THE LINEARITY OF PROPER HOLOMORPHIC MAPS BETWEEN BALLS IN THE LOW CODIMENSION CASE

JAMES J. FARAN

Let $B^{n}=\left\{z \in C^{n}:\|z\|<1\right\}$ and let $f: B^{n} \rightarrow B^{k}$ be a proper holomorphic map. We shall always take $n>2$. Cima and Suffridge [1] have conjectured that if f extends to a twice continuously differentiable function on the closure of B^{n} and $k \leqslant 2 n-2$, then f is linear fractional. The purpose of this note is to show

Theorem. If $f: B^{n} \rightarrow B^{k}$ is a proper holomorphic map which extends holomorphically to a neighborhood of $\overline{B^{n}}$ and $k \leqslant 2 n-2$, then f is linear fractional.
(It should be remarked that the map $\left(z_{1}, \cdots, z_{n}\right) \rightarrow\left(z_{1}, \cdots, z_{n-1}\right.$, $z_{1} z_{n}, \cdots, z_{n-1} z_{n}, z_{n}^{2}$) shows that the theorem is false if $k \geqslant 2 n-1$; see [1].)

So, let $f: B^{n} \rightarrow B^{k}$ be a proper map, holomorphic in a neighborhood of $\overline{B^{n}}$, $k \leqslant 2 n-2$. Let $\langle z, w\rangle=\sum_{j=1}^{p} z_{j} \bar{w}_{j}$ be the hermitian inner product in C^{p}. Let $z^{\prime}=f(z)$. Applying the Hopf lemma to the function $r^{\prime}=\left\langle z^{\prime}, z^{\prime}\right\rangle-1$ on B^{n}, we see that

$$
\begin{equation*}
\left\langle z^{\prime}, z^{\prime}\right\rangle-1=u(z, \bar{z})(1-\langle z, z\rangle) \tag{1}
\end{equation*}
$$

for some real analytic function $u(z, \bar{z})$, nonzero in a neighborhood of ∂B^{n}. Complexifying, (1) becomes

$$
\begin{equation*}
\left\langle z^{\prime}, w^{\prime}\right\rangle-1=u(z, \bar{w})(1-\langle z, w\rangle) \tag{2}
\end{equation*}
$$

where $w^{\prime}=f(w)$.
Let $z_{0} \in \partial B^{n}$. (2) is valid for $(z, w) \in U \times U$ for some open neighborhood U of z_{0}. Thus if z is a point on the hyperplane $Q_{w}=\{\zeta: 1-\langle\zeta, w\rangle=0\}$, $(z, w) \in U \times U$, then $z^{\prime}=f(z)$ is on the hyperplane $Q_{w_{0}}^{\prime}=\left\{\zeta^{\prime}: 1-\left\langle\zeta^{\prime}, w^{\prime}\right\rangle\right.$ $=0\}, w^{\prime}=f(w)$. Thus f maps points lying in a complex hyperplane to points lying in a complex hyperplane. Let $\phi_{n}: P^{n} \rightarrow P^{n^{*}}$ be the antiholomorphic map

[^0]sending a point w to its reflection $Q_{w^{*}}$ ($P^{n^{*}}=$ the projective space of hyperplanes in P^{n}.) ϕ_{n} is an antiholomorphic isomorphism, so we may define a map f^{*} by the commutative diagram

i.e., $f^{*}\left(Q_{w}\right)=Q_{w^{\prime}}$. The point of the remarks above is that if $Q_{w} \cap U \neq \varnothing$, then $f\left(Q_{w} \cap U\right) \subset Q_{w^{\prime}}=f^{*}\left(Q_{w}\right)$. (Note that $z_{0} \in Q_{z_{0}}$ so $\left\{w \in U: Q_{w} \cap U\right.$ $\neq \varnothing\}$ is open and nonempty.)
In the sequel we shall let P^{r} stand for an r-dimensional linear subspace of projective space, constant, variable, arbitrary, etc., depending on context. For convenience we write $f\left(P^{r}\right)$ for $f\left(P^{r} \cap U\right)$.

Let $G(1, U)=\left\{P^{1} \subset P^{n}: P^{1} \cap U \neq \varnothing\right.$ and $P^{1} \subset Q_{w}$, some $\left.w \in U\right\}$. For $P^{1} \in G(1, U)$ define $d\left(P^{1}\right)=$ the dimension of the smallest linear subspace containing $f\left(P^{1}\right)$ and define $d=\max _{P^{1} \subset G(1, U)}\left\{d\left(P^{1}\right)\right\}$. Note that $d\left(P^{1}\right)$ is the rank of the $k \times \infty$ matrix whose columns are derivatives of f along P^{1}. Thus $\left\{P^{1}: d\left(P^{1}\right)<d\right\}$ is given by the vanishing of a collection of $d \times d$ determinants, hence is a proper subvariety of $G(1, U)$. We now have a number of cases to look at.

Case 0: $d=0$. Then f is constant, hence improper.
Case 1: $d=1$. Then the image of f is contained in the P^{n} spanned by the image of $D f$, and since f takes lines to lines, f is linear fractional.

Case 2: $d>2$. Let $P^{n-2^{*}}$ be the $(n-2)$-dimensional space of hyperplanes in P^{n} containing $P^{1} \in G(1-U)$ and $P^{k-d-1^{*}}$ the $(k-d-1)$-dimensional space of hyperplanes in P^{k} containing $P^{d}\left(=\operatorname{span}\right.$ of $f\left(P^{1}\right)$). If $P^{n-1} \supset P^{1}$, then the span of $f\left(P^{n-1}\right) \supset P^{d}$ so if also $P^{n-1} \in \phi_{n}(U)$, then $f^{*}\left(P^{n-1}\right) \in$ $P^{k-d-1^{*}}$, i.e., f^{*} maps $P^{n-2^{*}}$'s (the set of hyperplanes containing a line) into $P^{k-d-1^{*}}$ s. Since f and f^{*} are conjugate isomorphic, f maps P^{n-2},s into P^{k-d-1} 's. (The exceptions would be those $P^{n-2^{*}}$'s corresponding to P^{1} 's with $d\left(P^{1}\right)<d$. This is an analytic subvariety. Since the dimension of the smallest linear subspace containing $f\left(P^{n-2}\right)$ drops on subvarieties, every $f\left(P^{n-2}\right)$ is contained in some P^{k-d-1}.)
Lemma. f maps P^{n-1}, sinto P^{k-d} 's.
Proof. Pick a P^{n-1} near $Q_{z_{0}}$ and an $x \in P^{n-1}$ such that $D f(x)$ has maximal rank. (There exist such $\left(P^{n-1}, x\right)$ since f is proper. Indeed, the P^{n-1} 's for which we cannot do this form a subvariety. If $f\left(P^{n-1}\right) \subset P^{k-d}$ for all P^{n-1} 's off that subvariety, $f\left(P^{n-1}\right) \subset P^{k-d}$ since dimension can only drop
along subvarieties). Suppose $f\left(P^{n-1}\right)$ spans at least a P^{k-d+1}. Then there exist multi-indices $\alpha_{1}, \cdots, \alpha_{k-n-d+2}$ and directions $v_{1}, \cdots, v_{k-n-d+2}$ tangent to P^{n-1} so that the P^{k-d+1} is spanned by $f(x)$, the image of $D f(x)$ (restricted to P^{n-1}) and $\left\{D^{\alpha_{i}} f(x)\left(v_{j}^{\left|\alpha_{j}\right|}\right)\right\}$. Note $k-n-d+2<n-d<n-2$. So consider the P^{n-2} through x spanned by $x, v_{1}, \cdots, v_{k-n-d+2}$ (and enough other tangent directions w_{p} to make up a P^{n-2}). Then $D f(x)\left(v_{j}\right), D f(x)\left(w_{p}\right)$ and $D^{j} f(x)\left(v_{j}^{j}\right)$ are contained in the span of $f\left(P^{n-2}\right)$. Thus $f\left(P^{n-2}\right)$ spans at least an $n-2+k-n-d+2=k-d$ dimensional space, but $f\left(P^{n-2}\right) \subset$ P^{k-d-1}. This contradiction proves $f\left(P^{n-1}\right) \subset P^{k-d}$ for P^{n-1} in an open set about $Q_{z_{0}}$. The lemma for all P^{n-1} follows by analytic continuation.

Let $f_{1}=\left.f\right|_{P^{n-1}} . f_{1}: P^{n-1} \rightarrow P^{k-d}$. Suppose $P^{n-1} \cap B^{n} \neq \varnothing$. Then P^{n-1} $\cap B^{n}$ will then be a $B^{n-1}, P^{k-d} \cap B^{k}$ will be a B^{k-d} and $f_{1}: B^{n-1} \rightarrow B^{k-d}$ will be proper. Note that the codimension has dropped by $d-1 \geqslant 1$. We can now proceed by induction.

Codimension 0. $k=n, f: P^{n} \rightarrow P^{n}$ taking hyperplanes into hyperplanes. The fundamental theorem of projective geometry then yields that f is linear fractional. (Or, $f: B^{n} \rightarrow B^{n}$ is proper, hence must be an automorphism.)

Codimension >0. Assume the theorem is true for codimension less than $k-n$. Then if $d=1$ we are done. If $d \geqslant 2$, the maps f_{1} constructed above are linear by the induction hypothesis, hence f is linear fractional along every hyperplane intersecting B^{n}. It follows that f must be linear fractional.

References

[1] J. A. Cima \& T. J. Suffridge, A reflection principle with applications to proper holomorphic mappings, preprint.

[^0]: Received April 16, 1984 and, in revised form, April 10, 1985.

