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COLLAPSING RIEMANNIAN MANIFOLDS
WHILE KEEPING THEIR CURVATURE

BOUNDED. I.

JEFF CHEEGER&MIKHAELGROMOV

0. Introduction

Let Y" be a complete connected riemannian manifold, and p e Yn. The
injectivity radius, ip, of the exponential map at p is defined to be the smallest
r such that expp\Br(p) fails to be a diffeomorphism onto its image. The
present paper is the first of two which are concerned with the situation in
which the size of injectivity radius is "small" relative to the curvature.

In this part I, we show that if a smooth manifold Xn admits a certain
topological structure called an F-structure of positive rank, then Xn also admits
a family of metrics, gδ, such that as 8 -> 0, ip converges uniformly to zero at all
points, p, but the curvature, Ka, stays bounded (independent of p and δ).
Such a family of metrics is said to collapse with bounded curvature (by
rescaling, one can assume |A^| < 1).

In part II we prove a sort of strengthened converse to this collapsing result.
A riemannian manifold Yn is said to be ε-collapsed if ip < ε for all p.
Intuitively, such a manifold appears to have dimension < n if one examines it
on a scale :» ε. We show that in each dimension, there exists a critical radius,
ε(n), such that if Yn is ε(w)-collaρsed and |A"| < 1, then Yn admits an
F-structure of positive rank. Thus, if Yn admits a metric which is sufficiently
collapsed, it actually admits a family of metrics which collapse with bounded
curvature.

An F-structure on a space, X, is a natural generalization of a torus action.
Different tori (possibly not all of the same dimension) act locally on finite
covering spaces of subsets of X. These local actions satisfy a compatibility
condition, which insures that X is partitioned into disjoint "orbits." The
F-structure is said to have positive rank if all orbits are of positive dimension.
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The existence of an F-structure of positive rank is a definite constraint on

the topology of a space. In the compact case, it implies, for example, that the

Euler characteristic is zero (compare however Example 1.6 of [4]). This

vanishing phenomenon does not carry over to Pontrjagin numbers, except in

the presence of further hypotheses; see Example 1.9 (we will show elsewhere

that the Pontrjagin numbers of X41 vanish if it admits a so-called "pure

structure of positive rank, with amenable holonomy"). However, there is a

strong interaction between F-structures, characteristic numbers, and secondary

geometric invariants; see [3], [5], [13].

The collapsing family of metrics gg, associated to an F-structure of positive

rank is obtained roughly as follows. Start with a metric g which is invariant for

the structure in the sense that the local torus actions are isometric. Then shrink

g in certain directions tangent to the orbits. In some cases, it is also necessary

to expand g in directions orthogonal to the orbits, in order to keep the

curvature bounded. Thus, the diameter, diam(7rt, g g), and volume, Vol(7w, gδ),

may go to infinity as (Yn, g8) collapses; it may also happen that they stay

bounded or converge to zero.

The following examples (although they are presented informally) should

serve to give some feeling for the concepts mentioned so far; see §1 for the

precise definition of "F-structure" (which is somewhat technical).

Example 0.1 (The Klein bottle). View the Klein bottle as the total space of a

circle bundle Sι .-> K2 -> Sι. For each interval, /, in the base space, there are

two canonical fiber preserving circle actions on p~ι(I), which differ by the

automorphism x -> JC"1. If one of these local actions is continued around the

base circle, the opposite action is obtained. As a consequence of this holonomy

phenomenon, no global action exists. (See Example 1.2 for further discussion.)

Example 0.2 (Graph manifolds). Take a finite collection of surfaces, Σ 2 , with

3 Σ 2 = UyHiSlj, a disjoint union of circles. The product manifolds, Σ 2 X S},

have boundary components which are tori, Sfj X S/. Form a manifold with

empty boundary, y 3 , by identifying these tori in pairs by elements of SL(2, Z).

On each piece Σ 2 X S} c y 3 , Sι acts by rotation of the factor S}. At

boundary components which have been identified, the corresponding circle

actions need not agree. But if not, they generate an action of a 2-torus, which

extends both of them. Thus, in this example, the torus which acts locally is of

dimension 2 near such identified boundary components and of dimension 1

elsewhere.

Example 0.3 (Compact flat manifolds). If X" is compact and flat, by the

Bieberbach Theorem there is a finite normal covering X", which is isometric to

a torus. Since the action of this torus on itself is transitive, the induced orbit

structure on X" consists of a single orbit, Xn.
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Example 0.4 (Collapse by scaling). If (Yn, g) is a complete manifold with
injectivity radius uniformly bounded from above, then the family (Yn,δ

2g)
collapses (intuitively, to a single point, in the compact case). However, for this
collapse, the sectional curvature does not remain bounded unless Yn is flat.

In view of Example 0.4, from now on the word "collapse" will be taken to
mean "collapse with bounded curvature."

The following is the most transparent and in a sense the most basic collapse
with bounded curvature.

Example 0.5 (Generalized warped products). Start with a surface of revolu-
tion, M2, obtained by revolving an arc in the upper half plane about the
x-axis. Thus, M2 is diffeomorphic to Sι X /. The obvious isometric circle
action on M 2 lifts to an isometric R action on the infinite cyclic covering
M2 = R X /. Let {δZ} c R denote the subgroup generated by a translation
of size δ. Then the family M2/{δZ) collapses, but the curvature remains
unchanged (we have unrolled M2 and then rolled it up more tightly).

To extend the above example to higher dimensions, take Mk+ί = Xk X Rι,
with (generalized) warped product metric

(0.1) * = &(*) + Σ a

Then Mk + / = Xk X Rι/δZι collapses (to Xk).
Note that the orbits of the F-structure on Mk+ι have constant dimension, I.

In such cases (as above) the collapse can always be performed so that the
diameter remains bounded. In particular, the volume goes to zero.

Example 0.2 (continued). The collapse associated to the F-structure on the
graph manifold, Y3, is particularly easy to describe if the identifications of the
boundaries simply interchange the roles of the two circles. In this case, choose
a "cusp-like" metric on Σ2 which near the boundary is isometric to the
product of an interval and a circle, Sg, of length δ. The curvature and volume
can be chosen bounded independent of the size of δ for such a metric.

Now form Σ 2 X S$ with the product metric, and identify corresponding
boundary components. The resulting manifold, (Y3, gδ), has injectivity radius
everywhere = δ. In fact, Vol(Y3, gs) < cδ. However, the orbits of the F-
structure are not of constant dimension and diam( Y3, g8) -> oo.

As far as we are aware, the first example of collapse (apart from warped
products and scaling) was discovered by M. Berger in about 1962. He con-
sidered the collapse of the unit sphere S3, obtained by shrinking the circles of
the Hopf fibration. It is clear that the "limit" of this collapse should be S2 (in
fact, with a metric of curvature = 4). The notion of the limit of a collapse can
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be made precise by introducing the concept of Hausdorff limit: see [9] and §2.
Berger's interest in the collapse of S3 stemmed from his observation that it
provides a counterexample to a specific conjecture concerning a lower bound
for the injectivity radius on odd dimensional manifolds of positive curvature.

Another significant collapse (with variable topology) was discovered in the
context of manifolds of positive curvature by Aloff and Wallach [1]. They
exhibited an infinite sequence of pairwise nonhomeomorphic, homogeneous
7-manifolds with uniformly pinched positive curvature. By the finiteness
theorem in riemannian geometry (see [2], [4], [9], [11]) such a sequence must
collapse.

The remainder of this paper is divided into five sections and one appendix
as follows.

1. f-structures and F-structures
2. Pure polarized collapses with bounded diameter
3. Polarized volume collapses
4. Nonpolarized collapses

(a) Introduction
(b) Main computation
(c) Construction of slice polarizations
(d) Collapse

5. F-structures and complete metrics on open manifolds
(a) Introduction
(b) Construction of a complete metric, ^ 0

(c) Expansion of ^ 0

(d) Collapse of the expanded metric
Appendix: Pure polarized structures on essential manifolds.

In §1, we define and give examples of generalized group actions called
^-structures. Essentially, an F-structure is a ^-structure for which all the
groups which act locally are tori. In §2, we consider the case of a pure
structure. Basically, this means that a single connected group acts locally, up
to automorphism, on a finite covering space. We assume, moreover, that all
orbits are of the same positive dimension', compare Examples 0.1, 0.4, and 0.5.
This second condition defines what is called a pure polarized structure. For
such structures, by shrinking a compatible metric in the direction of the orbits
while leaving it unchanged in the orthogonal directions, we obtain a collapse
for which the diameter stays uniformly bounded.

In §3 we consider the polarization for which the groups which act locally are
not all of the same dimension. In this case, we can collapse in such a way that
Vol(y;i, gs) -> 0, but diam(YM, gδ) -> oo; compare Example 0.2.
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As already indicated, there exist manifolds, Mf, admitting F-structures
(which are in fact pure) of positive rank, but for which some characteristic
number is nonzero. By the Chern-Weil theory, these manifolds admit no
collapse with bounded curvature, such that Vol(M*7, gδ) -> 0. In particular,
M*1 does not carry any polarized F-structure. However, in §4, we show that
any F-structure of positive rank admits what we call a slice polarization. This
can be used to collapse in such a way that the volume behavior is controlled by
the geometry of the orbit structure. For example, the manifolds M$ can be
collapsed so that the volume stays bounded. But it can also happen that the
volume goes to infinity or to zero (even though the slice polarization is not an
honest polarization: compare [10]).

In §5 we consider open manifolds which carry an F-structure outside a
compact set. On such manifolds, we obtain complete metrics of bounded
curvature with properties analogous to those of the metrics constructed in
§2-4.

In the Appendix we exhibit a class of manifolds with the property that if a
pure F-structure exists, it must be polarized. As a consequence, many of these
manifolds can be shown to admit no pure F-structure of positive rank,
although they do not admit such structures which are not pure.

Portions of this paper were written while the first author enjoyed the
hospitality of the Institute des Hautes Etudes Scientifique, Bϋres-sur-Yvette
and the Mathematical Sciences Research Institute, Berkeley.

We are indebted to Ofer Gabber for conversations which helped us to
formulate the definition of a ^-structure in the language of sheaves.

1. ^-structures and F-structures

In this section, we discuss certain generalizations of the concept of a group
action.

A partial action, Ay of a topological group, G, on a Hausdorff space, X, is
given by the following data.

(i) A neighborhood S c f f x l o f e X X, where e e G is the identity
element. This 2 is called the domain (of definition) of the action.

(ii) A continuous map A: 9 -> X, also, written (g, x)-> &x, such that
(g\gi)x = 8ι(g2χ) whenever (gx,g2x) and (gxg29x) He in 9, and such that
ex = x for all x e X.

Two partial actions (A, 9X% (A2> 92) are called (locally) equivalent if there
is a domain 9 c 9X c 92, containing e X X9 such that Aι\92 = A2\3)2. A
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local action, { A}, is defined as the equivalence class of a partial action A of G
on X. Every global action A defines an obvious local action Aloc. A local
action which can be obtained in this way is called complete.

Remark 1.1. An elementary connectedness argument shows that Aioc de-
termines A uniquely, in case G is connected.

In the smooth case, the category of local actions is equivalent to the category
of infinitesimal actions: these are continuous homomorphisms of the Lie
algebra of G to the Lie algebra of vector fields on X. For example, if G - R,
then a local action is given by a vector field on X, and completeness amounts
to the integrability of the field.

From now on, we assume that G is connected.
A subset Xo c X is called (locally) {A}-inυariant if for some representative

(A,@>) e {A}, one has ga e XQ for all (g, a) e 3). Since the intersection of
{A}-invariant sets is {A}-invariant, it follows that each point x e X is
contained in a unique minimal {A}-invariant subset called the orbit Θ = Θx c
X, and that the orbits partition the space X. Moreover, if AXoc is complete, the
orbits of A]oc and A coincide.

A local action, {A}, on X can be restricted to any open subset, U c X, by
taking an open subset 3)' c G X X, which contains e X U and such that
gxG £/ for all (g, c) e ^ ' with * e £/. Furthermore, if Y -> X is a /oαz/
homeomorphism, then {̂ 4} pulls back to a local action, /*{yl}, on 7, in a
similar way.

Now consider a sheaf, ^, of connected topological groups over X. Let g(U)
denote the group of sections over U. An action of # on X is given by a local
action of the group#(U) on U for every connected open set ί / c l , such that
the structure homomorphisms #(U) -+#(U') (for ί / ' c ( / ) agree with the
restrictions of the local actions from (7 to U'.

A set S is called invariant if for all open sets (7, the intersection S n U is
invariant for #(U). Again, X is partitioned into minimal invariant sets called
orbits. A set which is the disjoint union of orbits is called saturated.

Example 1.1. In the smooth case, an action of f on X amounts to a
homomorphism of the Lie algebra sheaf associated to f into the sheaf of germs
of vector fields on X. As a specific example, let X be an affine flat manifold,
infinitesimally (and hence locally) acted on by the Lie algebra sheaf of parallel
vector fields.

Let Gx denote the stalk of # at x. If /: Y -> X is a locally homeomorphic
map, let f*(#) denote the pullback sheaf.

The following is a significant generalization of the concept of completeness
introduced previously.
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Definition 1.1. An action of a sheaf # of connected groups on X is called
complete if for all x G X, there exists an open neighborhood V(x) and a
locally homeomorphic map m\ V(x) -> V(x)(V(x) Hausdorff) such that

(i) If π(5c) = x, then for any open neighborhood W c V(x) of x, the

structure homomoφhism π*(#)(W) -+ Gx= Gx is an isomorphism.
(ii) The local action of π*(f) on V(x) is complete.
Example 1.1 (continued). For affine flat manifolds, this agrees with the

usual definition of completeness.
Note that the orbits of π*(/) on V(x) project to orbits of # on V(x).
Suppose π: V(x) -> V(x) is a normal covering. Then the group, Γ, of

covering transformations of TΓ: V(X) -> F(x) has a natural (holonomy) action
on π*(^). It follows that there is a sheaf Sf on F(x) such that the stalk of
π*(Sf) at y G F(x) is the image of the structure homomorphism π
and by Remark 1.1, for γ e Γ, g G fl"*(^XF(x)), j> G F(x), we have

Definition 1.2. A ^-structure, ^, on A" is a sheaf, ^, of connected topologi-
cal groups on X and a complete local action of ^ on A" such that the sets V(x)
can be chosen to satisfy the following conditions,

(i) π: V(x) -> V(x) is a normal covering.
(ii) For all JC, V(X) is saturated.

(iii) For all 0, if x, y e 0, then F(x) = F(^)
It follows from (iii) that ^ |0 is a locally constant sheaf, i.e. ^|(P is locally

isomoφhic to the sheaf of locally constant maps of 0 to the group Gx. Put
otherwise, f\Θ is a flat bundle such that each fiber is a group and the
holonomy acts by automorphisms of the fiber. However, it need not be the case
that f is locally constant on some neighborhood of 0, since the structure
homomorphisms need not be injective; see Example 1.4 and Remark 1.2.

Definition 1.3. If g is locally constant on V(x) for all x, then ^ is called
pure.

Suppose <3 is pure. Let x G l , and fix x e V(x) with τr(jc) = x. Since

f(V(x))= Gx, it follows that V(x) Λ F £(x) ^ F(x), where F £ (JC) is the

holonomy covering of #\V(x) (with base point τ(x)). As a consequence of (1.1),

the action of Gx descends to VE(x) and (1.1) continues to hold there.
For x G X, let (XE, x) denote the holonomy covering of the locally constant

sheaf ^ with canonical basepoint. Let 7r: XE -+ X be the projection. Given
J G I and a curve, c, from x to y, the space (F £ ( j ) , >0 is naturally identified
with a component of π~\V(y)) c (VE, x). Also parallel translation along c
includes an isomoφhism Gx -* Gv. Thus, the action of Gv on (F £ (^) , y)
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induces an action of Gx on the corresponding component of ιrr~ι(V(y)) and it
is immediate from (1.1) and the definition of (XE,x) that these actions give
rise to a global action of Gx on (XE, x). Thus,

Proposition 1.1. If a ^-structure is pure, then the local action ofβ(XE, x) is
complete.

Example 1.2 (Flat bundles). A basic example of a pure ^-structure is the
following. Let E be the total space of a locally constant sheaf, f, of connected
groups, and p: E -> x the projection. Then for x e X and y e ρ~ι(x), there is
an obvious action of the stalk Gγ of p*(#) on ρ~ι(U), provided U is chosen so
that f\U is trivial. In particular there is a pure ^-structure on E, where the
sheaf which acts is p*(#).

.Definition 1.4. A ^-structure is called an F-structure if for all x, the group
Gx is isomorphic to a torus, and the sets V(x) (of Definition 1.2) can be chosen
so that the coverings V(x) are finite.

Definition 1.5. If one can always choose V(x) = V(x\ then the F-structure
is called a Γ-structure.

Example 1.3 (Example 0.3 reformulated). Let Xn be a compact flat
riemannian manifold. By the Bieberbach Theorem, for each x e X the holon-
omy covering (Xn, x) has the natural structure of a torus, T". The torus T"
acts on itself by the left translation. Hence, it acts canonically on any (Xn, y)
as well. The holonomy transformations act on T" by conjugation. The set
UVΓX'7 has the natural structure of a locally constant sheaf # (with stalk T")
and the action of T" on any fixed (Xn, x0) induces the local action of # on X.

Example 1.4 (Structure homomorphisms not injective). Let X be the space
formed as follows. Take Sι X [0,1] and attach S1 X 1 to S 1 X 0 by a covering
map of degree 2. The image of S1 X [1 - ε, 1] in X is a Mόbius band Bε. The
image S1 X [0, ε] in X is a half open cylinder, Cε. Moreover, CεΠ Bε = S,
where S is the central circle in Bε (and Cε is the closure of Cε).

The orbits, 0, in X will be the images of circles, Sι X A. For each
connected open set U c X, put

(1.2) T(U)= {\JΘ\ΦΠ U< 0).

Let f be the sheaf associated to the presheaf which assigns to each U the
identity component of the isometry group of T(U). By definition, there is a
complete action of # on X, which defines a Γ-structure.

Note that for all T(U) Φ X, #(U) is isomorphic to a circle. However, if, for
example, T(Uλ) = Bε U Cε and T(U2) = Cε, then the restriction map ^(ί/i) ->
#(U2) is a 2-fold covering. As a consequence the total space of p is not
Hausdorff at points lying over 5, and the local action of # is not locally
isomorphic to a pure structure in a neighborhood of S.
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Remark 1.2. Observe that since a nontrivial local isometry defined on a

connected subset of a riemannian manifold is not equal to the identity on any

nonempty open subset, examples like the one above do not occur for effective

local actions of compact groups in the smooth category. From now on, we will

restrict attention to ^-structures of this type. For such structures, the restriction

maps #(U{) -^>#(U2) are injectiυe.

If the action of # on X defines a ^-structure, 9, and # c ^ is a subsheaf,

then p defines a ^-structure, 9r, called a substructure. We write 9' c 9. Note

that the stalks of 9' are not required to be closed subgroups. The subsheaf

whose stalks are the closures of those of 9' is written 9', the closure of 9'.

For a ^-structure as in Remark 1.2 above, for each x e X the neighborhood

V(x) of Definition 1.2 can be chosen such that there is a (unique) pure

substructure, 9a, of 9\V(x), with stalk Gxa = Gα.

The rank of 9 at x is defined as dim Θx. We say that 9 has positive rank if

the rank is positive for all x e X

Let ^ ' c ^ (with ^ as above). Let X = {jUa be a locally finite covering by

connected open sets Ua. For each α, let 9'a c ^ ' be a pure substructure with

stalk 9'xa c 9f; a t x e £/α.

Definition 1.6. The collection {(ί/α, ̂ α')} is called an atlas for ^ ' if

(i) Each Ua is saturated for the orbits of W.

(ii) For each JC, there exists Ua ^ x, such that G'x a = Gx.

Definition 1.7. A substructure 9 c 9 is called a polarization if it has an

atlas, J / , such that for all α, the rank of ^α' is the same positive number at all

x e 9'a (although rank 9'a might depend on a).

A polarization is called pure if 9' is a pure substructure (in which case it

suffices to take a single ί/α = X). The notions of atlas and polarization play an

important role in the collapsing constructions of §§2, 3, and 4.

If 9 has positive rank, one way to find a substructure, 9' c 9, of positive

rank which possesses an atlas is the following. Take a locally finite open

covering by sets Ua = V(xa) and pure a substructure 9a on each ί/α, such that

G\ a

 = G.x a n d the rank of 9a is positive. Enlarge this covering by adding all

nonempty intersections, U(a) = ί/Λl Π Π ί/αA and assign to ί/(α) the pure

substructure whose stalk at x e ί/(α) is the smallest subgroup G ( α ) containing

Uί GΛ,α, Then {(ί/ (β),G(α))} is an atlas for the substructure ^ ' , determined by

the condition G'x = C?^^, where U(a) is the intersection of all those Ua

containing x. The rank of 9' is positive and it is easy to see that in fact we can

choose 9' such that r a n k ^ ' = rank^.

The following lemma is convenient for the constructions of §5 and provides

a simple picture of structures which possess an atlas.
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Lemma 1.2. Let {(Ua, @a)} be an atlas for & on (a possibly open) manifold

X. Then there is an atlas {(£/«, <?«)} for & w^ΐn the following properties:

(1) the sets Ua have compact closure.

(2) Ifx e UaιD -" ΠUak, then (for some ordering) GxaιQGxaiQ c
G*.ak

(3) For all Ua and all x e Ua, there is at most one Uβ (β Φ a) with x e Uβ

™d Gx,a = Gxβ.

Proof. (1) Clearly, we can assume {Ua} itself has this property.

(2) Let Uβ, Uy satisfy x e Uβn Uy but neither Gxβ c Gxy nor Gxy c Gx ^.

Take saturated open sets Uβ, Uy with Uβn Uy= 0 and Uβ\Uy a Uβ c L ,̂

t/γ \ Ljj, c ί/γ c I/γ. Since, clearly, Gx ̂  # Gx # Gx γ , it follows that Uβ9 Uy

together with the remaining {Ua} cover X. We can now construct a covering

iUa) b y induction, such that Ua c ί/α, and if we put g, = S?a|£^, then

{Ua, f a } satisfies (1) and (2).

(3) Let £/αi, UaΊ,... be a maximal subcollection of {Ua} such that U^ α is

connected and Gx%a, = Gxa whenever JC e ^ α Γϊ ̂ α . Put ί/αi = Uai. Let, say,

^ * * Un be those Un whose intersection with Un is nonempty. Let

ίZα,' •>££*, be the connected components of t/tt2 U U Uak. By proceeding

in this way and repeating the process for all subcollections as above, we obtain

the required covering.

An atlas satisfying the properties of Lemma 1.2 is called regular.

Remark 1.3. Let s/ be a regular atlas for <&. Let {t/α'} be an open covering

by saturated subsets, t/α' c Ua. Then by restricting ^ α to t/α' we obtain a

regular atlas, J ^ ' , for a substructure <§'£.<§. We write i ' c i .

Remark 1.4. If the atlas {(C/α, ^α)} in Lemma 1.2 is a polarization, then the

regular atlas {(Ua, &a)} is a polarization as well.

Remark 1.5. By dropping (1) in Lemma 1.2, we can also drop (3) and

strengthen (2) to read Gxaχ £ Gxai £ GXΆk.

A riemannian metric g is called invariant for ^ if the local action of the

sheaf g is isometric.

Lemma 1.3. Let jtf= {(Ua^a)} be a regular atlas for & and let sέ' =

{(f/α', ^ α )} , where £/α' c Ua. Suppose & has the property that all coverings

V(x) —> F(Λ:) (Z>2 Definition 1.2) αw fe^ chosen finite. Then there is an invariant

metric for <&'.

Proof. The relation of Lemma 1.2(2) induces a natural partial ordering on

the {Ua}. Start with some maximal Ua and take a finite covering of ί/α' by sets

of the form V(xλ) V(xk) with F(jcy) c Ua. Take any metric g 0 on V(xλ),

pull it back to V(xλ), and average over the action of Gx and over the finite

group of covering transformations. Extend the resulting metric to any smooth

metric gx on Vλ(x) U V2(x). Repeat the process for gi|F(jc2) % continuing in
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this way we get a metric on U£/α' with £/α' maximal and in the same way we get

the required invariant metric for <&'.

By using (invariant smoothings of) distance functions for an invariant

metric, we can construct invariant smooth functions, say fa: t/α' -> [1/2,1],

with U α / α " 1 (l/2) = X. Then a standard application of Sard's Theorem gives

Lemma 1.4. For almost all ca e (1/2,1) the sets f~ι(ca) are smooth closed

codimension 1 submanifolds which intersect transversally {and define an atlas

s#" ci).

We can now verify the result on the vanishing of the Euler characteristic

mentioned

Proposition 1.5. Let X be a compact manifold which carries an F-structure of

positive rank, then χ(X) = 0.

Proof. Let J / be an atlas for a substructure of positive rank with Ua =

V(xa). Let s/" c j / be as in Lemma 1.4. Then for every intersection

Ua Π - Π Uak there is a finite covering, say t/ (α) c F( )9 on which a torus

Gx , acts with no common fixed points. By a well-known argument almost all

elements of GXa are fixed point free. Thus, by the Lefschetz fixed point

theorem, χ(U(J = χ(l/ ( β ) ) = 0. Then χ(X) = 0 as well.

Remark 1.6. In Proposition 1.5 it is not essential that X is a manifold.

Here are some further examples of F-structures.

Example 1.5 (S3 and RΛ). View R4 as C 2 = (zvz2). There is an obvious

r e a c t i o n (T2 = (θx, θ2)) given by

(1.3) (0l902) (zl9z2) = (e*zl9e»>z2),

with orbits of dimensions 0, 1, 2. Since there exist orbits of dimension 0, the

corresponding Γ-structure admits no polarization.

There is also an induced Γ-structure on the unit sphere, S3. All orbits are of

dimension 2, with the exception of the circles S3 Π {(zλ, 0)} and S3 Π {(0, z 2)}.

Any choice of 1-parameter subgroup, Sy, with 0 < βχ/θ2 = γ < oo, gives rise

to a pure polarization, ^ γ , for which all orbits are 1-dimensional.

We can define another Γ-structure on S 3 which is not pure by picking η,

with 1/ y/ϊ < η < 1, and setting

(1.4) Uj= {(zl9z2)^S3\\Zj\<η}9 7 = 1,2.

For x G Ux \ U2 (U2\ Ux) we let Gx = S^ (Gx = S}2) and V(x) = Uλ (V(x) =

U2). For x e Ux Π t/2, Gx = T2 and V(x) = Ux Π U2.

Note that for γ Φ 1, the orbits S3 Π {(zx,0)} and S*3 Π {(0, z2)} are never

principle orbits of Sy, i.e., their isotropy groups, while discrete, are not

minimal.

Finally, observe that this example generalizes to higher dimensions.
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Example 1.2 (continued, solυemanifolds). Let A e Sl(2, Z) be an automor-
phism of the torus T2 with two real distinct eigenvalues. Thus, if

(1.5) A - (I '„),
then \a + d\ > 2. The mapping torus, M3, of A, is by definition the affine flat
bundle T2 -» M 3 -> S1, with holonomy Λ (as is well known, M 3 is a
solvemanifold).

As above, there is a pure Γ-structure on M3 whose orbits are the fibers. This
Γ-structure has a natural pure polarization (of rank 2). It also admits exactly
two pure polarizations of rank 1, the orbits of which correspond to the
eigen-directions of A (and are not closed).

Example 1.6 (The flat bundle <^3). Let R2 -> <̂ 3 -> Sι denote the trivial
R2 bundle over S1, equipped with the connection whose holonomy is given by
rotation through an angle 2πθ. A point in $Q is denoted by (t9w) where
/ e R/Z (= Sι) and w G Λ2. Then parallel translation υ units along the base
is given by

(1.6)ϋ P(υ)(t,w) = (/ + ϋ, Λ(ι β)w),

where R(υθ) denotes rotation through an angle 2πυθ.

Observe that Sβ carries the structure of a complete flat riemannian mani-

fold whose isometry group /(<^3) is the torus, Sι X S1, generated by

(1.7) T(u)(t,w) = (/ + w,w), R(υ)(t9w) = (ί, Λ(U)M ) .

The full group /(<^3) defines a pure Γ-structure which is of rank 2 everywhere

except along the zero section of SQ. Any 1-parameter subgroup other than

R(υ) defines a pure polarization of rank 1.
Example 1.7 (The space Jf4 = Uθ<?e). Consider the family [0,1] X<f/

consisting of pairs (θ,$β). The spaces $Q and S\ are abstractly isometric.
Their parallel translations are given by

( 1 8 ) P(v)(t9w) \(t + U9R(υ)w^ θ = ι

The map

provides an isometry between <f0
3 and $\. It induces the isomorphism of

isometry groups given by the matrix

0,0, (J •).
The space formed from [0,1] X β% by identifying (0, £0

3) with (1, E\) via /
will be denoted by J(A. The flat Γ2-bundle (locally constant sheaf) over S1

with holonomy given by (1.10) is a nilmanifold. Its pullback to JtA defines a
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pure Γ-structure on J(4. As above, this structure has rank 2 everywhere except
along the zero sections of the various <f/, where it has rank 1. Moreover, unlike
the matrix A in (1.5), the matrix in (1.10) has only a single eigenvector. It
corresponds to the circle R(υ), the action of which fixes the zero sections of
the SQ. From this it is clear that the pure T-structure on J(4 has positive rank
but admits no polarization. In fact, it is the most basic example of an
F-structure with this property. There are no such examples in dimension 3 and
any example in dimension 4 contains an orbit, a neighborhood of which looks
like (perhaps a finite covering of) this example.

Example 1.8 (A nonpolarizable structure on T2 X R4). The space J(4 in
Example 1.7 can be regarded as the total space of the complex line bundle with
first Chern number 1, over T2. If we take the Whitney sum of this bundle with
the bundle of Chern number -1 , we obtain the trivial bundle with total space
T2 X R4. Now, by a simple modification of the previous example, we find a
pure 7-structure on Γ 2 X Λ4 which is of rank 2 except at T2 X 0 where it is of
rank 1. Moreover, this structure admits no polarization.

Example 1.9 (Pure T-structure on Mf with o(M^) = 2). The previous
example of a pure Γ-structure of positive rank which admits no polarizations
can be sharpened. There exist closed manifolds which carry a pure Γ-structure
of positive rank, but which have nonzero signature. Hence, as noted in §0, they
admit no polarized Γ-structure whatsoever.

The following particularly nice family of such examples is due, essentially, to
T. Januszkiewicz. To describe them. Let

(1.11) T2l+ι = (ei9*,'-,ei$™)9 D = ( e ' V -,eiθ)

and let 5y denote the image of

(1.12) (l, . ,e",l - )

in T2l+ ι/D. Then T2l+ι/D acts on

(1.13) CP(2l) - (zl9. , z2f+ι)/D9 Σ k l 2 = 1,

with 2/ + 1 fixed points,

(1.14) />,= (θ, , ί , O , ).

If we use the product structure

(1.15) Sι X -" xSjX -" XS2 / + 1

on T2/+ι/D and identify the tangent space to CP(2l) at pp with

(1-16) (*i, , V ,
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then T2/+1/D acts by the standard representation of T21. Let Dj denote the

diagonal of T2l+ι/D with respect to the product structure in (1.15). Then the

action of Sj on the tangent space at pk is given by

(1.17) S j ( z l 9 ' - ,zk9 -, z 2 l + 1 ) = Dk(zl9- • , z k 9 > - )

Now choose normal coordinate systems at the points pj and from each of

these delete a ball, Bf1, about the origin. Take two copies Σ*1, Σ\ι of the

resulting manifold with boundary and form a closed manifold, Λf *', as follows.

Let

( 1 . 1 8 ) {0,1}

be any function which takes the value 1 an odd number of times, j = 1, ,

2/ + 1. Put

(1.19) F=(fl9...J2l+ι).

To obtain Mf, glue corresponding boundary components of Σ\ι and Σ\ι by

the identifications

(1.20)

VZ1>' ' ' » zj >' ' ' 9 Z2l+l) ~ \z\ > ; , - ) , • -9Zj,- -,. »" ' ' ' Z 2 / + l

where iι(j),- , it(j)(j) are the integers at which fj takes the value of 1. The

torus action on Σf', Σ\ι gives rise to a pure Γ-structure on M*1. To describe

the holonomy of the corresponding flat bundle, E, it suffices to consider loops

/i, , 12b where lj passes from Σ ^ to Σ\ι through dB^I+i and returns to Σ^7

through dBj41. Then using (1.12)-(1.17), it follows that the holonomy around lj

is given by the matrix

(1.21)

where

(1.22)

and for k Φ j\

(1.23)

(-1)*

rj(i)=fj(k)+f2l+ι(k),

jj 1 )^0 mod2,

2, fj(k) + fj(2l + 1) = 1 mod 2,
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Finally, since the identifications on the boundary components are orienta-
tion reversing, if Σf, Σ*7 are both given the orientation induced from CP(2/),
then Mp1 also acquires an orientation. Moreover, the signature, σ(M^7), is
given by

(1.24) O(M$1) = 2σ(Σ4 /) = 2{σ(C/>(2/)) -(21 + l)o(B41)}

= 2σ(CP(2/)) = 2.

2. Pure polarized collapses with bounded diameter

In this section, we discuss the collapse associated to a pure polarization, ^ ,
of an F-structure, &', on a manifold Yn. Let

(2.1) g = g' + h

be a metric which is invariant for &\ see Lemma 1.2. Here h vanishes on
vectors tangent to the orbits of ^ , and g' vanishes on vectors normal to these
orbits. Put

(2.2) gs = « V + h.

Theorem 2.1. As δ -> 0, the family (Yn, gδ) collapses. Moreover,

(2.3) distδi(/?,4) < distδ2(/?,^), δx < δ2,

and for each compact set U, there is a constant c(U)1 such that

(2.4) sup \K8\ <c(t7) .

Proof. Observe that (2.3) is obvious and the main point is, of course, (2.4).
We claim that when the appropriate coordinates are introduced, (2.4) is
obvious as well.

Let p G Y. Take a basis of Killing fields, {*,.}, tangent to the orbits of ^ in
a neighborhood of p.

Let N"~* be a local transversal to the orbits {Θ} with p e Nn~k. Choose
local coordinates, (yx,- , yn-k) on Nn~k with p at the origin. Since [Xi9 Xj]
= 0, there is a unique coordinate system (xv -,xk) on each orbit Θ, with
On N"~k: = (0, ,0) and ^ = 3/θx,, By projecting onto Nn~k, i.e.
Θ -> Θ Π N"~~k,we obtain coordinates (Λ:1? , xk, yv , yn-k) in a neighbor-
hood Br(O) X BS(O) of /> with, say, Σxf < r2, Σ ^ 2 < s2.

In terms of these coordinates, the matrix (g(x, y, δ)), representing the metric
gg, can be calculated as follows. Note that translation in the direction of JC,
preserves (coordinate fields and) inner products, since 3/3x/ is a Killing field.

1 The notation c( ) will always mean a constant which depends only on the quantities within the

parentheses.
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Thus, if we put

(2.5)
_ 3 _

ty<

where Xi is tangent to orbits and V( is normal to orbits,

(2.6) Of/.̂ -O,
and the following matrices are independent of xl9 , xk.

(2.7)

(2.8)

(2.9)

(2.10)

Here ( , ) s denotes the inner product for gs. It follows that

(g(χ,y,δ)) =

(2.Π)

_9 3_

9x,' dx,

As δ -» 0, the matrix in (2.11) becomes singular. But if we make the change of

coordinates

(2.12)

then

«, = δXj, du, = δdXj,
δ dx,'

(2.13)

\8B(y)
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The family (g(u, y,8)) can be regarded as being defined on all of Rk

u x Bs(0).
As δ -> 0, it converges smoothly to the generalized warped product metric

(A(y) 0
(2.14) ( g ( W , ^ , 0 » = 1 Λ

on Rk

u X Bs(0) c Λ* x Rn

y~
k, where for each fixed y, the induced metric on

Rk

u is /to: compare Example 0.5. Since

(2.15) (g(*, .M)) |* , (0) X Bs(0) c Λ*.χ Λ--*

is isometric to

(2.16) (g(u,y,δ))\BSr{0) X Bs(0) c Λ*B X Λ;-*,

it is clear that |A δ̂| is uniformly bounded independent of δ on compact subsets.
This gives (2.4).

To see that (Yn, gδ) collapses, consider the closure 9 of 9. The orbits {Φ}
of 9 are compact flat manifolds. Since gs restricted to the normal space of
any 0 is independent of δ, it follows easily that the distance between any two
such orbits is bounded below independent of δ. If Yn is not complete, the same
holds for inf δ dist(^,F n \ Yn) = dq (where Ύn is the completion of Yn). In
particular, the closed tubular neighborhood Tr(Φq) is compact, independent of
δ, for r < dq. If Br(q, gs) denotes the ball of radius r about q, with respect to
gδ, clearly

(2.17)

and by (2.2),

(2.18) Urn Volδ(A(<7, gδ)) = -lim Vol β (r r (^)) = 0.
o —>0 o —>0

Let F(c, j) denote the volume of the ball of radius s on the sphere of curvature
c = c(Tr(Θq)\the constant in (2.4). It follows that for any s < r, we have

(2.19) i,(gs)<s,

if 8 is so small that

(2.20) VQl(B,(q9g8)) < V<Ά(B,{q,g8)) <Y(c9s).

Thus, (T/;, gs) collapses.
A metric space X is said to be the Hausdorff limit (as 8 -> 0) of the family

of metric spaces Xδ, if for all .εl9 ε2 there exists.^(ε l9ε2) such that for
8 <δ(ε 1 ,ε 2 ) there are εx dense sets {^(ε^ ε2,δ)} in Xs and {pi(ει,ε2)}iiι X
with

(1 + ε 2 ) pj{Eι, ε 2 ) , pj{£\, ε 2) ^ /?/(e1, ε2, δ) , pj\£\, ε2, δ)

(2.21)
(1 + e2)/?,.(£!, ε 2 ),/? / (ε 1 ,ε 2 )
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see [9] for further discussion. Clearly, the Hausdorff limit of the family

g(jc, y,δ) on £,.(0) X Bs(0) c i ( J x Rn

y~
k is £s(0), equipped with the metric

corresponding to (D(y)). By definition, this is the metric on Nn~k for which

the length of a vector is the length with respect to g of its projection

orthogonal to ΰ. Up to isometry, it is independent of the choice of transversal,

and is the unique metric on the local quotient space defined by (pieces of) the

orbits of ^ , for which the projection is a riemannian submersion.

If the orbits {Θ} are not closed, the global quotient spaces X/0» is not

Hausdorff. But we can still look at the quotient space, X/&, for the orbits of

# . Since 0 is dense in 0 it follows from (2.2) that

(2.22) lim diama(ffj = 0.

Thus, the Hausdorff limit of a compact subset U of Y, which is saturated for

^ \ is t//^, with the obvious quotient metric. Of course, this is not a smooth

manifold near exceptional orbits.

Example 1.4 (continued). The polarization ^ γ defined by the subgroup Sγ

is closed if and only if γ is rational. If 1 Φ γ = p/q is rational, the Hausdorff

limit S3/&y is the surface of revolution, obtained by revolving the curve

/~ 2*3\ _ ! sin x cosx
y~ 2 (p2cos2x + q2sm2x)l/2'

0 < x < 77/2, about the x-axis. Thus it is a topological S2 with two non-

smooth points.

For γ irrational, S3/&y is the interval [0, π/2].

Example 2.1 (Tori). The pure polarizations @(Ek) of the canonical T-

structure on the standard torus, Γw, are parametrized by subspaces, Ek

9 of Rn

which pass through the origin. When Tn is collapsed along Ek, of course

(2.24) Volδ(Γ") = δ* Vol^Γ").

But if one looks at (Γw, gs) up to homothety (i.e. isometry and scaling) it is a

classical fact that the family (Tn, gs) corresponds to the image in the moduli

space SO(/ί, R)\SL(n, R)/Sl(n, Z) of a geodesic which goes to infinity in

SO(n,R)\SL(n,R).
For example, if n = 2 and (2P, EX

Ί) corresponds to a line of slope γ = p/q,

then (Γ 2 , gδ) goes to infinity in i/2/SL(2, Z). However, if γ is irrational, the

(Γ 2 , g8) makes an infinite sequence of excursions which carry it successively

further towards infinity, followed by returns to a fixed compact set. The

precise behavior is determined by the continued fraction expansion of γ. Thus,

for γ rational, up to scaling, (Γ 2 , gs) becomes arbitrarily thin as 8 -» 0. For γ

irrational, there exist 8 for which (Γ 2, gδ) is arbitrarily thin. But there are also

arbitrarily small 8 for which it is fat.
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Example 2.2 (Almost flat manifolds; see [6]). The simplest (but quite
typical) almost flat manifolds arise very naturally in our context. Let S1 -> JV3

-> T2 be a circle bundle with connection over T2. If this bundle is topologi-
cally nontrivial, then N3 does not have the fundamental group of a flat
manifold. In fact, N3 is a quotient of the Heisenberg group, and as such, is a
nilmanifold (the fiber S1 corresponds to the center). If T2 is given a metric, the
connection induces a metric on TV3, for which rotation through the angle θ in
the fibers is an isometry. Choose the metric on T2 to be flat and note that all
fibers have the same length. Then by (2.13) and (2.14), for the collapse
(JV3, gδ) along the fibers, gs converges locally to a flat metric. In fact, for the
sequence (N3,δ2gδ2<i+f)) (where ε > 0), both the curvature and the diameter
approach zero, so that the limit of this collapse is a point.

Remark 2.1. It is easy to see that the calculation of Theorem 2.1 can be
generalized to the case in which the abelian Lie algebra of Killing fields is
replaced by a nilpotent Lie algebra. The latter is collapsed as in Example 2.2,
rather than by scaling.

3. Polarized volume collapses

For collapses associated to a polarization for which all orbits are not of the
same dimension, we will need a slight generalization of the calculation of
Theorem 2.1. Suppose that in (2.2) we replace 8 by a function p which is
constant on orbits;

(3.1) P

We fix attention on the origin (0,0) in (x, >>)-space an<3 make the change of
coordinates,

u, = p{0)x,.(3.2)

Now we obtain

(3.3) (g(u,y,p)) =

It follows that for, say, \p\ < 1,

(3.4) \Kp\<c(A,B,C,D,\p'/p\, \p"/p\),

P2

P

P 2

P

(")
2(o)
(v)

(δj

P2

P

P2ϋocωπ-Z)(j)
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where p' and p" denote typical first and second partials of p with respect to

Theorem 3.1. Let Yn be compact, let 9 be a polarization of an F-structure,
3F, on Yn and let g be an invariant metric. Then there exists a family of metrics,
gδ, which are invariant for the F-structure defined by 0>, such that for 8 < 1/2,

(1) (Y\ gδ) is cS'Collapsed,
(2)diam(Y\ga)<c|logδ|,

(4) \KS\ < c.
Proof. Let { Ua } be as in Definition 1.7 and let fs: Ua -• [1/2,1] be smooth

functions such that fa = 1 near Ua and

(3.5)

As in Lemma 1.4, we can assume that fa is constant on every orbit Θ of 8P. Set

(3.6) pa = e^/.A»i/2e

The metric gδ will depend on a choice of ordering, ί/l5 £/2, of the {ί/α}
(although its essential properties are independent of this choice). We start with
the metric log2δ g and put

(3.7) Iog2δ g = g[ + h,

on t/j, where the decomposition is as in (2.2) and h^ vanishes on the orbits of
9V We then define gx by

where ρλ is as in (3.6). Proceeding by induction, we put

(3.9) g y - g j + 1 + V i .

where Λ/+1 vanishes on the orbits of 9J;+ι and define gJ+ι by

(3.10) g y + 1 = ί
} *J+1 \gj, Y\uJ+ι.

We claim that

(3.11) gs = gN

has the required properties. Note that (2) and (3) are obvious, and that (1)
follows as in the proof of Theorem 2Λ.

To see (4), let p e Yn and Gpa = Gμ, the stalk of &. Let (xx jcΛ yx

Λ,-/) (I > k = rank ^ ) be coordinates as in (2.11) above, for the metric g such
that /? = (0,0). Thus, the x-coordinates are constant along some transversal to
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the orbit 0 through p (I = dim0) and the ^-coordinates are constant along
the orbits of #(Ua) = Gp. We will keep track of the effect at p of the changes
of metric corresponding to j = 1, , N in coordinate systems derived from

Observe that for j = 1, , N the functions p7 depend only on y (and 8)
since they are constant on orbits. Moreover, in the coordinate system

(3.12) Xi = Xi logS, >>; = >> -logδ,

the matrix representing the metric log2δ g has bounded partial derivatives (of
all orders) and the functions |A//p|, \p'j/p\ (j = 1, , N) are bounded inde-
pendent of 8 (as is immediate from (3.7)).

Finally, we need only consider the effect at p of the changes of metric
corresponding to those j for which p e Uj. For such j , the orbits of ^ are
contained in those of <Sa on Ua Π Uj.

Let β be the first value of j for which p e Uβ. By making a linear change of
coordinates we can suppose that the orbits of 9β are given by xt+ι =
const, , Xf = const, yx = const, •••,>>„_/= const, near /?. We then introduce
new coordinates (uv- , un xt+ι>' , X/, >Ί, , ̂ -z) as in (3.3). Since the py

depend only on yx -- - yn_ι they have the same expressions as before. Thus, (4)
follows by proceeding by induction.

Remark 3.1. The initial step in Theorem 3.1 in which distances are ex-
panded in all directions by a factor |logδ| is not optional, i.e. Vol(YM, gδ) does
not always approach zero as rapidly as possible as 8 -> 0. This loss of
sharpness is not very serious in the present context since at best one could
replace Vol(7w,δ) - δk\log8\n by Vol(yπ,δ) - 8k; compare Example 0.2 (con-
tinued). However, in Example 4.2 and in §5 we proceed more carefully.

4. Nonpolarized collapses

(a) Introduction. To be able to collapse when no polarization exists, we must:
(i) Describe a structure (referred to, somewhat informally, as a slice polariza-

tion) which replaces that of a polarization and which exists in general.
(ii) Check that there is a collapsing procedure based on this structure.
We begin by illustrating (i) and (ii) in an example which was considered in

§1. Then we do the calculation behind (ii). Next we explain how the structure
of (i) is constructed in general. Finally, we describe the collapse.

Example 1.7 (continued). Let Z 2 c MA denote the union of the zero
sections of the flat bundles £$, i.e. the 2-torus on which the dimension of the
orbits drops from 2 to 1. The Γ-structure has nilpotent holonomy (given by the
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matrix (1.10)) in the direction of the 0-circle in Z 2 (the circle transverse to the
orbits). As a consequence, the sub-bundle defined by the isotropy subgroups
Hp, p e Z 2 , has no complementary flat sub-bundle. Equivalently there is no
1-dimensional polarization near Z 2 .

However, for each fixed θ, the restriction of our structure to a 3-dimensional
slice, $Q <zJίΛ, has no holonomy, and hence admits a 1-dimensional polariza-
tion. For example, on each slice we can choose the 1-parameter subgroup of
the isometry group of SQ induced by parallel translation of £$ (see (1.6)).
This family of "slice polarizations" varies continuously with θ (the correspond-
ing family of infinitesimal generators gives rise to a vector field V on JίA,
which is tangent to $Q for each fixed 0, and such that V\$Q is a Killing field).

If the metric is collapsed in the direction of V, the curvature does not
remain bounded, because V deviates from being a Killing field through its
dependence on θ. To obtain a collapse with bounded curvature, we must
simultaneously expand the metric in the θ direction (at an equal rate). This has
the effect of making the above deviation negligible.

(b) Main computation. The essential quantitative features of nonpolarized
collapse are captured by the following 3-dimensional situation. To simplify
notation, we will only write the computation explicitly in this case.

Let R3 = R2 X R, where the third coordinate is denoted by z. Let g be a
riemannian metric on R3 and let V be a nonvanishing vector field such that

(1) V is tangent to the slices, z = const.
(2) The restriction of V to any slice is a Killing field.
(3) There is an abelian Lie algebra, &, of Killing fields such that if X e &,

then X is tangent to every slice, z = z0. Moreover, for each z0, there exists
X. e ^ , with X |,_, = F | . _ z .

It suffices to consider, say, z0 = 0. Choose a local coordinate system
(x, >\ z) with d/dx = Xo.

To begin with we observe that

(4.1)

where [ , ] is the Lie bracket. In fact, for each fixed z0,

(4-2)

since d/dx = XZ{) e <Fm But d/dx, V, XΣQ are all tangent to the slice z = z0. So
for z = z0, the brackets in (4.1) and (4.2) can be computed in this slice, and
there V = X, .
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Let

(4.3) h = U+N

be the decomposition of 3/3z into components tangent and normal to z = z0

respectively. Since 3/3* is a Killing field tangent to z = z0 we have

Now let (£", fef) denote the components of 3/3JC with respect to an
orthonormal basis adapted to the decomposition {F}, {F}-1 Π{3/3x,3/3y},
(3/3x, 3/3^ j " 1 . Let (b^bζ), (b^b^b]) be the corresponding component
functions for 3/3>>, 3/3z. Notice, that all seven of these functions do not
depend on x. This follows from (4.1), (4.4) and the fact that 3/3JC is a Killing
field. For example,

) ( [ έ . H < κ ? κ > -
Finally, observe that by (3),

(4.6) Z>f(j,O) = O,

since d/dx\z_0 = K| z.o.
Let g/y(^, z, δ) denote the metric obtained by the following operations (as

above the subscripts /, j = 1,2,3 correspond to the variables JC, y, z respec-
tively).

(*) Multiply the metric g,y(j>, z) by the factor δ" 2 in the direction
{3/3x, 3/3^}L , while leaving it unchanged on {3/3x, 3/3^}.

(* *) Multiply the metric obtained in (*) by a factor δ 2 in the direction of
{V}, while leaving it unchanged on { V}L .

We have

(4.7)

(4.8)

(4.9)

(4.10)

(4.12)
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Make the change of variables u = δ c, w = z/8. In terms of these new
coordinates

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

In view of (4.6),

(4.19)

Moreover

g3i(y,δw,δ)

(4.20)

0 0

00

0 0 {blY

which is positive definite. Thus, it is clear that the curvature stays bounded as

The calculation just given can be generalized. Since the details are straight-
forward, we will merely state the results.

(A) First of all, instead of the coordinates JC, y, z we can as well have several
coordinates xv- , xnι, yv- , yni, zx, , znj (where xl9- , xnγ correspond
to Vx, , Vnχ). Moreover, we can collapse only, say, F r, , Vmχ (and make the
changes of coordinates ux =* Sxx umχ = 8mxm, wx - zx/δ wrt3 = zΛ3/δ).
Finally, we can artificially treat a subset of yx yn as z-coordinates, even
though this is not required in order to keep the curvature bounded.

(B) As in (3.1)-(3.4), δ can be replaced by a function p(yv--,yni,
z l9 , z/?3, δ). The curvature of the collapsed metric depends on |p'/ρ|, \p"/p\l
compare (3.4).

(c) Construction of slice polarizations. We now explain how the "slice
polarizations" which are described in the continuation of Example 1.7 (at the
beginning of this section) are obtained in general, starting with the case of a
pure structure, &'. For this we must consider the orbit stratification associated
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to & and construct an invariant metric on Yn and inner products in the stalks,

Gp, which are suitably compatible with this stratification.

Let & be a pure F-structure of positive rank on Yn and let g be an invariant

metric. There is a natural stratification of Yn into maximal strata, Σ f , such that

rank J ^ = / for p e Σ, . Since the groups Gp are abelian, it follows that the

identity components, Hp9 of isotropy groups, Hp, are invariant under parallel

translation along any curve in Σ, . (Recall that the structure sheaf of & can be

regarded as a flat bundle.) Each Σ, is totally geodesic for the metric g, since

locally it can be viewed as the set of common zeros of a collection of Killing

fields.

Let q ^ Σk and let (Σk)q denote the tangent plane to Σk at q. Let p e Σ f

and consider the collection of subspaces of Yp of the form \m\q^p(Σk)q = Qk

(k > /). Since all groups Gp are abelian, it follows that the Qk are coordinate

hyperplanes relative to some fixed orthogonal basis of Yp. Moreover, {Qk} is

invariant under parallel translation in the normal bundle v(Σi).

Let Σε denote the set of points of Σ, at distance > ε, from 3Σ7. Let exp be

the exponential map of the normal bundle v(Σε). For η sufficiently small, exp

restricted to the subset Sej%r.= { v e v(Σε.)| |M| < η] is a diffeomorphism onto

a set Σε r. Let TΓ,-: Σ -* Σ denote the corresponding projection map.

Lemma 4.1. The invariant metric g and numbers ε, , r, can be chosen such that

( i ) U Σ e ^ = y.
(2) Ifiι < / 2 , then <πiχ = m^ on Σε.^ Π Σ^^.

Proof. Start with any invariant metric g0. Choose ελ = 0 and rx so small

that exp|5βi rι is a diffeomoφhism onto Σ ε i Γj. There is a natural metric on

Sε r which is flat on the fibers, for which the subspace orthogonal to the fibers

is given by the connection on ^ ( Σ ^ and for which projection onto the zero

section is a riemannain submersion. Push this metric down to a metric gx on

Σ f r via exp. Note that gλ is compatible with J*"|Σ and hence that

Σ l n Σε r is totally geodesic for gv

It follows easily from the construction that (2) is satisfied on Σ ε i r f More-

over (using (2)) it follows that near Σ f Π Σ e i i Γ i , the pullback of gλ via the

exponential map of 9(Σy), actually coincides with the natural metric of K Σ ; ) .

Now we can proceed by induction. Extend gλ to an invariant metric for 3?

on all of Y,?, choose r2 «: ε2 «: rx, and replace the metric gχ|Σε 2 ri with the

push down of the natural metric on S ^ . Let g2 be the metric on Σεχrχ U Σ β 2 i Γ 2

so obtained. By what was noted above, g2 coincides with gλ on Σ β i rχ. By

proceeding in this way, we obtain the required metric.

Put JJi = Σε r . Let q E: Ui and let γ be the unique minimal geodesic from q

to π,(<?). Parallel translation along γ induces an isomorphism Gq -> GVι(q),

which we will also denote by πf.
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Note that at each point p, the metric g of Lemma 4.1 induces a natural

inner product on the Lie algebra, gp9 of Gp. For this, we identify a Killing field

X with (X(p),vX(p)) (we assume Gp acts effectively; see Remark 1.2). The

resulting inner product is invariant under the local action of Gφ but not under

the maps TΓ,-: Gq -* GWi(q).

Lemma 4.2. There exists an inner product ( , ) q on gq which is invariant

under the local action of Gq and under the projection τti {for q e Ut).

Proof. On Σ l 5 define ( , ) q to be the inner product above. Extend ( , ) q to

Uλ by making it invariant under πv In view of 2) of Lemma 4.1, ( , ) q is

invariant under the local action of Gq and under mi on Uλ U Ut. Clearly, we can

extend ( , )q\Ux Π Σ ε 2 to an inner product on gq, for all q e Σΐ2, which is

invariant under the local action Gq. Then extend to U2 by composing with τr2.

This is consistent with ( , ) q as defined previously on Ux n U2. By proceeding

in this way, we construct ( , ) q on all of Y with the desired properties.

For p e Sεjf.., we let X^ denote the connected (but not necessarily closed)

subgroup whose Lie algebra is the orthogonal complement of that of the

isotropy group, Hp. For q G Ui9 we put

(4.21) K' =

It follows from Lemmas 4.1 and 4.2 that the assignment q -+ Kq is invariant

under the local action of Gq. Moreover, if q e JJ{ Π Up i < j , then

(4.22) K< c K{.

Finally, if ql9 q2 e £̂  Π ί̂ , / <y, and TΓ^^) = Vi(q2\ then ϋΓ; = K^.

(d) Collapse. We can now collapse Yn by a straightforward variant of the

procedure of §3. Choose functions /,, p, on Uέ as in (3.5) and (3.6). Fix q and

let Uir , Ui9 iq< -" < ij, denote the Uk with q G [4. Let Z/χ c c Z ;

denote the subspaces of Yq tangent to the orbits of Kq

x K^ and Wι,.<z

c Wiχ the tangent spaces to v{ι(Θπj(q))9j(

(4.23) Ztio . . . c Z ^ c ^ c . . . aWiγ.

Let g be as in Lemma 4.1 and put

(4.24) log2δg = g\ + hλ + kl9

where the decomposition (4.24) corresponds to Ziχ9 Z+ Π ̂ , W^̂  . Set

(4.25)
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Define g.+ ι by induction:

σ - l J

where the decomposition corresponds to Zj+l9 Zj\x Π Ŵ  + 1 , Wj+V

We claim that gn (n = dim 7) collapses with bounded curvature as δ -» 0
(where py depends on 8 as in (3.6)).

To see that the curvature remains bounded, let IZ ί/ be those £Z with
q e Lf. and choose local coordinates near # as follows. Let

(4.27) m ^ d i m Σ , - ί.

Choose local coordinates functions sv- -,sm on Σ f , which are constant on
the orbits. Extend these to Uiχ Π Π L̂  by composing with π^. Next choose
5w + i» ' *' sm, o n ^2 s o t n a t ^l'""*'5/*!,- a r e coordinates transverse to the
orbits on Σ 2 . Extend these to Uiχ Π Ui2 by composing with τr/2 (recall ŵ  =
iTjir^). By proceeding in this way, we obtain sx, , s w . Extend sl9-—9 sm. to
a complete system of local coordinates transverse to the orbit of K'j through q,
by choosing additional functions, ίl5 , /w_/ _m , which are constant on the
orbits of Kpj (for p near f̂). Finally, choose x l 5 , xik, i = 1, , m, such that
for fixed ί^ , 5 m , the fields d/dxv- ,θ/9x, are Killing fields generated
by the action of K'q

k.

(4.28) !

(4.29) :
y m. — m. w

λw, - m ^ + l =

(4.30) :

The effect of the change of metric corresponding to Ut in this coordinate
system is to collapse only JCX, , JC,- while expanding all directions orthogonal
to zλ = const, , zw = const. The change corresponding to Ur collapses
all xι - - - xr directions while expanding directions normal to yλ =
const,- ", ym _m = const, as well as zx = const,- , zm. = const (compare

i i Ί Ί

(A) which follows (4.20) above). The change corresponding to Uik, 1 < k <j\
has an effect intermediate between the two above. Thus, by successively
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changing coordinates as in (B) above and observing, as in §3, that |p^/ρ,J,
\p"/Pik\ remain bounded in the new coordinate systems, we see that the
curvature of gn is bounded independent of δ.

To see that gn collapses as δ -» 0, for each p e Y choose r = r(Θp) such
that the exponential map of the normal bundle to Θp is a diffeomorphism
when restricted to vectors of length r. Take a finite covering of Yn by tubular
open neighborhoods Trj/2(ΘPj). For q e Trj/2{Θp} it follows that dist(q,dTr(Θp)
>£•(/)> 0 for some c(i) independent of δ. But through every such q passes a
curve of length cx(i)8, which is not contractible in Trj(Θpj). For cx(i)δ < c(i)/2,
this implies that there is a closed noncontractible geodesic loop on q of
length < cγ(i)δ. Hence i(q) < c x(0 s-

Finally, we note that if mi is as in (4.27) and we put

(4.31) K = min (/, — m. ) + +(ι , — m. ),
uhn nuijφ0 ι W μ

then

(4.32) Vol(Γ",g||(a))<cβ«|logβ|\

In particular, for this method of collapsing (which we indicate how to sharpen
in §5) the volume goes either to infinity or to zero. In fact,

(4.33) lim
δ0

if and only if for all /,

(4.34) i - w, > 0.

or equivalently,

(4.35) i >idimΣ f..

The procedure just described has a straightforward generalization to struc-
tures which are not pure. For this, we choose a regular atlas, {l/α}, for a
substructure of positive rank. Over each Ua we have a pure substructure, Ga

(see Remark 1.2), and as in Lemma 1.3 there is a natural partial ordering
among the Ua. Note that if Gp β c Gp α, then the orbit stratification for the
local action of Gp a refines that for Gp β. From this we easily obtain the
existence of a metric g and inner product ( , ) q on gq, with properties which
generalize in the obvious way those of Lemmas 4.1 and 4.2.

Now on each Ua we collapse as above, except that we modify the cut off
functions, p", in such a way that pf = 1 in a small neighborhood of dUa. By
performing these collapses successively, we collapse Yn with bounded curva-
ture. Thus, we have the following result.
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Let Y" admit an F-structure of positive rank. Let {Ua} be a covering as
above. Let m" = dim Σf, where Σf is defined by the action of Ga and put

(4.36) K = inf κa9

a

where κa is defined as in (4.31).
Theorem 4.1. There exists a family of invariant metrics, gδ, on Yn such that

for 8 < 1/2.

(l)(Y">gδ) is cδ-collapsed.
(2)diam(yw,gβ)<φgδ|.

(4) \KS\ < c.

Example 4.1 (Nonpolarized volume collapse). Let Z£2 -» ̂ # 4 -> S1 X Ŝ 1 be

the space of flat bundles considered in Example 1.7, where S1 denotes the zero

section of S>3(θ) and Sβ the circle which parametrizes the η3(θ). If Jix,Jt2

are 2-copies of ^#, we can form

/v * ι/^| X Jrί 2 * ^ X *^β X <3 X »J0 .

Let

(4.37) T3 = {(xl9θ,x2,θ)} c Sι X S^ X 5 1 X ̂ 2

and let .yΓ7 = (7τx X 772)"1(Γ3). The Γ-structure on Jί gives rise to an obvious
nonpolarizable Γ-structure on Jί1 with orbits of dimension 2, 3, 4. The
corresponding strata satisfy dimΣ2 = 3, dimΣ3 = 5, dimΣ4 = 7. Thus, (4.35)
holds. By regarding R4 -> Jί1 -» Γ 3 and letting y 7 denote the double of the
corresponding disc bundle, we obtain a specific example of a compact mani-
fold which can be volume collapsed by means of a nonpolarizable Γ-structure.

Remark 4.1. The above y 7 actually does admit a polarized Γ-structure. But
probably there exist manifolds which can be volume collapsed although they
admit no such structure.

The following example indicates how the construction of Theorem 4.1 can
be sharpened.

Example 4.2 (Collapsing M* with bounded volume). The manifolds Mp of
Example 1.9 have F-structures which are of rank 2, except on Σ1 ? which is the
union of three connected codimension 2 submanifolds. These are either tori or
Klein bottles depending on the particular choice of F. It will suffice to collapse
tubular neighborhoods of the components of Σ l 5 such that the volume stays
finite and near the boundary the collapse agrees with the standard collapse of a
pure rank 2 structure.
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Let M2 be a component of Σv We start with a metric on the normal
bundle, v(M2), which is cylindrical on the fibers. That is, on each fiber, R2, it
is of the form dr2 + f2(r)dθ2, where f(r) = 1 for r > 1.

Given 8 > 0, we can construct a δ-collapsed metric on the disk-bundle,
0 < r < 1, by means of a slice polarization. Thus, we multiply the metric by δ 2

on the subspace, X, tangent to the 1-dimensional orbits of the slice polariza-
tion and multiply the metric by δ~2 on the subspace W, orthogonal to the
slices.

Let V be the orthogonal complement of X in the tangent space to the orbit.
We extend the collapse to the annular region 1 < r < |logδ| by multiplying the
metric in the direction of V by a factor p2(r), where |p'/p|, |p"/Pl are
bounded, p = 1 near r = 1 and p = δ near r = |logδ|. Observe that the
volume of this region is bounded independent of δ. Moreover, near r = |logδ|
we have the standard collapse of a pure structure. However, the metric is still
expanded by a factor p2(r - |logδ| + 1) on the subspace W and for different
components M2, M2

2 the subspaces Wl9 W2 do not correspond. Thus, we
extend the collapse to the region |logδ| < r < 2|logδ| — 1 by multiplying the
metric by a factor S2(r — |logδ| 4- 1) on the subspace W. It is easy to see that
the curvature remains bounded independent of δ as does the volume.

By gluing the metrics just constructed onto the standard δ-collapsed metric
for the rank 2 polarization on the remaining piece of Mp, we obtain the
required δ-collapsed metric on Mp, with curvature and volume bounded
independent of δ.

5. F-structures and complete metrics on open manifolds

(a) Introduction. In this section, we consider an open manifold, 7", which
carries an F-structure, J*", or polarization, ^ , on the complement of some
compact subset. We treat in detail the case of a polarization, showing that Yn

admits a complete metric, g^, such that \KgJ < 1, Vol(YΛ, g^) < oo. The
analogous result for F-structures is the existence of a complete metric, g^,
such that \KgJ < 1 and the injectivity radius goes uniformly to zero as
p -> oo i.e. the family Y"\BR(q) collapses as R -> oo. The proof of this
latter result will be omitted since the ingredients which are required (beyond
those of §4) will be presented in proving the existence of metrics of finite
volume.

It is necessary to refine the constructions of the previous sections at two
points.
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Point 1. The invariant metric constructed in Lemma 1.3 is not guaranteed
to have additional nice properties such as completeness, bounded curvature,
etc. in case the manifold is open. Thus, we must begin by showing the existence
of such an invariant metric, g0, for a subpolarization 0>t c ^ . Moreover, this
g0 can be chosen such that 3*\ when measured with respect to g0, has
essentially the same kind of uniform local behavior as in the compact case.
This is achieved by making the metric grow sufficiently fast at infinity, and
there is no attempt to control the volume at this stage.

Point 2. Rather than passing from g0 to log2δ g0 (as in (3.27) and (4.24))
we will make a sequence of changes which expand g0 by a factor log2δα in a
single (radial) direction near the boundary of each Ua'. The construction is such
that the numbers |logδα| can be selected independently. If ca = Vol(t/α, g0), we
choose {|log δα|} so small that

(5-1) Σ cA |log«J<oo.
α = l

Then, by proceeding as in §3, we obtain

(5-2) Vol(Y",gJ<c£ cA

where g^ is the required metric.
(b) Construction of a complete metric g0. We can assume that the polariza-

tion 9 is regular and that the boundaries {dUa} are smooth and interest
transversally. Moreover, after modifying the invariant metric, we can assume
that g is such that

(1) The exponential map on the normal bundle, v(dUa), is a diffeomorphism
when restricted to vectors of length < 2εα.

(2) Let ra denote the distance function from dUa. Then on T2ε (dUa) Π

(5.3) (grad^rα,gradgr) = 0.

(3) The sets [Ua\ T2ε{dUa)} cover a neighborhood of infinity.
Let SPr c 3P denote the polarization defined by {£/«}, where t/J

The construction of the metric g0 is based on the following lemma which is
essentially a restatement of Lemma 5.4 and Theorem 5.5 of [3]. Unfortunately,
the presentation of these results in [3] was somewhat garbled due to a
confusion between the functions ~k and \/k below. For this reason, we will
repeat some of the details here.
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Lemma 5.1. Let k(p) be a locally bounded nonnegatiυe function on a

ήemannian manifold, Yn, with possibly incomplete metric g. Then there exists a

smooth function, /:*, such that

(l)fc< 3k*.

(2) IfgQ = (k*)2g = e2logk*g, then g0 is complete with curvature \K(go)\ < 1

and injectiυity radius ip(g0)> 1 for all p. Moreover,

(5.4) | g r a d g o l o g * * | g o < c ( n ) ,

(5.5) I! Hess, log A:* II <c(n).

(3) // Y" carries regular polarizations 3P' c & and the metric g as above, then

g() can be chosen invariant for &>'.

Proof. By increasing the function k if necessary, we can assume

(5.6) k(p)> sup \Kg(r)\l/1,
τ(=Λ2(TYp)

(5-7) Hp)>l/ip(g).

(5.8) k(p)>l/J^9

(5.9) kφO,

where p, oo denotes the supremum of the radii of open metric balls at p whose

closure is compact.

Put

(5.10) sup

It follows directly from (5.10) that if λ > 0 and p, q < \/k{p), then

(5.11) ^

Moreover, if λ < 1,

(5.12)

((5.11) and (5.12) replace Lemma 5.4 of [3]). The construction of A:* now

proceeds as in the proof of Theorem 5.5 of [3], but with the following proviso:

~k is to be replaced by l//c, except in the expression ~k2g. This gives (1) and (2).

(3) If 9' c & as above, the function ~k{p) need not be invariant for & at

points p e Ua with

(5.13) k(p) ^l/distg(p,Wa).
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However, if we put

(5.14) η(p) = sup εα

(where ί/α' = Ua \ TjJUJ) and require in addition to (5.9)-(5.12) that, say,

(5.15) k(p)>\0η(p)9

then Tί{p) is invariant for ̂ ' . If we now combine the argument of [3] with a
standard averaging argument, (3) follows.

Let p e Y" and let (z1, , zn) be a local coordinate system with p at the
origin. Suppose that on the z-coordinate ball, Bε(p), the matrix (g/y (z)) for
the metric g satisfies, say

(5.16) i < d e t g j y . ( z ) < 2 ,

(5.18) | g - ( z ) | < Ω 2 .

We choose k* > max(l/ε, Ω) and make the change of variables

(5.19) z, = k*(0)z,.

Then the metric g0 = (λ:*)2g satisfies

(5.20) i<det(g o ) , y (z)<12.

(5.21)

(5.22) \(go)ϋ(z)\<c(n)

on the z-coordinate ball ^(0) (see (5.4), (5.5), (5.11), (5.12) and (1) above).
Remark 5.1. By making the function k grow sufficiently rapidly we can

find at each point a coordinate system satisfyiing (5.20)-(5.22) in which the
basic computation, (2.11)-(2.14), will apply. _ ^ _ _ ^

(c) Expansion of g0. Let &' be as above and put Ia = £/α' Π Tε(dU^),
where as in (5.3), the tubular neighborhood is with respect to the metric g. If
/ ? G / J Π π/, we can introduce a local coordinate system, (x, y, r), near /?,
as follows. As usual, the fields 9/θxi, , 3/9XΛ:

 a r e Killing fields spanning the
orbit Θp (with respect to ^ ' ) The functions r1? , r, are as in (5.3). In view of
(5.3) we can find additional coordinates yl9 , yt, such that the matrix of g
for these coordinates is of the form

(5.23)
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where / is the identity matrix and A(x, y, r) represents the inner product on

the subspace spanned by {3/9*2, ,9/9j>,}. As in Remark 5.1, we can

assume that for the coordinate system

(5.24) *, = £

the matrix

(5.25)

satisfies (5.20)-(5.22). Here

(5.26) A=A{y/k*(p),r/k*(p))

and the η take values which include the interval (0,1).

In order to expand g0, we choose functions hd\ [0,1] -> [1, oo), each

d e R+, such that

(i) hd = 1 on fixed intervals [0, ε], [1 — ε, 1].

(ύ) j^hd=d.
(iii) The derivatives of the function \/hd are uniformly bounded indepen-

dent of d.

Now on each subset 7α, multiply the metric in the direction of grad ra by the

function hdn(ra), while leaving it unchanged in the orthogonal directions. Call

the new metric gex. The constant da will be specified below.

To see the effect of this change of metric on Ix Π Cλlh we make the

change of variables

(5.27) / hd(υ)dv = si9 hd(ri)dri = dst,

o ' '

(5.28) TΊ~)ϊt = J7

Then using (iii) and (5.28) it follows that

(S 29") (Q (x v τ\\ = - —

satisfies (5.20)-(5.22) (for some c(n) independent of dx,- , rf/). Moreover, the

functions, sf, take values which include the interval (0, dt).

(d) Collapse of the expanded metric. Now choose nonincreasing functions

Pd: [0, rf] -* [0,1] such that ρd = 1 on [0, ε j and p^ = e - ί / near d. These can be

chosen such that \ρd/pd\, \Pd/Pd\ a r e bounded independent of d (compare
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(3.4)). Finally, by choosing ελ < ε (where ε is as in (i)) we can arrange that

(5.30) IM'(*))-ft/MI«i.

where r and s are related as in (5.27).

The function Pja(sa), defined near 9ί/α', has an obvious extension to all of

Y". Start with the metric gex and successively multiply the inner product on

the subspace tangent to the orbits of each y'a by the function ρ2

d . Call the

resulting metric g^. In view of (5.30), the volume form of g^ is pointwise

smaller than that of g0. Now choose da = |logδα|, where δα is as in (5.1). Then

it follows from (3) of the subsection above that Vol(7w, g^) < oo.

Finally, since &' is regular, each point is contained in at most n different

sets ί/α'. So by Remark 5.1 and the bounds for (5.29) it is clear that \Kg | is

uniformly bounded. Thus, we have

Theorem 5.2. (1) // Yn admits a polarization £P on the complement of a

compact subset, C, then Yn admits a complete metric, g^, invariant for some

»' c ^ , with \KgJ < 1 and Vol(Y", g j < oo.

(2) // C is empty, Yn admits a family, g ^ , of such complete metrics, with

\KgχJ < 1 and l im^ 0 Vol(y, g o o,δ) = 0.
In the same way we have
Theorem 5.3. (1) // Yn admits an F-structure, J*", of positive rank of the

complement of a compact subset, C, then Yn admits a complete metric g^,

invariant for some 3Fr c 3F, such that \KgJ < 1 and ip -> 0 uniformly as

p -> oo.

(2) // C is empty, Yn admits a family, g ^ , of such metrics, such that

\KgχJ < 1 and (Y", g^8) collapses.

Remark 5.2. Clearly, a sharper statement of Theorem 5.2 is possible; see

Theorem 4.1 and Example 4.2.

Appendix: Pure polarized structures on essential manifolds

Let X" be a closed oriented manifold and let /: X-> K(π, 1) be the

classifying map, where π = ττ1(Λrw). We call Xn essential if the fundamental

class, [Xn] G Hn(Xn, R), satisfies M*"]) * 0 (compare [6], [7]).

Theorem A.I. Let IF be a pure F-structure on an essential manifold Xn, such

that the group which acts locally is isomorphic to a k-torus, Tk. Then dim Θpp = k

for all p e X". Moreover, there exists a free normal abelian subgroup, Ak c

77j(F) of rank k, whose action on the higher homotopy groups tni{Xn) (i > 2) is

trivial.
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Corollary A.2. The connected sum Xn#Mn, where Mn is an arbitrary

n-dimensional manifold which is not a homology sphere, admits no pure F-

structure of rank > 1.

Example A.I. If n = 2/ 4- 1 is odd, and Mn admits a (possibly nonpure)

Γ-structure which is of rank / on some open set, then Tn#Mn also admits a

(nonpure) Γ-structure. In fact, let p e Tn, q e Mn lie on principal orbits Θp9

Θq of rank /. Let Tε(θp), Tε(0q) denote the small (saturated) tubular neighbor-

hoods of /?, q. If we form Tn#M" by removing balls of radius ε/2 about p

and q, we can regard T"\Tε(Θp) and Mn\Tε(Oq) as contained in Tn#Mn.

On these sets, the Γ-structure on Γ " # M " can be taken to coincide with the

restrictions of the given structures on Tn and Mn (compare [12]).

Proof of Theorem A.I. By Proposition 1.1, ττ*(X£) = Tk acts on XE, the

holonomy covering. Let x e XE and consider the orbit map Tk X x -> Θx. We

claim that it suffices to show that the induced homomorphism

(A.I) Z* = πx(Tk) $ ^(XE

9x) c πx(X9x)

is injective. To see this, note that if dim 0x < k for some x, then ker /* contains

the image in πλ(Tk) of ^(i/^.), where Hx denotes the isotropy group of x. For

the second assertion, we observe that it is well known and easy to see that

iitt(π1(Tk)) c 7rx(X, x) is central and acts trivially on ir^X, x), i > 2.

Let Tl c Tk denote the unique sub-torus commensurable with ker/*. Then

Tl defines a substructure, J*"*, with the following property, for each orbit, Θ*,

of ^ Ί * there is a finite covering Θ* -» (P̂ * such that the induced map

π^Θ*) -> 7rr( X) is the zero map (see below for further details).

Suppose first that Θ* = Θ* for all JC, and so ^(Θ*) -• ̂ ( X ) is the zero

map. Then if X/&* denotes the orbit space, it follows that the induced map

/V πλ{X) -> TΓ^X/J 5 "*) is an isomorphism. In fact, since the inverse image,

ω*, of each point in X/3F* is connected, /?* is surjective. Moreover, ker/?* is

spanned by the normal subgroup generated by \}x\lm{mγ(Θ^y) c ητλ(X)] = 0.

Since homotopy classes of maps /: X -> A'ί^) are in 1-1 correspondence

with (conjugacy classes of) homomorphisms, /*: 7rx(X) -• ̂ (^(TΓi)) = 77, it

follows that / is homotopic to / © /? for some /: X/^* -> ̂ (TΓ, 1). Since X is

essential, we can assume that (/°/?)# is not the zero map. But then

Hn(Xn/^*) Φ 0, which is possible only if dimΓ^ = 0. Thus ker/* = 0 and

the theorem follows in this case.

If Θ* Φ 6X for some x, the idea is similar but requires some further

technical elaboration. Let U(x) be a small equivariant tubular neighborhood

of x. By passing to a finite covering, Ux -> Ux, we can assume that the lifted

orbit, Θ*\ is induced by the action of Γ* (see Definition 1.2). Note that Γ* is
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only commensurable with ker/* and that Θ*' might be a multiple orbit in its

stratum. Thus, πλ{0*') -> ir^Θ?) need not be the zero map. But after passing

to a finite covering, Θ* -> Θ*\ we can assume that is the case for π^Θ*) ->

π{(Θ*). Moreover, if ϋx -> i/x denotes the corresponding covering of Ux, then

the same holds for any Θ* c t/ ,̂ since the inclusion, Θ* -* Ux, is a homotopy

equivalence.

In order to make use of the covering spaces, ϋx -> ί/x, we need the following

lemma.

Lemma A.3. Lei Y" be a closed manifold which is the union of open

submanifolds U" ί/JJ, whose (smooth) boundaries {dUf} intersect transver-

sal ly. Let iTji Uj -> ί̂  fee finite coverings. Then there exists an n-dimensional

polyhedron Y" and a continuous map g: Y" -» Y", such that

(1) g j | e: Hm(Ϋ\ Q) -> H*(Y\ Q) is surjective.

(2) // Cj c I//1 is closed, the map g\g'\Cj) c yΛ /αctors through a map h:

Proof. Let Z be an arbitrary topological space, U c Z an open subset and

τrx: £/ -> 1/ a finite covering map. Denote by Z = X h- t/ the set (Z \ ί7) U t/,

and by π: Z -> Z the obvious map. Define the topology in W by the

condition that A c Z is closed if and only if ττ(Λ) c Z is closed. It is easy to

see that m is surjective on rational homology and that the covering m factors

through a unique map U -> Z.

Now specialize to the case of a closed manifold Z = Y = Uf1 Uj as above.

Put r = Y μ #!, t// = TΓfH^X 7 = 2, , m, and let πj: fjf -> ^ be the

covering maps induced by vx from κy. Then take Y" = Γ h t/2

r, r ' " = y / r

μ ί̂ '', etc. After m steps, we reach the required polyhedron 7 ( m ) = Y.

To complete the proof of Theorem A.I, we consider some sufficiently fine

open covering, {t^ }, of Y by saturated open subsets with smooth boundary

such that {dUj} intersect transversally; compare Lemma 1.4. The local actions

on Uj induce corresponding actions on Y. As in the special case considered

above, we want to show that if /: X -» K(π, 1), then up to homotopy, / ° g:

X - K( IT, 1) lifts tofopog. But it follows as above, that if (p ° g)*: π ^ X) ->

w Λ * / F * ) and (/ o g) # : ^ ( X ) ^ πτ(K(π91)), then ker(/ o g)# c ker(/7 o g ) φ .

This implies that the desired lift exists and suffices to complete the proof.
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