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THE NORMALIZED CURVE SHORTENING FLOW
AND HOMOTHETIC SOLUTIONS

U. ABRESCH & J. LANGER*

The curve shortening problem, by now widely known, is to understand the
evolution of regular closed curves γ: R/Z -> M moving according to the
curvature normal vector: dy/dt = kN = -"the ZΛgradient of arc length".
One motivation for this problem has been the view expressed in this connec-
tion by C. Croke, H. Gluck, W. Ziller, and others: it would be desirable to
improve on some complicated and ad hoc constructions that have been used in
the theory of closed geodesies to iteratively shorten curves.

As a test case it has been a goal to prove the conjecture that kN generates a
flow on the space of simple closed curves in the plane, preserving embedded-
ness and making such curves circular asymptotically as length approaches zero.
However, the evolution equation for the curvature of γ, turns out to be quite
subtle, and the conjecture is not yet settled. Indeed, in the nonsimple case one
generally expects singular behavior, and part of the intrinsic interest of the
problem lies in the fact that the global condition of embeddedness is ap-
parently recognized by the "near-sighted" equation.

What is known thus far is that the conjecture is true for convex curves, that
simple curves do in fact remain simple (provided curvature stays bounded),
and that short time solutions to the equations exist in full generality; these
results are due to M. Gage and R. Hamilton (see [1], [2], [3]).

1. Main results

The starting point for the present investigation is a modification of the usual
curve shortening flow; the flow is geometrically unchanged, but a tangential
field bT is added to kN to maintain constant speed a = |3γ,/9σ| along the
curve.

Received February 6,1985 and, in revised form, June 15,1985 and July 6,1985.
* The first author was supported under Sonderforschungsbereich 40 at the University of Bonn;

the second author was supported by the Max Planck Institut fur Mathematik in Bonn.



176 U. ABRESCH & J. LANGER

In terms of a new time parameter T satisfying dt/dτ = α2, a normalized
curvature function /c(σ, T) = a(τ)k(σ, T), and an auxiliary function β(σ, T) =
α(τ) b(σ, T) whose average over σ e R/Z is zero, the evolution of a curve γ
in a 2-manifold M is then described by

(1) ^ = κ"+(βκ)' + κR\y, β' = κ2-f\2ds,

~2where primes denote derivatives with respect to σ and a~2R\Ύ is the curvature
of M along γ.

The restriction to 2-manifolds is clearly inessential for normalization, but
simplifies the appearance of (1) significantly. One may choose to interpret K
and R as the actual curvatures of γ and M, respectively, by changing the
metric on (M, g0) to the time-dependent metric g = &~2go (so γ always has
unit length).

An apparent benefit of the normalization is that the leading term in the
evolution equation is no longer the "Laplace-Beltrami" operator (which is
troublesome because it "changes" with the curve) but rather the ordinary
Laplacian. The new time parameter T makes the flow equivariant with respect
to dilations and also has the circle in E 2 collapsing to a point in infinite rather
than finite time.

Equation (1) is used to obtain the results of (A), (B) and (C) below.
(A) As the nonlinear evolution equations of curve shortening evidently do

not tend themselves very well to a general partial differential equations
approach, the possibility of writing down some special solutions analytically is
of particular interest. Indeed, regarding the overall behavior of the flow, much
of the picture which emerges in (B), (C) is related to the homothetic
solutions—trajectories of the planar curve shortening flow for which K does not
depend on time—whose classification is the content of

Theorem A. Let γ: R/Z -» E 2 be a unit speed closed curve representing a

homothetic solution of the curve shortening flow. Then y is an m-covered circle

ym, or y is a member of the family of transcendental curves {γWiΛ} having the

following description: if m and n are positive integers satisfying 1/2 < m/n

< ]/ϊ/2 there is {up to congruence) a unique unit speed curve ym n: R/Z -> E 2

having rotation index m and closing up in n periods of its curvature function

K > 0, a solution to the equations

(2) B" + 2\2{eB - 1) = 0, B = 21nκ/λ,

for some constant λ.

If (r,θ) are polar coordinates with origin at the center of mass of ym n, then K

and r are related by K = Cexp(^λ2r 2 ) for some constant C.

Note that a particular case of Theorem A is the assertion that the circle is
the only simple homothetic solution, in agreement with the above-mentioned
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conjecture. The simplest noncircular solution, γ 2 3 , is pictured in Figure l(c),

below, and five others appear in Figure 2 in §3.

To obtain such complete information about the homothetic solutions one

makes use of the fact that equation (2) has a first integral:

(3) ί{B'f + 2λ2V(B) = 2λ2τj, V(B) = eB - B - 1,

with η a nonnegative constant which depends only on m and n and should be

thought of as determining the shape of ym n. On the other hand, as explained

in §3, λ is just a scaling constant.

(B) As mentioned earlier, markedly different behavior is expected for various

trajectories of the curve shortening flow, depending on global properties of the

initial curves. However, in terms of function space topologies the following

theorem shows that the range of possible behavior is rather narrowly limited.

Theorem B. Let γτ be a trajectory of the curve shortening flow in the plane

and let κτ be the normalized curvature of γτ (so κT satisfies equation (1)).

(i) κτ stays bounded in Lι(R/Z) (in fact \\κτ\\Li is nonincreasing in T).

(ii) // κτ stays bounded in L 2(R/Z), then so do all derivatives θ'icyθσ1'.

(iii) // κτ converges in 1} as T -> oo, then γτ converges to a point and is

asymptotic in the C^R/Z) topology to a homothetic solution. The same statement

holds for an arbitrary surface M2 in place of E 2 except that, instead of

converging to a point, yτ may also converge to a geodesic.

Regarding part (ii) of Theorem B, more precise asymptotic bounds are given

in §4. Such bounds reflect the partially smoothing nature of the flow, a

phenomenon due to the Laplacian on the right-hand side of equation (1). To

this extent comparison with the behavior of the heat equation is appropriate;

however, the nonlinear lower order term generally disrupts the familiar total

smoothing phenomenon. In fact, the existence of the (noncircular) homothetic

solutions shows that one cannot expect the derivatives 3zκτ/3σ' to decay to

zero even if #cx remains ZΛbounded. In this sense, the asymptotic bounds

obtained here provide the best possible general set of estimates.

The utility of part (iii) is enhanced by the observation that a trajectory of the

curve shortening flow is a regular homotopy. Thus, e.g., if γ0 is simple and κτ

converges in L1, then κτ is asymptotic to a circle, as conjectured. On the other

hand, if γ0 has rotation index zero (e.g., if γ0 looks like a figure eight), then κτ

cannot possibly converge in Zλ

The nonconvergence result just mentioned, together with parts (i) and (ii) of

Theorem B, suggest that the limiting curvature for a symmetrical figure eight

might be a sum of two Dirac measures 8 = π(δ0 — δ 1 / 2 ) .

(C) Perhaps the main challenge of the curve shortening problem is to

distinguish curves with a nonsingular future from those with a singular future.
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The homothetic solutions not only provide nonconvex examples belonging to
the former category, but they also appear to locate part of the boundary
between the two categories; hence, there is reason to regard them as compari-
son solutions for the flow.

In fact, the very existence of the homothetic solutions—including the rather
arbitrary looking numerical condition 1/2 < m/n < /2~/2 in the classification
—can be understood by regarding the homothetic curves as saddle points lying
between circles, on one side, and singular curves, on the other (this viewpoint
helps simultaneously to explain the following rather curious coincidence: the
classification of closed free elasticae in the hyperbolic plane follows the very
same arithmetic condition and qualitative description [4]).

To explain the above more concretely, observe first that ym n is "fixed" by
the group G = G(m,n) = (g) = Zw, where g corresponds to rotation by
θ = 2mm/n. Figure 1 describes, for the case m = 2, n = 3, a g-equivariant
regular homotopy beginning at γm, passing through γm „, and tending to a
singular curve Tm n.

Ίm

(a) (b) (c)

(d) (e) (f)

FIG. 1.
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A reasonable conjecture associated with this picture is that if ε > 0 is a small

number and TV is the outward pointing normal along γm „, then the trajectories

through γ + = ym n + εN and γ _ = ym n - εN are asymptotic to ym and a

singular curve resembling Tm „, respectively.

The evidence for such a conjecture comes in two parts. On the one hand, for

somewhat larger ε, it can be proved rigorously that γ_ does indeed become

singular; this follows from a general area criterion for divergence proved in §5.

On the other hand stability computations suggest that ym ought to attract

curves resembling (b) of Figure 1 (even though ym is linearly unstable for

m > 1).

More specifically, let Ω = {κG C°°(R/Z): if y(s) has unit speed and

curvature κ(s), then γ is a regular closed curve}, let G act on Ω by gκ(s) =

κ(s — 2πm/n), and set Ω c = {/c G Ω: gK = K}, the fixed point set of G. Note

that the evolution equation (1) induces a flow on Ωc. Set κm = 2πm e ΩG, the

curvature of γm, and let L be the linearization of the flow at κ w . Then it is

shown in §5 that the operator L on Tκ ΩC7(WAί) has strictly negative spectrum

precisely when \m/n\ < y/ΐ/2.

Note that the other inequality 1/2 < m/n is implicit in Figure 1; for each of

the n petals must contribute at least m to the total rotation 2πm. Thus, the

arithmetic condition of the classification is heuristically explained.

2. The normalized flow

The following propositions refer to the notation of §1.

Proposition 2.1. Let γ: [0, tx) X R/Z -> Mn evolve according to dy/dt = W

= hT 4- kN, where h: [0, tλ) X R/Z -> R is some smooth function. Then each yt

has constant speed if and only if y0 has constant speed and h satisfies h'/a = k2

- tik2dσ.
Proof. The Frenet equations yield

da2/dt = 2<vH,γ/,γ/) = 2(vy>W,y') = 2a{W - ak2),

hence, 3 2 lnα/3/3σ = d(h'/a — k2)/dσ. The proposition follows easily from

the latter equation, together with the periodicity requirement on h. q.e.d.

We can now define the normalized flow on the space of constant speed

immersions of R/Z into M by 3γ/3τ = (dt/dτ)W = a2(bT + kN), where b

is defined to have average value zero and satisfy V/a = k2 — JQ k2 do.

Proposition 2.2. Let Ro be the curvature of the 2-manifold M2 and let y

evolve according to the normalized flow. Then the speed a and curvature k of y

evolve according to da/dτ = -a3f^ k2 do and 3A:/3τ = k" + abk' 4- a2k3 +

a2kR0\y, respectively.
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Proof. Both equations are straightforward to derive; the latter is somewhat

longer, but follows quickly from the useful formula giving the evolution of k

under the assumption 3γ/3τ = V, where V is an arbitrary vector field along

γ c M"(see[4]):

dk2/dτ = 2(vTVTV,VTT) - Ak2(vTV,T) + 2(R{V,T)T,VTT). q.e.d.

Using K = ak and R = a2R0, Propositions 2.1 and 2.2 directly yield equa-

tions (1).

3. Homothetic solutions

The proof of Theorem A, our major goal in this section, will be subdivided

into three steps:

Proposition 3.1. (i) A constant speed parametrized closed curve γ: R/Z -» E 2

represents a homothetic solution of the curve shortening flow if and only if its

normalized curvature function K obeys

(3.1) K' = -βκ9 β' = κ2 - λ2,

where β is the same auxiliary function as in (1) and λ is some positive constant.

(ii) Considering (3.1) as a system of differential equations on the real line, all

of its solutions exist globally. Obviously K = const e~& does not change sign.

Note that an arbitrary solution on R to (3.1) need not factor over R/Z, as

required in (i), and even then the corresponding curve γ with prescribed length

α(τ), a solution to the Frenet equations, need not close up.

Proof, (i) Since by normalization κ(τ, σ) does not change under dilations,

it follows directly from (1) that homothetic solutions are represented precisely

by those closed curves with periodic K and β obeying:

(*) κ' = -βκ-μl9 β' = κ2-μ2.

Just because of periodicity it is clear that μ2 is the square of some other

constant λ > 0. (In case /ι2 = 0we could conclude K = 0, a contradiction.) To

prove μx = 0 we first note that taking an antiderivative jβ preserves periodic-

ity since the average of β over a period vanishes. The derivative of the periodic

function / : = κe^β is computed to be / ' = (K' + βκ)e^β = -μλelβ, i.e., some

strictly negative factor times μv Hence μλ = 0.

(ii) Global existence and uniqueness already hold for system (*), since the

differential inequality |(/c2 4- β2)'\ = 2\μλκ 4- μ2β\ < yjμ\ + μ\yjκ2 + β2 gives

rise to a global a priori growth estimate on /κ2 + β2. q.e.d.
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Substituting K = λeB/1 and β = - \B\ we see that equations (3.1) and

equations (2) in Theorem A are equivalent. Hence equations (2) admit only

global solutions. Their periodicity and closedness properties are discussed most

easily using the first integral given in (3). For η > 0 the strictly convex

potential function V(B) determines precisely two numbers B_= B_(η) < 0 <

B + = B + (η) such that V(B±) = η.

Propositions 3.2. Consider an arbitrary solution B of equation (2) lifted to the

real line:

(i) Up to translations, B is uniquely determined by its integral η and the

parameter λ in the differential equation.

(ii) B is even with respect to all its extremal points and therefore oscillates

between its minimum B_(η) and its maximum B+(η) with

period(η,λ)= iperiod(η,l)- \f** ^ F = =

(iii) The period of B can be estimated in terms of the positive, monotone,

convex function T(B) = (eB - 1)/B:

}/2πT(B + )~ < λperiod(η, λ) < yJΐτrT{B_)~1/2.

(iv) The tangent vector of the associated solution γ: R -> E 2 to the Frenet

equations rotates within a period of K by

dB

-f
(v) The function Θ: (0, oo) -> R, η -> Θ(η) defined in (iv) is strictly monotone

decreasing and has range (TΓ, π]/ϊ).

As indicated above, the claims (i), (ii), and (iv) easily follow from the first

integral given in (3). In order to see (iii), we rewrite equation (2) as B" +

2λ2T(B)B = 0 and use the Sturm comparison theorem, (v) is proven in the

appendix.

It seems worthwhile to point out that the λ-dependence of period(η, λ) and

Θ(η, λ) just reflects the possibility of scaling homothetic solutions. Indeed we

can pass to any domain R//Z, / > 0, and consider the curve y^s) = ly(s/l);

equations (2), (3), and (3.1) continue to hold when K, β, B and λ are replaced

by

φ)=\κ(ϊ), βι(s)=\β(S

Ί), BM-B(Ϊ) and λ , - ) f

respectively. Thus, one may think of λ as corresponding to the scale of the

curve, after the shape of the homothetic solution has been fixed by η (cf.

Proposition 3.2(iv)).
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THE NORMALIZED CURVE SHORTENING FLOW 183

Proof of the classification statement in Theorem A. Because of 3.2(ii) it is
standard Frenet theory that the curve γ is symmetric about its normal lines at
points where the value of K is extremal. The closing up of γ is easily discussed
in terms of the Coxeter group generated by the reflections about the normal
lines through two adjacent extrema of the curvature function. Since Θ(τj)/ττ is
always nonintegral, this group has precisely one fixed point, the center of mass
of γ. The curve therefore closes up iff, for some nonzero integer n, nθ(η) is an
integral multiple of 2π, the rotation index m. The numerical conditions stated
in terms of m and n follow directly from 3.2(v). (Our normalization of the
period of γ is met putting λ = n period(τj, 1).)

Six of the solutions ym n are pictured in Figure 2. The curves were generated
by computer by solving Θ(τj) = m/n 2π and then integrating system (3.1)
together with the Frenet equations, using the initial conditions β(Q) = 0 and
κ(0) = Kmin(η) (cf equation (3)).

It remains to calculate the transcendental relation between K and r for unit
speed homothetic solutions (i.e.: α = 1, K = k). This readily implies the claim
on the transcendence of the noncircular ones; otherwise, since r2 is an
algebraic parameter on any noncircular algebraic curve, K would be an
algebraic function of r2, a contradiction.

It is useful to introduce polar coordinates (r, 0) about the center of mass of

γ
Proposition 3.3. The Killing field 3/30 is known explicitly along γ:

A = λ~2/, where J = KT - βN.
όσ

Hence the extremal points of K and r coincide, and κ m i n = λ2rm i n and κ
m a x

w
Proof. Clearly the center of mass is preserved under the curve shortening

flow. Hence d/dr is parallel to dy/dt = W (cf. Proposition 2.1), and 3/30 is
parallel to /. In fact, since (VTJ, T) = 0, they must be proportional. In order
to determine the factor, we observe that T = J/\J\ = \d/dθ\~ιd/dθ at the
extremals of K and compute:

VTJ = λ2N, whereas VT^CTJ =
30

Next we observe that equations (2), (3), and (3.1) yield β2 4- κ2 =
X2(η + 1 + 21n(/c/λ)). Hence choosing our initial point so that r(0) = rmin
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and noting that 3/3r is a unit vector perpendicular to /, we have

3 \ , rs *'do
r - rmin = / ( l\ — )do = \ ,

(sl' 3 \ , fs κ'do
J o \ όr I Jo K)JK

2 +

dK

Again using Proposition 3.3, we can solve for K as desired:

λ2

4. Bounds and convergence for general trajectories

This section is devoted mostly to the proof of Theorem B, with more precise

estimates. We will make repeated use of the evolution equations (1) for the

planar case.

For instance, part (i) of Theorem B follows almost at once from 3κ/3τ =

(V 4- βκ)f. For each time T we subdivide γ at all jumping points of sgn° /c:

R/Z -> (-1,0,1}, and obtain at most countably many pieces γ,-: [<?,, bt) -> E 2 .

Where K = 0 we clearly have (3/3τ)sgn(/c) = 0 and, on the interior of an

interval for which K vanishes identically, the evolution equation implies

0 = 3/c/3τ = 3|/c|/3τ. Thus, letting sgn(z') = sgn(/c(σ)), σ e (a^bj), we can

write

Clearly, no term in the last sum is positive. In fact the sum is negative unless

κ\af) = κ'(bi) = 0 for all / (note that if K does not change sign there is only

one piece and the above sum vanishes).

Part (ii) of the theorem is included in the following propositions on the

behavior of the Sobolev seminorms of /c. We write x} = /o

x (dJκ/dσJ)2dσ and

YYl = y Xo ^ l

Proposition 4.1. The time derivatives Xj = dxj/dτ and m = dm/dτ satisfy

the estimates

(i) x0 < -2x x 4- mx0,

(ii) jcy < -2xj+1 + JC 7.((3>+ 1 - 2)m

(iii) m < 2m - —- 4 2m 4 x0 .
/
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Corollary. The solution to the evolution equations exists at least as long as

τ<τE = 4x o (0)- 2 .

Proposition 4.2. Define C(τ) = max{.xo(τ'): 0 < τ' < T} (note that C(τ)

> 4π2 > 32). The functions m(τ) and XJ(T), j > 1, are bounded on the whole

existence interval in terms of C(τ) and the initial data m(0) and xx(0), , Xj(0),

respectively. Asymptotically, i.e., for r C(τ), C(τ) sufficiently large, one has

the following bounds depending only on C(τ):

(i) m(τ) < 3C(τ)2,

(ii) jcy ( τ ) < 3JU+S)/2C(τ)2J+1.

When x 0 is not bounded—so the flow is approaching a singularity—the

above estimates are still adequately describing the behaviour of the Xj. This is

the essential point of the complementary

Proposition 4.3. Letting \\ \\x denote the Lι-norm, one has

(ϊ) l\κ\p>\\κ\\l-?x%-1 forp>2,

(ii) x. > *o(*o/IMIi2 " l ) 2 y for all j > 1.

Before proving the above propositions we proceed to the proof of part (iii)

of Theorem B.

Let γτ c M1 have ^-convergent normalized curvature κT and suppose γτ

does not converge to a geodesic. Then there exist constants τ0 and C > 0 such

that T > τ0 implies /J /c2. do > C. Hence, Proposition 2.2 implies da/dr > Ca3.

It follows that the length of γ τ tends to zero.

We claim that in fact γ τ converges to a point p e M 2 . To see this, we

consider τ, -> oo and, for each i, a "strongly convex set" Γf c M 2 (i.e. 3ΓZ has

strictly positive inward curvature) which contains γτ and has diameter a

bounded multiple of diam(γ τ). For T > τ, , the curve γτ must remain inside the

fixed set Γ, ; if γτ ever touches 3Γf , the curvature normal kN is actually

pointing inward in a small neighborhood of any point of first order contact. So

γ τ can never cross 9Γ,. We thus have a nested family of compact sets whose

diameters tend to zero.

Next we integrate equation (1) twice:

— / κdvdu = κ+ / βκdu+ \ / κRdvdu+ Cσ + D.
or Jo JQ JO JO ^O

Since K converges in L1, the right-hand side of the above equation clearly

converges in L1 to some function H(σ). We claim that in fact H(σ) = 0.

Suppose H(σ0) = Ho Φ 0 for some σo; then for all sufficiently large T,

hence /o

σ° /0" K dv du must tend to infinity, contradicting convergence of K.
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Setting the right-hand side of the above equation equal to zero, it follows by

induction that K is C 0 0. Differentiating twice and observing that KR tends to

zero in L1 as τ -> oo we recover the equation for homothetic solutions. Since

(M, g = α~2g0) is locally asymptotic to the plane the claim follows, q.e.d.

Proof of Proposition 4.1. We will use the notational shorthand / = JQ do

and follow the convention that the derivative operator 97 = dj/dsj is applied

only to the term immediately to the right.

To begin with we have by interpolation

(4.1) xμxj < xμ_vXj+v forO < v < μ <y .

Secondly, since

_
xo

*> = 0 v ; *> = 0

inequality (4.1) gives, for all μ > 0,

(4 2) Il3μ(/c2 — x ) II < 2μ Ix x

Similarly, since

j κd"κ + - J |3(/c3"/c)| < ^ o j c r + y^

we also obtain

(4.3)

At this point we invoke the flow equations (1) to compute

7 + 1

xj = i f M M = - 2 x J + ι + 2 Σ [ J + 1 ) f a - j β a ^ " - 1 - ' !κdJκ

= ~2xj+l

— ? v

where we have set

(4.4) φ. =

Because of (4.2) the above yields

(4.5)

βd(dJκ)2ώ + 2(j + \)f dβ(dJκ)2ds + 2ψj

{κ2 - xo)(Vκγds + 2Ψj,

-2x
J+ι

^[Xj + 2φ 7 .
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In particular, this gives inequality (i) of Proposition 4.1. To obtain the second
inequality it remains to bound φy for j > I:

/-I . ,

p = 0

J-

7-17 1 ,

Σ [ p 1" " ~ v 7 —" y y v j 11 0 | | oo Λ y

Using the estimates (4.1) and (4.2), and (4.1) and (4.3), respectively, we bound
each term separately:

ι)xj + 2{xo

2J+Ixoxj.

Part (ii) of the proposition now follows from (4.5).
To prove the remaining inequality (iii) we compute in a straightforward

manner from (i) and (ii):

2mm = xoxι + xox1 < 4m2 - —- + 2m + x0 .

Proof of Corollary. From Proposition 4.1(i) and the interpolation inequality
mx0 < 2xλ + \x3

Q we conclude JC0 < \x\, hence, the result.
Proof of Proposition 4.2. Observe first that the right-hand sides of both the

inequalities are nondecreasing. Thus it will suffice to prove that exponential
decay holds for m(τ) as long as (i) is violated, and to argue similarly for xJm

(i) A direct calculation shows that -m2 + 2x\m + x\ < - \x\ as long as
m < 2x1 + \x0 fails. Therefore, it follows from Proposition 4.1(iii) that one
has m < - \m as long as m(τ) ^ 3C(τ)2 (> 2x o(τ) 2 + ix o ( τ ))

(ii) By Proposition 4.1(ii) and the inteφolation inequality xJ+1 > xf/Xj-i
one has jcy < -2J+l0Xj as long as x} < jc^^i 3J+ιm + 2>+1C(τ)2) fails. By
induction, the boundedness of xj9 j > 1, now follows from the bounds on m
and Xj-\
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In order to obtain the desired estimate we may assume τC(τ) large enough
so that m(τ) < 3C(τ)2. One then argues inductively using \ 3J+1m +

Proof of Proposition 4.3. Part (i) follows directly from Holder's inequality.
Using this estimate with p = 4 and (4.2) one obtains

" / fi*2 ~ Xθ)«2 ^\\«2 ~ X
θ\\ooX0

This proves part (ii) in case j = 1. Inequality (4.1) now yields the general result
by induction.

5. Divergence and stability results

For a precise statement of the divergence result mentioned in (C) of §1 we
first recall that the algebraic area of a closed curve γ: R/Z -> E 2 is defined in
terms of an integral of the winding number N(x,y) over almost all points
x G E 2: A(y) = jEiN(x,y)dx = ^/γdet(γ, γ') do. The criterion will also in-
volve the rotation index m = Ind(γ) = l/2πfykds.

Proposition 5.1. Suppose y is an initial curve satisfying one of:
(i) A(y) Φ 0 andA(y) Ind(γ) < 0,

(ii) k > 0 along y and N(p, γ) < 0 for some point p e E2.
Then along the trajectory yτ through y = γ0 the L2-norm of the normalized
curvature κT diverges before the length of yτ approaches zero, hence, within finite
time T.

Proof, (i) The derivative of algebraic area with respect to T is straightfor-
ward to compute using 3γ/9τ = a2(bT 4- kN):

det(γ;, ^ γ τ ) da = -a2 j kds = -2τrma2.

By assumption it follows that \A(yτ)\ ^ \A(y)\ > 0.
Since part (i) of Theorem B gives a bound on the winding numbers,

Γ \κτ\ds^ ίl \k\ds VJC E 2

we deduce a uniform positive lower bound on the enclosed area, i.e., on
area{x: N(x,yτ)Φ 0}. Thus, the isoperimetric inequality yields a uniform
positive lower bound on the length of γτ.

However, according to the proof of the part (iii) of Theorem B, the length
would have to approach zero if the flow existed for all r > 0. In view of part
(ii) of Theorem B, the ZAnorm of K must therefore diverge.
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(ii) In this case we consider the set Fτ = {x e E2: N(x,yτ) < -1} and its
area aτ = area(Fτ). By hypothesis a0 > 0. Our goal is to show that aτ is
nondecreasing, then again use the isoperimetric inequality and finish the proof
as above.

Notice that for an arbitrary smooth family of curves cτ: R/Z -> E 2 the
function T -> ar is only Lipschitz rather than C1 (differentiability may be lost
at nontransversal intersections). The lower Dini derivative is given by

D-aτ = min{det(c;/|c;|, ac τ/3τ)(σ): σ e c;ι{p}} ds(p).

In our case, since kτ

desired estimate:

0 (because of part (i) of Theorem B), we obtain the

D;aτ = f min{A:τ(σ): σ e y;x{p}} ds(p) > 0.

Actually, since kτ is constant in almost all fibres y;ι{p), aτ is differentia-
ble for trajectories of the curve shortening flow, q.e.d.

Figure 3 shows some initial curves which must develop singularities by the
preceding criterion: Similarly, a curve resembling Figure l(d) or (e) must
become singular (though the proposition does not directly apply to (d), the
direction of the curvature normal vector kN implies that after a short time
T > 0 the hypothesis will be satisfied).

(a) (b) (c)

FIG. 3.
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We turn now to the linear stability analysis, referring to the notation

introduced in (C) of §1. Setting a(u) = JQic(s)ds, we can write !2 = {κG

C°°(R/Z): j*κds = 2mm, m an integer, and f^eia(s)ds = 0}. It follows that

the tangent space to Ω at K G Ω can be identified with Tβ = {A e C°°(R/Z):

0 = /J h(s)ds = titih(u)dueia(s)ds] = (A e C°°(R/Z): 0 = fo

ιh(s)ds =
So h(s)fQeιa(u)duds). In particular, the tangent space at the m-fold circle is

given by

(5.1) Γ K Ω = ( / I G C°°(R/Z): 0 = Γ hds = Γ h(s)eiκ»>s ds).

We wish to consider now the linearization of the flow k = K" + (/?/c)' = P(κ)

at some fixed K in Ω: A = DP(κ)h = A" + (βA)' + (Dβ(κ)h /c)r = LA,

where {Dβ(κ)h = j£hκdo - sf^hκdσ + /^(σ - \)κhdσ.
For the special case /c = κ w s 27rm, the facts β(κm) = 0 and JQ hds = 0

imply that the linear map L: Tκ Ω -> Γκ Ω is given by:

(5.2) Lh = h" -

Proposition 5.2. ΓAe multiple circles κm, |w| > 1, are linearly unstable

critical points of the flow on Ω.

Λw/. Set A(^) = cos(2τ75). Then for m Φ ± 1 , Λ e T Ω. Thus we have

found a positive eigenvalue: Lh = 4ττ2A. q.e.d.

We note that the above proposition has a simple geometric interpretation.

Consider, e.g., the case m = 2. Then varying κ2 = 4π in the direction of

A = cos2ττ.y corresponds to shrinking one circle of γ2 while enlarging the other

(one should picture a pair of tangent circles of slightly different radii, one

inside the other). The flow does not tend to restore such perturbations to

circularity, but rather, it amplifies the inequality in size. This shows once again

the striking difference between the simple and nonsimple cases of the curve

shortening problem.

On the other hand, consider the restriction of L to the "symmetric varia-

tions", i.e., to the tangent space TβG = {/i£ Tβ: gh = A) of ΩG. It follows

from equations (5.1) and (5.2) that any A e Tκβ
G has Fourier series represen-

tation of the form

h(s) = Σ βjCθs(2πjns) + bjsin(2irjns)
7 = 1

(in fact by closedness aj = bj; = 0 in case jn = m). Substitution of this series

into equation (5.2) yields
00

Lh = {2πf Σ (2m2 - j2n2)(ajcos(2-njns) + bjSm(2πjns)),
7 - 1
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which gives at once
Proposition 5.3. The flow on ΩC ( w '/ ί ) is linearly stable at κm exactly when

\m/n\ /3

6. Appendix

Here we discuss the function Θ: (0, oo) -> R which arose in Proposition 3.2:

ΓB+ dB

B_ \IP~B(ΎI -

We recall that the convex potential function V(B) = eB — B — I assumes any
value η > 0 at precisely two points Z?_(τj)<O<i?+(η). It thus defines a
bijection \(B+— BJ): [0, 00) -> [0, 00), the inverse of which we shall denote by
p. Since p is a monotonic bijection, claim 3.2(v) can equivalently be established
for the function Θ ° p. This reparametrization will be useful, since by some
straightforward calculation it provides explicit formulae:

(6.1)
η = p(w) = wcothw — 14- lnσ(w2),

B±= B±op(w) = ±w -

where we have made use of the analytic function

(6.1') o(x) sin = Σ (2k + 1)!

Introducing in addition the function

(6.2)

we can calculate:

,B+/2 ,8-/2

-1

sinh-τ-

Θ

(6.3)

- fP(W)

p(w) - V(B)

h(η)dη = n h(zp(w)) dz
= n

°
Computer plots of the functions 1/w Θ « p and Λ » p in Figure 4 will provide
some intuition for further analysis.



192 U. ABRESCH & J. LANGER

FIG. 4.

The main results of this appendix, which directly imply 3.2(v), are

Proposition 6.1. (i) l im η ^ 0 Θ(τj) = l i m ^ o © op(vv) = m/ί, lim

(ii) The functions h ° p and © o p are decaying on [0, 5.22].

(iii) The function θ ° p is monotone decreasing and hence > π on the interval

[5.22, oo).

Of course in (ii) it is sufficient to prove decay for h ° p; because of formula

(6.3) the result extends to θ ° p. Notice however, that hop has a minimum,

approximately at 7.53, whereas ©op continues to decay (cf. (iii)).

Proof of (i). Clearly j]/V(B) |sinh(B/2)\~ι -> 0, \fi, 1 as B -> -oo, 0,

oo, respectively. It follows that A(τ7)->\/2\lasη-»O, oo, respectively. This

yields the claim since /Q1 dz/ /z(l - z) = π.

Proof of (ii). Here the basic idea is to show that H\x)/H{x) < 0 and

H(x) > 0 for ]/x e [0, 5.22], H(x) standing for the function h °ρ(/x) . To

begin with we list some properties of the function σ introduced in (6.1r):

= £

(6.4)

— σ(x),

(4x)k,

f 2 ,.
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and then calculate from (6.1) and (6.2):

, / e-w/2 eW2

hop(w) = ip(w)]lσ(w2) 2 _w +
\ 1 - σ(w )e σ(wz)e —

= [coshw + σ(w 2)(-l + Inσ(w 2 ))] 1 / 2

1 + σ(w2)- . uw2sinhτ
22 sinh(2w)/H> - 1 - σ(w 2 ) 2 '

1 + σ

2σ(4;c) - 1 - σ(x)1

where we have adopted the convention that σ means σ(x), σ' means σ'(x),
etc. Clearly H(x) > 0, as required, and its logarithmic derivative can be
written as follows:

Ή'

(6-5) Jf=fl+fl+(f3a-f3l,)-f4,

where

= l |φ/4)
4 σ(V4) '

1 1 + 5σr 1 1
•/3a 5 1 + σ ' •'3b 5 1 + σ '

= / 2 σ ( 4 x ) - l - α ( x ) 2 V _ (^ « 2^ + 3

1. The functions f2, /3 a, /3 b, /4, σ'/σ, «̂rf o"/af are positive and
nonincreasing.

This follows directly from the previous formulae, the power series represen-
tations for σ, σ', and σ", and the

Lemma on Power Series. Let A{x) = Σ£L0

 akχk and B(x) = Σ^ = o ̂ ^•x:A: be

real power series with coefficients ak, bk > 0, converging on D c R. If ak/bk is
a nonincreasing sequence, then the function A{x)/B(x) is nonincreasing on
D Π [0, oo).

In order to control H'/H, it will be useful also to decompose the remaining
summand fx in terms of monotonic functions. We introduce the auxiliary
functions

\~ι]nσ Λ 1 , -, 2\
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A straightforward calculation yields:

σ x

hence:

is ~,\ ^ r 2 σ" 1 + r o' r 1
v " ' 7 " n 3 + r σ ' 3 + r σ 3 + r x '

Step 2. φ w monotonic and 0 < φ ( . x ) < φ ( 0 ) = l /or JC > 0. Using for-
mulae (6.4) and the definition of σ, we calculate (x = w2):

φ(w 2) = 1 4- — — In — (w2) = 1 + y "τ~ln — cothw

= I σ(4w2) - 1 >

2 σ(4κ; 2 )-σ(w 2 ) 2 >

Because of the expansions given in (6.4) for numerator and denominator the
above lemma on power series yields the monotonicity of <p as required.

Step 3. 1 < 1 + r < φ"1. Moreover both the functions r and r/(3 + r) are
nondecreasing. In order to show the positivity of r, we observe that the
function Ψ(x) = lnσ - x σ'/σ vanishes at x = 0 and has derivative Ψ' =
-;c(σ'/σ)' > 0. We compute that T' = ΛΓ^I - (1 + r) φ). Note that rr(0) =
1/30, and by continuity of r' we have (1 + r) φ < 1 for small positive x.
Since by Step 2 φ is monotone decreasing, this inequality continues to hold for
all x, and all the remaining claims follow.

Step 4. Given 0 < u < x < v, one has

(6.8) Ίf(x) < ^ί"^) = FΛU>V) ~ F.(u,v),

where

J* \ / \ -•- * / \ ^ / \

Using Step 1 and Step 3, this estimate follows directly from the formulae (6.5)
and (6.7).
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Step 5. Inequality (6.8) provides a numerical criterion for proving negativ-

ity of H'(w2)/H(w2), w G [0, 5.22], and thus establishing part (ii) of Proposi-

tion 3.3. In fact we have the table:

w
i

0

1.6502

2.3296

2.82

3.2076

3.5278

3.7996

4.0352

4.2426

4.4268
4.5924

4.7418

4.8778
5.0024

5.117

5.2226

F_(w,W
+
i)

.2883

.2618

.2397

.2222

.2083

.1972

.1881

.1806

.1743

.169

.1644

.1604

.1569

.1538

.1511

-.349

-.373

-.439

-.328

-.314

-.309

-.305

-.364

-.334

-.304

-.358
-.344

-.348
-.331

-.331

Proof of (iii). Rather than making use of (6.3), we split the integral for

Θ o p at B_ + 1; for large w this number gets arbitrarily close to -η = -p(w),

the place where the unique maximum of the concave function B -*

e'B(η- V(B))lies.
(6.9)

dB Λ , s fβ+ dB
Θ2(η) -

+i Je~B{η - V(B))

Step 1. Θ x is monotone decreasing and converges to 0 for η -> oo. Substitut-

ing z = B — J5_, a direct calculation yields

ίι dz n dz

^ /(I + zT{2w))e~z - 1

The claim follows, since the function T(2w) = (e2w - l)/2w is monotonic and

tends to infinity with w.

Step 2. On [1.5, oo) one has the differential inequality.

(6.10) (Θ2op)'(w)< - - L Θ 2 o p ( w ) + ( i - ^ - i -



196 U. ABRESCH & J. LANGER

Using the substitution z = B + — B and setting N(z,w) = (1 - zT(-2w))eΣ

1, we obtain Θ 2 o p(w) = tfw~ι N(z,w)~l/2 dz, hence:

N(z,w)

Inequality (6.10) now follows from the estimates

zeΣT'{-2w) _ T\-2w) T'(-2w)

N(z,w) ~ T(-z) - T{-2w) >

1 1 -(1

4w2 1 - ( 1 - e"2M;)/2w " 4w 2 '

( l + ( 2 w

which are due to the monotonicity of T and the hypothesis 2w > 3.

S ί ψ 3. (Θ 2 o p ) ' ( w ) < -(Θ 2 o p(w) - 7r + 6 10- 4)/4w 2 /or w G [5.22,

oo). The term 4w2(e2 w ;~1/2w - 1 ) " 1 / 2 is easily checked to be monotone

decreasing on [2.5, oo) by taking its logarithmic derivative; hence, calculating

its numerical value at w = 5.22, we obtain the claimed differential inequality

directly from (6.10).

Step 4. Notice that monotonicity of Θ2 © p follows from the previous step

by the mean value theorem in its integral form, since

lim Θ 2 ° ρ ( w ) = lim &°p(w)— lim Θ 1 ° p ( w ) = ττ.
w—>oo w—> oo w—>oo

In view of Step 1 we have thus proven part (iii) of the proposition.
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