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RIEMANNIAN MANIFOLDS ISOSPECTRAL
ON FUNCTIONS BUT NOT ON 1-FORMS

CAROLYN S. GORDON

Introduction

For (Af, g) a compact Riemannian manifold, let specp(M, g) denote the
collection of eigenvalues, with multiplicities, of the associated Laplace-Beltrami
operator acting on the space of smooth p-ίovms on M, p = 0,1,2, , dim(Λf).
Two manifolds (M,g) and (Λ/', g') will be said to be /Msospectral if
spec''(A/, g) = spec^M', g'). Note that 0-isospectral manifolds are generally
called "isospectraΓ in the literature. It is well known that spec°(Λf, g) (i.e. the
spectrum on functions) contains considerable information about the geometry
of (Λί, g). Other information is known to be contained in the /?-spectra for
higher values of p. For example, Patodi [9] showed that spec^Λί, g), p =
0,1,2, together determine whether (M,g) has constant scalar curvature,
whether it is Einstein, and whether it has constant sectional curvature. It
would be of interest to determine whether for each k, the collection of all
spec^M, g), p = 0, , /c, contains more information than does spec^Λf, g),
p = 0, , k - 1. The purpose of this article is to give an affirmative answer
when k = 1, i.e., we give examples of manifolds which are 0-isospectral but not
1-isospectral.

The manifolds in our examples are Riemannian Heisenberg manifolds, i.e.,
compact quotients Γ \ Hn of the (2« + l)-dimensional Heisenberg group, with
metrics g induced by left-invariant metrics on Hn. In [5], we gave sufficient
conditions for two Riemannian Heisenberg manifolds to be 0-isospectral and
constructed many examples. We will see that some of these examples are
/7-isospectral for all p while others are not 1-isospectral. We give evidence
suggesting that these are the only two possibilities, i.e. that once the manifolds
in these examples are 1-isospectral, they are also />-isospectral for all p. We
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also attempt to distinguish geometrically those examples which are only
O-isospectral from those which are also 1-isospectral.

The paper is organized as follows: In §1, we discuss one method (needed
later) for proving that two manifolds are /?-isospectral for all p. We also make
a few side remarks concerning Vigneras' examples [11] of O-isospectral mani-
folds which are not isometric. §2 reviews the necessary facts about Riemannian
Heisenberg manifolds, establishes the notation used throughout the paper, and
gives a few preliminary results. In §§3-5, we compare the spectra of Rieman-
nian Heisenberg manifolds (Γ \ i/w, g) and (Γ' \ i/w, g) under the hypothesis
that Γ and Γ" have the same intersection with the center of Hn. In Theorem
3.2, we give a necessary and sufficient condition (P0) for such a pair to be
O-isospectral. (The sufficiency of a slightly stronger condition was proven in
[5].) In §§4 and 5 we assume (P0) to be satisfied and give additional sufficient
conditions (PI) for the manifolds to be 1-isospectral (Theorem 4.3) and (P2)
for them to be /?-isospectral for all p (Theorem 5.2). In Theorem 4.4, we see
that under an additional hypothesis—and we conjecture always—(PI) is also
necessary for the manifolds to be 1-isospectral. Proposition 5.4 compares
conditions (PI) and (P2) and, together with Theorem 4.4, motivates our
conjecture that 0- and 1-isospectral Heisenberg manifolds must be p~
isospectral for all p. Finally in §6, we restrict our attention to groups Γ and Γ'
for which the conditions (P0), (PI), and (P2) have a particularly simple form,
enabling us to construct specific examples of O-isospectral Heisenberg mani-
folds. We consider four such examples and compare their spectra on forms and
also compare their fundamental groups. These examples illustrate that for
O-isospectral Heisenberg manifolds, the questions of whether the manifolds are
1-isospectral and whether their fundamental groups are isomorphic are inde-
pendent.

1. Λ method for proving manifolds are isospectral

Let G be a simply-connected Lie group, g a left-invariant Riemannian
metric on G, and Γ a uniform discrete subgroup of G. ("Uniform" means that
Γ \ G is compact.) The metric g induces a Riemannian metric, again denoted
g, on Γ \ G so that (G, g) is a Riemannian covering of (Γ \ G, g). The space
L2(Γ \ G) is identified with

L2(T\G) = {feL2

Xoc(G):f(yx)=f(x) for all γ e Γ, x e G).

The Lie algebra Q of G may be identified both with the tangent space Te(G)
(so g defines an inner product on g) and with the space of left-invariant vector
fields on G. Such vector fields may also be viewed as vector fields on Γ \ G.
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We view elements of Λ/7(g*) both as left-invariant /7-forms on G and also as
forms on Γ \ G. The space of square-integrable /?-forms is given by

L 2 ( Γ \ G ) Θ Λ ' ( g * ) .

The Laplacian of ( Γ \ G , g) acting on smooth functions is given by Δ =
-ΣΊ-ιX?i where {Xv- , Xn) is an orthonormal basis of g relative to the
inner product defined by g. Let p denote the right action of G on L2(Γ \ G),
i.e.

p(χ)f(y)=f(yχ).

Since XJ = dfixexptX^/dt^,^, the extension of Δ to L2(Γ \ G) is given by

Δ = - Σ ( P * U ) ) 2

Note that if Φ e Aut(G) and Φ*g = g, then {Φ*^,- ,Φ*Xn) is another
orthonormal basis of g and hence we also have

Now let Γ' be a second uniform discrete subgroup of G. Denote by Δ' and p'
the Laplacian of (T'\G,g) and the right action of G on L 2 (Γ '\G),
respectively.

(1.1) Definition. Let (Γ\G,g) and (Γ ' \G,g) be as above, let J f b e a
p-invariant subspace of L 2 (Γ\G), and 3tf" a p'-invariant subspace of
L 2 (Γ' \ G). We say J? is g-equivalent to Jf' if there exists Φ e Aut(G) such
that g = Φ*g and such that p acting on J? is equivalent top 'oφ acting on

(1.2) Theorem. Let (Γ \ G, g) and (Γ' \ G, g) be as above. Suppose Jf is
a p-invariant subspace of L 2 (Γ\G), 3tf" is a p'-invariant subspace of
L 2 ( Γ ' \ G ) , and tf is g-equivalent to 3tf". Then the spaces Jίf® AP(Q*) and
3tf" ® AP(Q*) of p-forms are invariant under the action of the Laplacians Δ and
Δr, respectively, and the Laplacians restricted to these subspaces are isospectral.

(1.3) Corollary. Suppose there exist decompositions L2(T\G)= Θ a ^ A ^ a

and L2(Γ'\G) = Θ ^A^ά in*0 p-invariant (respectively p'-invariant) sub-
spaces such that for each α, J^a is g-equivalent to J^'. Then ( Γ \ G , g) is
p-isospectral to (V \ G, g) for all p.

Proof, A special case of the theorem and corollary (with the automor-
phisms "almost inner") is proved in [4]; the additional hypotheses are not
needed in the proof.
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The method of Corollary 1.3 was used in [1] and [4]. Most methods which
have been used to construct O-isospectral manifolds similarly involve represen-
tation theoretic or algebraic techniques which force the manifolds to be
/7-isospectral for all p as well as O-isospectral. (See Sunada's examples [10] and
also Gilkey's proof [2] that Ikeda's examples [8] of O-isospectral manifolds are
actually ̂ -isospectral for all p.)

We will see that in the case of various isospectral Heisenberg manifolds
(T\Hn9g) and (Γ\Hn9g)9 the spaces L2(T\Hn) and L2(Γ\Hn) admit
decompositions of the form

such that HΓ2 is g-equivalent to ^f2- However, Jί?Γι need not be q-
equivalent to iτΓ',i even though the Laplacians are isospectral on these spaces.
When these spaces are not g-equivalent, the manifolds will in general not be
1-isospectral.

(1.4) Remark. Vigneras [11] used similar methods to construct isospectral
compact hyperbolic manifolds. Let G be a direct product SL(2, R) r X SL(2, C)s.
She constructs pairs of uniform discrete subgroups Γ and Γ' such that the
right actions of G on L2(Γ \ G) and L2(Γ' \ G) are equivalent. As she points
out, the manifolds Γ \ G/K and Γ' \ G/K are then O-isospectral, where A" is a
maximal compact subgroup of G and G/K is given the symmetric space
metric. By Corollary 1.3, we see that for any left-invariant Riemannian metric
g on G, the manifolds (Γ \ G, g) and (Γ' \ G, g) are /^-isospectral for all p.

2. Riemannian Heisenberg manifolds

By a Riemannian Heisenberg manifold, we shall mean a manifold of the
form (Γ \ Hn, g), where Hn is the {In + l)-dimensional Heisenberg group (see
(2.1) below), Γ is a uniform discrete subgroup, and g is a Riemannian metric
whose lift to i/π, again denoted g, is left-invariant. The isometry classes of
Riemannian Heisenberg manifolds were classified in [5] by specifying a collec-
tion Sf of Riemannian Heisenberg manifolds, including at least one from each
isometry class, and specifying a necessary and sufficient condition for two
members of Sf to be isometric. The particular collection S? of representative
manifolds was convenient for the computations carried out in [5]; however the
main results of the present paper can be stated more simply if we use a
different collection 3Γ. We will define &" below and indicate how to find for
each manifold in &" (or S?) an isometric manifold in S? (or in y , respec-
tively). This will allow us to translate the results of [5] to the new setting
whenever necessary. We also describe the Ricci tensors of the elements of T.
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(2.1) The Heisenberg group and Lie algebra. The (2n + l)-dimensional
Heisenberg group is the subgroup Hn = {h(x, y91): x, y e R", ίG R} of
GL(n + 2, R), where

1 xx *

1 0

0

Hn is diffeomoφhic to R2" X R. The factor R = {λ(0,0, /): / G R ) is the
center of Hn. Multiplication is given by

(2.2) h(x, y9 t)h(x\ y\ t') = h{x + x\ y + y\ t + t'+ x - / ) ,

where x - yf is the standard dot product in R".
The Lie algebra ί)M of Hn has basis

(2.3) ^ = { x 1 , . . . , ^ , y 1 , . . . , y n , z )

satisfying [Xh YJ = Z with all other brackets of basis elements equal to zero.
Thus RZ is the center of ί)rt. If we write

i - l

then f)n may be viewed as a matrix algebra with

/ O x 1 ••• * „ ί

0

0

As a vector space ί)n = R2w 4- RZ. We thus view R2n as a subspace of ί)Λ.
The group exponential satisfies

exp(X(x9y,t)) = /ι(x,>>,ί + \x - y)

with inverse log Λ(x, ^, /) = ^(x, y, t — \x y).
(2.4) Automorphisms of Hn. We will identify each automorphism Φ of Hn

with the matrix of its differential Φ* relative to the standard basis 38 of i}n.
Let

o n
-/„ oj'

Sp(«,R) = { j ? e GL(2/ι,R):'/S/)S = εJ with ε =
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Φ =

As discussed in [5], A\xt(Hn) is the set of all matrices Φ of the form

\aβ 0

w a2ε

where a e R*, w G R2", and /? e Sp(/i, R).

(2.5) Left-invariant matrices. Each left-invariant Riemannian metric g on

Hn is uniquely determined by the associated inner product on the tangent

space at the identity element e. Since Te{Hn) = £)„, we will identify g with the

matrix of this inner product relative to the standard basis 31 of ί)w. We will say

g is an ^ m e t r i c if

(2.6)

\0 0

o\

0

d2

for some positive definite 2n X 2n matrix g 0 and d e R+, and g is a ^metric

if

(2.7)

1/

for some 0 < aι < < an. In particular every ^metric is an ^metric.

(2.8) Lemma, (i) Two left-invariant metrics g and g' on the simply-connected

Heisenberg group Hn are isometric if and only if g' = Φ*g for some Φ e A\xt(Hn).

(ii) Each left-invariant metric on Hn is isometric to a unique ^-metric.

Proof, (i) is a special case of a result of [6].

(ii) Let g be a left-invariant metric. By Lemma 3.5 of [5], there exists a

g-orthonormal basis {X{, •,*„', iγ, , YJ, Z'} of ί)M and dx > > rfM

e R + such that

(2.9) \xι.γ;\ = d}τ.

Thus the linear map φ on ί)w which sends X- to rf/Λ^ , l^ ' to djYi9 and Z ' to Z

is the differential of an automorphism Φ of Hn. The metric Φ*g is a ^metric

isometric to g with α, = d~2, 1 < / < w. The uniqueness of the ^metric is an

easy consequence of (i) and the fact that an orthonormal basis for a ^metric

satisfies the bracket relations (2.9) with dt = aj2.
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(2.10) Uniform discrete subgroups. For ££ a lattice of maximal rank in R2"

and for c G Z + , let

Γ(-S?,c) = {h(x9y,t) G # „ : (x,y) G.2P, t G cZ}.

By (2.2), Γ( JSP, c) is a subgroup of //„ if and only if

(2.11) x - y' G cZ, whenever (x, 7 ) , (*', / ) G JSP.

Since i/w is diffeomoφhic to. R2 n X R, we have that T(J?,c) is a uniform

discrete subgroup of Hn whenever (2.11) holds. A uniform discrete subgroup Γ

of Hn will be called a 5^group if Γ is of the form Γ = Γ( S£, c). We distinguish

a subcollection of ^groups, called ^groups, as follows: For r = (rv- , rn)

G (Z+)" such that η divides r / + 1, 1 < i < Λ - 1, let <£r = r{L X XrnZX

Z" and let Tr = Γ(JS?Γ,1). Then a group Γ is called an ^-group if Γ = Tr for

some such r,

(2.12) Example. In §6 we will consider ^groups for which

&= ΓjZx XrMZ X ^ Z X XsnZ

for some ri9 j f . G R+. For such JSP, condition (2.11) states that Γ(-SP,c) is a

^ g r o u p if and only if ηSj G rfZ, 1 < / < «. We will call Γ(Jέf, c) a rectilinear

&group. One can check that Γ(iP, c) is conjugate under Aut(//J to the

Γ?, where

(the parentheses around the subscripts indicate that the risi have been re-

ordered so that rinsin < r{i+l)s(i+l), 1 < 1 < /i - 1). By Lemma 2.13 below, it

follows that two rectilinear ^groups Γ(JSP, c) and Γ(JSP', c') are isomoφhic as

abstract groups if and only if

r[s\/cf = r σ ( / ) j σ ( / /c , 1 < 1 < Λ,

for some permutation σ o n { l , ,n}.

(2.13) Lemma [5, Theorem 2.4]. Every uniform discrete subgroup of Hn is

conjugate under an automorphism of Hn to a unique Sf-group. Two ̂ -groups Tr

and Γr/ are isomorphic as abstract groups if and only ifr = r'.

Definition. We let Sf (respectively y ) be the set of all Riemannian

Heisenberg manifolds (T\Hn,g) such that g is an ^metric (respectively, a

^metric) and Γ is an ^group (respectively, a ^group).

(2.14) Proposition. Let M = (Γr\Hn, g) G 9> with g given by (2.6). Then

there exists Φ G Aut(//M) of the form

1 0 ι

dι/2a •
(2.15) Φ =

O O ε(a)dj



86 CAROLYN S. GORDON

for some αG§p(«,R) {see (2.4)) such that {Φ{Tr)\Hn, (Φ~ι)*g) is an
element of 3Γ isometric to M. {Here Φ(Γr) = Γ(JS?, d) for some &.) Conversely,
if (Γ \ Hn, g) e 3Γ with Γ = Γ(cSf,c), then {φ-\T)\Hn,Φ*g) is an isometric
element of Sf for some Φ of the form (2.15) with d — c.

Proof. For the first statement, Lemma 2.8 guarantees the existence of a
^metric g' and an automorphism Φ such that g = Φ*g'. In view of (2.4) and
the expressions (2.6) and (2.7) for g and g', we see that Φ is necessarily of the
form (2.15). Trivially Φ(Γr) is a ^group and the first statement follows. The
second statement is proved similarly using Lemma 2.13.

(2.16) Proposition. Every Riemannian Heisenberg manifold is isometric to an
element of 3~. Two elements (Γ \ Hn, g) and (Γ' \ i/M, g') of f are isometric if
and only if g = g' and there exists Φ Ξ Aut{Hn) such that g = Φ*g and
Γ' = Φ(Γ). Necessarily Φ is of the form (2.15) with d = 1.

Proof. Proposition 2.16 with 9* replaced by S? is proved in [5, Theorem
2.7]. Thus the first statement of Proposition 2.16 follows from Proposition
2.14. The proof of the second statement is the same as the proof of the
analogous statement for Sf in [5] and is based on Lemma 2.8.

(2.17) Notation. Given an element (Γ \ Hn9 g) of either Sf or F (note that
in either case Γ is of the form Γ( «£?, c) and g of the form (2.6)), we associate to
(T\Hn9g) the torus

where the positive-definite matrix g0 is viewed as a flat metric on R2w.
(2.18) Proposition. // the element {T\Hn,g) of & is isometric to

{Tr\Hn, g') G Sf, then the associated tori are isometric.
Proof. By Propositions 2.14 and 2.16, we have g' = Φ*g and Γ = Φ(Γr)

for some Φ of the form (2.15). Denoting the submatrix d1/2a of Φ by β, we see
that JSf= β{Ser) and g'o = 'j8gojβ. Hence Γ(J2?, g0) is isometric to Γ(JPr, gj).

We conclude this section with a description of the Ricci tensors of ^metrics.
(2.19) Notation, (i) Given an & (or, in particular a &) metric g, we denote

by ( , > both the inner product on ί)M defined by g and the restriction of this
inner product to the subspace R2w of ί)rt. (The latter is just the inner product
defined by g0.) The associated norms will be denoted by || ||. Define a linear
transformation η of R2w by

(2.20) [X9Y] = (X,ηY)Z

(Z is given by (2.3).) As shown in [5], η is skew-symmetric relative to ( , >
with matrix gj1/ relative to the standard basis { Xl9 , Xn, Yv , Yn } of R2/1.
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In particular if g is a ^metric, then η has matrix

(2.21) V =

-a
-1

-1
-a

-1

, - 1

and η2 = -go2.
(ii) We denote the Ricci tensor of g by Sg and write Ricg(X) = Sg(X, X).

We will frequently delete the subscript g.
(2.22) Proposition. Let g be a ^metric as in (2.7). Note that the basis

{a^2Xv- , a;ι^Xn9 a^2Yw ^a^Y^ Z)of\)n is g-orthonormal. Rela-
tive to this basis, the Ricci tensor Sg is diagonal with matrix

0

W
o

\0--.0 itr(-η 2 ))

where η is given by (2.21).
Proof. Let At = a-1/2Xt and Bi = a;ι/2Y,. Using the facts that [A,, B,] =

aJιZ and that the covariant derivative for a left-invariant metric is given by
2<VιyK, W) = <[!/, K], fF> + <[^, ί/], F> + <[W, V], U) when ί / J , ( f e ήΛ

(see [7, p. 48]), we find that

V ,̂ = (2aiy
ιBi A Z, v s , = (2α,)-^, Λ Z,

1 "

Using Λ g ( Z , y ) = [V x, Vy] - V [ j

compute Rg and Sg to obtain the proposition.

, where Rg is the curvature, we can then

3. Comparison of the 0-spectra

Throughout §§3-5, g will denote an arbitrary, but fixed, ^metric, with
diagonal entries aw-,an (see (2.7)) and Γ = Γ(oSP,c) and Γ = T(&\c')
will denote ^groups (see (2.10)). We will say Γ and Γ' are p-isospectral
relative to g if the manifolds (Γ \ Hn, g) and (Γ' \ Hn, g) are /?-isospectral.

(3.1) Notation, (i) Recall that the dual lattice of the lattice S£ in R2n is the
set of linear functional r on R2n such that τ(&) c Z. We will view R2" as a
subspace of ί)w and thus view elements of the dual lattice as linear functionals
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on t)n which vanish on the center of f)M. We denote the dual lattices of J? and

££' by J / and J / ' , respectively.

(ii) Denote by \££\ the volume of a fundamental domain of S£ relative to the

standard metric on R2".

(iii) Given the metric g, we define as usual a map %\ f)* -> ί)w by τ(X) =

(#τ, X) .and we let b = J"1. We again denote by ( , > the inner product on ί)*

defined by (σ, τ> = (jfσ, #τ) and let || || denote the associated norm.

In [5], sufficient conditions were given for two elements of Sf to be 0-

isospectral. The " i f statement of the following theorem is the analogue for y .

(3.2) Theorem. The groups Γ(-Sf, c) and T(£f", c) are 0-isospectral relative

to g if and only if the following condition holds:

There exists a bijection θ: stf'-> si' such that

\\θτ\\ = \\τ\\ for all τ <Ξ A?

(equiυalently, the associated tori are 0-isospectral).

(3.3) Remarks, (i) The spectrum of the torus (J2\R 2 w ,g 0 ) is given by

{4τ72||τ||2: T G J / } with the obvious multiplicities. Thus the parenthetical

statement in the theorem is immediate.

(ii) If θ is Z-linear, then the associated tori are not only 0-isospectral but

also isometric. I do not know whether any examples exist, of 0-isospectral

groups Γ( Jδf, C) and Γ(j£", c) for which no choice of θ in (P0) is Z-linear. One

cannot automatically construct such examples using the known examples of

isospectral, nonisometric tori (e.g. Milnor's example), since the lattices S£ and

if' are required to satisfy (2.11).

(iii) Theorem 3.2 does not give necessary and sufficient conditions for any

two elements (Γ \ Hn, g) and (V \ Hn, g') of 9~ to be 0-isospectral since the

theorem assumes that c = c' and g = gr. However [5] gives evidence suggest-

ing, but not proving, that these conditions (translated into the Sf setting) may

be necessary for O-isospectrality.

Proof of Theorem 3.2. We first show that the " i f statement follows

from Theorem 4.1 of [5]. Write Γ = Γ(J2P,c) and Γ' = Γ(J2P',c). Let M =

(Tr\Hn, g) and M' = (Tr\Hn, g') be elements of Sf isometric, respectively,

to M ΞΞ ( ( Γ \ i / n , g ) and M' = (T'\Hn,g) (see Proposition 2.14). We cau-

tion that g need not equal g' although, viewed as metrics on the simply-

connected manifold Hn, g and g' are isometric. Theorem 4.1 of [5] states that

the following four conditions are sufficient for M and M' to be 0-isospectral.

(a) the (2H + l,2w + 1) entries of the matrices g and g' coincide;

( b ) rx • • • rn = r[ • • • /•„';

(c) g and g' are isometric metrics on Hn\

(d) the associated tori are isometric.



RIEMANNIAN MANIFOLDS ISOSPECTRAL ON FUNCTIONS 89

(We have rephrased (c) and (d).) From Proposition 2.14, we see that the
(2n + l,2n + I) entry of g is c2. Thus (a) is equivalent to our condition
c = c'. By Lemma 2.8, (c) is equivalent to our condition that the ^metrics be
identical, i.e. g = g'. Condition (d) is stronger than (PO), but only the weaker
condition that the associated tori be O-isospectral was used in the proof given
in [5]. This weaker condition is equivalent, by Proposition 2.18, to (PO).
Finally, (b) states that |J^r| = |J^/|. This condition is actually a consequence of
(a), (b), and (d), since the volume of the torus associated to M is \3Pr\ |det(go)|1 / 2.
(Recall that O-isospectral manifolds have the same volume, so weakening (d)
does not affect (b).) This completes the proof of sufficiency of (PO).

In order to prove the necessity of (PO), we need to look at the right action of
HnonT\Hn.

(3.4) Notation. Let ρΓ (or just p) denote the right action of Hn on
L2(Γ \ Hn). For T in the dual lattice s/oi^C define the character /τ: Hn -* Hn

by

(3.5) /τ(Λ) = exp(2W=Γ(logΛ))

As discussed in [5], /τ e L 2 ( Γ \ / f . ) and

(3.6) P(h)fr=)

for all h e Hn. Thus R/τ is p-invariant.

Let

Then

(3.7)

where 3fvi consists of all irreducible invariant subspaces of infinite dimen-
sion.

(3.8) Lemma. Let Γ = Γ(J2\ c) and Γ = T(£>\ c).
(i) // |JS?| ='|JS?'|, then JfT1 is g-equivalent to JfΓ,2.

(ii) The spectrum of the Laplacian of (T\Hn9g) acting on J ^ Γ 1 is the
O-spectrum of the associated torus (J?\ R2w, g0).

Proof. Part (i) of the lemma follows from [5, Lemma 3.7(b)] and the proof
of Theorem 3.3 in [5]. (The proofs there use conditions (a), (b), and (c)
discussed above.) The elementary result (ii) is also contained in the proof of
Theorem 3.3 of [5].

We can now prove the necessity of (PO). Assume (Γ \ Hn, g) is O-isospectral
to (Γ r \ Hn, g). Then the two manifolds have the same volume. But one easily
computes the volume of (Γ \ #„, g) to be |JS?|c|det g|1 / 2. Consequently \&\ =
\££'\ and by Lemma 3.8(i), we have that JfΓ 2 is g-equivalent to ^ Γ > ϊ 2 Hence,
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the Laplacians restricted to these subspaces are isospectral. By (3.7), the

Laplacians acting on J(?τι and 3^τ,Λ must also be isospectral, so Lemma

3.8(ii) shows that (P0) holds.

We remark that Lemma 3.8 and Theorem 1.2 give another proof of the

sufficiency of (P0).

4. Comparison of the 1-spectra

Let Γ be a ^group. By (3.7) and the discussion in §1, the space of

square-integrable 1-forms is given by

We denote by Σΐ(Γ, g) the spectrum of the Laplacian of (Γ \ Hn, g) acting on

J*V,Θ !>„*,/ = 1,2.

(4.1) Lemma. Suppose Γ = Γ(«SP,c) and Γ = T(&\c) satisfy (PO). Then

Γ is l-isospectral to Γ' relative to g if and only if Σ\(T, g) = Σj(Γ', g).

Proof. Condition (PO) implies that |JS?| = |JS?'| since isospectral tori have

the same volume. Hence the lemma follows from Lemma 3.8(i) and Theorem

1.2.

(4.2) Lemma [5]. Let Γ = Γ(J£?, c). For T in the dual lattice sf of &, let

α(τ) = 4τ72||τ||2,

/Mr) = «(τ) +A + [A2 - 8ττ2Ric(Jtτ)]1/2,

where A = 2Ric(Z). Then Σ}(Γ, g) is the collection of numbers λ of the form

λ = α(τ) or λ = β ± ( τ ) for some r G s/r. λ occurs in Σ\(r, g) 2n — 1 times for

each τ £ i .swcA rΛαr λ = α(τ) and once for each τ £ i such that λ = )S+(τ)

or λ = )S_(τ).

This lemma is the translation of Proposition A.4 of [5] to the ^setting. We

have used Proposition A.4 of [5] to the ^setting. We have used Proposition

2.22 to convert expressions involving η to expressions involving the Ricci

curvature.

Lemmas 4.1 and 4.2 yield:

(4.3) Theorem. Suppose T(J?,c) and Γ(J?\c) are 0-isospectral relative to

g. If the bijection θ in (PO) can be chosen so that

(PI) Ric($0τ) = Ric(jfτ) for all τ £ i ,

then T(£P, c) and T(J?\ c) are 1-isospectral relative to g.

It seems likely that (PI) is a necessary as well as sufficient condition for the

manifolds to be 1-isospectral. We at least have:
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(4.4) Theorem. In addition to the hypotheses of Theorem 4.3, assume that the
entries av---,anofg are algebraic and that all elements of J? and &' are linear
combinations with algebraic coefficients of the standard basis vectors of R2n.
Then Γ(«Sf, c) is 1-isospectral to T(J?\ c) if and only if some choice of θ
satisfying (PO) also satisfies (PI).

Proof. We use the notation of Lemma 4.2. For any choice of θ in (PO), we
have α(τ) = a(θτ). We will show that if βε(τ) = βε>(τ') for some r ejtf,
τ' <Esί\ and ε, ε' ε { + , - } , then | |τ| | = | |τΊ| and Ric(#τ) = Ric(jfτ'). The
theorem will follow.

Assume βε(r) = βε,(τ'). Set B = 4||τ||2, B' = 4||τ'| |2, C = -8Ric(#τ), and
C = -8Ric(#τ'). The hypotheses of the theorem together with Proposition
2.22 imply that A, B, B\ C, and C" are algebraic. Eliminating radicals in the
equation

Bπ2 + ε[A2 + Cττ2]1 / 2 = 2?V2 + ε'[A2 + CV 2 ] 1 / 2 ,

we obtain P(π) = 0, where P is a nontrivial polynomial with algebraic
coefficients and leading coefficient (B - B')Λ. Consequently B = Bf and
hence C = C", proving the theorem.

5. Comparison of the /7-spectra

(5.1) Notation. For g a ^metric as in (2.7), let 0 < bx < <bk denote
the distinct αy's and let

Thus R2" = Vλ Θ Θ Vk. For T ε (R2w)*, we write T = τx + +τ^ with

*(η) € V,
(5.2) Theorem. Suppose Γ s r ( ^ , c ) αwrf Γ' s T(&\c) are O-isospectral

with respect to g. If the bijection θ in (PO) can be chosen so that

(P2) ll(βτ),||-||τ,|| forallτej*andi=l9' '9k9

then Γ is p-isospectral to Γ' relative to gforp = 0,1,2, , 2n + 1.
The proof is based on the following lemma. We use Notation 3.4.
(5.3) Lemma. Let τ and σ be linear functional on t\n vanishing on RZ.

Then R/τ is g-equivalent to Rfσ if and only if ||τ,.|| = ||σ,||, 1 < i < k.
Proof. On R/τ, the right action p(h) of h e Hn is just multiplication by

exp[27r/Tτ(log(Λ)) (see (3.5)). For Φ ε Aut(Hn\ the action p Φ(A) of R/0

is multiplication by exp[2ττ\/̂ Γσ <> Φ«(log(λ))]. Thus R/τ is g-equivalent to R/σ

if and only if T = Φ*σ for some Φ G Aut(/frt) satisfying Φ*g = g. The
condition Φ*g = g implies Φ*^ = Vh 1 < ι < /c, and hence the "only i f
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statement of the lemma follows. Conversely, if ||-τv|| = H^H, 1 < / < k, set

Aj = #τ, and A\ = fa. Note that p , || = ||Λ;.||. After multiplying by a scalar,

we may assume ||Λ,|| = ||Λ || = 1. Since V{ is the b~2 eigenspace of η (see

Notation 2.19), we may complete At and A] to ordered orthonormal bases 9ti

and β$\, respectively, of Vt such that η\κ has matrix

Ό -v
bjι 0 0

0 0

0

relative to both Si and J*/. It follows from (2.20) that the linear map <p:

E) „ —> ί) „ which maps Z to Z and elements of Si to the corresponding

elements of 38[, 1 < / < / : , is the differential of an automorphism Φ satisfying

Φ*g = g and r = Φ*σ. The lemma is proved.

Theorem 5.2 follows from Lemma 5.3, Lemma 3.8(i) (recall that (P0) implies

\&\ = \sef% and Theorem 1.2.

We conclude this section by comparing conditions (PI) and (P2).

(5.4) Proposition. Suppose θ satisfies (P0). Then

(i) (P2) implies (PI).

(ii) // θ is Z-linear, then (P2) is equivalent to (PI).

Proof. For r e (R2w)*,

by Proposition 2.22 and Notation 5.1. This proves (i), and (ii) is easily verified.

(5.5) Remark. It seems likely that if Γ(J^, c) and Γ(«£", c) are both 0- and

1-isosρectral relative to g, then they are also /?-isospectral for all p. To prove

this conjecture, one would have to first prove that (PI) is a necessary condition

for the groups to be 1-isospectral even without the additional hypotheses of

Theorem 4.4, and that (P2) and (PI) are equivalent even when θ is not

Z-linear.

6. Examples

Let g be a fixed ^metric with diagonal entries av —,an and let Γ =

Γ(J^,c) and Γ' = Y(Se\c) be rectilinear ^groups as in Example 2.12. Thus

&= rTLn X sZ" and Sef = r ' Z " X s'Z" for some r , s , r ' , s ' e (R + ) " , where

we write rZn for rλZ X XrnZ.
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(6.1) Theorem. Let g, Γ, and Γ" be as above. Then Γ" is O-isospectral to Γ if

and only if the 2n-tuple

is a permutation of (a^2,- , anrf, axs\,- -,ans
ι

n).

(6.2) Theorem. In the above notation, assume that ai9 rf , si9 r/, <z«d s- are

algebraic, 1 < / < w, α«<i assume Γ" is O-isospectral to Γ. Lei Z>x < < bk

be the distinct a^s and set

Then the following are equivalent:

(a) Γ' is 1-isospectral to Γ.

(b) Γ' is p-isospectral to T for all p.

(c) The permutation in Theorem 6.1 cαw fee chosen so that entries cij(rj)2 and

dj{Sj)2 with] G ^ are carried to entries with indices also in ,/,, 1 < / < k.

We will prove both theorems simultaneously. Let 'iSlξ = {av- ,αM,

/Si, , βn} denote the basis of (R 2 r t )* dual to ̂ 0 = { Xl9- , Xn, Yl9 , Ύn}.

Then the dual lattice J / of 3? has basis

For r G (R 2 w )* expressed in terms of the basis 31 ξ, we have | | τ | | 2 ^^g^r,

where as usual g 0 is the upper left 2n X 2n submatrix of g, so

Hence, as in Notation 5.1,

Note that the existence of a permutation as in Theorem 6.1 is equivalent to

the existence of a Z-linear map θ: stf' - > J / which satisfies (PO) and which

maps &*s to 3lps,. The map θ also satisfies condition (P2) if and only if the

permutation satisfies the condition stated in Theorem 6.2(c). Thus in view of

Theorems 3.2, 4.4, and 5.2, and Proposition 5.4, Theorems 6.1 and 6.2 will

follow from the following:

Claim. If there exists a map θ satisfying (PO), then there exists a Z-linear

map θ which satisfies (PO) and which maps 8#*s to &*y. Moreover if θ

satisfies (PI), then θ can be chosen so that it also satisfies (PI).

To prove the claim, let

(The second equality follows from the existence of θ.) Since &*s and 3ί$%s, are

orthogonal lattice bases of stf and s?\ all the elements σ^ ,σ7 of norm dλ

in sf and σί, ,σ/ of norm dx in s/' belong to 31 *s and to &fy,
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respectively. Let Ax = spanz{σ1? ,σ,}. Define θ to be linear on Aλ and to
agree with θ on σ^ -,0,. Since the standard basis βS of ί)w diagonalizes the
Ricci tensor and since the elements of $8*s and 36'r> s, are multiplies of the
elements of Sξ c j * , the map θ on ^ satisfies condition (PI) if θ satisfies
(PI).

Next let
d2 = min{||τ| |:τ G i - Aλ).

By making finitely many changes in θ (without affecting whether θ satisfies
(PI)), we may assume that 0(τ) = 0(τ) whenever T G ^ and | |τ| | < d2. Thus
if T G si- Ax and | |τ| | = d2, then θ(τ) <=s/' - θ(Aλ). Note moreover that if
T G J / - ^ J and | |τ| | = d2i then T e ^ * S since Λx is spanned by elements of
the orthogonal basis SS*S. For the same reason, θ(τ) e Λfj. Thus we may
extend θ to a Z-linear map on the sublattice A2 of s/ spanned by Ax and all
elements of 3d?s of norm d2. If 6* satisfies (PI), then θ satisfies (PI) on A2.

Continuing this construction for at most In steps, we obtain the desired
map θ.

This proves the claim and, as noted above, Theorems 6.1 and 6.2 follow.
We remark that Theorem 6.1 is just the statement that any two isospectral

flat rectilinear tori are isometric.
(6.3) Examples. The following chart gives four pairs of O-isospectral

Heisenberg manifolds. The manifolds (T\Hn,g) and (Γ '\ i/ π , g) are speci-
fied as follows: In the column labeled g, we give the diagonal entries al9-—9an

of the ^metric g. We have Γ = Γ(J2\1) and Γ' = Γ(JS?",1), where «2>= rZn

X sZ" and &' = r 'Z" X s'Zn. In the columns labeled J27 and Se\ we specify
the 2w-tuples (rv- - , rn\ sl9- -,sn) and (rί, , r'n\ s[9- , s'n)9 respectively.
Thus (Γ \ //„, g) is completely specified by the entries in the columns g and
oSf, and (Γ" \ Hn, g) is specified by the entries in columns g and JSP'. In each
case, Theorem 6.1 implies that the manifolds are O-isospectral. We use Theo-
rem 6.2 to test whether they are 1-isospectral (and consequently /?-isospectral
for all p). Finally the condition given at the end of Example 2.12 can be used
to check whether the fundamental groups Γ and Γ" are isomorphic.

n

2
2
2
3

g

(1,4)
(1,1)
(1,4)

(1,1,1)

(4,2

(2,1
(4,2;

(2,4,3;

;i,2)
;2,i)

1,1/2)
6,5,10)

St

(4,i/:
(2,2;

(1,2;
(3,2,5;

l; 4,2)

1,1)
1,2)

4,10,6)

1-isospectral

no
yes
no
yes

fundamental
groups

isomorphic

no
no
yes
yes
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In the first three examples, the information in the last two columns guaran-
tees that (T\Hn,g) is not isometric to (Γ'\i/M,g). In the fourth example,
one can check directly that there is no automorphism Φ of Hn such that
Φ*g = g and Φ(Γ)= Γ' and hence that the manifolds are nonisometric (see
Proposition 2.16).

Remarks, (i) In [3], the length spectra, i.e., the collection of lengths of
closed geodesies, are compared for pairs of manifolds satisfying the condition
(PO) of Theorem 3.2. If one ignores multiplicities, the pairs of manifolds are
length-isospectral. The same conclusion holds if one defines the multiplicity of
an element of the length spectrum to be the total number of closed geodesies of
that length. (All multiplicities are then infinite.) However in many cases,
including each of the pairs of manifolds in the chart above, the manifolds can
be distinguished by the number of free homotopy classes of loops containing a
geodesic of specified length. This gives an alternative proof that the manifolds
in the fourth example above are not isometric.

(ii) Generalizing the notion of a rectilinear ^group, one many study
^groups for which &= θ f . ^ Π Vt (Notation 5.1). Set JSζ. = JSPn FJ . Note
that V- + RZ is an ideal in ί)M isomorphic to a Heisenberg algebra of lower
dimension. Setting Λf, = exp(^ + RZ), we have that Λf, is a simply-connected
normal subgroup of Hn. Moreover, M\,Π Γ = Γ(JS?,,c), a ^group in the
Heisenberg group Λf, . The ^metric g induces a ^metric gf on Mi given by

£,=
bΛd

0

0

1/

Thus the submanifold ((Λί, n Γ)\Λ/,, g,) is a Riemannian Heisenberg mani-
fold of the type 3~. We denote it by M,(SP, g). Moreover relative to the
obvious orthonormal basis of Vt + RZ, the Ricci tensor of Af,(JSf, g) is given
by

0

0 0
0

\mtbj2

a submanifold of almostwhere dimJ^ = 2mr Thus we will call
constant Ricci curvature.

Now suppose (Γ \ Hn, g) and (Γr \ Hn, g) are O-isospectral manifolds as in
Theorem 3.2 and that &= φ * , \&CΛ K and &' = ®k

 ΛSef C\ Vr In case
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k = 1 (i.e. aλ = = an), the two manifolds themselves have almost con-
stant Ricci curvature. Condition (P2) is trivially satisfied and hence they are p-
isospectral for all p. If k > 1 and if M -̂S?, g) is O-isospectral (and hence
/7-isospectral) to M^Sέ", g) for / = 1, , k, then it is an easy consequence of
Theorems 3.2 and 5.2 that (Γ \ Hn, g) and (Γ' \ Hn, g) are /?-isospectral for all
p. As a partial converse, if a Z-linear choice of θ satisfies (PO) and (PI) (and so
by Proposition 5.4, Γ is /7-isospectral to Γ" for all /?), then M^Sέ, g) is
isospectral to M^S?', g), 1 < i < &.

(iii) Theorem 4.3 as well as (ii) above suggest ways of distinguishing
geometrically the examples of Heisenberg manifolds which are /?-isospectral
for all p from examples which are only O-isospectral. However we caution that
for simply-connected Heisenberg manifolds (Hn, g), the Ricci tensor is a
complete isometry invariant. Hence our conditions involving only the Ricci
tensor and the lattice vectors should not be expected to generalize immediately
to other manifolds.
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