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REAL KAEHLER SUBMANIFOLDS
AND UNIQUENESS OF THE GAUSS MAP

MARCOS DAJCZER & DETLEF GROMOLL

The main purpose of this paper is to answer the question: To what extent is
a euclidean submanifold determined by its Gauss map? More precisely, let
/ , / : M" -> Rn+P be two isometric immersions of a connected riemannian
manifold whose Gauss maps into the Grassmannian Gnp are congruent. When
are / and / congruent?

Classical examples of isometric noncongruent deformations with the same
Gauss map are the associated families of minimal surfaces in R3. They are a
special case of associated families which can be defined for certain real
isometric immersions of Kaehler manifolds which we call circular. It will turn
out that locally, all isometric immersions with the same Gauss map can be
described in terms of circular submanifolds, whereas globally, additional
phenomena arise.

In §1, we discuss circular submanifolds in spaces of constant curvature. This
is related to work of Calabi, Lawson, and others on minimal surfaces. §2 deals
with circular hypersurfaces. More generally, we classify all Kaehler submani-
folds of real codimension 1, which is of independent interest. In the remaining
two sections we show that all isometric immersions Mn -> Rn+? with con-
gruent Gauss maps form a compact abelian group, and we compute its
structure.

We would like to thank K. Nomizu for suggesting to look at the above
question in the light of some of our previous work.

1. The associated family of a circular immersion
Let Mn be a connected riemannian manifold of dimension n, and / :

Mn -» Q"+p an isometric immersion into a complete simply connected space
of constant curvature c. We will always assume that / is substantial, i.e. f(M)
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is not contained in a proper complete totally geodesic submanifold of Q"+p.

We call / circular if there exists a parallel orthogonal tensor field J on M with

J2 = -I such that the second fundamental form Aξ in any normal direction £

satisfies

(1.1) JA^ -A^J.

In this case, M" is a Kaehler manifold with complex structure /. It follows

from (1.1) that — A% is similar to A^ so all odd symmetric functions vanish. In

particular, / is minimal and thus real analytic.

The simplest examples of circular submanifolds are all orientable minimal

surfaces in Qc and Kaehler submanifolds of C m . Other examples will be

discussed later. We will also see that a Kaehler structure J satisfying (1.1) is

essentially unique.

It is well-known that minimal surfaces in Q\ have isometric "associated

families", cf. [14]. This concept can be generalized to circular immersions as

follows: For 9 G 5 1 = R/2TΓZ, consider the orthogonal parallel tensor field

Jθ = eΘJ = cos0/ + ύnθJ. For any normal field £, the tensor field A0(ξ) =

AζJθ = J-θAξ = J-θ/iAξJθ/i is selfadjoint and t r ^ = 0, by (1.1). It is

straighforward to check that Aθ satisfies the Gauss equations.

Lemma 1.2. With respect to the normal connection of /, the tensor Aθ

satisfies the Codazzi and Ricci equations.

Proof. This follows immediately from the relations VAΘ = J_ΘVA and

[Aθ(ξ% Aθ(η)] = [A(ζ), A(η)], using the Fundamental Theorem of submani-

folds.

Assume M is simply connected and fix the normal bundle of / with its

induced connection. Then by Lemma 1.2, there exists a circular immersion fθ

in ζ), unique up to congruence, with second fundamental form Aθ. We call the

congruence classes of the one-parameter family fθ the associated family of /.

In general, the associated family is nontrivial, i.e. for θλ Φ θ2 mod π, the

maps fQχ and fθi are not congruent. This is always the case for (non-totally

geodesic) hypersurfaces. Note that fθ + 7T and fθ are congruent since AΘ + 7T =

— Aθ, and — / is a parallel automorphism of the normal bundle. The con-

gruence is orientation-preserving if the codimension p is even. To discuss this

question further we introduce the following definition: Any isometric immer-

sion / of a Kaehler manifold is called pseudoholomorphic if there exists an

orthogonal tensor field T on the normal bundle of /, parallel in the normal

connection, such that

(1.3) An = AζJ

for all ξ. It follows that A^J must be selfadjoint, so / is circular.
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Lemma 1.4. / is pseudoholomorphic if and only if the complex structure of M

extends to a parallel complex structure J of the tangent bundle of Q restricted to f

such that

(1.5) AJS = ASJ.

In particular, for c = 0, pseudoholomorphic submanifolds are precisely Kaehler

submanifolds of Rn+P = Cm, up to congruence.

Proof. Apply (1.3) twice to obtain ATi^ = AnJ = —A^ = A_ξ, so A(Ti + T)ξ

= 0. The image of the parallel tensor T2 + / is a parallel and totally geodesic

subbundle of the normal bundle, which must be zero. (It is a well-known fact

that otherwise / is not substantial.) Therefore, T2 = —/. It follows easily with

(1.5) that the complex structure thus obtained for the tangent bundle of Q

along / is parallel.

For the second part of the lemma observe that (1.5) holds for complex

submanifolds of any Kaehler manifold. Conversely, if / is parallel along / in

ΈLn+p = C m , it extends to a complex structure J of Rn+P, which is conjugate to

the standard complex structure of C m in the orthogonal group O(n + p).

Proposition 1.6. Let fθ be the associated family of the circular immersion f:

M" -» Qn+P. Then, fθ is trivial if f is pseudoholomorphic. Conversely, if fθ is

congruent to fθ2 for some θx Ψ θ2 modπ, then f is pseudoholomorphic.

Proof. By Lemma 1.4, we have a parallel extension / of the complex

structure of M. Define, as before, Jθ = cosθl + sinθJ. N o w . 4 ^ = A^JΘ, and

the fθ are congruent by the uniqueness part of the Fundamental Theorem of

submanifolds. To prove the converse, we may assume θλ = 0 < θ2 = θ < π.

Since fθ and f0 are congruent, there is a parallel orthogonal tensor field S on

the normal bundle so that As% = A^ Jθ, so

(1-7) ASti^AtJ,

where sin55^ = S — cosθl. Therefore, -A^ = A^J2 = AS^J = Asiξ, and it

follows as before that Sj = -1. It remains to show that Sθ is orthogonal. The

last equation is equivalent to S2 - 2cos0S + / = 0, and thus S + S* =

2cosθL On the other hand, s i n 2 0 5 ^ = / - cos Θ(S 4- S') + cos2θl = sin2θl.

Now, / = Sθ is a parallel complex structure on the normal bundle, and / is

pseudoholomorphic by (1.7).

The last proposition says that the congruence classes of associated immer-

sions fθ are parametrized precisely by the circle R/ττZ, unless / is pseudoholo-

morphic when they all coincide, which is impossible for odd codimension p.

In spaces of nonzero constant curvature, minimal surfaces are actually the

only circular submanifolds.
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Proposition 1.8. Letf: Mn -* Qn

c

+P be circular and c Φ 0. Then n = 2.

Proof. For any w, v, w, z we have (R(u,v)w,z) = (R(u,v)Jw,Jz). It

follows from the Gauss equations and (1.1) that for an orthonormal frame
ei>' " ' e2m w i t h Jeik-i = eik-> the Ricci curvature satisfies

(1.9) (2m-l)c- Σ\«(eι,eJ)\2 = Ric(eι,eι) = c- f | « ( ^ i ^ y ) Γ -
7 = 1 7 = 1

Here a denotes the normal valued second fundamental form. The first equality

in (1.9) holds already whenever / is minimal. We conclude 2m = n = 2.

The situation is quite different in euclidean spaces. In the next section we

will classify circular hypersurfaces. The following result shows that these

examples give rise to an abundance of circular submanifolds with higher

codimension.

Proposition 1.10. Let M be circular in Rm, and N a complex submanifold of

M. Then N is circular in Km.

Proof. This follows from (1.1) and the fact that N is a Kaehler submani-

fold of M.

Another important observation is this: Let /,: Mn -* Rm<(M2 -> Sm<) be

circular, i = l,2. Then ajx θ α 2 / 2 : Λf-> RWl + m 2 ( 5 ' m i + m 2 + 1 ) is circular,

where a\ + a\ = 1. In particular, we have the 2-parameter family / ( φ , θ) =

cosψfθ θ sinφfθ + π/2 of circular immersions in R2 m, where fθ is the associated

family of a circular immersion f:M^> Rw, with M simply connected. The

above family was first considered in [15] for minimal M2 in R3.

We will now generalize a basic result of Calabi; cf. [17, Theorem 4, p. 148].

Theorem 1.11. Let Mn be a simply connected Kaehler manifold, and suppose

there exists a circular immersion f: Mn -> Rn+P. Then the set of all noncongruent

circular immersions of M into euclidean spaces contains a unique (pseudo)holo-

morphic representative.

Let us first give an explicit description of associated families for circular

immersions in euclidean spaces. In a slightly more general form, this will also

be important later.

Lemma 1.12. Let f: M" -> Rn+P be an isometric immersion of a riemannian

manifold, and let T be an orthogonal parallel tensor field on M. Then the l-form

df o Γ = /* ° Γ on M with values in Rn+P is closed if and only if T satisfies

(1.13) AξT

for all normal vectors ξ.
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Proof. We have d(f+ ° T)(X9 Y) = Vxf*TY - Vγf+TX - f*T[X9 Y] along
/ in Rn+P. Taking tangent and normal components, we obtain Vxf*TY' =
ff7xTY + a(X, TY)=f*TvxY + a(X,TY), where a is the second funda-
mental form with values in the normal bundle. Thus, d(f*°T)(X,Y) =
a(X, TY) - α(7, TX) vanishes precisely when (1.13) holds.

Proposition 1.14. Let f: Mn -> Rn+P be circular, M simply connected. Then
the associated family fθ is explicitly given by the line integral

(1.15) /,(*) =

where x0 is any fixed point in M.
Proof. By Lemma 1.12, fθ is well defined. Clearly,

(1.16) fθ*=f**Jθ>

which shows that fθ is isometric, and the tangent (normal) spaces of / and fθ

at x are parallel in Rn+P for all x e M, i.e. all fθ have the same Gauss map;
cf. §3. In particular, fθ and / have the same normal connection. Using (1.16),
the second fundamental form of fθ is given by

aθ(X9 Y) = Vxfθ*Y - fθ*VxY = VXUJ9Y ~ f*J9VxY

= V v / * / J - / * V J β Γ = a{X,JθY),

so Aθ = AJΘ. This completes the argument.
Proof of Theorem 1.11. Uniqueness follows from Calabi's rigidity theorem

for Kaehler submanifolds of Ck\ see [5]. For existence, consider Cn+P =
R'ί+^ φ Rn+p with the usual complex structure J(u,v) = ( —u, u). Now g:
M -+ C/ί+/?,

(1.17) g = ^ r / θ ^ / w / 2 .

will be holomoφhic, since the Jacobian g* is complex linear by (1.16).
Observe that g = /(π/4,0) belongs to the 2-parameter family of / discussed

before. By uniqueness, it follows that all f(π/4,θ) are congruent, which can
also be seen directly by use of Proposition 1.14.

We conclude this section with some remarks. In [8], we had defined
associated families for certain minimal hypersurfaces. Circular hypersurfaces
will turn out to be a special case; see §2.

Pseudoholomoφhic surfaces /: M2 -> S2k were first studied by Calabi [6].
By definition, they induce a map into the hermitian symmetric space §k =
SO(2k + 1)/U(k) of all oriented hypeφlanes in R2k+ι with complex struc-
ture, which is holomoφhic. Conversely any holomoφhic curve in $k projects
to a pseudoholomoφhic surface in S2k; cf. [3], [7], [10], [16]. A main global
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result is that any minimal immersion of the sphere S2 (not necessarily with

constant curvature) in S2k is pseudoholomorphic, and actually rigid. Super-

minimal surfaces in spheres, in the sense of [4], are pseudoholomorphic in

general only for codimension 2.

Real Kaehler submanifolds of higher dimension do not seem to have

received very much attention in the literature. For some significant contribu-

tions, we refer to [19], [1], and [11].

We finally mention another interesting fact that was obtained after comple-

tion of this paper, due to the first author and L. Rodriguez: Any minimal

immersion of a Kaehler manifold in euclidean space is circular, so "circular"

and "minimal real Kaehler" mean the same in euclidean spaces, although this

is not obvious; cf. [9].

2. Real Kaehler hypersurfaces

Let /: M2m -> R 2 m + 1 be an isometric immersion of a Kaehler manifold

with real codimension 1. We will essentially give a local classification of such

hypersurfaces, a question which was raised in [19], and answered if the ambient

space has nonzero constant curvature. It is a simple fact due to Takahashi [20]

(see also [1]) that the Gauss map φ: M -> S2m has rank < 2 everywhere.

Since the flat case is not interesting, let us assume rank φ = 2 is constant. The

relative nullity bundle Δ = kerφ* and its orthogonal complement Δ-1 are

invariant under the complex structure J of M.

Proposition 2.1. Let f: M2m -> R 2 m + 1 be an isometric immersion without

flat points. Then, at least locally, M is Kaehler if and only if the Gauss map φ

has constant rank 2 and its spherical image is a pseudoholomorphic surface (not

necessarily substantial).

Proof. Since M has no flat points, dim A1 = 2 everywhere. Notice first

that Δ x (Δ£) are parallel in R 2 m + 1 to the normal (tangent) space of the Gauss

image V2 = φ ( M ) in S2m at y = ψ(x). Let 7, Z be tangent fields, and ξ a

normal field of V2. Consider f , Z e A i , ^ G A such that 7 is φ-related to 7,

and Z = Z ° φ, f = ξ ° φ. Now in R2m + 1,

(2.2) Vfί=(Vyf)oφ.

Thus

(2.3) (VyU) = {vΫlz) = (vyξ,Z> = -(A^X9Z)9

where V is the connection in M, and A^ is the second fundamental form of

V2 in direction ξ. If M is Kaehler with complex structure /, define complex

structures J on V2 and its normal bundle in S2m by using the above
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identification with Δ 1 and Δ, which are invariant under /. It follows im-

mediately from (2.2) that J is parallel in the normal connection of V2. By

(2.3),

-(AζY9Z) = {Vγlz) = (vΫJlJZ) = -(AJSY,JZ),

therefore JAj^ = -A^ so A3^ = JA^, and V2 is pseudoholomorphic. Con-

versely, if V2 is pseudoholomorphic, reverse the argument to obtain an almost

complex structure on M which is parallel.

For the following result, we recall from [8] the Gauss representation of

hypersurfaces with constant relative nullity n — 2. Let g: V2 -> S2m be any

isometric immersion with normal bundle Λ along g, γ an arbitrary "support"

function on V2. Then, the map ψ: Λ -+ R 2 w + 1 ,

(2.4) Ψ(^,w) = yg(y) + Vγ + w,

parametrizes a hypersurface with constant relative nullity n — 2, wherever it is

regular. Here the sums are taken in R 2 w + 1 , and Vγ is the gradient of γ in V.

Conversely, all such hypersurfaces can be obtained this way locally. By

combining this with Proposition 2.1, we now have the main result of this

section.

Theorem 2.5. The real Kaehler hypersurfaces in R 2 m + 1, without flat points,

are precisely given by the Gauss representation (2.4), in terms of any spherical

pseudoholomorphic surface and an arbitrary support function.

Here again we do not require the pseudoholomorphic surfaces to be substan-

tial. If the Gauss image is substantial in S2k c S2m, then locally, the Kaehler

hypersurface has totally geodesic flat factors of dimension 2(ra - k), i.e., it is

reducible.

Corollary 2.6. A real Kaehler hypersurface in R2m + ι is circular if and only if

its support function γ in the representation (2.4) satisfies Δγ + 2γ = 0, on the

Gauss image.

Proof. The immersion is circular iff it is minimal, and the claim follows

from [8].

Notice also that the Gauss map of a real Kaehler hypersurface is antiholo-

morphic precisely in the circular case.

As a global application, we give a short proof of an interesting result in [1].

Corollary 2.7 (K. Abe). Any complete real Kaehler hypersurface M2m in

R 2 m + 1 without flat points is a cylinder V2 X R2 m~2.

Proof. The Gauss representation (2.4) can be taken globally, since M is

complete. It suffices to show that V2 is totally geodesic. If not, then the first

normal space has dimension 2 almost everywhere, since V2 is pseudoholomor-

phic. This leads to a contradiction as in the proof of Theorem 2.5 in [8].
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The conclusion in Abe's theorem remains true also if M has nonnegative

scalar curvature by Hartman's Theorem [12], or if the immersion of M is real

analytic. To prove the latter statement, observe that the above argument

actually applies to the open subset of nonflat points in the complete manifold

M.

3. Submanifolds with the same Gauss map

The Gauss map of an isometric immersion /: M" -> R"+p is the induced

map φ: M" -» Gnp, the Grassmannian of all nonoriented w-planes through the

origin in Rn+P, by parallel translating the tangent space f*TxM to the origin.

Let /: Mn -> Rn+P be another isometric immersion. Then / and / are said to

have congruent Gauss maps if there exists an orthogonal transformation

T e O(n 4- p) such that φ = T ° φ, where T acts naturally on Gnp. We will now

start to discuss the problem when / and / are congruent if their Gauss maps

are congruent. It is clearly sufficient to assume that / and / have the same

*Gauss map φ = φ, i.e. the tangent (normal) spaces of / and / at x are parallel

in R"+p for all x e M. Examples for this situation are the associated families

of circular immersions; cf. Proposition 1.14.

Lemma 3.1. Suppose isometric immersions f, f\ Mn -> Rn+P have the same

Gauss map. Then the orthogonal tensor field T = / * ι ° /* is parallel on M, and

the second fundamental forms along f and f satisfy

(3.2) A = AoT= T~ιoA,

where tangent and normal spaces along f and f are identified by parallel transport

in Rn+p.

Proof. Let Px\ Tf(x)R
n+p -> Tf{x)R

n+p denote parallel transport. For any

vector field U along / we have the vector field PU along / given by

(PU)X = PxUχ9 and clearly v X P U = i V X U for tangent fields X on M, where

V is the connection of Rn+P. Now

(VXTY,Z) = (vxf;
ιPf*γ,

and T is parallel. By taking normal components, we obtain for a normal field ξ

along /,

(AP-ltx,Y) = {hΛp^x,Y) =

which completes the argument, since A and A are selfadjoint.
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The last lemma motivates a generalization of the concept of associated

families. Let /: Mn -> Rn+P be any isometric immersion, Mn simply con-

nected. Consider the set K of orthogonal parallel tensor fields T on M that

satisfy

(3.3) AT=T~ιA

for any normal direction. Given T e K, we can define the associated immer-

sion fτ: Mn -* Rn+P completely analogously as in §1. Therefore, fτ is isomet-

ric, with second fundamental form (3.3), it has the same Gauss map as /, and

it is explicitly given by

(3-4) fτ(x)= ff*°T.
X0

We call the set /^ of all congruence classes of immersions associated with /

the associated family of /. We conclude from Lemma 3.1 that equivalently, f$

is precisely the set of all isometric immersions with same Gauss map as /, up

to congruences.

Our main goal is to determine the associated family f®. This will be done in

various steps. In this section, we show that K is a group and compute its

structure.

Lemma 3.5. The tangent bundle of M splits uniquely as

(3.6) TM= Γ o θ I \ θ ••• θ Γ r ,

where Γ, are mutually orthogonal A-inυariant parallel subbundles, Γo is the

maximal totally geodesic subbundle, and Γz is irreducible as an A-inυariant

parallel bundle for 1 < / < r. Any parallel A-inυariant subbundle Γ is the sum of

Γ π Γ 0 and some of the factors Γ\, , Tr.

We will also refer to (3.6) as the A-decomposition for /.

Proof. Clearly, Γo is unique. It remains to show that any A -irreducible

parallel subbundle Γ c I\ θ θ Tr must be a summand. The bundle projec-

tions 7Γ,: I\ θ θ Γ r -> Γ, are parallel and commute with A. Since Γ and Γ7

are ^4-irreducible, TΓ^Γ is an isomorphism or 0. If TΓJΓ and ττj\T are isomor-

phisms for iΦj, then χ = 7^0(77, | Γ ) - 1 is a bundle isomorphism Γ, -> Γy

commuting with A. Take a point x e M such that Au Φ 0 for u e Γ/ |x. Now

near c, we have a splitting U = U' X Vi X Uj in M, where U^ Uj are local

integral manifolds of Γ, , Γy. It follows that on U, the immersion / splits as

/ = f x f. X fj\ cf. [18, Lemma, p. 163]. Thus we find a normal vector ξ at x

with AξU Φ 0, but A^j = 0. This is a contradiction since 0 = Aξχu = χA^u

Φ 0.

Let us call a parallel A -invariant subbundle Γ of TM circular if there exists

a parallel complex structure / for Γ so that AJ = — JA on Γ. This implies that

any leaf of Γ is a Kaehler manifold restricted to which / is circular.
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Lemma 3.7. Suppose Γμi θ ••• θ Γ μ c TM, 1 < μk < r, is circular. Then

each Tμk is invariant under J {and circular).

Proof. Let k Φ I and u G Tμk, v G Γμ/. Then #(w, /ι;)Λ = /Λ(M, Λ ) U , SO

(R(u,Jυ)Jυ,u) = - (R(u,Jυ)υ,Ju) = 0. Therefore, by the Gauss equa-

tions,

|α(w, /ϋ) I = (a(u,u), a(Jv,Jυ)) = — (α(w,w), a ( u , u ) ) = 0 ,

since A and / anticommute. Thus, α(w, Λ ) = α(/w, u) = 0. Observe that JTμk

is parallel and A -invariant. Moreover, JTμ is A -irreducible, since Tμk =

J(JTμ) is A -irreducible. We conclude from Lemma 3.5 that JTμk = Tμ/ for

some /. If / Φ k, a(Ju, v) = 0 would imply Tμ/ c Γo, so / = k.

Before we proceed, let us discuss a few simple facts about parallel orthog-

onal tensor fields on a simply connected riemannian manifold N. The group of

such fields T is canonically isomorphic to the centralizer of the holonomy

group Φ in the orthogonal group of the tangent space of N at a given point p.

Any linear subspace invariant under Φ extends to a parallel subbundle of TN.

Now T gives rise to a parallel splitting TN = Δ + θ Δ _ θ Δ 1 θ ••• θ Δ m , where

Δ ± are the ± 1 eigenspaces, and Δ1? , Δ m are the eigenspaces for the distinct

nonconjugate complex eigenvalues eiθ* of Γ, where 0 < θμ < π are distinct.

The Δμ have a parallel complex structure

that commutes with T. Thus J .= Jλ θ θ / m is a parallel complex structure

for Δ = Δx θ θ Δ m commuting with Γ, and T = eθιJι θ ®eθmJm.

Lemma 3.8. Any T G K leaves all Γy in the A-decomposition invariant.

Proof. We need to show that any T G K leaves the splitting (3.6) invariant.

Clearly 7 T 0 is parallel and ATT0 = T~ιAT0 = 0, so ΓΓ 0 c Γo by definition.

Now, we can assume Γ|Γ0 = id. Consider the parallel orthogonal splitting

TM = A + θ A _ θ A . We have Γo c Δ + . This splitting is invariant under A.

Simply observe that for u G Δ + (Δ_), TAU = AT~ιu = {-)AU. NOW by

uniqueness in Lemma 3.5, both Δ + and Δ_ are direct sums of factors in (3.6),

which are therefore trivially left invariant under T. Consider Δ which is the

sum of the remaining Γy. Now S= \(T + T~ι) commutes with A, since

T~ι G l We have S = cosθιlι θ ®cosθmlm, where Iμ is the identity on

Δμ, so A leaves Δμ invariant, since the eigenvalues cos#μ are mutually distinct.

On the other hand, T - T~ι anticommutes with A, and the restriction Jμ of

(T — T~ι)/2sinθμ is a complex structure for Δμ. By Lemma 3.5, Δμ = Γμi

θ θ Γ μ , and by Lemma 3.7, all Γ are invariant under / But 7τ |Δμ =

cosθμlμ + sinθμJμ, so T leaves all ΓμA invariant.
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Going back to the Λ-decomposition for /, we now consider the subsets

Kt c K consisting of all T e K leaving Γy fixed for all j Φ i. It is clear that

each Kt contains at least two elements which are ±id on Γ,. Furthermore, Ko

is the group O(m0) = O(Γ0). We have a canonical injective map

(3.9) γ : Ko X Kx X ••• XKr-+ K

given by γ(Γ 0, 7\, , Tr) - TOTX Tr. We conclude from Lemma 3.8 that γ

is onto and thus a one-to-one correspondence.

Lemma 3.10. // Γ; is circular, 1 < / < r, with complex structure J, then Kt

is the circle eΘJ, θ G R/2TΓZ.

Proof. Clearly, eΘJ G AT,. Conversely, let Γ e Â  . As we have seen, T can

only have one pair of conjugate eigenvalues which we may assume to be not

real. Then T = eφJ' for some parallel complex structure / ' on Γf which also

anticommutes with A. It remains to show that J' = ±J. The orthogonal

parallel tensor field L = JJ' on Γf commutes with A. Since Ti is A -irreducible,

it follows as before that L has only one pair of conjugate eigenvalues eiθ,

0 < θ < π. If θ = 0 or θ = π, then L — ±7, and we are done. So suppose

0 < θ < 77. Then J* = (L — L~ι)/2sinθ is a parallel complex structure for

Γ, , which commutes with A, i.e. α(/*w, u) = -α(w, /*?;). But now we obtain

for the sectional curvatures,

(R(u,υ)υ,u) = (R(J*U,J*V), υ,u)

= (a(J*u,u), a(J*υ9υ)) - (a{J*u,v), a(J*υ,u))

= | α ( / * w , ί ; ) | 2 > 0

for all u, v G Γf . On the other hand, the trace of a vanishes on Γ, . It is

well-known that this implies the Ricci tensor is < 0 on Γf , with equality

holding iff a = 0. This is not possible, since / > 1.

We summarize our results so far as follows:

Proposition 3.11. The set K is a compact subgroup of the orthogonal group,

and

(3.12) K = O(m) X Sι X XS 1 X Z 2 X XZ 2 ,

where O(m) = O(Γ0), each Sι-factor corresponds to a circular factor Γy, and the

Z 2 = {/, — 7} correspond to the remaining factors in the A-decomposition.

4. The congruence problem

We now turn to a discussion of the question when the associated immersions

corresponding to different elements in the group K are congruent in euclidean

space.
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With the notations of §3, it is clear that fτ is congruent to / (we write fτ~ f

for short) if T e Ko. It remains to analyze K = K/Ko = Kλ X XKr. Let

Tl9 T2 e K. By (3.4), / η - fTi iff Λ ^ = Λ^Γ 2 for some parallel orthogonal

field S on Λ along /. Thus fTχ ~ fTi iff fTχT-\ ~ /, and it suffices to consider

Tx = T and T2 = id. Now all T <Ξ K with fτ~f form a subgroup H a K,

and Γ -> fτ is a one-to-one correspondence between the group ® = K/H and

the associated family f@ of all congruence classes of immersions associated

with /. We will now determine the structure of the group S.

We may always assume that / is substantial. Recall the ,4-splitting TM = Γo

Θ Tλ θ θ Γ r . Each Γ, gives rise to a subset iV, of the normal bundle Λ

along /, where at a point x e M, N^x) = span{α(w, U)|M, V G Γ,(JC)}, i.e. Λ̂

is the "first normal space of Γf ". Clearly No = 0, and for all 1 < / < r, Λ̂  Φ 0

somewhere. Let us consider an orthogonal splitting

(4.1) Λ = Λx φ ••• ΘΛ J 5

such that:

(1) the Aj are parallel subbundles,

(2) if TTJ denotes the projection on AJ9 then Nt c Λy everywhere whenever

ΊΓJN^X) Φ 0 for some x e M,

(3) the splitting has a maximal number of factors.

Lemma 4.2. £tfcλ Λy /« (4.1) contains at least one Ni9 and this splitting is

unique.

Proof. The first part is clear, since / is substantial. To prove uniqueness,

suppose Λ = A\ θ θ Λ ' r It is sufficient to show that if Nt c Λy Π Λ^,

then Aj = h!k. Otherwise, say Λy = (A7 Π A'J θ Q splits orthogonally with

Ω Φ 0 parallel, and this would provide a finer splitting of Λ satisfying

conditions (1) and (2), in contradiction to (3).

We call (4.1) the a-splitting of Λ along /. Note that each Λ^ is precisely the

parallel hull of all Λf c Λ^, i.e. the smallest parallel subbundle containing

them. This follows with the fact that / is substantial. We say Γ, is simple if

Nf a Ak implies iV. c Λ | for j Φ i. At the end of this section, we will give

examples where Γ, is not simple.

Lemma 4.3. Any circular Γ, is simple.

Proof. The argument depends very much on the fact that all leaves of Γ,

are minimal and thus real analytic. In fact, if an analytic submanifold W c R*

is substantial, then the normal subspace spanned by all derivatives of the

image of the second fundamental form is the whole normal space on an open

dense subset. To prove this, observe, for example, that height functions on Rq

restricted to W are analytic. Therefore, the parallel hull of the first normal

space of any open subset V c W is the restriction of the parallel hull of the
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first normal space of W. Now, as the leaves L, of Γ, near any point x e M are

factors of a local isometric splitting of the immersion /, the bundle spanned by

Γ, and the parallel closure of Nt is locally, and then also globally, parallel along

/ in R"+p. Therefore, we have an orthogonal splitting Rw+/7 = Rm Θ R"+/>-'*/

so that each L, is contained in an affine subspace Emi parallel to RW/, and any

leaf Lj of Γy, j Φ z, is contained in an affine subspace orthogonal to RWy. In

particular, Γ, is simple.

Consider now the group L of all orthogonal parallel tensor fields S o n A

such that AS£ = A^T for some T e K. It is straightforward to check that L is

canonically isomorphic to H.

Lemma 4.4. The group L leaves the a-splitting invariant.

Proof. Let S G L . We claim the parallel bundles ^SAt are everywhere

orthogonal to all Nk if / Φ j . This is only nontrivial for Nk c Λ7 . But whenever

ξ e Λf and u e Γ ,̂ we have AπS^u = A^Tu + AvS _Sξu = 0. Thus 7τJSAi = 0,

since / is substantial.

For any Ak in the α-splitting, consider the direct sum Bk of all Γ, such that

Λi c Ak.

Lemma 4.5. IfT<=H and Bk is not circular, then T\Bk= ±1.

Proof. Let B± be the sum of all Γ, with 7ΊΓ,Γ = ±7, so Bk = B£ Φ Bk.

There exists S e L such that ^4^ = A^T for all ξ, and ^4^ = ±A^ whenever

ξ e Nj and Γ7 c B^. We claim this implies S = ±1 on N(. Otherwise, say

when Γ, c 5 [ , w e find ξ0 e Λ̂  such that the projection of Sξ0 + ξ0 on Λf is

nonzero, since S is orthogonal, and hence ASξ + ξ # 0 , which is a contradic-

tion. Now ΛA: = Λ ^ θ Λ ^ i s a n orthogonal parallel splitting, where Λ^ are

the + 1 eigenspaces of S. Here we are using again that / is substantial. This

splitting trivially satisfies condition (2). Since the α-splitting is maximal, we

conclude that Λ^ = 0 o r Λ ^ = 0 . Therefore, B£ = 0 or Bk = 0.

Let Γ, be circular and Nt c Ak, i > 1. We call Γ, pseudoholomorphic if the

complex structure / e Ki for Γy extends to a parallel complex structure / ε l

on Λ* along /. This means all leaves of Γ, are pseudoholomorphic; cf. Lemma

4.3.

Lemma 4.6. Let Γ, be circular with complex structure J. If T e H and

T\Ti = Jθ = eΘJ, 0 < θ < 7Γ, then Γ, is pseudoholomorphic.

Proof. Let us first assume Γ|Γ, = /. Then we have Asiζ = A^J2 = -A^ on

Γ, , so A(S2 + ί)ς = 0. This implies as before that S2 = - / o n Λ p JVJ.

The general case can be reduced to the above as follows; cf. also Proposition

1.6. Define T' e K by sinθT' = T - cosΘI on Γ,, Γ r = T on Γ> . Consider

S' with sinβS r = S - cosθl on Λ^, S' = S on Ak . We conclude as in

Proposition 1.6 that S' is orthogonal. Therefore T' <Ξ H and Γ ' 2 = - / .
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Define subgroups of H by Hk = {T e H\T = I on Bk), and the canonical

injection δ: HλX -XHr-^> H, δ(Γ1 ? , Tr) = 7\ Tr. An easy conse-

quence of Lemmas 4.5 and 4.6 is the following

Proposition 4.7. (i) Hk = Sι = R/27rZ // 2?̂  zs pseudoholomorphic, and

Hk = Z 2 = { / , — / } otherwise.

(ii) δ w flfl isomorphism.

We have now completely proved the main result of this paper. It is

convenient to introduce the (reduced) multiplicity mk > 0 of Ak, where mk + 1

is the number of distinct Γf such that iV,- c Ak.

Theorem 4.8. Let f be an isometric immersion of a simply connected rieman-

nian manifold Mn into euclidean space R'7+/?.

(i) The associated family f® (i.e., all isometric immersions Mn —> Rn+p that

have the same Gauss map as f, up to congruences) is parametrized by a compact

abelian group ®.

(ii) The structure of this group is

(4.9) ® = Z^ X XZ™>• x Sι X X S \

with one factor Sι = R/ττZ /or each factor in the A-splitting of the tangent

bundle that is circular, but not pseudoholomorphic.

The groups Z^ A arise from the factors Ak of the α-splitting. More precisely,

Z2 ί λ is the quotient group Z^A + 1 modulo the diagonal subgroup {/,-/),

which is trivial iff Ak contains only one JV,. Clearly, 0 ^ dim® < n/2 and

0 < m = m 1 + ••• + m 5 < min{ p,n — 1}.

The discrete part of ® is a global phenomenon. In fact, any point χ £ M

has an open neighborhood U where / is a product corresponding to the

A -splitting of /|ί/, which thus has only simple factors. We now mention a

condition for M which implies that S cannot have a toral component.

Corollary 4.10. If Mn has nonnegatiυe Ricci curvature, then ® is discrete.

Proof. All (local) circular factors are minimal, and therefore totally geo-

desic.

Corollary 4.11. Let f, f: M2 -* R2+p be isometric immersions with the same

Gauss map, M2 connected.

(i) If M2 is oriented and f, f have the same oriented Gauss map, then f and f

are congruent, unless they are associated minimal surfaces, and not (pseudo)ho-

lomorphic.

(ii) // the mean curvature of f is nonzero at some point, then f and f are

congruent, except possibly when M2 is flat.

The first half of (i) was also proved in [13]; part (ii) is contained in [2] for

p = 1. Notice that in (ii), there can be at most two congruence classes of

immersions.
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Proof. It is sufficient to observe that for n = 2, the group U for the

universal cover M2 -> M 2 -> R2 + / ? is either trivial, S1, or Z 2 . In the last case,

M2 is locally a product of curves.

Corollary 4.12. Let f, f: Mn -* R" + ι be isometric immersions with the same

Gauss map, Mn connected. Then f and f are congruent if any one of the following

conditions holds for /:

(i) The rank of the second fundamental form A is n > 3 at some point

x0 e M.

(ii) There exists x0 e M such that the mean curvature H(xQ) Φ 0, and the set

{x G M\A(x) Φ 0} is connected.

(iii) The immersion f is minimal, unless f is circular {up to a euclidean factor);

cf. also Corollary 2.6.

Part (i) and a weak version of (ii) were proved in [2].

Proof. The group ® for the universal cover M" -» Mn -> Rf1 + ι is either

trivial, Z 2 , or S 1.

(i) The ̂ 4-decomposition of / is trivial. Thus ® = Z 2 is impossible. But if

ίϊ = 5 1 , then / is circular, and rank A < 2 everywhere.

(ii) ® = Z 2 , if not trivial. It follows that ΓM = Γo Θ I\ Θ Γ2, say ^ Γ 2 ( x 0 )

Φ 0. Now v4 vanishes locally either on I\ or Γ2, since / splits accordingly

because of codimension 1. But {x ^ M\A(x) Φ 0} is connected. Therefore,

ATΎ and thus Tx is zero everywhere. This is a contradiction.

(iii) Since / is analytic, TM = Γo Θ I\ globally, so S = 5 1 , if not trivial,

and I\ is circular.

To illustrate how Z2-factors of ® may arise, we give a typical example. Let

φ, ψ: R -> R be smooth functions, not identically zero, such that <#>(/) = ψ(ί)

= 0 for r > 0. For « > 2, consider the region U = UιU U2 in R?7, where

ί̂  = {^|x, > 0}. Define real valued functions θ± on U by θ±(x) = +φ(xι)

on t/2, and ̂ ( c) = ψ( x 2 )(x 2 + + x 2 ) on t^. Note that θ±= 0 on ί/x Π t/2.

Then the graphs / + : i7-> R/7 + 1 of θ+ provide examples of noncongruent

isometric immersions (in the induced metric), with congruent Gauss maps.
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