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A UNIVERSAL SMOOTHING OF FOUR-SPACE

MICHAEL H. FREEDMAN & LAURENCE R. TAYLOR

Except in dimension four, smooth structures can be classified up to ε-isotopy
by bundle reductions. Since Rn is contractible, this implies that any smooth
structure Γ on R", n Φ 4, is ε-isotopic to the standard one. In contrast, R4 has
many distinct smoothings (even up to diffeomorphism.) We construct a certain
smoothing of the half-space, jR4 = {(xv x2, x3, JC4)|X4 > 0} and write H for
this half-space together with its smooth structure. H contains all other smooth-
ings of \R4 (see Theorem 1) and is unique with respect to this property
(Corollary A). H is the universal half-space. The interior H = U is naturally
identified (replace x4 with lnx 4) with a smoothing of R4. Corollary B states
that U contains every smoothing of R4 imbedded within it. Thus, we say U is a
universal R4. The construction of U is unambiguous but we do not claim that
any Λf into which all smooth R4's imbed is diffeomorphic to U. This is not
known.

Copies of H may be used to "corrupt" the differential structure of any open
manifold near its ends. This process irons out any unstable differences (i.e.,
those not persisting into dimension five under product with the real line) in
differentiable structure and may be thought of as giving the unique worst
structure (in a given stable class) on the manifold (Theorems 2 and 3).

Theorem 4 says that U cannot arise as the interior of a topologically flat cell
in any smooth 4-manifold. This nonimbedding result leads, by an observation
of R. Gompf, to countably many structures on R4 [7]. A somewhat formal
derivation of this is given in the proof of Corollary D.

In smooth 4-manifold topology, Casson handles [1], [5] are often construct-
able from homotopy (or ε-homotopy) information where smoothly imbedded
disks are not present. The proof of Quinn's 5-dimensional controlled h-
cobordism theorem [10] may be followed just to the point where smoothness is
about to be lost. This is where isotopies are defined along Casson handles
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according to their topological coordinates as 2-handles. Stopping the argument

before the topological isotopy we have the following statement.

Lemma (Quinn). Let (W, d + W, d~W) be a smooth ^-dimensioned h-

cobordism which is topologically a product, W = T o p 3 ± W X /. Fix a metric

space structure ond'W. Then, for every ε > 0, Whas a smooth handle structure

(τeld~W) consisting of 2- and 3-handles. The boundary intersection matrix is

δf . In the middle level there may be extra pairs of intersection points between the

ascending and descending spheres but Whitney circles through these are spanned

by disjoint 0-framed Casson handles. And finally, the diameters of the 2-handles,

3-handles, and Casson handles are all less than ε when measured (after topologi-

cal projection) in d~W.

Addendum. The Casson handles above may always be chosen from a

countable collection # of Casson handles.

Proof. By the reimbedding theorem [4], any Casson handles may always be

imbedded in a six-stage1 tower. The latter are determined by twelve positive

countable integers (the number of ± kinks at each stage) and are therefore

countable. Thus, any Casson handle may be trimmed down to a fixed repre-

sentative (in # ) contained in its first six stages.

Let CH e <g. It is known [4, Theorem] that CH contains a flat core disk Δ

which is smooth except at one interior point p. Consider a small sphere Sp in

CH centered at p and (smoothly) transverse to Δ. We see a link Δ Π Sp = L c

Sp which bounds a planar flat surface Σ in the ball Bp (dBp = Sp) which may

be impossible to smooth compatibly with Bp. In fact, the proof of the theorem

quoted above may be used to arrange that L be some iterated-ramified-

Whitehead link and that Σ be a disjoint union of disks, but this level of detail

is not important to our discussion. In any case, we now fix in each Casson

handle some disk Δ and a distinguished (Bp, Σ) as above.

For each CHi e # one obtains an associated "link slice problem" Li for

which there is a topological solution Σ, but, in general, no smooth solution in

B4. Our plan is to construct H by smoothing theory so that the Σ, will appear

smooth.

Define annuli Ak= {v <= R3\k < \\v\\ < k + 1} and Ak = {v e \RΛ\k <

\\v\\ < k 4- 1} for k = 0,1,2, . Enumerate the Casson handles if = {CHt}\

to each k = 0,1,2, , assign i(k) so that each index i occurs for infinitely

many k. For each k pick a diffeomorphism dk\ ((Bp)iW — pt) -> ^R4 from

the distinguished 4-ball (minus a boundary point) in CHί(k) to jR4 so that

dk(Σj{k), dΣi{k)) c (Ak, Ak). This creates a family of topologically flat surfaces

1 Improved to 5-stage [7] and later to 4-stage [5].
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imbedded in jR4 heading out toward infinity. The topological product neigh-
borhoods of the surfaces in jR4 have their standard (product) smooth struc-
tures which match the smooth structure on R3 X [0, ε) and (in general)
disagree with the smooth structure induced from \R4 by inclusion. By taking
the union of the matching smooth structures we define a smooth structure on a
neighborhood of X = R3 U (\Jkdk(Σi(k))). The obstructions to extending this
smoothing to \R4 lie in H*(\R4, X\ ir«_iTop(4)/0(4)), * = 1,2,3, and are
zero because the coefficient groups vanish ([9] and [10]). The extension [10] of
the immersion theory of smoothings (which applies to local handles of index
less than the manifold dimension) to open 4-manifolds may now be applied to
extend the smoothing near X to a smoothing of \R4. Call the result H.

Theorem 1. Let W be any smooth manifold homeomorphic to H. There exists
a smooth (not generally proper) imbedding e: (W, 3)^>(/f, 3) which, on dW, is
arbitrarily close to the given homeomorphism.

Proof. Let h: W -> H be the homeomorphism. By the 3-dimensional
Haupvermutung we may approximate h by h'\ W ^> H which is a diffeomor-
phism over dH. We may (temporarily) forget our carefully constructed struc-
ture and consider the mapping cylinder 7 of h: W -> \R4

iά. The space 7 is a
topological manifold, with a product structure and a smoothing near top
(WX [0, ε]) and bottom (^R4

stά X [1 - ε,l]). The smoothing obstruction in
i/ 4(7, top U bottom; ττ3(Top/PL)) = 0 vanishes. Write 7 for Y with the
smooth structure near top and bottom extended over all of Y. Apply the
lemma (with addendum) to Y.

In the middle level M of Y we see a locally finite collection of Casson
handles CHj e <%'. We let j index the Casson handles in M. Inside each CHj is
a distinguished pair (5, Σ)7, (4-ball surface) as noted above. Let γ be a
half-infinite ray properly imbedded in M disjoint from the ascending and
descending spheres and the Casson handles. A closed tubular neighborhood Jf
of γ admits a diffeomorphism d: ^Rttd ""* ̂ f- The gradient-like flow on Y
imbeds (J^X [0,1]; (JίX 0) U (Jίx 1)) in (7; bottom U top) where it in-
herits the structure ( i # 4 ) s t d X [0, l ] s t d . Resmooth 7 (to obtain 7) by replacing
this standard structure on JVX [0, l ] s t d by the exotic half-space structure cross
identity, </*(#) X [0,1]std.

Now in the middle level M, JΓ has been resmoothed to look like a copy of
H. Construct a locally finite collection of disjoint imbedded closed arcs { α7} in
M-interior(^Γ) U (U,•/*,•) each joining the frontier of a distinguished 4-ball Bj
to an annulus d(Aκ) on 3ΛΛ The annulus Aκ must be chosen to be one
containing exactly the link slice problem L, which occurs on 3 ^ but this
presents no conflict with the local finiteness condition since each L, occurs in
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infinitely many rings. Also take the arcs to be disjoint from all the ascending
spheres, and disks Δy c U7 CHj. Let Jί denote a closed regular neighborhood
of Λ*U (U, Bj) U (\Jj <xj\ Jf with balls and arcs attached.

It is not difficult to see a topological isotopy Jt of Jf (equal to the identity
on the §Jf and smooth near ΰJf) which carries the core disks Δy to'smooth
disks. It.does so by carrying Σy c Δy to the copy of Σy in d(Ak) which was
given the standard product smoothing in the construction of H.

Region of
Smooth copy of Σ ; resmoothing

/ L-L I ' * '

The dotted curve
represents image of
Σ. after isotopy

Diagram 1

Note. In the original (before our resmoothing) smooth structure on Jί the
isotopy above is entirely smooth.

After our resmoothing, the conclusion of the lemma may be improved by
discarding the Casson handles in favor of the smooth Whitney disks ^(Lly Δy ).
At the same time, ε-control is lost (the isotopy is long). The resulting data,
ascending and descending spheres paired algebraically δ/y with smooth and
locally finite Whitney disks cancelling excess geometric intersections, is pre-
cisely what is needed to complete the usual proof of the proper-A-cobordism
theorem. _ _

Thus, Y has a smooth product structure. The top 3 + Y certainly contains a
copy of

diff diff diff
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and the bottom may be described as

a - r s [±R4-Λ*\JjrH= R3XI \J H= H).
diff V 3 diff R3χl diff /

So the product structure on Y smoothly imbeds W into H.
Scholium. Let W be a smooth manifold homeomorphic to \RΛ. Suppose W

is resmoothed near a proper smooth ray γ by replacing the structure in a
tubular neighborhood ^Γ(γ) with a copy of H. Then the result is diffeomor-
phic to H. In other words, H is absorptive. This diffeomorphism may be
written without confusion as W + H = H. We postpone, for the moment, the
consideration of spaces with more than one end.

Theorem 2. Let W5 be a smooth five-dimensional h-cobordism with one end.
Suppose there are smooth, proper imbeddings e ±: H -> ΰ±W. Then W5 is a
smooth product iffW5 is a topological product.

Proof. Assume W5 is a topological product. Choose a properly imbedded
smooth half-open ray γ c H. The topological product structure may be
altered, if necessary, so that e+(γ) projects near e_(γ), and in particular into
e_(H). After a controlled cancelling of handles of indices zero and one, the
gradient-like flow determines a smooth imbedding of JfY. /, a neighborhood
of γ in d + W crossed with / = [-1,1], with JVX 1 c e+(H) c d + W5 and
JTx - 1 c e_(H)<z d~W5.

Resmooth W5 (to obtain W) exactly as in the proof of Theorem 1. (Briefly,
JΓt is replaced with Ht for / e [-1,1].) We claim that W is diffeomorphic to
W. By the scholium H + H = H, that is there is a diffeomorphism extending
the identity on dH between H and the resmoothing H + H. Consequently,
9 ± W5 = d i f f d±W: in fact, the diffeomorphisms are isotopic to the identity.
Tapering this isotopy in a collar of dW5 we arrive at a homeomorphism \d'
which is a diffeomorphism except over a region which is homeomorphic to a
half-open collar R4 X [0, oo] properly imbedded in interior W5. Clearly, the
obstruction group to the Haupvermutung H3 (relative; Z2) vanishes and W
is isotopic to a diffeomorphism Id": W5 -» W.

By replacing W5 with W we see the vertical strip H X [-1,1] c W. The
penultimate step in the high-dimensional Λ-cobordism theorem is the construc-
tion of Whitney disks. As in the proof of Theorem 1, this is carried out by
isotoping into the universal example, i / x O c middle level, where smooth
disks are plentiful. Thus, a smooth product structure is constructed on W = d i f f

w5.
We call a homeomorphism h: Mo -> Mx between two smooth 4-manifolds

stably isotopic to a diffeomorphism if h X Id: Mo X R -* Mx X R is isotopic
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(equivalently ε-isotopic) to a diffeomorphism. The vanishing of the Kirby-
Siebenmann obstruction [h] e i/3(M1; Z2) is necessary and sufficient for h to
be stably isotopic to a diffeomorphism.

Theorem 3. Let Mo and Mγ be smooth 4-manifolds with one end. Suppose
there are smooth proper imbeddings e{. H -> Mi9 i = 0,1. Let h: Mo -> Mλbe a
homeomorphism. Then h is isotopic to a diffeomorphism iffh is stably isotopic to a
diffeomorphism.

Remarks. Let Mλ be a 4-manifold and let a e H3(MV 3MX; Z2) be given.
By [8, Theorem B], there exists a smooth Mo and a homeomorphism h:
Mo -> Mx such that [h] = a (and h is a diffeomorphism along the boundary.
If Mλ has one end we can assume that there is a proper imbedding e0:
H-*M0.

R. Edwards has shown that we cannot replace isotopic with ε-isotopic in the
conclusion of Theorem 3 (or Corollary C below) [2].

Proof. Form the mapping cylinder Y of h, Y is a topological manifold with
a natural smoothing near its top 3 + Y = Mΐ Mo and bottom 3" Y = d i f f Mv [h]
is the only obstruction to extending this structure over Y. If [h] = 0, then
extend and apply Theorem 2.

Remark. H is characterized by any one of the above theorems. In fact, the
following trivial identity (on sums of \ spaces) shows any two absorptive
structures H and J on \RA are diffeomorphic:

H

Diagram 2

Extensions. Theorem 2 holds, relative to sub-Λ-cobordisms which already
have smooth product structures, e.g., for bounded cases. Theorem 3 therefore
also holds for bounded 4-manifolds. Theorems 2 and 3 also have generaliza-
tions without assuming there is but one end of W5 (and M 4 respectively). If
there are no more than countably many ends, the correct hypothesis is that one
copy of H is imbedded running toward each end of d±W5 (and M,, i = 0,1
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respectively). In general, the space of ends δ of a connected metrizable
manifold is a subspace of the cantor set since it is defined as the inverse limit
of the finite sets: ττ0 (manifold compactum). Thus, £ is separable and we may
find a countable dense subset δr c δ. The general hypothesis for Theorems 2
and 3 is that any two countable dense sets δ±<z «ί = enάs(ΰ±W5) (= ends
M, , i = 0,1, respectively) be selected and one copy of H is imbedded running
toward each end of δ ±. Then the conclusions of Theorems 2 and 3 hold as
stated. The generalization is straightforward if δ* = δ~. Suppose that δ' and
δ" are countable dense subsets of ends(Λf4) and that M4 contains disjoint
copies of H running to each end of δ'. We show that M will also contain
disjoint copies of H running to the ends of δ".

Let Z = (\R4 X [~ε,0])Γ be a concordance between ^Rstά and H. Let

Λ/4χ0\/ = l

be formed by attaching copies of Z to neighborhoods of disjoint rays running
toward δn. W5 is a product except over countably many sub-proper h-
cobordisms with base H. The key obstacle to smoothly cancelling the handles
of these is the absence of smooth Whitney disks in the middle level N. Given a
proper radius function r: N -> R + U 0, the hypothesis on copies of H in M
approaching δ' implies that any topological Whitney disk Δy c CHj can be
smoothed by dragging it outward with respect to r. Thus the Whitney tricks
may be performed and handles cancelled in a locally finite way giving W5 a
smooth product structure. This establishes the copies of H in M running
towards δ".

Let U be the smooth manifold which is the interior of H. We have some
immediate corollaries.

Corollary A. Let W4 be any smoothing of R4. There exists a smooth proper
imbedding e: H -> W4 iffW4 is diffeomorphic to U.

Proof. W4 is p - Λ-cobordant to U and by [4] this p - Λ-cobordism is a
product W5 satisfying the hypothesis of Theorem 2.

Corollary B. // W4 is any smoothing of R4, then there exists a smooth {but
not usually proper) imbedding e: W4 -> U.

Proof. Remove the interior of a tubular neighborhood of some proper ray
in W4 and apply Theorem 1 to imbed in H. Now glue a standard \R4 to
domain and range to obtain the desired imbedding.

We call U a universal R4 because of Corollary B. Since simply connected
ends of smooth 4-manifolds are p - Λ-cobordant to either 5s

3

td X [0, oo) or the
end of the "Fake S3 X R" [3], we may deduce the following corollary from
Theorem 3.
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Corollary C. Let M be a compact {connected) topological four-manifold
without boundary whose (Kirby-Siebenmann) triangulation obstruction [M] e
H4(M\ Z2) vanishes. Then Mo = M - pt can be smoothed so that the smooth-
ing of the end is diffeomorphic to the end of U. Any two such smoothings in the
same stable isotopy class are isotopic. Similarly, if [M ] Φ 0, then Mo can be
smoothed so as to be diffeomorphic near infinity to the sum (an end of "Fake
S3 X R") + U. Any two such smoothings in the same stable isotopy class are
isotopic.

Thus the universal space U, by being maximally complicated, achieves a
certain simplicity. Corollary C is an example of this maxim. Another is
provided by considering knotted S 2 's in R4.

The first author showed [5] that any topologically locally-flat imbedding e:
S2 -» RA with ττλ(R4 - e(S2)) - Z was unknotted. Since Quinn [10] proved
the annulus conjecture for R4, we can take as our definition of unknotted that
there exists an ambient isotopy of R4 throwing e onto the standard unknotted
S2 in R4.

The question of topologically unknotted smooth knots in R4 (or S4) is
intimately related to smoothings of S3 X Sι. Given a smooth imbedding e:
S2 -» S4, 0-framed surgery on e yields a smooth 4-manifold, W(e). If e is
topologically unknotted, W(e) is homeomorphic to S3 X Sι. Given two topo-
logically unknotted smooth knots eve2: S2 -> S4, W(eλ) is diffeomorphic to
W(e2) iff the pair (S4, ex(S2) is diffeomorphic to the pair (S4, e2(S2)).

If we carry out the same program for knotted spheres in I/4, surgery yields
manifolds homeomorphic to S 3 X Sι — pt whose ends are diffeomorphic to
the end of U. It is an easy exercise to see that, in t/4, there are, up to smooth
isotopy, precisely two topologically unknotted, smooth 2-spheres. Moreover,
the two knots are not even diffeomorphic as pairs.

Historically, U was the first smoothing of R4 which was known not to be
"compactifiable" in the following sense.

Theorem 4. Let e: U -> W be a smooth (not necessarily proper) imbedding
of U into a smooth 4-manifold. There does not exist any topological imbedding h:
D4 -> W of the 4-cellinto Wwith closure (e(U)) c h(interior D4).

Remarks. Gompf, in the next article, constructs countably many smoothings
with this property. Theorem 4 was discovered while trying to prove:

Conjecture. There does not exist a smooth imbedding of U in any compact
smooth 4-manifold.

Proof of Theorem 4. Suppose h: D4 «-> W exists. Trim h(D4) along a
smooth submanifold near hdD4 to obtain a smooth imbedding of U in a
compact smooth orientable manifold with boundary W~ with the image of U
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contained in a smaller topologically collared 4-cell C. Doubling W~ we obtain
a closed manifold W containing U smoothly and inside C. Perform 1-surgery
away from C to make W simply connected and add copies of S2 X S2 and
CP2. Eventually, Wall's stable classification of smooth 4-manifolds [10] tells us
t h a t ^ ' = d i f f£(C/> 2)#/(S 2XS 2).

We would like to arrange that k = 0 in the above formula without altering
the condition U inside the cell C. As long as k > 1 any CP1-generator in
H2(W'\ Z) is "ordinary" (i.e., not dual to the Stiefel-Whitney class vv2) and
may be represented in W - C by an imbedded surface. The Arf invariant is
indeterminate and may be chosen to be zero (see [12]). Paired surgery of (W\
surface) along a subkernel increases / (above) and modifies the surface into a
smoothly imbedded 2-sphere. Blow this sphere down to reduce k until k = 1.
When k = 1, the CP2 generator a is characteristic (i.e., dual to vv2). Now

S i g n W - α α 1 - 1
8 8

is the well-defined Arf invariant of any surface in W — C representing a.
Applying the above procedure once more reduces k to zero.

By Casson's original construction [1], the natural generating set
al9βv- •-,«/,/?/ for H2(W' - C; Z) can be represented by disjoint (smooth)
imbeddings of Pv - ,Ph where each P, is a proper homotopy S2 X S2 — pt
made by attaching to B4 two Casson handles (and these may be chosen from
the class # ) with zero framing to the Hopf link in dB4. Using the core disk
Δy c CHj we represent the H2(W — C; Z) by disjoint topological imbed-
dings of S2 V S2. The imbeddings are smooth (and transverse) except near a
point on each sphere where the singularity (2?4, Σy ) is among the types
smoothed during the construction of H.

As in the proof of Theorem 1, we can construct a topological isotopy of W
which carries the / disjoint topological imbeddings of S2 V S2 to smooth (and
transverse) imbeddings by sliding the distinguished ball neighborhood of each
singularity to superimpose the topological surface Σ on one of the smooth
surfaces of U built from the same singularity. By construction, each singularity
Σj occurs (infinitely often) smoothed outside any compact subset K of U.
Thus the smooth surfaces /(S2 V S2) may all be taken disjoint from any
K c U. Now W - neib(/(S'2 V S 2 ) ) U D 4 is a smooth homotopy sphere
containing any preassigned compactum K c U of U. This is certainly impossi-
ble. The first fake R4 resulting from the work of S. Donaldson and the first
author contains compact submanifolds which do not smoothly imbed in any
homotopy sphere (see [6] for an exposition). By the universal property of U
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this compact submanifold would also lie in ί/, contradicting our construction.

This proves Theorem 4. We can now formally derive:

Corollary D {Gompf [7]). There are at least countably many nondiffeomor-

phic smooth structures on RΛ.

Proof. Let Bv B2, B3, be an exhaustion of U by topologically collared

balls. If Corollary D fails, some infinite subsequence 2?/(1), 5 / ( 2 ) , 5 / ( 3 ) , have

diffeomorphic interiors: V = Bl(l) = Bl(2) = 2?/(3), . Notice that V is very

much like U\ V contains (disjointly) any compactum K in U and any desired

(but finite) number of smooth copies of any desired (but finite) collection of

singularities (B, Σ y ). Thus the proof of Theorem 4 applies equally well to V as

U. So V cannot be the interior of a topologically collared ball in a smooth

4-manifold. But V = 2?/(1). This contradiction shows that no infinite collection

of the interiors 2?/(1), 2?/(2), 2?/(3), can all be diffeomorphic to each other.
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