε1? ε2). From the number of choices of εx and
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ε2, we see that the set 6 consists of at most four curves and Φ(6) is a set of at
most four points. Now we are ready to prove the following:

Proposition 3.1. ( i ) / / z e Z \ E andy e Z such that zΦy, then Φ(z) Φ

(ii) ΦowZ\Ew an embedding.
Proof. Let S be a nonsingular irreducible real element in |- \K\ containing

z. Its existence is guaranteed by Lemma 2.4. This is a degenerate Del Pezzo
surface. If y is not on S, then Φ(z) Φ Φ(y). Suppose that y is also on S.
According to Demazure [9], because we blow up only a few points on the plane
to S and z is not on any irreducible rational curve C with self-intersection
C 2 = -2 - Ks - C = -2, the system \-Ks\2 of elements in \-Ks\ containing z
has no base points. Then there is a section of K^1 which vanishes at z but not
at y. As this section can be extended to be a section of K"1/2 on the twistor
space, Φ(z) Φ Φ(y).

To prove that Φ is an embedding module ©, we pick up any point z in
Z \ 6; then Φ(z) is not in the set Φ(S). As Φ(K) is only a set of finitely many
points, a generic element in |- \K\ passing through z is disjoint from the set
6. Let us pick up a real one, S. This is a surface transversely intersecting the
real twistor line through z at the points z and z. As the surface S is disjoint
from the set 6, any irreducible curve D on S has the property that -Ks D > 0.
Now one can prove that the associated map of the anticanonical system on S
is an embedding. Therefore, the map Φ is an embedding on S. Since Φ is
easily seen to be an embedding on every real twistor line and Φ is proved to be
one-to-one module S, the differential of Φ at the point z has full rank.

Knowing that Φ is an embedding modulo E and that K is a set of at most
four curves, we can apply Siu's vanishing theorem [31] on the bundles
K-l/2 s φ * H a n ( j K-l s φ* R 2 t Q s e

2)) = 0 and / ^ ( Z ^ K " 1 ) ) = 0.

Then from the Riemann-Roch formula, we deduce that
2)) = 6 and Λ°(Z, ^(K"1)) = 19.

Therefore, the associated map sends the twistor space into CP5. But
Λ°(CP5, 0(H 2)) = 21, Φ(Z) has to be contained in the zeros of two sections of
H 2 , i.e. the intersection of two quadrics.

Now we can also tell the precise number of exceptional curves: Suppose that
Dn does not contain any exceptional curves. Then Dn is disjoint from any
exceptional curves because if C is an exceptional curve such that Dn C > 0,
then Dn C < 0. Therefore, Φ is restricted to be an embedding on Dn. As
one can use an exact sequence argument and various vanishing theorems to
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check that h°(Dιv ΘDu(K~ι/2)) is equal to 4, Φ(Dn) is regarded as a divisor in
CP3. Let n be the natural number such that Φ(Dn) = nH, where H is the
hyperplane class in projective space. Then the canonical class of the surface
Φ(Z>n) is (n - 4)H. Hence c\{Dn) = n(n - 4)2. On the other hand, we can
show that cl(Dn) = 7. This contradiction shows that each Dn must contain
an exceptional curve. As the system (1,1) has dimension at least 1 and there are
only finitely many exceptional curves, we can always find two distinct elements
in the system to contain the same exceptional curve C. Suppose that (aτ + a2)
• C > 0, then (ax -\- a2) - C ^ 0. Hence within the pencil generated by the
above two elements in the system (1,1), we can find a particular Dn to contain
both C and C. It follows that every real twistor line through C and C intersects
this Dn at least twice and hence is contained in Dn. This is impossible.
Therefore, (ax + α2) C < 0. A similar argument shows that, for any Dn in
(1,1), Dn - C = -1 and hence Dn C = 1, i.e. (αx + a2) - C = -2. Now it is
easy to prove that the system (1,1) is a pencil because through each point of C,
there is a unique element in (1,1). Regarding the curve C as the intersection of
any two elements in (1,1), we have D'n = C on a particular Dn. From (3.1), we
have

i.e. («! - α 2) C = 0. Therefore, aι C= 1-1, a2- C = - 1 .
Working on the system (1, -1), we obtain another exceptional curve D with

ax D = - 1 , a2 - D = I. As the twistor space does not contain real points,
exceptional curves are disjoint from their conjugate. As C is in the base locus
of the system (1,1), if the curves C and D intersect, then the equation
Dn D = 0 implies that D is also in the base locus of (1,1). This is impossible.
Similarly, we see that C and D are also disjoint. As a conclusion, there are
four exceptional curves, namely C, C, D, and D. They are mutually disjoint.

Proposition 3.2. The system (1,1) is a pencil such that
(i) if Dn is the unique element in (1,1) containing the curve D (resp. D), and

L is the unique real twistor line on Dn, then Φ(DU) is a 2-dimensional cone over
the conic Φ(L) with Φ(D) (resp. Φ(D)) as vertex;

(ii) a generic element is the blowing up of the projective plane at two distinct
point. It is sent by the associated map to a smooth quadric surface.

Proof. Without loss of generality, we may assume that Dn is the blowing
up of the Hirzebruch surface Fk once away from the infinity section E^. Let
Eo be the proper transform of a generic zero section, F a generic fiber and E
the exceptional divisor of blowing up, then F - E = F is the proper transform
of the fiber through the point of blowing-up and the canonical class Kn is
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given by

Kn = -2E0+(k- 2)F + E.

When L is the unique real twistor line on Dll9 then Kn L = -3 and L2 = 1.

As L is a nonsingular irreducible curve different from the exceptional divisors

F, E, and the E^, there are nonnegative integers a, b, and c such that

L = aE0 + bF- cF.

From the above equalities, we have

(3.3) a2k + lab - c2 = 1,

(3.4) -ak-2a-2b + c = -3.

Eliminating 6 from these equations, we have

(3.5) 2 f l 2 - ( 3 + c)0 + c 2 + l = 0.

On the other hand, C is an exceptional divisor on Dn. As the curve C

intersects the real twistor line at one point, it is easy to use (3.3) and (3.4) to

deduce that when k = 1, C cannot be E^. Therefore, in any case, C is either E

oτF.

To determine L and C in terms of £ 0 , F, and E, we first claim that

D'_λ_λ = L. This can easily be seen once we regard D'_λ_λ as the intersection of

the surface Dn and its conjugate D_x_v Considering the curve C as the

intersection of two elements in the system (1,1), we see that D'n = C.

Therefore,

Suppose that C = E. From (3.1), we have

1 = D'u • # ! _ ! = C L = E-(aE0 + bF - cE) = c.

This is substituted into (3.5) to show that a = 1. Then from (3.4), we deduce

that 2b = 2 - k. As b > 0 and k > 1, then b = 0 and A: = 2, i.e. L = Eo- E

and the surface 2 ) n is the blowing up of F2 once away from the infinity

section. Moreover, - \KχDχχ = C + L = Eo. Hence - i £ E^ = 0. Therefore,

2?^ is an exceptional curve in the twistor space. As it is different from C and

C, it is either D or D.

Conversely, if Dn is the unique element in the pencil containing D, then by

rationality of D and the adjunction formula on Du, we have

D2 = -2 - Kn D = -2.
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Therefore, Dn is the blowing up of F2 once away from the infinity section
which is the curve D. As C is an exceptional divisor on Dn and disjoint from
the infinity section Z), then C = E. Now, it is easy to see that this kind of
Φ(Dn) is a simple cone described by assertion (i).

For generic D1V we must have C = F = F - E. One may carry out the
similar elementary computation to prove assertion (i), we do not repeat the
calculation here.

Remark 3.3. Of course, for (εv ε2) = (1, -1), (-1,1) or (-1,_-1), the system
(ε l5 ε2) can also be described by this proposition with D and D appropriately
changed. One particular consequence of this proposition is that the images of
distinct exceptional curves are distinct points. Then from Proposition 3.1, we
see that there are exactly two conjugate pairs of singular points on Φ(Z).
Through each singular point of Φ(Z), there is a pair of simple cones with this
point as vertex and a pair of simple cones with this point as a nonsingular
point. We shall use this remark to give a complete algebraic description of
Φ(Z).

Theorem 3.4. // X is a compact connected simply connected oriented self-dual

Riemannian manifold with positive scalar curvature and signature 2, then X is

diffeomorphic to CP 2 #CP 2 .

Proof. Let Dn be a generic element in (1,1). It is the blowing up of CP 2 at
two distinct points. The unique real twistor line L on Dn is the proper
transform of a line away from the two points. As any other real twistor lines
intersects Dn transversely at one point, the twistor fibration is restricted to be
a smooth map from Dn onto X such that TΓ: Dn/L -> X/{x}, x = π(L), is
a diffeomorphism. This projection is orientation reversing because the horizon-
tal orientation on Z is opposite to the one on X. Now as L is a rational curve
on the surface Du with self-intersection 1 and Dn is diffeomorphic to
CP2#CP2#CP2, it is clear that X is diffeomorphic to CP2#CP2.

To study the image of the twistor space in CP5, let Qo and Q^ be two
quadrics in CP5 such that their intersection contains Φ(Z). Since a generic
real element in |— ̂ ^Γ| is disjoint from the four exceptional curves, it is a
nonsingular complete intersection of two smooth quadrics in CP4. Therefore, a
generic element in the pencil generated by Qo and Q^ has rank at least 5. As
Φ(Z) is an irreducible variety in Qo and Qo can be assumed to have rank at
least 5, a theorem of Hodge and Pedoe (p. 244 in [23]) shows that Φ(Z) = Qo

Π Q^. In particular, Qo n Q^ has exactly four singular points and Z can be
regarded as a small resolution of the singularity of Qo and Q^. From
Proposition 3.2, we know that through each singular point on Qo and Q^,
there are nonsingular quadric surfaces contained in Qo and Q^. This observa-
tion enables one to argue that the vertex of a rank 5 element in the pencil
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generated by Qo and Q^ is not contained in the intersection. Therefore, one
may follow Hodge and Pedoe's elementary transformation on coordinates (p.
281 in [23]) to see that a generic member in the pencil is smooth. Then we
assume that Qo and Q^ are smooth.

There are only two types of intersection of two full rank quadrics in CP5

with four singular points. One can find a homogeneous coordinate [vv0: :w5]
on CP 5 such that they are either

Qo = { w G CP 5: αw0

2 + aw\ + bw£ + f>w3

2 + cw4

2 + ώv5

2 = 0},

Q^ = {w G CP 5: w0

2 + H>2 + H>2 + w2 + w4

2 + w5

2 = θ};

ρ 0 = { w G CP 5: 2 ^ 0 ^ + wx

2 + 2Z>w2w3 + w3

2 + cw4

2 + CMΛ? == 0},

δ o o = { ^ CP 5: 2woWl + 2w2w3 + wj + wj = θ},

where α, Z>, c, J are distinct nonzero (complex) numbers. In the pencil gener-
ated by the second pair of quadrics, there is only rank 4 quadric. The line of
vertices of this quadric interests the other members of the pencil at two points.
These points are singular points of the intersection. One may use projective
geometry argument to check that there is no 2-dimensional simple cone
contained in the intersection and passing through any one of these two points.
In view of Remark 3.3, we can conclude that Φ(Z) is the intersection of the
first pair of quadrics.

In the pencil generated by the first pair of quadrics, there are two rank 4
quadrics and two rank 5 quadrics. To study the real structure on this pencil, we
must first recall that Z is a real space without real point. Secondly, the target
space CP 5 of the associated map is the projectivization of the dual of the real
vector space H°(Z, 0(K~1/2)), therefore CP5 has an induced real structure.
Then through the map Φ which is an embedding modulo ©, Φ(Z) becomes a
real space without real point. The four singular points on Φ(Z) are two
conjugate pairs. They are lying on the lines of vertices of the two rank 4
quadrics. In fact, the two rank 4 quadrics are real and hence their lines of
vertices are joining a conjugate pair of singular points, otherwise, according to
Remark 3.3, the lines of vertices would have been in the intersection. The two
rank 5 quadrics are also real, otherwise the intersection would have contained
real points. From the reality of these singular elements, one can easily change
from the w-coordinate to a homogeneous coordinate [>>0: : y5] such that the
real structure is simply the usual conjugation, and then one shifts the parame-
ter of the pencil so that Φ(Z) = Qo Π Q^ with

QQ = {y G CP 5: λ x ( Λ

2 + y\) + λ2yi - λ3y? - λ 4(^ 4

2 + yf) = 0},

Q^ = [y G CP5: y$ + y} + y} - y} - yi - yi = 0},



114 Y. SUNPOON

where the λy's are distinct real numbers. Certainly, we can choose λ 4 = 1.
When λι is assumed to be bigger than λ4, the requirement that Qo Π Q^ not
contain real points will force us to have

λ2 > λ 2 > λ3 > λ 4 = 1.

Then a real mobius transform on the parameter of the pencil can take λx to 2
and λ3 to §. We are allowed only one degree of freedom—the λ 2 with
2 > λ 2 > | For future reference, we change coordinate again and have

Theorem 3.5. // X is a compact connected simply connected oriented self-dual

Riemannian manifold with positive scalar curvature and signature 2, then its

twistor space Z is a resolution of the intersection of two quadrics:

(3 6) Q° = ( Z * C P 5 : 2 ( 2° 2 + 2χ2) + λ z | + | Z | + l l + ** = ° ) '
Qn = {z e CP5: zl + zl + z\ + z\ + z4

2 + 25

2 = 0},

2 > λ > f.
The resolution Φ: Z -» β 0 Π β^ is a holomorphic embedding modulo four

curves. Under this map, the real structure Z is an extension of the real
structure J: C 6 -> C6 defined by

(3.7) J(zo,zl9 -,zs) = (zo,zl9z29-z3,-z4,-z5).

4. Self-duality on CP2#CP2

In this section and the next, we change our viewpoint. Our aim is to
construct a self-dual conformal class on CP2#CP2 associated to every real
number λ in the open interval (§, 2), and then show that each such conformal
class contains a metric with positive scalar curvature. To set up the construc-
tion, we follow Hurtubise [24].

Let λ be a real number such that 2 > λ > f. We put λx = 2, λ 2 = λ, λ3 = f,
λ 4 = 1 and fix a homogeneous coordinate z = [z0: :z5] on CP Then we
define a pair of quadrics Qo and Q^ by (3.6) and a real structure on CP5 by
(3.7). From the last section, we know that nonsingular real conies are candi-
dates of real twistor lines. As every nonsingular conic is contained in a unique
plane and a plane is contained in a member of the pencil, we want to
parametrize this kind of plane: For any / in C, let γy be the function
Ύj(t) = (λj + t)ι/2; for any σ = [σ0: σ: σ2: σ3] in CP3, we define the matrices
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A(σ ί) and B(σ;t)by

YΛ
Yi

σ
o

"Yl
σ
3

Yl
σ
2

Yi
σ
o

"Yl
σ
3

Yl
σ
2

~~ Yi l

Yi o

-zγ
1
σ

3

i Yi^i

'YΛ

"
f
Ύl

σ
2

Y2
σ
2

Y2 3

Y2 0

Ϊ2
σ
O

-«γ
3
σ

2

»73
σ
3

-
J
'Y3

σ
o

zy
3
(j

2

'Y3
σ
O

iγ
3
σi

Y4
σ
3

-Y4^
2

Y4
σ
l

Y
4
σ

0

"Y4
σ
2

Y4
σ
l

Y4
σ
0

-/γ
4
σ

3

-/γ
4
σ

2

^Y4
σ
l

—^ Y4^0

^ Y4^3

"'Y4
σ
l

'YΛ

For ί = 00, we put γy(oo) = 1 for each j . These so-called ^-matrices and
5-matrices are considered as linear transformations from C6 to C4. The
projectivization of their kernels are in Qn where Qt is given by Qo + tQ^.
These projective subspaces in CP5 are also denoted by A(σ; t) and B(σ; t).
Except when t = ~XX and t = -λ 4, the families of A(σ; t) and of 5(σ; /) give
all planes in Qr When t = -λι or -λ 4, the two families of projective subspaces
coincide but some members in the family are 3-dimensional, some are 2-
dimensional. Though not every plane in Q_λι or Q_\4 is in these families, every
plane in Qt containing the line of vertices of Qt is in this family.

For any σ and ί, whenever A{σ\ t) is a plane, we call it an α-plane. This
plane intersects Qo Π Q^ along a conic. This conic is called an α-conic and is
denoted by α(σ; /). Similarly, one uses 2?(σ; t) to define β-planes and β-conics.
As a nonsingular conic in Qo Π Q^ is real if and only if its plane is real, one
can easily check that an α-conic α(σ; t) (resp. β(σ; t)) is real if and only if

(i) t is a real number in an interval 7 i n R U { o o } = RP1:

/ = (-00, - λ j U [-λ4, 00) U {00}

and
(ii) σ is in a copy of RP3 in CP3 given by

(4.1) [V σ l : σ2 : σ3l = [°2'-°3 °0'-°l]

Since every real plane containing a singular point of Qo n Q^ is contained
in a rank 4 quadric Q_λχ or Q_χ4, and through every nonsingular point on
Qo Π Q^ there is a unique real α-conic (and a unique real β-conic), the
parameter space A0 of all real α-conics in Qo Π
is identified to RP3 X 7°, where

missing the singular points

Moreover, when Z° is the set of points in Qo Π Q^ lying on the α-conics
parametrized by A0, then Z° is an open submanifold in Qo Π Q^. It is a real
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space without real points. There is a fibration TΓ: Z° -> A0 commuting with the
real structure. The fibers are real α-conics with normal bundle H Θ H [21].
Given these data, we recall from §1 that a self-dual conformal class on A0 can
be explicitly constructed by taking the real part of the infinitesimal analogue of
a family of α-conics intersecting at a point.

Note that when A(σ; t) and A{τ\ t') are α-planes in distinct elements of the
pencil, they intersect if and only if their corresponding α-conics intersect.
Therefore, the algebraic condition that α(σ; t) and a(τ; t') intersect can easily
be computed. When we use γ to denote (λ y + t)ι/1 and γy to denote
(λ y + ί')1/2> t h e n « ( σ ; 0 and α(τ; tr) intersect if and only if R(σ, ί, T, tf) = 0,
where

) σoσ2τ1τ3).

Let ί^.= ( σ e CP3: σ, Φ 0} and V} = {[a0: ax] e CP1: a} Φ 0}. Then A0 is
covered by the real part of (ί/0 U U3) X (Fo U KJ. On Uo X Fo, let ξk = σ^/σ0

for A: = 1,2,3; t = α^flo I n the following computation, we assume that
t Φ -λj for y = 1,2,3,4. To obtain the infinitesimal condition that the α-plane

intersects A(ξj + dξy, t + dt\ we simply make the following substitutions in
the equation R(σ,t,τ,t') = 0:

σ 0 = τ 0 = 1,

°j = f/' τj = f/ + d$j f o r J = 1 » 2 ' 3 )

γ^ = γ * + 2γ~ f o r / c = i ' 2 * 3 ' 4 -

The algebraic condition that A(ξj\ t) and ^ ( ^ + dξβ t + ώ) intersect will
involve the derivatives (dζp dt) up to order 3. But up to order 3,

(4.2) R(ζp t,ξj + dξj, t + dt)- - 2^0(f>; 0.
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where the quadratic differential Ω at (ξβ t) is given by

(4.3) - Apζ2dζιdζ3 + Iq^d^dζ, + 2kξ3dξ1dζ2 - 2lξ1dξ2dζ3

;

p, q, k, I are quadratic polynomials in t:

*(/ ) = ( λ 4 + t)M\2 + λ 3 ) - 2 λ 2 λ 3 + (2λ, - λ 2 - λ 3 )<],

l(t) = (λi + 0 [ λ 4 ( λ 2 + λ 3 ) - 2 λ 2 λ 3 + ( 2 λ 4 - λ 2 - λ 3 )<],

and

/ ( f ) = ( λ 4 - λ J ί λ j - λ , ) ( f | + tff3

2)

+ 2[(λ 1 + λ 4 ) ( λ 2 + λ 3 ) - 2λ x λ 4 - 2λ2\3]ζιζ2ζ3.

Here we see that when dt is nonzero, Λ(ζj\ t) and A(ξj + έ/fy , / + ώ)
intersect if and only if Ω({.;/) = 0. This is exactly when their corresponding
α-planes intersect. The factor dt turns up in (4.2) because two α-planes in one
quadric always intersect. But it is easy to find the algebraic condition that two
α-planes in a generic quadric intersect at a point in Qo Π Q^. This condition is
equivalent to the condition that their corresponding α-conics intersect. Then
one can check that α(f7; /) and a(ξj + dξp t) intersect if and only if Ω(α. t) = 0
and dt = 0. Therefore, the quadratic differential Ω is restricted to the real part
of ί/0 X Vo to define a self-dual conformal structure.

From (4.1), we check that a(ζl9 f2, £3,0 is a real conic if and only if t e 7°,
|f2|

2 = 1 and ξ3 = -£2?i Th e n we substitute

Si = x + iy* ?2 = e'ω> Ϊ3 = -eiω(x-iy),
where (x, y) & R2 and ω G [0,2ττ), into (4.3). Then in real coordinates

where

A = 4p[{dxf +(dy)2]

+ 4 [ 9 ( x 2 + >;2) - l](ydx - xdy)(dω)
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with

F= F{x,y) = [l + (* 2 +^ 2 ) 2 ](λ 1 - λ 4 )(λ 2 - λ 3)

+ 2(x2 + / ) [ ( λ 1 + λ 4 ) (λ 2 + λ3) - 2X^4 " 2 λ 2 λ 3 ] .

Note that F(x, y) is a strictly positive function. In fact, if F(x, y) = 0, the real
α-conic with parameter (x, y, ω, t) would have been singular (cf. [24]). But
singular real α-conics must contain real points in the intersection Qo Π Q^. By
our choice of the λ's, this is impossible.

One can check that if t ^ (-00,-λ^U (-X4,co), then A is a positive
definite differential. On the real part of Uo X Vθ9 denoted by (ί/0 X V0)R9 we
define

Then g is a self-dual metric on (t/0 X V0)R Π A0 with respect to a certain
orientation. One can also work on affine coordinates of (ί/0 X Vλ)R,
(ί/3 X F0)Λ, and (ί/3 X Vι)R to find the local expression of the self-dual
conformal structure and then check that the metric g on (t/0 X V0)R Π A0 is
extended to be a metric on A0 such that the conformal structure defined by g
is Ω. We do not repeat this computation but give the functions of coordinate
change: when the affine coordinate on Vx is denoted by ί, to change from Vo to
Vλ on Vo Π Vl9 one takes i = \/t. When the real coordinate on (U3)R is
denoted by (u,υ,θ) with (u,υ) e R2 and θ e [0,2ττ), to change from the
(x, y, (o)-coordinate to the (w, υ, incoordinate, one takes

u = -(JC 2 + y2)' (xcosco +^sinω),

v = (x2 4- y2) (xsinω — j>cosω),

Apparently, the metric g on 4̂° is not defined when / is equal to -Xx or
-λ 4 , but this is also where A0 is not defined. We shall take a coordinate change
on A0 to extend the metric g onto CP 2 #CP 2 .

From (3.6), we see that the four singular points on Qo Π Q^ are

xo= [ l : / : 0 : 0 : 0 : 0 ] , /(JC 0 ) = [1 : - ι : 0 : 0 : 0 : 0 ] ,

yo= [ 0 : 0 : 0 : 0 : 1 : / ] , J(y0) = [ 0 : 0 : 0 : 0 : 0 : 1 : - / ] .

To resolve the coordinate singularity at t = -λ 4, we first check that the family
of real α-conics through x0 and J(x0) is parametrized by a 2-sphere. Within
this family, two elements are exceptional in the sense that the 2-dimensional
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simple cones joining these conies to the point y0 are in the intersection
Qo Π Q^. We pick up one of these conies L, namely α(σ; -λ^ with σ =
[1:0:1:0]. Let Λ be the simple cone over L with y0 as vertex. With y0 and L
removed from Λ, the resultant space is diffeomorphic to A0 = RP3 X 7°. In
our context, this is true because through/every point on Λ \ ({y0}

 U L\ there
is a unique real α-conic missing the singular points of Qo Π Q^. Now we
change the z-coordinate on CP5 to an η-coordinate by defining η =

[ i | i : i ? i : i ? 2 : i ? 2 : i ? 3 : i ? 3 ] :

i)x = z 0 + izx, Vi = *o - «i,

*h=(^-X 2 ) 1 / 2 z 2 η ^ ί λ . - λ , ) 1 7 ^

+ /(λ1-λ3)
1/2z3, ~ ί (λ1~λ3)

1/2z3,

η 3 = z 4 4- iz5, η'3 = z 4 - /z5.

Then the smallest projective space V containing the cone Λ is given by

On V, we use [η1: η\: η2

: Ή3] a s coordinate. Note that a point in V has τj3 = 0
if and only if this point is on the plane of the conic L. Therefore, the open set
Λ \ L on the cone Λ is contained in W = (η e V: η3 # 0}. On W, we define
w-coordinate:

/ \ I ̂ 1 rfi V2 1

The center of this coordinate is exactly the vertex of the cone Λ. Now we blow
up the w-coordinate at the center, then the proper transform of the cone is the
Hirzebruch surface F2 [16]. This copy of the Hirzebruch surface with the conic
L removed is denoted by Xv The infinity section is denoted by E^. Note that
Xλ \ E^ is diffeomorphic to Λ \ ({^0} U L), which is diffeomorphic to A° =
RP3 X 7°. In terms of the w-coordinate, there is a standard way to write
coordinates on the blowing-up of W (p. 184 in [16]). It gives the standard
coordinate on Xv Therefore, given any real α-conic with real parameter in A0,
one can first work out the intersection point on this real α-conic and the cone
Λ in terms of the η-coordinate. After changing from η to the w-coordinate, we
change to the standard coordinate on Xv This is a diffeomorphism from A0 to
Xι\E00. This map can be explicitly written down. Then one can check that the
rational curve E^ on Xλ parametrizes the real α-conics with t = -λ4. More-
over, the metric g on A0 can be extended from Xλ \ Ex to Xλ in the standard
coordinate. As all the above coordinate changes are simple and standard, we
do not intend to demonstrate the checking explicitly.
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Dually, to resolve the coordinate singularity at t = -λv one can find two
and only two real α-conics passing through y0 and J(y0) such that they
jointed to x0 to define simple cones in Qo Π Q^. Picking up any one of them,
we have a copy of CP3 containing this cone. We blow up this copy of CP3 at
the vertex of the cone, then the proper transform of the cone is a Hirzebruch
surface F2. When the real α-conic on F2 is removed, the resultant space X2 can
be proved to be the parameter space of all real α-conics in Qo Π Q^ missing
y0 and J(y0). The infinity section in X2 is the parameter space of all real
α-conics through x0 and /(x 0). With the infinity section on X2 removed, the
resultant space is diffeomorphic to A0. This diffeomorphism carries the metric
from A0 to X2 \ E^ and then the metric is extended over X2.

As Xx and X2 contain an open submanifold A0, one can glue Xλ and X2

together along A0 to -obtain a compact smooth manifold X. One may regard
Xx and X2 as two submanifolds in X such that X = Xλ U X2 and A0 = Xx Π
X2. Then the extension of the metric g from A0 to Xλ and X2 is an extension
from A° to X. This is a self-dual metric on X. Its conformal class is denoted
by Cλ. Since the topologies of Xx, X2, and A0 are known, one can use Van
Kampen's Theorem and the Mayer-Vietoris sequence [32] to find that X is a
simply connected manifold with second betti number b2(Z) = 2. Using the
self-duality, one can check that the intersection form is positive definite. Then
one may appeal to Freedman's Theorem [14] to see that X is homeomorphic
toCP2#CP2.

Remark 4.1. To construct the conformal class Cλ and X, we have made
several choices. First of all, we choose to work on α-conics instead of β-conics.
Note that a coordinate change on CP5 can interchange our notion of α-conics
and /?-conics. Then we choose one of the two exceptional real α-conics through
JC0 and J(x0). This conic is joined to y0 instead of J(y0) to determine a cone.
Using this cone, we resolve the coordinate singularity at / = -λ4. We have to
go through the same sort of choices to resolve the singularities at / = -λv

However, if one happens to make a different decision in the above choices, one
constructs the same metric g as ours because the resultant metric on X agrees
with our metric g on the dense open set A0 in the compact space X.

5. The scalar curvature
According to the work of Aubin and Schoen [6], [30], within the conformal

class of any Riemannian metric on a compact manifold with dimension at least
3, there is a metric with constant scalar curvature. We shall prove that Cλ on X
cannot contain a metric with constant zero scalar curvature or negative scalar
curvature.
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Proposition 5.1. // a compact connected 4-manifold X has a self-dual metric
with zero scalar curvature, then τ ^ §χ, where τ is the signature and χ is the
Euler characteristic of the manifold X.

Proof. On an oriented 4-manifold, the curvature tensor of a metric has four
S0(4)-irreducible components: the scalar curvature s, the tracefree part of the
Ricci tensor B, the self-dual Weyl tensor W+9 and the anti-self-dual Weyl
tensor W_. Using the Chern-Weyl formula, one can express the first Pontrjagin
number px and the Euler characteristic by

(5.1) 3τ-Λ-Λ/ \WJ-\W_\\

(5.2) χ-

(see [8], [17]). Under our assumption that 5 = 0 and W_= 0, the result is
obvious.

Proposition 5.2. Let Z be the twistor space of a compact connected self-dual
manifold X. If the scalar curvature is negative, then H°(Z, 0(K~1/2)) = 0.

Proof. Recall that the complexified bundle of anti-self-dual 2-forms is
isomorphic to the symmetric tensor product of the spin - ^-bundle -V_2. The
Levi-Civita connection on X induces a connection:

V: C00 (V2) -> C°°(V_2«> Λ^).

The bundle V_2 β Aι

c has an S0(4)-irreducible component V3 β V+. Then the
connection defines an operator:

D: C°°(V_2)-> C°°(V_3® V+).

Let V * and D* be the formal adjoints of the above differential operators and
s the scalar curvature. By self-duality, one obtains a Weitzenboch formula

D*D = V*V ~ as,

where a is a positive constant determined by the weight of the representation
of SO(4) which defines the bundle V_2 When s is negative and X is compact,
this formula shows that if φ is a section in V_2 annihilated by D, then φ is the
zero section.

On the other hand, we have seen in §2 that a holomorphic section φ κ of the
bundle K ~1 / 2 on the twistor space defines a section φ of the bundle V_2 In fact,
one may spell out the definition of the complex structure on the twistor space
and the tautologically constructed bundle K"1/2 to see that the holo-
morphicitiy of φy implies that φ is annihilated by the operator D [20].
Therefore, K'ι/2 does not have any holomorphic sections when s is negative.
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Proposition 5.3. Let Z be the twistor space of a connected self-dual manifold

X. There is a vector bundle E with self-dual connection on X such that it is pulled

back to be the holomorphic bundle of 2-jets of K" 1 / 2 on Z, / 2 ( K " 1 / 2 ) . Moreover,

a real holomorphic section of J2(K~ι/2) is the pull-back of a covariant constant

section of E.

Proof. This proposition is within the framework of the so-called Ward
correspondence initiated by Ward and fully developed in [3]. According to
Theorem 5.2 in [3], the existence of the bundle E with the accompanied
connection is ensured by (i) the holomorphicity of /2(K~1/2), (ii) the reality of
J2(K'ι/2), and (ϋi) the triviality of J2(K~ι/2) along every real twistor line. In
this occasion, the requirements (i) and (ii) are obviously satisfied; we have to
prove (iii). After we prove this, the second statement of the proposition follows
from the reality because, according to the Ward correspondence, the 3-
operator on /2(K~1/2) is the (0, l)-part of the pull-back of the connection on E.

Let L be any real twistor line and z any point on L. SnN* denotes the nth
symmetric product of the conormal bundle of L in the twistor space, $ the
ideal sheaf of L. For any nonnegative integer n, we define Θ(

L

n) = Θ/%n+ι.
These sheaves Θ(

L

n) are supported by L. We use 0[w)(2) to denote the tensor
product of Θ[n) and the sheaf of germs of sections of K"1/2. On L, we have the
exact sequence of sheaves:

0 -> ΘL(S"N* ® KfL

1/2) -> Θ(

L

n)(2) -> Θl"-l)(2) -> 0.

Since N is isomorphic to H θ H and Kj~2/2 is isomorphic to H 2 , when n = 1
and 2, we have the induced exact sequence:

0 ^ H°(L,N* 0 Kγ/2) -^H°(L,ΘP(2))~H0{L,ΘL(2)) -> 0,

0 ^i/°(L,S2N* 0 Ki1/2)-^i/°(L,^2>(2))--^i/0(L,^1)(2))^ 0.

Moreover, we can see that Λ°(L, 0[2)(2)) = 10. Every element in H°(L, 0[2)(2))
is evaluated at the point z. This evaluation defines a linear map from a
10-dimc space to a 10-dimc space:

We claim that the evaluation map e is an isomorphism. Let s be a real
element in H°(L, 0[2)(2)) such that its second jet vanishes at z. As every
section of K"1 / 2 over L is a homogeneous polynomial of degree 2 with respect
to a homogeneous coordinate on L, s vanishes identically in the tangential
direction of L. Therefore πx <> π2(s) = 0. Then π2(s) is in the image of j x and
hence is regarded as an element in H°(L, N* 0 K"1/2). This vector space is in
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turn identified to the tangent space of the complexified manifold Xc at the
parameter x of L. According to Penrose's programme the cone Ωx containing
all sections of N vanishing somewhere on L is the complex bilinear extension
of the positive definite conformal structure on X. As the evaluation of s at z is
zero, τr2(.ϊ) is in the cone Ωx. But it is real; then π2(s) = 0. Therefore, s is a
constant section defined by an element in H°(L,S2N* Θ K~1/2). Then the
evaluation of s at z is equal to zero only if s is identically zero. Therefore, the
evaluation map has no real kernel. As the real space H°(L, 0[2)(2)) is spanned
by real sections, the evaluation map is an isomorphism.

Since this is true for every point on L, the bundle J2(K~ι/2) restricted onto
any real twistor line L is trivialized by elements in H°(L, Θ^(2)).

As our manifold X is homeomorphic to CP2#CP2, Proposition 5.1 shows
that the conformal classes Cλ cannot contain metrics with zero scalar curva-
ture. The manifold X contains A, the parameter space of all real α-conics
missing the singular points of Qo Π Q^. The abstractly defined twistor space
Z over X contains an open submanifold Z° which is the twistor space over A0

and is holomorphically identified as an open submanifold in the variety
Qo Π Q^. Using the adjunction formula on CP5 and then on Qo, one can see
that the bundle K"1/2 on Z° is the restriction of the hyperplane bundle on
CP 5. As there are real hyperplanes in CP5, there are nontrivial real sections of
χ-1/2 o v e r 2°. Let s be one of them. Its 2-jet j2(s) is a nontrivial real
holomorphic section 72(K"1/2) over Z°. According to the last proposition,
j2(s) is the pull-back of a covariant constant section φ of the bundle E
restricted on A°. φ is parallely transported to the complement of A° in X.
Since parallel transportation depends on initial data smoothly, one can check
that the parallel transportation of φ from A0 extends φ to be a covariant
constant section of E over X. Now the pull-back of φ to the twistor space is a
holomorphic section of 72(K"1/2) over Z. This gives an extension of s from Z°
to Z. Therefore, K~ι/1 has nontrivial section. From Proposition 5.2, we see
that the conformal classes Cλ cannot contain a metric with negative scalar
curvature. Then the conclusion is that the conformal classes Cλ must contain a
metric with constant positive scalar curvature. From Theorem 3.4, we see that
X is diffeomorphic to CP2#CP2.

Theorem 5.4. There is a one-parameter family of self-dual conformal classes

C λ , 2 > λ > f, on CP 2 #CP 2 . Each of these conformal classes contains a metric

with constant positive scalar curvature.

On the other hand, the twistor space Z associated to any compact
simply-connected self-dual manifold X with positive scalar curvature is de-
scribed by Theorem 3.5 with an appropriate λ. If necessary, a sign change on
the base of H°(Z, 0(K' 1 / 2 » ensures us that the associated map of K"1/2 sends
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real twistor lines to real α-conics. If we follow the procedure in the last section
to produce a metric g, then the metric g' on X and g are conformally
equivalent on a dense open set RP 3 X 7° if we identify X to CP 2 #CP 2 . Then
g and g' are conformally equivalent to CP2#CP2, i.e.,

Theorem 5.5. Any compact simply-connected self-dual manifold with positive
scalar curvature and signature 2 is conformally equivalent to C P 2 # C P 2 with a
Cλ for an appropriate λ in the interval (f, 2).

Finally, we want to determine the identity component of the group of
conformal transformation with respect to the conformal class Cλ. From the
conformal invariance of the holomorphic structure on the twistor space, one
sees that an orientation preserving conformal diffeomorphism on CP2#CP2

induces a biholomorphism on the twistor space Z onto itself [3]. This biholo-
morphic map commutes with the real structure and hence induces a real linear
automorphism H°(Z, 0(K~1/2)). This automorphism defines a real (linear)
map F from CP5 onto itself. F is also an automorphism on Φ(Z), where Φ is
the associated map of the system |- \K\. As Φ is an embedding modulo the set
(£ of points on exceptional curves, if the induced map F is an identity, the
automorphism on the twistor space leaves every point on the dense set Z \ ©
fixed and hence must be an identity map on the twistor space. Then the
conformal diffeomorphism is the identity map. Therefore, a nontrivial confor-
mal diffeomorphism induces a nontrivial automorphism F on Φ(Z). Since
Φ(Z) is the intersection of the two quadrics given by (3.6), using the reality of
F, one can easily prove that the action of F on C 6 in the coordinates
(zo, , z5) is simply rotating the (z0, zx)-plane and the (z4, z5)-plane by real
SΌ(2)-actions. Translated back onto CP2#CP2, on the (x, y, ω, O-coordinate,
these rotations are exactly the rotation of the (JC, j>)-plane and the translation
of the angular coordinate ω. From this local expression, we actually see that
this torus Sι X Sι action on CP2#CP2 is in fact in the identity component of
the group of isometry with respect to the metric g. Now we have

Theorem 5.6. The identity component of the group of conformal transforma-
tion with respect to the conformal structure Cλ on C P 2 # C P 2 is a two-
dimensional torus.

6. Further developments

The natural questions to ask are whether there is self-dual conformal class
on 3CP2 s CP2#CP2#CP2, whether there is a metric in this conformal class
with positive scalar curvature, whether we can find out the complete family of
a compact, simply-connected self-dual manifold X with positive scalar curva-
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ture and signature 3. It is very hopeful that we have affirmative answers. In

fact, concerning the third question, one may use the bundle Dιu as we did in

§3 to see that the manifold X is diffeomorphic of 3CP3. In view of Hitchin's

computation [21], we expect the singular model of the twistor space over 3CP2

can be given by a double covering of CP3 branched over a singular quartic.

However, this generalization has a natural obstruction, namely, the sign of

c\{Z). In general, c\{Z) = 2χ - 3τ. One may have noticed that our method in

§2 of searching for singular models of twistor spaces depends heavily, if not

completely, on the abundance of effective divisors in the twistor space. This is

successful if T is less than 4 because c\(Z) is the leading coefficient of the

Riemann-Roch formula. Therefore, it is fair to say that our approach is subject

to the constraint that T < § χ.

It is interesting to see that the constraint on the sign of c\{Z) occur in

various occasions. It is a long time since Hitchin [19] proved that compact

Einstein 4-folds have to satisfy the condition that |τ| < §χ. The proof is simply

putting B to be zero in (5.1) and (5.2), which are well understood today. Using

these equations, we proved that a compact self-dual manifold with zero scalar

curvature has to have T ̂  f χ. At this point, one might start guessing at the

existence of self-dual metrics on τCP2 or even at the sign of the scalar

curvature of a self-dual metric, but we would rather ask another question:

According to Corollary 2.8, the conformal class of the Fubini-Study metric is

the unique one containing a metric with positive scalar curvature on CP2.

Proposition 5.1 shows that there is no metric on CP2 which is self-dual with

zero scalar curvature, but

Is there any self-dual metric with {constant) negative scalar curvature on CP2?

Finally, we should point out that the work in §3 has side-product. Before we

drew the conclusion in Theorem 3.5, we studied the real structure on the

intersection of two quadrics:

Qo = { w G C P 5 : awl + awl + bw% + bw£ + cw} + dw% = 0},

Qoo= ( w e CP 5 : w0

2 + w\ + w2

2 4- w3

2 + w} + w] = 0 } .

Note that if the two rank 4 quadrics in the pencil are real as we use to have but

the two rank 5 quadrics are conjugate to each other, then Qo Π Q^ contains

real points and, in fact, singular real conies. In this case, one can still normalize

the coordinate so that the intersection is given by

β o = { z G CP5: 2z 2 + 2z 2 + Xzl + λz* + z\ + z\ = θ},

β o c = { ^ C P 5 : *l + Z' + Z2 + *3 + Z4 + Z\ = 0}
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with Im λ > 0 and the real structure / is given by

/(zo, ,z5) = (zo,z1,z3,z2,-z4,-z5).

Then using the setting in §4, one can also work out a self-dual metric on a
noncompact manifold. The noncompactness is due to the fact that a nonsingu-
lar real α-conic may deform to a singular real α-conic in Qo Π Q^. This
manifold is expected to be the connected sum of two unit open discs, i.e. the
cylinder S 3 X R . The more interesting questions are whether there is a com-
plete metric in this self-dual conformal class and, if it exists, whether its scalar
curvature is negative.

7. Appendix

Moduli space of self-dual connections. An example. It is well known that
there are several approaches to construct instantons, i.e. self-dual connections
on a principal Sίί/(2)-bundle, over the Euclidean 4-sphere: a tΉoopf construc-
tion described by Atiyah and Ward [5], the Serre construction given by
Hartshorne [17], the ADHM construction given by Atiyah, Drinfeld, Hitchin,
and Manin [2] and a monad construction given by Barth [7]. The first
approach is a differential geometric computation on S4. The second and third
approaches are to translate the problem to the construction of a special class oί
holomorphic rank 2 bundles on CP3, the twistor space of the sphere. The
fourth is to construct rank 2 bundles on CP2, a hyperplane in the twistor
space. The translation is given by the Ward correspondence:

Theorem 7.1 ([3], [5]). Let E be an SU(2)-bundle on a self-dual manifold X
with a self-dual connection and F the pulled back bundle of E onto the twistor
space. Then (i) F is a holomorphic bundle, (ϋ) F has a quaternionic structure,
and (in) F is holomorphically trivial along every real twistor line. Conversely, any
rank 2 bundle on the twistor space with the above three properties is the pull-back
of an SU(2)-bundle on X with a self-dual connection.

We shall make use of this Ward correspondence and essentially a Serre
construction to find self-dual S0(3)-connections o n l = CP2#CP2. On this
manifold, we always fix a self-dual metric with positive scalar curvature.
Associated to the twistor space over X with the given conformal class Cλ there
is a pencil of quadrics Qt = Qo + tQ^ in CP5, a real structure on CP5, and a
map Φ: Z -> Q0Π Q^ such that Φ is an embedding modulo four curves and
sending every real twistor line to a real conic. In this occasion, we choose a
coordinate on CP5 such that the real twistor lines are sent to real β-conics
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(Remark 4.1). The planes of real /?-conics are real planes contained in Qt for
some real number / in the interval / in RP1:

7 = (-oo,-2] U[-I,oo)u{oo}.

Now for any t in the open interval 7° in / with the two endpoints {-1, -2}
removed, Qt is a smooth real quadric of dimension 4. When we consider the
smooth quadric as the Grassmannian of planes in C4, we have the universal
subbundle Ut over Qt [16]. The projectivization of the dual of Ut is pulled back
by the map Φ to be a holomorphic fiber bundle ξt on Z. On the other hand,
letting 3K° be the moduli space of irreducible self-dual connections on an
SΌ(3)-bundle J o n I with second Stiefel- Whitney class w2(ξ) = w2(X) and
first Pontrjagin number px(ζ) = 2, we shall prove the following:

Theorem 7.2. There is a bijectiυe correspondence

As far as the dimension of the moduli-space is concerned, this theorem is a
consequence of Atiyah-Hitchin-Singer's computation [3]. In fact, Fintushel and
Stern had exploited Donaldson's technique of studying the moduli of SU(2)-
connections to study the moduli of SΌ(3)-connections. Part of their results
restricted to our situation is the following:

Theorem 7.3 ([12], [13]). Let ζ be an SO(3)-bundle over X = CP2#CP2.
Assume thatp^ξ) is equal to 2 and w2(ξ) = w2(X). Then

(i) the moduli space Wl of all self-dual connections on ξ is compact,
(ii) there are two {equivalence classes of) reducible self-dual connections on f,

(iii) the {equivalence classes of) reducible self-dual connections on ξ are the
two endpoints of a closed interval in 5DΪ.

The virtue of our theorem is that we give an explicit construction of all
irreducible connections and show that Sΰl has only one connected component.
Before we proceed to carry out the construction, it is worthwhile to remark
that our moduli space is closely related to Newstead's moduli space of stable
rank 2 bundles over a hyperelliptic curve [26].

To prove the theorem, we shall first show that £, and ξt, are inequivalent for
t Φ t'. Then each ξ, is shown to be uniquely determining an irreducible
self-dual connection on ξ. Finally, every irreducible self-dual connection is
proved to be given by £,.

Construction of self-dual connections. Given t in 7° and using the setting in
§4, we have the α-planes A(σ; t\ a e CP3, in Qr As we use the Plϋcker
embedding to identity Qt as the Grassmannian of lines in CP3, the α-plane
A(σ; t) consists of all lines in CP3 through the point σ. In other words, a
nonzero vector q in C6 representing a point q in Qt is in the kernel of the



128 Y. SUN POON

matrix A(σ; t) if and only if the line in CP3 represented by q contains the
point σ in CP3. If one defines Atq = {σ e CP3: A(σ; t)q = 0}, then it is easy
to see that At q is the fiber of the projectivization of the universal bundle over

For any nonsingular conic L in Qo Π Q^, At is trivial over L except when
the plane of L is an α-plane contained in Qr When t Φ /', we then see that At

is trivial on the nonsingular α-conics α(σ; /') on which At> is nontrivial. As the
map Φ identifies some rational curves in Z to the real α-conics in Qo Π Q^
and £, is the pull-back of the dual of Av then £, and ζt, on the twistor space
are holomoφhically inequivalent when t Φ t'. This is the one-to-one corre-
spondence/° <-> {£,: ί G / 0 } .

Moreover, the real twistor lines are mapped onto real β-conics; then each ξt

is holomoφhically trivial along every real twistor line and the transition
function of each ξt defines a Cech cocycle on X with value in PGL(2, C). This
global observation can be refined by a local study.

Recall that the second Stiefel-Whitney class of the S0(2)-bundle K~ι/1 is
equal to w2(Λr) = ax + α2, where ax and α2 is a pair of orthonormal genera-
tors of H2(X,Z). Therefore, the bundle K~ι/1 is not the second power of a
holomoφhic line bundle. However, if we choose to work on any small
neighborhood on X, we can find a holomoφhic line bundle K~ι/4 on the
inverse image of this open set on the twistor space such that (K~ι/Λ)2 = K~ι/1.
The restriction of Kι/A on any real twistor line L has degree - 1 . It has an
induced quaternionic structure defined by the antipodal map on L = CP1. On
the other hand, the universal subbundle Ut on Qt inherits a real structure from
the induced real structure on the trivial rank 4 bundle, β, X C4, given by

(σo,σ1,σ2,σ3) -> (^-σ^σ^-σj

(cf. (4.1)). Therefore, the bundle Ft = Φ*(t/,*) <8> Kι/4 on the twistor space has
a quaternionic structure wherever this is defined.

As the bundle Φ*(A2Ut) is simply the pull-back of the universal line bundle
on CP 5 and the map Φ is the associated map of the bundle K~1/2

9 the first
Chern class of Ft vanishes. Then the transition function of Ft takes value in
SL(2, C) with respect to a good covering. SL(2, C) has two real forms [18].
One is SU{2\ the real form determined by a quaternionic structure. Another is
SL(2, R), the real form determined by a real structure. Now Ft has quater-
nionic structure and hence is a S[/(2)-bundle. Moreover, the projectivization of
Ft is exactly the bundle £,. It shows that ξt is a i>S't/(2)-bundle. The triviality
of ξt on each real twistor line implies that Ft is a sum of two line bundles with
equal degree on each real twistor line. As the first Chern class of Ft vanishes,
Ft is trivial along each real twistor line. Then by the Ward correspondence, Ft
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is the pull-back of an St/(2)-bundle Et on an open set of X with a self-dual
connection. The obstruction for Et globally defined on X is w2(X). However,
the adjoint bundle of Et, f,, is a well-defined SO(3)-bundle on X. The
isomorphism of the Lie algebra of SU(2) and 50(3) carries the self-dual
connection on Et over each small open set to a self-dual connection on ξt over
X.

The second Stiefel-Whitney class of ζt is exactly the obstruction for ξ, to be
the adjoint bundle of a globally defined Sί/(2)-bundle, therefore w2(ξt) =
w2( X). Moreover, the Chern classes of the universal subbundle over a quadratic
is known [16]. Then it is easy to show that pλ{ζt) = 2e(X) - pλ(X\ where
e(X) and pλ(X) are the Euler class and the first Pontrjagin class of the
manifold respectively. Hence Pι(ζt)[X] = 2. Since any two S0(3)-bundles over
a 4-fold with the same second Stiefel-Whitney classes and the same first
Pontrjagin classes are isomorphic [10], all f,, with t in 7°, are isomorphic to
the bundle ξ. As Φ*Ut is holomorphically inequivalent to Φ*ί/,, when / Φ t\
Ward correspondence also shows that ξt and ζt, are distinguished by their
inequivalent self-dual connections. Therefore, we obtain an open interval 7° in
the moduli space. According to the theorem of Fintushel and Stern, reducible
self-dual connections are not in the interior of an interval, hence all the
self-dual connections determined by the ξ/s are irreducible. So we have a
one-to-one map {£,: t e 7°} -* 2ft °.

Remark 7.4. It can be checked that the bundle Ut has a quaternionic
structure when t is in (-2,-λ) U (- f,-l). Then Φ*ί/,* <S> Kι/4 has a real
structure and hence ξ, = P(Φ*U*) is a PSL(2, R)-bundle. Then the Ward
correspondence gives us a family of 50(2,1) self-dual connections, the objects
we do not pursue here.

Completeness of the parametrization. Given the bundle ξ with prescribed
topology, one sees that locally it is the adjoint bundle of an 5C/(2)-bundle E.
Let F be the pull-back of E onto the twistor space. Then formally,

q(F) = 0 and c2(F) = \{a2

x + a\).

Given any irreducible self-dual connection on ζ, according to the construc-
tion in the Ward correspondence, the (0, l)-part of the pull-back connection on
F defines a holomorphic structure. Then the bundle U* = i7 ® K~l/'4 is a
globally defined holomorphic rank 2 bundle on the twistor space. It is globally
defined because w2(£) = w2(K~ι/2). It has

cΛt/ ) - ^ and c2(U*)=\{a2 + <̂ ) + y^c?.

Then the Riemann-Roch formula and Hitchin's vanishing theorem show that

h°(Z9Θ(U*))>4.
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If there is a section of U* without zeros, this section defines a trivial
subbundle of U*. The first Chern class of the quotient line bundle of the
trivial subbundle in U* is equal to the first Chern class of K~ι/2. But in §1 we
have seen that the positivity of the scalar curvature implies that holomorphic
line bundles on the twistor space over X are uniquely determined by their first
Chern classes. Therefore, the quotient bundle is exactly K~ι/1. Then U* is an
extension of K~ι/1 by the trivial bundle. This extension has to be trivial
because the obstruction of triviality is in Hι(Z,Θ(Kι/2)). This cohomology
group vanishes because of Hitchin's vanishing theorem. Hence the locally
defined bundle F is given by

F= U*
This splitting of F implies the reducibility of the self-dual connection on E [3].
Hence the self-dual connection on ξ is reducible. Therefore, under our assump-
tion that the self-dual connection on ξ is irreducible, we can conclude that
every section of U * has zeros. In fact, one can prove that every nontrivial real
section of U * vanishes on a unique real twistor line.

On the other hand, the first Chern class of U* is equal to that of K~ι/2\
then the determinant bundle of U* is holomorphically equivalent to K~ι/1. If
s0 and sι are sections of I/*, then s0 A sι is a section of K~1/2. As s0 A sx

vanishes identically only if so(z) and sx(z) are linearly dependent over every
point z in the twistor space. This is equivalent to having a holomorphic
function / on the complement of the zeros of s0 and sι in the twistor space
such that s0 = fsv But the zero set of s0 and sx has codimension 2 when s0

and sx are real. Hartog's Theorem [16] shows that / is extended to be a global
holomorphic function on the twistor space and hence is a constant. Then .s0

and Si are linearly dependent in the vector space

V= H°(Z,Θ(U*)).

Therefore, we have a canonical injection:

Counting the dimensions, we see that dim V = 4 and the injection is an
isomorphism. We shall use V* to denote the dual of V.

Let {s0, , S3} be a real basis of V. Then

( s 0 Λ sx, S2 A 5 3 , 5 0 Λ S2,S3 A sl950 A S3,SX A s2)

forms an ordered basis of A2V. This choice determines a homogeneous
coordinate on ^(Λ2^*), the target space of the associated map Φ of |- \K\,
and Φ sends real twistor lines to β-conics.

Let z be any point in the twistor space; its ideal sheaf is denoted by S z



COMPACT SELF-DUAL MANIFOLDS 131

Then we have an exact sequence

o ^ H ° ( Z , % Z ( U * ) ) -* H ° ( Z , Θ ( U * ) ) ^ u*^> •••.

The restriction map at z fails to be surjective only if h°(Z, %Z(U*)) is at least
equal to 3. Then by the reality of the bundle £/*, λ°(Z, %J(Z)(U*)) is also at
least equal to 3, where J(z) is the conjugate point of z. But dimF = 4; then
A°(Z, "3Ziy(r)(ί/*)) > 2. Since any section of U* vanishing at z and J{z)
must vanish along the real twistor line L through z, there are linearly
independent real sections, say s0 and sl9 which vanish along L. There are
five-dimensional sections of K~ι/1 which vanish along a real twistor line. This
is impossible. Therefore, the restriction map is surjective and we have the dual
of an exact sequence:

0 -> (U*)* -* V* -* H°(Z9 %Z(U*)) -> 0.

Then the image of the point z via the associated map Φ is exactly representing
the plane UΣ in V*. Therefore, the Grassmannian of planes in V* is a
nonsingular real member Qt of the pencil generated by Qo and Qx. In the
coordinate determined by a real basis { sθ9 ,s3}, one can see that Qt is a real
quadric with zero signature. Then in the original z-coordinate on CP5 and the
given parametrization of the pencil of quadrics, one can check that / is in the
interval 7°. Now by the definition of universal subbundle, we have

(Φ*Ut)g = {(Φ(z),υ) e Qt x V*: υ e Φ(z)} = Φ(z) = UΣ.

Therefore, we have a canonical isomorphism Φ*l/,* = U*. The projectiviza-
tion of U* is precisely ξr It shows that the one-to-one map {̂ ,: / e / 0 } -^9K°
is surjective.
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