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THE SPECTRAL GEOMETRY
OF A TOWER OF COVERINGS

ROBERT BROOKS

Let M be a compact Riemannian manifold and let {M,} be a family of

finite-sheeted covering spaces of M with the induced Riemannian metric.

In this paper, we wish to study the behavior of the first eigenvalue λ1(M/ ) as

i tends to infinity. Here λx is given by the variational formula

(1) λ (N.) inf J N i m ] 2

f fN\f\2 '

where / ranges over functions which are perpendicular to the constant func-

tion - / „ / = ( ) .

It might appear, particularly from the perpendicularity condition, that the

behavior of λx depends rather delicately on the metric properties of M.

However, motivated by our work on λ 0 of coverings [1], we were led to the

point of view that the asymptotic properties of λx as i tends to infinity should

be governed only by combinatorial properties of the fundamental group of M.

Our main result, Theorem 1, confirms that this is indeed the case. To state

the combinatorial property which emerges, let us first recall that a finite-sheeted

covering space Mi of M is described by a subgroup ^(M,-) of finite index in

πx(M). We now fix, once and for all, generators g1?- , gk, and for each / we

consider the combinatorial graph Γ, described as follows: The vertices of Γ, are

the finite number of cosets of πι(M)/πι(Mi). Two vertices of Γ, are joined by

an edge if the corresponding cosets differ by left multiplication by one of the

For each i, we let λ, denote the following number: Let E = {Ej} be a

collection of edges of Γ, such that Γ, - E disconnects into two pieces, A and

B. Let #(E) denote the number of edges in E, and #(A) and #(B) the
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number of vertices in A and B. We then let Λ, denote the infimum

#(E)(2) h = Hί

We then have:
Theorem 1. λ^M,) -> 0 as ι -» oo if and only ifht -* 0 as i -> oo.

The proof of Theorem 1 proceeds much as the proof of the main theorem of

[1]. The central point is to make use of Cheeger's inequality [8]

(3a) λx{N) > \h\

where h is the isoperimetric constant of N,

s (

and S runs over hypersurfaces of N which divide N into two pieces, A and B.

The analogy of (2) with (3b) should be fairly clear. The content of Theorem

1 is then to say that the combinatorial isoperimetric constants ht and the

geometric isoperimetric constants h(Mt) stay within a bounded ratio of each

other, independent of i.

The proof of Theorem 1 occupies §1.

The existence of a combinatorial condition as in Theorem 1 then implies a

number of consequences, some of which we mention in §3. The idea of

estimating λx by graph-theoretic techniques was considered for the case of

surfaces by P. Buser [4], [5], where he used this technique in studying the

question: Is there a family of compact Riemann surfaces, with area tending to

infinity, with λλ bounded from below? He later settled this question in [3], as

did Vigneras in [15]. Both of their solutions use delicate number-theoretic

machinery, including Jacquet-Langlands theory. One of our results in §3 gives

a general solution to this problem:

Corollary 6 (§3). Let M be a compact manifold with a surjection mx(M) ->

Z * Z. Then there are families of arbitrarily large coverings { Mi} of M and a

constant c > 0 such that λ 1 (M l ) > cfor all i.

Note that the class of manifolds M with a suqective map πx(M) -> Z*Z is

quite large—it includes all surfaces of genus > 2, and also examples of

hyperbolic manifolds of all dimensions (see [3], [12] for a general discussion of

this point).

In general, bounding the combinatorial constant of Theorem 1 can be rather

subtle. To that end, we prove the following general result in §2.

Theorem 3. Suppose π = πλ(M) has Kazhdan's Property T. Then there

exists a constant C > 0 such that λ^M') > Cfor all finite coverings M' ofM.

Actually, somewhat more is true, but we will leave a more detailed discus-

sion of Kazhdan's Property T to §2.
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It is a pleasure to thank John Millson and Peter Sarnak for many helpful

conversations about this material.

1. Proof of Theorem 1

We now fix a compact manifold M, and consider finite coverings M, of M.

We would like to model the spectral geometry of M, in terms of the combina-

torial data given by the inclusion ^ ( M , ) -> irx{M).

To that end, let us pick a fundamental domain F for M in the universal

cover M of M. Then the deck transformations gv- , gk pairing F with an

adjacent fundamental domain clearly generate π^M). We may now pick a

point x in the interior of i7, and consider the graph in M whose vertices

consist of the orbit of x under deck transformations, and where two vertices

are joined by an edge when the corresponding copies of F meet.

The resulting graph is visibly invariant under deck transformations, and so

projects onto any covering M, of M. When Mi is a finite covering space, this is

a finite graph, the number of vertices being the degree of the covering, and it is

easily seen to be the graph Γt described in the introduction.

For any connected graph Γ, we may consider the combinatorial isoperimet-

ric constant

A(Γ) = i n f -

as E ranges over sets of edges of Γ such that T — E disconnects into two

pieces, A and B. Here, #(A) (resp. #(B)) denotes the number of vertices in

the piece A (resp. B).

Set A, = A(Γ,), where Γ, is the graph defined above.

The main result of this section is:

Theorem 1. Given a family of coverings Mt of M, λ^M,-) -> 0 as i -> oo //

and only if A, -» 0 as i -* oo.

The proof of Theorem 1 closely follows the proof of Theorem 1 of [1].

We first show:

Lemma 1. There exists a constant cx independent of i such that λ^Λf,-) <

cλ A,,

Proof. Suppose we are given a set of edges Ex in Γ, separating Γ7 into A

and B. Let us choose ε > 0, fixed for the discussion. We then consider the

function fE on Mt defined as follows: Suppose # ( Λ ) < # ( £ ) . Then we

choose fE to be 1 on the interior of the union of fundamental domains

belonging to A, -c on the interior of fundamental domains belonging to B, and



100 ROBERT BROOKS

changing linearly with distance in an ε-neighborhood of where a face of a
fundamental domain belonging to A meets a fundamental domain belonging to
B. The constant c < 1 is chosen so that fMj fE = 0.

We now calculate the Rayleigh quotient of fE. But fM. \\dfE\\2 < dx #(/?),
since df=0 away from where the domains from A meet those of B, and we
get only a bounded contribution from each common face, corresponding to an
edge in E. On the other hand

since fE is constant on some fixed amount of each fundamental domain.

Hence

/Λ/,MEII2 dγ #{E)

L)fE\
2 ^d2- #(A)

and Lemma 1 is proved.
Lemma 1 shows that if A, -> 0 as / -> oo, then λ1(Af/) -> 0 as / -» oo. To

complete the proof of Theorem 1, we must now show:
Lemma 2. // λ 1 (M l ) -* 0 as / -> oo, /Λe« A, -» 0 <zs / -» oo.
The idea used to establish Lemma 2 is to use Cheeger's inequality

λλ(N) > \h\

where h = h(N) is the geometric isoperimetric constant

, / v = . f area(S')
[ } ms minίvolίAΓj.volίΛί,))'

where S ranges over hypersurfaces of Λ̂  which divides TV into two pieces
N - S = Nx U ΛΓ2.

Just as in [1], the idea is to compare the geometric isoperimetric constant
Λ(Λf;) with the combinatorial isoperimetric constant h(Γi). If we can prove an
inequality of the form A(r,) < (const)h(M,), then Lemma 2 follows, and
hence the theorem.

We run into two obstacles not present in [1]. First of all, the main technical
estimate of [1], Theorem 3, is no longer available to us. Secondly, it may
happen that the "geometrically smallest piece" may be "combinatorially
larger". Both of these difficulties arise from the fact that the denominator in
the definition of h is the minimum of two terms.

To prove the lemma, we consider the problem of minimizing the geometric
isoperimetric constant h(Mt) among all hypersurfaces S. As in [1] and [6], the
minimum is realized by an integral current 7], which is regular outside a set of
high codimension, and which has constant mean curvature η; on the regular
part of Tr
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As in [1], we must now argue that the mean curvature ηi is bounded
independent of ί, but the argument of [1] does not apply. This problem was
considered by Buser in [6], where he showed that if the Ricci curvature of a
manifold N is scaled to be ^ -(n - 1), then we have the inequality

|i)|< 1 + ^ ^ - , n = dim{N).

In particular, since h(Mt) < Λ(M), we see that |ηf | < (const) for some
(const) independent of /.

We now tentatively divide Γ, into three sets s/i9 ^i and #,, where #,
consists of those domains which meet 7), and s/t and 311 are those fundamen-
tal domains contained in Mn and Λf/2, respectively.

It is easily seen that

vol(F) # ( J < . ) < vol(AίΛ) < vol(F)(#(j<.) + #(*,.))

and similarly for 38^
It further follows from the bounded mean curvature of Tt, as in [1,

Proposition 3], that there is a constant d such that

(t) area(7;) >(</)#(«-,).

Let us first assume that #(«',•) > (#(Γ,))/10. It then follows from (f) that

^ (d)

vol(M,) " vol(F)#(Γ/)

so that Λ(M,) > d/5 \ol(F).
Now suppose that #(#,) < #(Γί)/10, which by the above must be the case

if λ(M,)-»0.Then

aπ»(Γ,) d \ #(%) 1
vol(Λf,) " vol(F) [ # ( j < ) + #(%) J"

If vol(M(1) < vol(Λ/,2), then we construct our sets Ah Bh and £, as follows:
First, place all the edges from all the vertices in % into £,, so that # ( £ , ) =
(const)#(%). We now replace edges from Et back into the graph so that all
the points of #, are joined to s/t, and we set Λ, = s/i U ^,, 5, = SSt.

We now have that

but it may now happen that #(At)> #(Bi). But from volίM^) < vol(M/2)
we see that
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and from our assumption we have

#(%) < ( # ( . < ) + # ( * , ) + #(<?,))/io

from which we readily conclude that

#(#,.) > 4 # ( J < ) / 5

so that

and so /z(Γ,) < (const)h{Mt), as desired.

2. Property T

In this section, we study groups for which the behavior of the isoperimetric

constants Λf., and therefore the first eigenvalues of coverings, can be controlled.

Let us then fix a discrete group IT and generators gv- , gk for π. Let us

denote by Γ the graph of π, whose vertices are the elements of π and whose

edges correspond to multiplication by the generators of π.

Let us denote by Λ0(Γ) the isoperimetric constant of Γ defined as follows:

» < Γ > - ¥
where E runs over a collection of edges separating Γ into a finite part A and a

possibly infinite part. Note that A0(Γ) = 0 when π is finite.

Recall from [1] that m is amenable if and only if Λ0(Γ) = 0. The equivalence

of this with the standard definition of amenability in terms of left-invariant

means depends on a delicate combinatorial theorem due to Folner [9].

Recall also that π is said to be residually finite if, given any element g E ? τ

other than the identity, there is a homomorphism φ: π -> F, where F is a finite

group, such that φ(g) Φ id. Residual finiteness is the usual state of affairs

among groups arising in geometry.

Theorem 2. Suppose that π = π^M) is a group which is infinite, amenable,

and residually finite. Then there are finite coverings Mi of M such that λ 1 (M l ) -> 0

as i -> oo.

Proof. Geometrically, residual finiteness says that, given any compact set

C c M, there is a finite covering M' of M and a covering map /: M -> M\

such that / is 1-to-l on C.

Since TΓ is amenable, by the theorem of [1], there are test functions fE with

compact support on M, with Rayleigh quotient < ε. Since π is infinite, we

may translate fE by some element g e π so that fε and g fe have disjoint

support. In particular, they are perpendicular in L2.
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Residual finiteness now says that there is a finite covering Mε' of M such

that supp(/ε) U supp(g /ε) maps injectively into Mε'. It follows from the

minimax characterization of λλ that λ1(M ε

/) < ε.

We remark that this theorem was also shown by Sunada [14] by a similar

argument. We will strengthen this theorem by some remarks in the next

section.

We now turn to the problem of finding π for which one may bound A,, and

hence λ 1 (M / ), from below. This can be a delicate combinatorial problem, as

we will see below.

We recall the following notion, due to Kazhdan:

Definition ([10] and [11]). A discrete group π with generators g l 5 , gk has

Property T if there exists a constant ε > 0 with the following property: For

any unitary representation of TΓ in a Hubert space Jίf, if there is a vector X

with 11*11 = 1 and \\g X - X\\ < ε for g = g l 5 , gk, then there is a vector Y

with | |y | | = 1 and g Y = Y for all g e TΓ.

Intuitively, Property T says that the trivial representation is isolated among

all unitary representations of TΓ.

There is an analogous notion of Property T for Lie groups, and Kazhdan

[11] shows that if TΓ is a discrete subgroup of cofinite volume in G, and G has

Property T, then the same is true for TΓ. Furthermore, one can study the unitary

representations for G to determine if G has Property T. In particular, if G is

the group of isometries of a symmetric space of rank > 2, then G has Property

T. Among the symmetric spaces of rank 1, some have Property T and some do

not.

Theorem 3. Suppose m = ττ1(M) has Property T. Then there exists a

constant C > 0 with the following properties:

(i) ifM' is a finite covering of 'M, then \X(M') > C.

(ii) If M' is an infinite covering of M, then λ o ( M ' ) > C.

We would like to thank S. T. Yau for pointing out to us that our method for

proving (i) gives (ii) as well.

One may ask if the converse to Theorem 3, or even just Theorem 3(i), is true.

There are two reasons why this will not be the case. The first reason is that a

group may fail to have many subgroups of finite index, for reasons which have

nothing to do with Property T. On a deeper level, it will be clear from the

proof below that only certain unitary representations of TΓ enter into the proof

of Theorem 3. For instance, the group SL(2,Z[1//?]) is well-known to be a

group which does not have Property T, but all of whose subgroups of finite

index are congruence subgroups (private communication from Alex Lubotzky).

SL(2, Z[l/p]) will thus satisfy the conclusion of Theorem 3(i).
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One expects that a general group may well have unitary representations close
to the trivial representation, so that TΓ does not have Property T, but for which
the conclusion of Theorem 3 is still valid. It is not hard to give a weakened
version of Property T for which Theorem 3 and its converse are true. We refer
the reader to [2] for a more detailed discussion of this.

To prove Theorem 3, suppose we are given a sequence of coverings Mi of M,
that is to say a sequence of subgroups τr; c π. We separate into two cases:

Case (i). Suppose the Λf/s are finite coverings of M with λ1(M/) -> 0.
By Theorem 1, it follows that the A/s also tend to zero. We will show that

this contradicts Property T.
Consider the Hubert space L2(π/πι) of functions on the coset space TΓ/TΓ,,

with inner product

TFT Σf(v) g(v).

Let j^i be the subspace of L2(π/πι) perpendicular to the constant function:

Σ /(*) = o.
i eΓ,

Then clearly π acts unitarily on J^.
Now suppose there are sets Ai9 Bi9 and Ei with

min(#(Λ,.), # ( * , ) )
Consider the function fέ defined by

0 as i -> oo.

Then clearly </.,l> = (
Let us calculate ||gy •/ - / | | . But (gy/ - fi)2(v) = 0 whenever the edge

leading from v corresponding to gy does not lie in Et. Therefore

Έ(BJ , [HAJ]2

#(B,)

I | #(Bt) | # U ) |

Assuming that #(Λ, ) < #(5,), this is

3 #(£,) # ( £ ) #(B,) 5 #(£,)
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It follows that if #(£,)/#(Λ,) -> 0, then for all i sufficiently large,

llg/,-/,ll<ε.
Property T then implies that the constant function is in ^ , but this is

impossible, from the definition of Jί^ .
Case (ii). Now suppose the M/s are infinite coverings of M, with λo(M,)

-> 0. Then we use the theorem of [1] to show that the isoperimetric constants
h 0 ( Λf,) of the graphs of these coverings are similarly going to 0.

We then consider the Hubert space L\π/π') of all ZΛfunctions on the
vertices of the graphs Γ,, with inner product

</,*>- Σf(v)-g(v).

If AoίΓ,) -> 0 as i -> αo, then we can find sets Ai9 Et such that
#(Ei)/#(Ai) -> 0 as i -> oo. We now take test functions which are 1 on Aέ

and 0 away from At. As above, we see that \\gi •/, — /,|| -> 0 as i -* oo.
Property T then implies that the constant function is an ZΛfunction on Γf . But
this is impossible, since Γ, is infinite.

3. Some applications

In this section, we give some simple applications of Theorem 1.
Our first result is:
Theorem 4. Suppose there is a surjectiυe homomorphism f: ττx{M) -»*Πι{N).

Then:
(a) IfN has finite coverings Nt with λ1(Λ/|.) -» 0, then the same is true of M.
(b) // there is a constant C and infinitely many coverings Nt of N with

λi(Λf) > C, then there exists C and infinitely many coverings Mi of M with
\ι{Mi)>C.

We first observe the following:
Lemma. Suppose we are given a group π, and two sets of generators

Q = {g l5. —,gk} and H = {hv- , Λ/} Then there are constants Cλ and C2

such that CyhiYf*) < h(Tf) < C 2 A ( ^ ) , where Cv C2 are independent of i and
Yf (resp. Yf) denotes the graph determined by the generators G (resp. H).

Proof. Suppose we have a division Γ/7 - Ej = Aj U Bj of Γ/7 into two
pieces. Let # y denote the collection of vertices of Y,G adjoining an edge in Ejy

and for each A:, let # * denote the set of vertices of Yf which may be joined to
an edge in Ej by a path of k or fewer edges. It is evident that # ( # / ) <

k
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Choosing k so that any generator in G can be expressed as a word

length < k in the generators of H, and setting E- to be all the edges in Tf1

adjoining vertices in ( # * ) , it is evident that A} - ( # * ) is separated from

Bj - ( # / ) in Γ," - Ej. The lemma now follows routinely.

To prove the theorem, we now proceed as follows: Let us pick generators

gι,— '9gk for T Γ ^ M ) . Since /: πx(M) -> irx(N) is surjective, the set

/ ( f t λ •,/(£*) now generates πτ(N).

Suppose now that we are given subgroups TΓ, of πλ(N). By the lemma,

whether or not Λ, -» 0 as i -> oo is independent of the choice of generators, so

that we could have chosen f(gι)9-—,f(gk) in computing Λ;. But now let

77/ = /"H^/) c ^ ( A ί ) . Then calculating A, is exactly the same for TΓ/ c TΓ^M )

as for TΓJ c πx(N\ so that for the sequence of coverings Mi of M correspond-

ing to TΓ/, λ^M,) -> 0 if and only if λ^Λ^) -> 0. This establishes Theorem 4.

Combining Theorem 2 with Theorem 4, we obtain a generalization of a

theorem of Randol [13]:

Corollary 5. Suppose πx(M) surjects onto a group which is infinite, amena-

ble, and residually finite. Then there exists coverings Mt of M with λ 1 (M l ) -> 0.

Combining Theorem 2 with Theorem 4, we may show

Corollary 6. Let M be a compact manifold such that ττ1(M) surjects onto

Z * Z. Then there exists c > 0 ΛΛJ infinitely many coverings Mi of M with

λ 1 ( M / ) > c for alii.

Proof. Let TΓ be any finitely presented, infinite, residually finite group with

Property T, for instance m = SL(3, Z), and let 7Γ; be an infinite collection of

subgroups of IT of finite index. By Theorem 3, if N is a compact manifold with

π^N) = TΓ, then there is a constant D > 0 such that λ^Λ^) > D for all 1,

where iV, is the finite covering of ΛΓ corresponding to TΓ,.

Suppose that TΓ is generated by k elements. Then there is a finite covering

M' of M whose fundamental group surjects onto Z * Z * ••• *Z(k times). We

then have a surjective homomorphism

-> Z * * Z (A: times) -> TΓ

and Theorem 4 then completes the proof of the corollary.
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