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REGULARITY THEOREM FOR HARMONIC
MAPS WITH SMALL ENERGY

GUOJUN LIAO

1. Introduction

This paper studies the regularity problem of harmonic maps in higher
dimensions. We consider maps from the unit ball B in R" (n > 2) equipped
with a metric g into a compact submanifold Nm of R .̂ We say that u e
L\{B, N) if u e L\{B,Rk) and u(x) e iV a.e x e 5. The energy £(«) of w is
defined as £(w) = /β|Vw|2ίfo. A weakly harmonic map is defined to be the
weak solution to the formal Euler-Lagrange equations, which form a nonlinear
elliptic system. The equations are

where AU(X, Y) e (TUN) -1 is the second fundamental form of N given by
AU(X,Y) = (DXY)±. X,Y are vector fields on iV in a neighborhood of
MGiV.

It is easy to see that u is harmonic if and only if (d/dt)E(ut)\ΐ=0 = 0,
where ut is a 1-parameter family of maps defined by ut(x) = Π(w(x) + ίτj(x))
VTJ e Co°°(5, RΛ). Π is the nearest point projection of R* into N.

There is another type of variation that one may consider. One takes
ut = u o φt for φt a 1-parameter family of compactly supported C1 diffeomor-
phisms of B with φ0 = Id. E(ut) is differentiable in /. If u is always critical
for this type of variations and if u is harmonic, then u is called a stationary
map.

So far not much is known about the regularity of weak harmonic maps. For
n = 2 it is proved in [6] that a harmonic map with finite energy does not have
isolated singularity. A theorem of [7] says that u has no interior singularity if u
is stationary and n = 2.
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In this paper we generalize the result of [6] to higher dimensions. For n > 2
we cannot expect the finiteness of total energy to be sufficient for the
removability of isolated singularity. For example, take any harmonic map w
from Sn~ι into N with finite energy E(w). Define map u: B -> N by
u(x) = w(x/\x\). u is again harmonic with finite energy since E(u) =
E(w)/(n - 2). u has singularity at 0 unless w is constant.

We will assume the smallness of the total energy and show the apparent
isolated singularity is removable. Our main result is

Main Theorem. Let B be the unit ball B(0) c Rn with a smooth Riemannian
metric g. Let u be any harmonic map belonging to C°°(B \ {0}, N). There exists
a constant ε > 0 independent of u such that u e C°°(5, N) provided E(u) =
JB\Vu\2dv < ε.

Our proof is based on the a priori estimates of C2 harmonic maps obtained
by R. Schoen and K. Uhlenbeck and a monotonicity inequality.

We will present some preliminary results in the next section. In §3 we will
prove the theorem assuming that u is stationary. In §4 we will prove that the
monotonicity inequality is true for harmonic maps of finite energy with
isolated singularity. This result then enables us to complete the proof of the
theorem.

2. Preliminary results

Lemma 1 (monotonicity inequality). Suppose u is a stationary map from B
into N c R*. Forn>2 we have for 0 < σ < p < dist(;c0, dB)

(2.1)

n\ \vu\2dx-eCAσσ2-"[
JBp(*o) JBo(*

> 2/
JBp(x0)-Bσ(x0)

,2-n\ v _

\x x0

du
dr

dx,

where Δ and C are constants, Bp(x0) (and Bσ(x0)) is the geodesic ball of
radius p (and σ) centered at x0, respectively. For a proof one can read [5].

Lemma 2 [8]. Suppose u e C2(Br, N) is harmonic with respect to a metric g
on Br. Suppose

), \dvgaβ\ < Λr-1.

There exists ε = ε(Λ, «, N) > 0 such that ifr2~nfBr |Vw|2 < ε, then

(2.2) r 2 s u p | v w | 2 < C r 2

°r/2
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The proof of Lemma 2 makes use of Lemma 1, noticing that " C 2 harmonic"

implies "stationary". The smallness of the energy is used to ensure that a

rescaled version v of u satisfying e(v)(0) = 1 and supe(u) < 4 is defined in a

ball Bro with r0 < 1. The boundedness of e(v) then enables one to use the

linear elliptic estimates. Here e(v) denotes the energy density. For details see

[7].

Lemma 3 (First variation formula). For a smooth family φt of diffeomor-

phisms which are the identity near dB we let u, = u° φr We then have

(2.3) 4:E(ut) = - ( \\du\2άivX-2(du{veX),du(ei))V

where X = variation vector field = (d/dt)φt\ί=0, ei9 i = 1,2, , n, form an

orthonormal basis on B.

This is a standard result. One can prove it by a change of coordinates. We

mention one more result.

Lemma 4 [4]. If the image of a harmonic map u lies in a local strictly convex

coordinate chart on N9 then u is regular.

3. The regularity of stationary maps

In this section we prove the following result:

Proposition 1. // u is a stationary map from Bn into N c R*, n > 2, with

respect to a metric g, then there exists a constant ε > 0 such that u e C°°(B, N)

provided that

E(u)^ε and u e C°°{B - {0}, N).

Proof. By a change of scale we can reduce to the case that g is close to the

standard metric g0. Thus we assume without loss of generality that

gaβ = δaβ+0(ε), dvgaβ=0(e) in B.

Apply Lemma 2 to the ball Br(x) where x Φ 0, r = \x\/2. We then get

r2\du\\x) < Cr2~n ί \vu\2 < CE(u).
JBr{x)

In the second inequality we have used the montonicity lemma. Assume

E(u) < ε. We have the estimate

) | ι o o γ
1*1

Take a ball of radius r > 0 centered at 0. Let x, y e 3£r(0). Then
r

(3.2) \u(x)-u(y)\^
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where Γ is a geodesic on dBr(0) connecting x to y with length < A2πr. This
shows that Osc(w, dBr) < Cε1/2.

We want to compare u with a linear harmonic map h: B -> R*. To define Λ,
we take 0' = w(l) as the origin of R*, where ΰ(r) = / d B μ is the average of u
over dBr. Let C be a constant so that \A(Vu, Vw)| < C|Vw|2. Let

λ = \ Min (Max{ /A \(B2μ(Q) Π iv) c a convex local

coordinate chart of iVJ | ,

where B2μ(Q) is the Euclidean ball of radius 2μ centered at Q. Let δ be the
first point for which ΰ(r) lies on dBλ(Q'\ i.e., δ = max{r: \ΰ(r) - w(l)| = λ}.
We take the first coordinate axis in the direction O'w(δ).

Clearly λ > 0. We claim that δ > 0 if 0 is not removable and E(u) < ε for
an ε > 0 small. The reason is that \u(x) — ΰ(\x\)\ ̂  C - ε1/2 as a direct
consequence of (3.2) and by definition ΰ(\x\) e Bλ(0') V χ e ^ \ B8. Thus we
can choose ε small so that u(x) e B2λ(Π(0')) Vx e Bλ\Bδ. Then δ = 0
would imply that the image of u on Bx lies in a convex local coordinate chart
of N, hence u would be regular.

Also δ is uniformly away from 1 for ε small as a consequence of the a priori
bound of the gradient (3.1). Indeed, we have

sup

hence δ < Cε1/2λ"1.
Define h: B -• R* by h(x) = (h^x)^,- ,0), where

Note that Δg(A = 0 and Λ(x) = t/(δ) on
Δg o is the Euclidean Laplacian.

Observe that for n ^ 3

(3.3)

Λ(Λ ) = M(1) = 0'on θ^!, where

Cλ2

On the other hand, by Lemma 1 we have

(3.4) |Vκ| dV= C£(«)< Cε.
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Our plan is to show

(3.5)

237

du du

which is a contradiction to (3.3) and (3.4) for ε small.
Applying Green's formula, we get (denoting hλ = h, ux = u)

r2-"(h- u)Δ(h-u)
S

= / V[r2-"(h-u)] v(h-u)

v/ 2-" v|Λ-«| 2 + f r2-"|v(Λ-«)|2

\h-u\2r2-"f
JB
f
B1\B,

We get from this

Bi\B8

Bi\Bδ

1-n f

(3.6) + f r2-"{h-u)Au- f r2-"(h - u)Ah
JB1\BS •'BAB,

\h-u\ Δr2~n.

Using the fact sup 9 J 9 g U 9 B i \h - u\ < Cε1/2, we can estimate

(3.7) ί rι~n\h -u\
\JdBδ

δ 1 " ^ " " 1 < Cε,
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2 „

(3.8) κ

< λCε1/2,

where we have used the fact 8 small to assert

1.

8 ' 1 -

1
C8\

Similar estimates can be obtained at dBv To deal with the third term in (3.6),

observe that

sup I h — u I < sup| h I + sup| u — ΰ \ + sup ΰ

< λ + Cε1/2 + λ < 2 4 z + Cε1 '2.
AC

Choose ε small so that

(3.9) Csup | Λ - κ | « ^ + C c

We have

(3.10) "(/i - u)Δu
2\cr2~n\vu\2\c sup \h - u\.

I BX\B8

The last two terms in (3.6) are bounded by C ε1/2 as a consequence of our
assumptions on gaβ.

Since h is a radial map we can write the left side of (3.6) as

dh_ _ du_ 2

dr dr

where Dτu denotes the components tangential to dBr. Absorbing the tangen-
tial term to the left, we get

dh du 2

Λ-n

Bχ\B8

dr dr
fl - Csup \h-u\) f r2-»\Dτu
V BΛB. )JBΛBft

(3.11)
Cει/2+ C s u p \h-u\f r2~n

BAB8

 JBAB8

du
dr

+ ε.

This inequality completes the proof.



A REGULARITY THEOREM FOR HARMONIC MAPS 239

4. Proof of the Main Theorem

We want to show the following extension of Lemma 1.

Proposition 2. // harmonic map u is C^^BX {0}, N) and if E(u) < oo,

then we have for 0 < ρx < p 2 < 1

ecAP2p2-n ί \vu\2 - 6> C Λ VΓ" ί \Vu\2>( eCArr2~n^

where C and Λ are constants.

Proof. Take Xσ(x) = ψσ(|x|) ητ(\x\) \x\ (d/dr)(x) for σ > 0, r > 0 in

the first variation formula, where ητ e C™([0,1], R1) will be chosen later, ψσ is

a cut-off function so that ψσ is smooth and nonnegative, |ψ'σ| < 2σ" x and

( = 0 ifO < r < σ,
(4.2) ψ σ ( r ) = 1 i f r > 2 σ ,

I < 1 elsewhere.

Define utσ: B -+ N by

(4.3) W,, σ(x) = to(x + tXσ{x)).

Note that wr σ is smooth. Thus we have

jtE{uta) =0 Vσ>0

since u is harmonic.

Let φ G C 0 0 ( R + , R 1 ) so that φ(r) = 1 for r e [0,1]; φ(r) = 0 for r

e [1 + σ l5 oo); φ^r) < 0(σλ > 0 = is fixed). Choose ητ(r) = φ(r/τ) for T e

[p 1 ? p2] in Xσ. Choose an orthonormal basis ev -9en_v en = d/dr. We have

VeXa = ΨσΉrV^.T- for Ϊ = 1,2, ,π - 1,

where the derivative is taken with respect to r.

Denote x = x(r, θ) and

Take a constant Λ > 0 so that |ε l 7 (x) | < Λ V i e 5. Then we have for

Ϊ, 7 = 1,2, ,π - 1
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n-\

/ = 1

Moreover, we have

n-l
r « | 2 +(ψ o τ, τ r ) '

8M

dr

Thus the first variation formula gives

(4.4)

JB

-2f φaητ\du\2dυ-2f (ψσητ)V

- 2 ( » -

a«
3r

Claim.

|ψ;|r|ί/u|2ητ<ή;->0 as σ -» 0.

To see this, use the estimate \du\2(x) < C1^(w)σ 2 for x e B2σ\Bσ. Since
|ψ;Kx) = 0 f o r x G 5 σ o r ^ G 5 \ i ? 2 f f and |ψ'σ| < 2σ~\ we get

2 C2E(u)ano-ισ-2σ = C 2£(w)σ 2"Λ.

Since n > 3, the conclusion follows. Similarly one can show that
2 2* e t c Letting σ ^ 0, we get from (4.4)

0>ί (η'τr + «τ?τ - ( Λ - l)ηAr)\du\2 - 2 f η\du\2

JB JB
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It follows that

ηA\du\2 + τyJB Άτ\d4 +(2 - «) fg η\du\\

Multiplying by τ1-"eCAτ for C = 3(n - 1), we have

Integrate over [ρv p2] and let σι -> 0. We then get

3M
 2

\du\2 - eCA»*p2

2-
n ί \ d u \ 2 > 2 (

' f t * »

oCΛr^2-/
dr

In the above computation we denote B = Bx(x0) and Bpi = Bp2(x0), Bpi =

Proof of the Main Theorem. Under the assumption of the theorem we have
for x e Bλ \ {0}, |x| < 1/2,

ι2~n

f \Vu\2 < C(2\x\f~n j \vu\2 < CE(u).

So the estimate (3.1) still holds. Here we have applied Proposition 2 with
p1 = 2|x|, p2 = l. Then the same argument in the proof of Proposition 1 can
be carried through.
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