THE LOCAL ISOMETRIC EMBEDDING IN R^{3} OF 2-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH NONNEGATIVE CURVATURE

CHANG-SHOU LIN

0. Introduction

In this paper, we will study the local isometric embedding into R^{3} of 2-dimensional Riemannian manifold. Suppose that the first fundamental form $E d u^{2}+2 F d u d v+G d v^{2}$ is given in a neighborhood of p. We want to find three functions $x(u, v), y(u, v), z(u, v)$, such that

$$
\begin{equation*}
d x^{2}+d y^{2}+d z^{2}=E d u^{2}+2 F d u d v+G d v^{2} \tag{0.1}
\end{equation*}
$$

in a neighborhood of p.
This embedding problem has already been solved when the Gaussian curvature K does not vanish at p. It is still an open problem when K vanishes at p. Actually, A. V. Pogorelov gave a counterexample that there exists a $C^{2,1}$ metric with no C^{2} isometric embedding in R^{3}. In Pogorelov's example, in any neighborhood of p, there is a sequence of disjoint balls in which the metric is flat. And the Gaussian curvature K of this metric is nonnegative. The main theorem of the paper is the following.

Main Theorem. Suppose that the Gaussian curvature of a C^{s} metric is nonnegative for $s \geqslant 10$, then there exists a C^{s-6} isometric embedding in R^{3}.

Instead of studying the nonlinear system (0.1) of first order, we will study a second-order Monge-Ampére equation satisfied by a coordinate, say z. The equation can be derived as follows: If the Gaussian curvature of $E d u^{2}+$ $2 F d u d v+G d v^{2}-d z^{2}$ vanishes, then z must satisfy

$$
\begin{align*}
\left(z_{11}\right. & \left.-\Gamma_{11}^{i} z_{i}\right)\left(z_{22}-\Gamma_{22}^{i} z_{i}\right)-\left(z_{12}-\Gamma_{12}^{i} z_{i}\right)^{2} \tag{0.2}\\
& =K\left\{E G-F^{2}-E z_{2}^{2}-G z_{1}^{2}+2 F z_{1} \cdot z_{2}\right\} \equiv K(u, v, \nabla z)
\end{align*}
$$

[^0]where $z_{1}=(\partial z / \partial u), z_{2}=(\partial z / \partial v), z_{i j}$ are second derivative of z, and $\Gamma_{j k}^{i}$ are symbols. Conversely, suppose z satisfies (0.2), then the metric $E d u^{2}+$ $2 F d u d v+G d v^{2}-d z^{2}$ is flat. Hence there exists a coordinate system x, y, such that $d x^{2}+d y^{2}=E d u^{2}+2 F d u d v+G d v^{2}-d z^{2}$ which is (0.1).

In this paper, we will prove that there exists a smooth local solution of (0.2), provided K is nonnegative.

We may assume p is the origin $(0,0)$, and $K(0,0,0)=0$. Set $u=\varepsilon^{2} x$, $v=\varepsilon^{2} y, z=\left(v^{2} / 2\right)+\varepsilon^{5} w$. (0.2) becomes

$$
\begin{aligned}
& \left(\varepsilon w_{x x}-\varepsilon^{2} \Gamma_{11}^{2} y-\varepsilon^{3} \Gamma_{11}^{\prime} w_{x_{l}}\right)\left(1+\varepsilon w_{y y}-\varepsilon^{2} \Gamma_{22}^{2} y-\varepsilon^{3} \Gamma_{22}^{l} w_{x_{l}}\right) \\
& \quad-\left(\varepsilon w_{x y}-\varepsilon^{2} \Gamma_{12}^{2} y-\varepsilon^{3} \Gamma_{12}^{\prime} w_{x_{l}}\right)^{2}-K\left(\varepsilon^{2} x, \varepsilon^{2} y, \varepsilon^{3} \nabla w\right)=0
\end{aligned}
$$

where $x_{1}=x, x_{2}=y$. Cancelling ε on both sides, we have

$$
\begin{equation*}
w_{x x}+\varepsilon \tilde{F}\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right)=0 \tag{0.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{F}\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right)=\left(w_{x x}-\varepsilon \Gamma_{11}^{2} y-\varepsilon^{2} \Gamma_{11}^{\prime} w_{x_{l}}\right)\left(w_{y y}-\varepsilon \Gamma_{22}^{2} y-\varepsilon^{2} \Gamma_{22}^{\prime} w_{x_{l}}\right) \\
& \quad-\left(w_{x y}-\varepsilon \Gamma_{12}^{2} y-\varepsilon^{2} \Gamma_{12}^{\prime} w_{x_{l}}\right)^{2}-\Gamma_{11}^{2} y-\varepsilon \Gamma_{11}^{\prime} w_{x_{l}}-\left(K\left(\varepsilon^{2} x, \varepsilon^{2} y, \varepsilon^{3} \nabla w\right)\right) / \varepsilon^{2}
\end{aligned}
$$

Fix $x_{0}, y_{0}>0$, consider a rectangle $D: D=\left\{(x, y)| | x\left|\leqslant x_{0},|y| \leqslant y_{0}\right\}\right.$. Choose two nonnegative cut-off function $\chi_{i} \in C^{\infty}(D)$ as follows:

$$
\chi_{1}=\left\{\begin{array}{ll}
1 & \text { if }|Y| \leqslant \frac{y_{0}}{2}, \\
0 & \text { if }|y| \geqslant \frac{3 y_{0}}{4},
\end{array} \quad \chi_{2}= \begin{cases}1 & \text { if }|y| \leqslant \frac{3 y_{0}}{4} \\
0 & \text { if }|y| \geqslant \frac{7 y_{0}}{8}\end{cases}\right.
$$

cut-off the nonlinear term by

$$
\begin{aligned}
& F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right) \\
& =\chi_{1}\left\{\left(w_{x x}-\varepsilon \Gamma_{11}^{2} y-\varepsilon^{2} \Gamma_{11}^{\prime} w_{x_{l}}\right)\left(w_{y y}-\varepsilon \Gamma_{22}^{2} y-\varepsilon^{2} \Gamma_{22}^{\prime} w_{x_{l}}\right)\right. \\
& \left.\quad-\left(w_{12}-\varepsilon \Gamma_{12}^{2} y-\varepsilon^{2} \Gamma_{12}^{\prime} w_{x_{l}}\right)^{2}-\frac{K\left(\varepsilon^{2} x, \varepsilon^{2} y, \varepsilon^{3} \nabla w\right)}{\varepsilon^{2}}\right\} \\
& \quad-\varepsilon \chi_{2}\left(\Gamma_{11}^{\prime} w_{x_{l}}-\Gamma_{11}^{2} y\right) .
\end{aligned}
$$

In the following, we will consider the following equation instead of (0.3):

$$
\begin{equation*}
w_{x x}+\varepsilon F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right)=0 . \tag{0.4}
\end{equation*}
$$

For any smooth function w defined in D, define

$$
\begin{equation*}
G(w)=w_{x x}+\varepsilon F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right) . \tag{0.5}
\end{equation*}
$$

Lemma 0.1. Suppose $|w|_{C^{2}(D)} \leqslant 1$, and $\theta>0$ be a constant such that

$$
|G(w)|_{L^{\infty}(D)} \leqslant \theta
$$

Then if ε is sufficiently small, $L_{\theta}(w) \rho=L(w) \rho+\theta \chi_{1} \rho_{y y}$ is a degenerate elliptic second-order equation where $L(w) \rho$ is the linearized equation of (0.4) about w.

Proof. Suppose the linearized equation is $L(w) \rho=\rho_{x x}+\varepsilon \sum a_{i j} \rho_{x_{i} x_{j}}+$ lower order term. We want to prove the determinant of

$$
A=\left(\begin{array}{cc}
1+\varepsilon a_{11} & \varepsilon a_{12} \\
\varepsilon a_{12} & \varepsilon a_{22}+\theta \chi_{1}
\end{array}\right)
$$

is nonnegative. The determinant is, after a straight computation,

$$
\varepsilon a_{22}\left(1+\varepsilon a_{11}\right)-\varepsilon^{2} a_{12}^{2}+\theta \chi_{1}\left(1+\varepsilon a_{11}\right)=\varepsilon \chi_{1} G(w)+\chi_{1}^{2} K+\theta \chi_{1}\left(1+\varepsilon a_{11}\right)
$$

In the computation, we use $\chi_{1} \cdot \chi_{2}=\chi_{1}$. So if ε is small, then the determinant $\geqslant 0$. q.e.d.
In the following sections, we will prove that there exists a smooth solution of (0.4). In §1, we will study existence, regularity, and estimates of the degenerate elliptic equation $L_{\theta}(w)$. In §2, we will modify the Nash-Moser-Hörmander's iterative scheme to solve (0.4). Then we will complete the proof of the Main Theorem.

1. Linear theory

In this section L will represent as a degenerate elliptic operator of secondorder defined in a rectangle $D=\left\{(x, y)| | x\left|\leqslant x_{0},|y| \leqslant y_{0}\right\}\right.$. Consider the following boundary value problem:

$$
\begin{align*}
& L \rho=\rho_{x x}+\sum_{i, j=1}^{2} a_{i j} \rho_{x_{i} x_{j}}+a_{1} \rho_{x}+a_{2} \rho_{y}+a \rho=g \text { in } D ; \tag{1.1}\\
& \rho\left(x_{0}, y\right)=\rho\left(-x_{0}, y\right)=0 .
\end{align*}
$$

Assumption. All the coefficients $a_{i j}, a_{i}$, and a vanish near $y= \pm y_{0}$. And $\sum\left|a_{i j}\right|_{C^{4}}+\left|a_{i}\right|_{C^{4}}+|a|_{C^{4}} \leqslant C_{0} \varepsilon$, where C_{0} is a fixed constant.

Set

$$
\rho(x, y)=u(x, y) e^{-\lambda x^{2}}, \quad \lambda>0 .
$$

Then (1.1) becomes

$$
\begin{align*}
& L u=u_{x x}+\sum_{i, j=1}^{2} a_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{2} b_{i} u_{x_{i}}+h u=e^{\lambda x^{2}} g \tag{1.2}\\
& u\left(x_{0}, y\right)=u\left(-x_{0}, y\right)=0
\end{align*}
$$

where

$$
\begin{align*}
& b_{1}=-4\left(1+a_{11}\right) \lambda x+a_{1} \\
& b_{2}=-4 a_{12} \lambda x+a_{2} \tag{1.3}\\
& h=-2\left(1+a_{11}\right) \lambda+4\left(1+a_{11}\right) \lambda^{2} x^{2}-2 b_{1} \lambda x+a
\end{align*}
$$

Instead of studying equation (1.2), we will consider the following regularization of (1.2):

$$
\begin{align*}
& L_{\nu} u=-v\left[D^{*} D-\frac{\partial^{2}}{\partial x^{2}}\right] u+L u=g \quad \text { in } D \tag{1.4}\\
& u\left(x_{0}, y\right)=u\left(-x_{0}, y\right)=0
\end{align*}
$$

where $D u=\left(y_{0}^{2}-y^{2}\right)(\partial u / \partial y), D^{*}$ is the adjoint of D, and $\nu>0$ is a small constant. λ will be chosen large but independent of ν and ε, and always satisfies $\lambda x_{0}<1$.

Theorem 1.1. Suppose all coefficients are smooth and ε, ν are small. Then there exists $s_{0}(\varepsilon, \nu)>0$ such that for any $g \in H^{s}(D), s \leqslant s_{0}$, there exists a unique solution $u \in H^{s}(D)$ of (1.4) and the following estimates are true:

$$
\begin{equation*}
\|u\|_{H^{s}} \leqslant C_{s}\left\{\|g\|_{H^{s}}+\Gamma(s)\|u\|_{H^{2}}\right\} \tag{1.5}
\end{equation*}
$$

where

$$
\Gamma(s)=\sum_{i, j}\left\{\left\|a_{i j}\right\|_{H^{s+2}}+\left\|b_{i}\right\|_{H^{s+1}}+\|h\|_{H^{s}}\right\}
$$

and C_{s} is a constant which is independent of ν and ε.
H^{s} is the Sobolev space with the norm: $\|u\|_{H^{s}}=\left(\sum_{|\alpha| \leqslant s}\left\|D^{\alpha} u\right\|_{L^{2}}^{2}\right)^{1 / 2}$ where D^{α} is any α th derivative.

Throughout the section, C always be a constant which is independent of ν, and will change from line to line. $\lambda>0$ will be a fixed number throughout. We will divide the proof of Theorem 1.1 into several lemmas. First, we will prove the existence of weak solution of (1.4).

Suppose u, ϕ are smooth functions and satisfy the boundary conditions $u\left(x_{0}, y\right)=u\left(-x_{0}, y\right)=\phi\left(x_{0}, y\right)=\phi\left(-x_{0}, y\right)=0$. Then

$$
\begin{aligned}
Q_{\nu}(\phi, u) \equiv-\left(\phi, L_{\nu} u\right) & =\nu\left[\int \phi_{x} u_{x}+\int D \phi D u\right]+\int \phi_{x} u_{x}+\int a_{i j} u_{x_{i}} \phi_{x_{j}} \\
+ & \frac{1}{2} \sum_{i=1}^{2} \int\left(b_{i}-\sum_{j=1}^{2} \frac{\partial a_{i j}}{\partial x_{j}}\right)\left(\phi_{x_{i}} u-u_{x_{i}} \phi\right) \\
+ & \int\left[-h+\frac{1}{2}\left(\sum_{i=1}^{2} \frac{\partial b_{i}}{\partial x_{i}}-\sum_{i, j=1}^{2} \frac{\partial a_{i j}}{\partial x_{i} \partial x_{j}}\right)\right] \phi u .
\end{aligned}
$$

Define \dot{H}^{1} as the space consisted of functions u such that $u, D u, u_{x}$ are in $L^{2}(D)$, and satisfy $u\left(x_{0}, y\right)=u\left(-x_{0}, y\right)=0$,

$$
\|u\|\|=\| u\left\|_{L^{2}}+\right\| D u\left\|_{L^{2}}+\right\| u_{x} \|_{L^{2}}
$$

Lemma 1.2 (existence of weak solution). Given $g \in L^{2}(D)$, then there exists a unique $u \in \stackrel{\circ}{H}^{1}$ such that

$$
Q_{\nu}(\phi, u)=-(\phi, g) \quad \text { for any } \phi \in \stackrel{\circ}{H}^{1}
$$

Proof. $Q_{\nu}(\phi, u)$ is a bounded bilinear form of $\stackrel{\circ}{H}^{1}$. We want to prove

$$
\begin{equation*}
Q_{\nu}(\phi, \phi) \geqslant C_{\nu}\|\phi\|^{2} \quad \forall \phi \in \dot{H}^{1} \tag{1.6}
\end{equation*}
$$

Because $\partial b_{1} / \partial x$ involves λ, we write

$$
\begin{aligned}
Q_{\nu}(\phi, \phi)= & \nu\left[\int \phi_{x}^{2}+\int|D \phi|^{2}\right]+\int \phi_{x}^{2}+\sum_{i, j=1}^{2} \int a_{i j} \frac{\partial \phi}{\partial x_{i}} \frac{\partial \phi}{\partial x_{j}} \\
& -\sum_{i=1}^{2} \int b_{i} \phi_{x_{i}} \phi+\int\left[-h+\sum_{i, j}\left(\frac{\partial^{2} a_{i j}}{\partial x_{i} \partial x_{j}}\right)\right] \phi^{2} .
\end{aligned}
$$

We note

$$
\int b_{2} \phi_{y} \phi=\frac{1}{2} \int b_{2} \frac{\partial \phi^{2}}{\partial y}=-\frac{1}{2} \int \frac{\partial b_{2}}{\partial y} \phi^{2}, \quad \text { so that }\left|\int b_{2} \phi_{y} \phi\right| \leqslant C \varepsilon \int \phi^{2}
$$

Thus we only have to estimate $\int b_{1} \phi_{x} \phi$. Suppose $\lambda_{1}>\lambda_{2}$ be eigenvalues of

$$
\left(\begin{array}{cc}
1+a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right)
$$

and v^{1}, v^{2} are unit eigenvectors such that

$$
v^{1}=\binom{v_{1}^{1}}{v_{2}^{1}}=\binom{1}{0}, \quad v^{2}=\binom{v_{1}^{2}}{v_{2}^{2}}=\binom{0}{1}
$$

near $y= \pm y_{0}$. Define ϕ_{1}, ϕ_{2} by the following

$$
\begin{equation*}
\binom{\phi_{x}}{\phi_{y}}=\phi_{1} v^{1}+\phi_{2} v^{2}, \tag{1.7}
\end{equation*}
$$

since v^{2} is the eigenvector with eigenvalue λ_{2},

$$
v_{1}^{2}=-\frac{a_{12} v_{2}^{2}}{1+a_{11}-\lambda_{2}}
$$

is small. Also by the relation of $u_{x}, u_{y}, u_{1}, u_{2}$, we have

$$
\begin{equation*}
\phi_{x}=\frac{v_{1}^{1} \phi_{1}+v_{1}^{2} v_{2}^{2} \phi_{y}}{1-\left(v_{1}^{2}\right)^{2}} \tag{1.7}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
\int b_{1} \phi_{x} \phi & =\frac{1}{2} \int \frac{b_{1} v_{1}^{2} v_{2}^{2}\left(\phi^{2}\right) y}{1-\left(v_{1}^{2}\right)^{2}}+\int \frac{b_{1} v_{1}^{1} \phi_{1} \phi}{1-\left(v_{1}^{2}\right)^{2}} \\
& =-\frac{1}{2} \int\left(\frac{\partial}{\partial y} \frac{b_{1} v_{1}^{2} v_{2}^{2}}{1-\left(v_{1}^{2}\right)^{2}}\right) \phi^{2} \int \frac{b_{1} v_{1}^{1} \phi_{1} \phi}{1-\left(v_{k}^{2} 1\right)^{2}}
\end{aligned}
$$

Hence

$$
\left|\int b_{1} \phi_{x} \phi\right| \leqslant C \int \phi^{2}+\frac{1}{2} \int \lambda_{1} \phi_{1}^{2},
$$

where we use Schwartz inequality and the fact that λ_{1} is close to 1 when ε is small, and C is a constant independent of λ. Here $\lambda x_{0}<1$ is required. Hence, if $\lambda-C \geqslant 1$, then

$$
\begin{align*}
Q_{\nu}(\phi, \phi) \geqslant \nu & {\left[\int \phi_{x}^{2}+\int|D \phi|^{2}\right] } \tag{1.8}\\
& +\frac{1}{2} \int \lambda_{1} \phi_{1}^{2}+\int \lambda_{2} \phi_{2}^{2}+(\lambda-C) \int \phi^{2} \geqslant \nu\|\phi\|^{2}
\end{align*}
$$

Then we apply Lax-Milgram's theorem to get a weak solution. q.e.d.
We will prove that the weak solution is smooth provided g is smooth. Since L_{ν} is elliptic inside D, u may be supposed smooth inside D by regularity theorem of elliptic equation. We only have to prove that u is smooth up to boundary of D.

Lemma 1.3. Suppose $g \in H^{s}(D), \nu s^{2}<1, \lambda$ is large, and u is the weak solution of (1.4), then $u, D u, u_{x} \in H^{s}(D)$.

Proof. Define $a_{\bar{\varepsilon}}(y) \geqslant 0$ as follows:

$$
\begin{gather*}
a_{\bar{\varepsilon}}(y)= \begin{cases}y_{0}^{2}-y^{2} & \text { if }-y_{0}+\bar{\varepsilon} \leqslant y \leqslant y_{0}-\bar{\varepsilon}, \\
0 & \text { if } y \geqslant y_{0}-\frac{\bar{\varepsilon}}{2}, y \leqslant-y_{0}+\frac{\bar{\varepsilon}}{2},\end{cases} \tag{1.9}\\
\left|\frac{\partial a_{\bar{\varepsilon}}(y)}{\partial y}\right| \leqslant C_{1},
\end{gather*}
$$

where C_{1} is a constant independent of $\bar{\varepsilon}$. Define $D_{\hat{\varepsilon}} u=a_{\bar{\varepsilon}}(\partial u / \partial y)$. Differentiating (1.4) by $D_{\bar{\varepsilon}}$, we have $L_{\nu} D_{\bar{\varepsilon}} u=D_{\bar{\varepsilon}} g+\left[L_{\nu}, D_{\bar{\varepsilon}}\right] u$. Taking the inner product with $D_{\bar{\varepsilon}} u$, we have

$$
\begin{aligned}
\nu\left[\int\left|D_{\bar{\varepsilon}} u_{x}\right|^{2}+\left|D D_{\bar{\varepsilon}} u\right|^{2}\right] & \leqslant-\left(D_{\bar{\varepsilon}} u, L_{\nu} D_{\bar{\varepsilon}} u\right) \\
& =-\left(D_{\bar{\varepsilon}} u, D_{\bar{\varepsilon}} h\right)-\left(D_{\bar{\varepsilon}} u,\left[L_{\nu}, D_{\bar{\varepsilon}}\right] u\right) .
\end{aligned}
$$

Since we have already known $u \in \stackrel{\circ}{H}^{1}$,

$$
\left|\left(D_{\bar{\varepsilon}} u, D_{\bar{\varepsilon}} g\right)\right| \leqslant\left\|D_{\bar{\varepsilon}} u\right\|_{L^{2}} \cdot\left\|D_{\bar{\varepsilon}} g\right\|_{L^{2}} \leqslant C_{2},
$$

where C_{2} is independent of $\bar{\varepsilon}$. Thus

$$
\begin{aligned}
{\left[L_{\nu}, D_{\bar{\varepsilon}}\right] } & =-\nu\left[D^{*} D, D_{\bar{\varepsilon}}\right]+\left[L, D_{\bar{\varepsilon}}\right] \\
& =-\nu\left(D^{*}\left[D, D_{\bar{\varepsilon}}\right]+\left[D^{*}, D_{\bar{\varepsilon}}\right] D\right)+\left[L, D_{\bar{\varepsilon}}\right] \\
\left|\left(D_{\bar{\varepsilon}} u, D^{*}\left[D, D_{\bar{\varepsilon}}\right] u\right)\right| & =\left|\left(D D_{\bar{\varepsilon}} u,\left[D, D_{\bar{\varepsilon}}\right] u\right)\right| \\
& \leqslant C\|D u\|_{L^{2}} \cdot\left\|D D_{\bar{\varepsilon}} u\right\|_{L^{2}} \leqslant C_{2}\left\|D D_{\bar{\varepsilon}} u\right\|_{L^{2}},
\end{aligned}
$$

by (1.9). Similarly,

$$
\left\|\left(D_{\bar{\varepsilon}} u,\left[D^{*}, D_{\bar{\varepsilon}}\right] D u\right)\right\| \leqslant C_{3}\left\|D D_{\bar{\varepsilon}} u\right\|_{L^{2}} .
$$

Because each term in [$L, D_{\hat{\varepsilon}}$] involves $a_{i j}, b_{i}$, and y-derivatives of $a_{i j}, b_{j}$ which vanish near $y= \pm y_{0},\left[L, D_{\bar{\varepsilon}}\right]=[L, D]$ for $\bar{\varepsilon}$ is small. Combining all estimates, gives

$$
\nu\left(\int\left|D_{\bar{\varepsilon}} u_{x}\right|^{2}+\int\left|D D_{\bar{\varepsilon}}\right|^{2}\right) \leqslant C_{4}\left\|D D_{\bar{\varepsilon}} u\right\|_{L^{2}}
$$

so that

$$
\int\left|D_{\bar{\varepsilon}} u_{x}\right|^{2}+\int\left|D D_{\bar{\varepsilon}} u\right|^{2} \leqslant C_{5}(\nu)
$$

where C_{5} is a constant independent of $\bar{\varepsilon}$. Taking the limit $\bar{\varepsilon} \rightarrow 0$, we have

$$
\int\left|D u_{x}\right|^{2}+\int\left|D^{2} u\right|^{2}<+\infty
$$

From (1.4) we also conclude

$$
u_{x x} \in L^{2}(D)
$$

Define

$$
\tilde{a}_{\bar{\varepsilon}}(y)=\left\{\begin{array}{l}
1 \text { if } y^{2} \leqslant y_{0}^{2}-\bar{\varepsilon}^{2} \\
0 \quad \text { if } y^{2}=y_{0}^{2} \\
\text { linear in between }
\end{array}\right.
$$

Define $\tilde{D}_{\bar{\varepsilon}} u=\tilde{a}_{\bar{\varepsilon}}(y)(\partial u / \partial y)$, and $D u=\left(y_{0}^{2}-y^{2}\right)(\partial u / \partial y) \equiv a(y)(\partial u / \partial y)$. By the previous step, we know

$$
D \tilde{D}_{\bar{\varepsilon}} u, \tilde{D}_{\bar{\varepsilon}} u_{x} \in L^{2}(D)
$$

Differentiating (1.4) by $\tilde{D}_{\bar{E}}$, we have

$$
L_{\nu}\left(\tilde{D}_{\bar{\varepsilon}} u\right)=\tilde{D}_{\bar{\varepsilon}} g+\left[L_{\nu}, \tilde{D}_{\bar{\varepsilon}}\right] u .
$$

Taking the inner product with $\tilde{D}_{\bar{\varepsilon}} u$, yields

$$
\begin{aligned}
\nu\left[\int\left|D \tilde{D}_{\bar{\varepsilon}} u\right|^{2}+\left|\tilde{D}_{\bar{\varepsilon}} u_{x}\right|^{2}\right] & +(\lambda-C)\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}^{2} \\
\leqslant & -\left(\tilde{D}_{\bar{\varepsilon}} u, \tilde{D}_{\bar{\varepsilon}} g\right)+\left(\tilde{D}_{\bar{\varepsilon}} u,\left[\tilde{D}_{\bar{\varepsilon}}, L_{\nu}\right] u\right)
\end{aligned}
$$

by (1.8).

$$
\begin{gathered}
{\left[L_{\nu}, \tilde{D}_{\bar{\varepsilon}}\right]=-\nu\left[D^{*}, \tilde{D}_{\bar{\varepsilon}}\right] D-\nu D^{*}\left[D, \tilde{D}_{\bar{\varepsilon}}\right]+\left[L, \tilde{D}_{\bar{\varepsilon}}\right],} \\
{\left[D, \tilde{D}_{\bar{\varepsilon}}\right]=\left(a \frac{\partial a_{\bar{\varepsilon}}}{\partial y}-a_{\bar{\varepsilon}} \frac{\partial a}{\partial y}\right) \frac{\partial}{\partial y} .}
\end{gathered}
$$

Since $\left(\partial \tilde{a}_{\bar{\varepsilon}} / \partial y\right)=$ const $\neq 0$ only for $\left.y_{0}^{2}-\bar{\varepsilon}^{2} \leqslant y^{2} \leqslant y_{0}^{2}, \| D, \tilde{D}_{\bar{\varepsilon}}\right] u\left|\leqslant C_{1}\right| \tilde{D}_{\bar{\varepsilon}} u \mid$, for some constant C_{1} independent of ε. Thus

$$
\left|\left(\tilde{D}_{\bar{\varepsilon}} u, D^{*}\left[D, \tilde{D}_{\bar{\varepsilon}}\right] u\right)\right| \leqslant C_{2}\left\|D \tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}} \cdot\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}
$$

Similarly, we have

$$
\left|\left(\tilde{D}_{\bar{\varepsilon}} u,\left[D^{*}, \tilde{D}_{\bar{\varepsilon}}\right] D u\right)\right| \leqslant C_{3}\left(\left\|D \tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}+1\right)\left\|D_{\bar{\varepsilon}} u\right\|_{L^{2}} .
$$

As before, $\left[L, D_{\bar{\varepsilon}}\right]$ is independent of $\bar{\varepsilon}$ if $\bar{\varepsilon}$ is small. Hence, we have

$$
\begin{align*}
& \nu\left[\left\|D \tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}^{2}+\left\|\tilde{D}_{\bar{\varepsilon}} u_{x}\right\|_{L^{2}}^{2}\right]+(\lambda-C)\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}^{2} \tag{1.10}\\
& \quad \leqslant C_{4}\left\{\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}} \cdot\|g\|_{H^{1}}+\nu\left\|D \tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}} \cdot\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}+\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}\right\}
\end{align*}
$$

for a constant C_{4} independent of $\bar{\varepsilon}$. Using Schwartz inequality, we have

$$
\left\|D \tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}}+\left\|\tilde{D}_{\bar{\varepsilon}} u_{x}\right\|_{L^{2}}+\left\|\tilde{D}_{\bar{\varepsilon}} u\right\|_{L^{2}} \leqslant C_{5}
$$

independent of $\bar{\varepsilon}$. Taking the limit $\bar{\varepsilon} \downarrow 0$, we have $u_{y}, D u_{y}, u_{y x} \in L^{2}$, which is the case $s=1$.

We can prove Lemma 1.3 by induction on s. Now suppose $u, u_{x}, D u \in H^{s}$; we want to prove $u, u_{x}, D u \in H^{s+1}$. Differentiating (1.4) by $\partial^{s} / \partial y^{s}$, we have

$$
\begin{align*}
& L_{\nu}\left(\frac{\partial^{s}}{\partial y^{s}} u\right)+2 s v \frac{\partial a}{\partial y} D\left(\frac{\partial^{s} u}{\partial y^{s}}\right)+\frac{s(s-1)}{2} \nu \frac{\partial^{2} a^{2}(y)}{\partial y^{2}} \frac{\partial^{s} u}{\partial y^{s}} \tag{1.11}\\
& \quad=\frac{\partial^{s} g}{\partial y^{s}}+\text { other term } \equiv \tilde{g}_{s} .
\end{align*}
$$

The other term in the above expression consists of derivatives of order $s+1$, or s with vanishing coefficients near $y= \pm y_{0}$, and derivative of order $<s$; hence $\tilde{g}_{s} \in H^{1}(D)$. As the same proof in the previous step, it is easy to prove

$$
D^{2}\left(\frac{\partial^{s} u}{\partial y^{s}}\right) \text { and } D\left(\frac{\partial^{s} u_{x}}{\partial y^{s}}\right) \text { in } L^{2}(D)
$$

Differentiating (1.11) by $D_{\bar{\varepsilon}}$ and doing the same steps as (1.10), we have

$$
\begin{aligned}
& \nu\left[\left\|D \tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}^{2}\right.\left.+\left\|\tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s+1} u}{\partial y^{s} \partial x}\right\|_{L^{2}}\right]+(\lambda-C)\left\|\tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}^{2} \\
& \leqslant C_{4}\left\{\left\|\tilde{g}_{s}\right\|_{H^{1}} \cdot\left\|\tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\nu\left\|D \tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}} \cdot\left\|\bar{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}\right. \\
&\left.+\left\|\bar{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\nu s^{2}\left\|\bar{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}^{2}\right\} .
\end{aligned}
$$

Hence if $\nu s^{2}<1$ and λ is large, then

$$
\left\|D \tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\left\|\tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s+1} u}{\partial y^{s} \partial x}\right\|_{L^{2}}+\left\|\tilde{D}_{\bar{\varepsilon}} \frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}
$$

is bounded and independent of $\bar{\varepsilon}$. Taking the limit $\bar{\varepsilon} \downarrow 0$, we prove

$$
D \frac{\partial^{s+1} u}{\partial y^{s+1}}, \frac{\partial^{s+2} u}{\partial y^{s+d 1} x}, \frac{\partial^{s+1} u}{\partial y^{s+1}} \in L^{2}(D) .
$$

From (1.4), $\left(1+\nu+a_{11}\right) u_{x x}=g+D^{*} D u+$ terms with coefficients vanishing on $y= \pm y_{0}+$ lower order terms. Differentiating the above express by $\left(\partial^{k} / \partial x^{k}\right)\left(\partial^{s-k} / \partial y^{s-k}\right), k=0,1,2, \cdots, s$, we conclude with $u_{x} \in H^{s+1}(D)$. The fact

$$
\frac{\partial^{s} u}{\partial y^{s}}, D \frac{\partial^{s} u}{\partial y^{s}} \in H^{1}(D) \quad \text { and } \quad u_{x} \in H^{s+1}(D)
$$

implies $u, D u$ and $u_{x} \in H^{s+1}(D)$. Thus we have finished the induction step.
Proof of Theorem 1.1. To prove estimate (1.5), we may assume g and u are both smooth functions. Differentiating (1.4) by $\partial^{s} / \partial y^{s}$, we have

$$
L_{\nu}\left(\frac{\partial^{s} u}{\partial y^{s}}\right)=\frac{\partial^{s} g}{\partial y^{s}}+\left[L_{\nu}, \frac{\partial^{s}}{\partial y^{s}}\right] u .
$$

We want to estimate

$$
\left(\frac{\partial^{s} u}{\partial y^{s}},\left[L_{\nu}, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)
$$

Since

$$
\left[D^{*} D, \frac{\partial^{s}}{\partial y^{s}}\right] u=-2 s D^{*} \frac{\partial a}{\partial y} \frac{\partial^{s} u}{\partial y^{s}}+\text { terms with } y \text { derivatives of order } \leqslant s
$$

$$
\begin{aligned}
\left|\left(\frac{\partial^{s} u}{\partial y^{s}}, D^{*} \frac{\partial a}{\partial y} \frac{\partial^{s} u}{\partial y^{s}}\right)\right| & =\left|\frac{1}{2} \int \frac{\partial a}{\partial y} D\left(\frac{\partial^{s} u}{\partial y^{s}}\right)^{2}\right| \\
& =\frac{1}{2}\left|\int D^{*} \frac{\partial a}{\partial y}\left(\frac{\partial^{s} u}{\partial y^{s}}\right)^{2}\right| \leqslant C \int\left|\frac{\partial^{s} u}{\partial y^{s}}\right|^{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
\left|\left(\frac{\partial^{s} u}{\partial y^{s}},\left[D^{*} D, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)\right| \leqslant \sum_{l \leqslant s} C_{s}\left\|\frac{\partial^{\prime} u}{\partial y^{\prime}}\right\|_{L^{2}}^{2} . \tag{1.12}
\end{equation*}
$$

Let D^{α} denote any derivative of order $|\alpha|$. We will use following inequalities which come from interpolational inequalities immediately:

$$
\begin{equation*}
\left\|D^{\alpha} u D^{\beta} v\right\|_{L^{2}} \leqslant C_{s}\left(\|u\|_{L^{\infty}}\|v\|_{H^{s}}+\|u\|_{H^{s}}\|v\|_{L^{\infty}}\right), \tag{1.13}
\end{equation*}
$$

where $|\alpha|+|\beta|=s$, and $\|u\|_{L^{\infty}} \leqslant C\|u\|_{H^{2}}$. Using integration by part and (1.13), we can estimate

$$
\begin{align*}
& \left|\left(\frac{\partial^{s} u}{\partial y^{s}},\left[a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)\right| \tag{1.14}\\
&
\end{align*} \quad \leqslant C_{s}\left\{\left\|a_{i j}\right\|_{C^{2}}\|u\|_{H^{s}}+\|u\|_{H^{2}} \cdot\left\|a_{i j}\right\|_{H^{s+2}}\right\}\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}} .
$$

Similarly,

$$
\begin{align*}
& \left|\left(\frac{\partial^{s} u}{\partial y^{s}},\left[b_{i} \frac{\partial}{\partial x_{i}}, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)\right| \leqslant C_{s}\left\{\left\|b_{i}\right\|_{C^{1}}\|u\|_{H^{s}}+\|u\|_{H^{2}}\left\|b_{i}\right\|_{H^{s+1}}\right\}\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}} \\
& \text { 15) }\left|\left(\frac{\partial^{s} u}{\partial y^{s}},\left[h, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)\right| \leqslant C_{s}\left\{\|u\|_{H^{s-1}}|h|_{C^{1}}+\|h\|_{H^{s}}\|u\|_{H^{2}}\right\}\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}} \tag{1.15}
\end{align*}
$$

Combining (1.12), (1.14), (1.15) and the assumption, we have

$$
\left|\left(\frac{\partial^{s} u}{\partial y^{s}},\left[L_{\nu}, \frac{\partial^{s}}{\partial y^{s}}\right] u\right)\right| \leqslant C_{s}\left((\nu+\varepsilon)\|u\|_{H^{s}}+\Gamma(s)\|u\|_{H^{2}}\right\}\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}},
$$

where

$$
\Gamma(s)=\sum\left\|a_{i j}\right\|_{H^{s+2}}+\left\|b_{k}\right\|_{H^{s+1}}+\|h\|_{H^{s}}
$$

Now denote $u^{s}=\partial^{s} u / \partial y^{s}$, and u_{1}^{s} as defined in (1.7), i.e.,

$$
\binom{u_{x}^{s}}{u_{y}^{s}}=u_{1}^{s} v^{1}+u_{2}^{s} v^{2}
$$

We want to prove the following inequalities by induction on s :

$$
\begin{align*}
\nu\left(\int\left|u_{x}^{s}\right|^{2}\right. & \left.+\int\left|D u^{s}\right|^{2}\right)+\int \lambda_{1}\left(u_{1}^{s}\right)+\int \lambda_{2}\left(u_{2}^{s}\right)+\int\left|u^{s}\right|^{2} \tag{1.16}\\
& \leqslant C_{s}\left\{\|g\|_{H^{s}}+\Gamma(s)\|u\|_{H^{2}}\right\} .
\end{align*}
$$

(1.16) 0 is just (1.8). Suppose we have proved (1.16) $s-1$. By (1.8),

$$
\begin{align*}
& \nu\left(\int\left|u_{x}^{s}\right|^{2}+\left|D u^{s}\right|^{2}\right) \\
& \begin{aligned}
\text { 1.17)s } & +\frac{1}{2} \int \lambda_{1}\left(u_{1}^{s}\right)^{2}+\int \lambda_{2}\left(u_{2}^{s}\right)^{2}+(\lambda-C) \int\left|u^{s}\right|^{2} \\
\leqslant & -\left(u^{s}, L_{\nu} u^{s}\right) \leqslant\left\|u^{s}\right\|_{L^{2}} \cdot\|g\|_{H^{s}} \\
& +C_{s}\left\{(\nu+\varepsilon)\|u\|_{H^{s}}+\Gamma(s)\|u\|_{H^{2}}\right\}\left\|u^{s}\right\|_{L^{2}} .
\end{aligned} \tag{1.17}
\end{align*}
$$

By (1.7)' we have

$$
\begin{align*}
\left\|u_{x}^{s-1}\right\|_{L^{2}} & \leqslant C_{1}\left\{\left\|u_{1}^{(s-1)}\right\|_{L^{2}}+\left\|a_{i j}\right\|_{L^{\infty}}\left\|u^{s}\right\|_{L^{2}}\right\} \\
& \leqslant C_{2}\left\{\left\|u_{1}^{(s-1)}\right\|_{L^{2}}+\varepsilon\left\|u^{s}\right\|_{L^{2}}\right\} . \tag{1.18}
\end{align*}
$$

Solving for $u_{x x}$ from (1.4), and differentiating by

$$
\frac{\partial^{s-2}}{\partial x^{k} \partial y^{s-k-2}}, \quad k=0, \cdots, s-2
$$

we have

$$
\begin{array}{r}
\left\|\frac{\partial^{s} u}{\partial x^{k+2} \partial y^{s-k-2}}\right\|_{L^{2}} \leqslant C_{k}\left\{\left\|\frac{\partial^{s} u}{\partial x^{k+1} \partial y^{s-k}}\right\|_{L^{2}}+\left\|\frac{\partial^{s} u}{\partial x^{k} \partial y^{s-k}}\right\|_{L^{2}}\right. \\
\left.+\|g\|_{H^{s}}+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)\right\}
\end{array}
$$

Summing over k,

$$
\begin{aligned}
&\|u\|_{H^{s}} \leqslant C_{s}\left\{\|g\|_{H^{s}}+\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\left\|\frac{\partial^{s} u}{\partial y^{s-1} \partial x}\right\|_{L^{2}}\right. \\
&\left.+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)\right\}
\end{aligned}
$$

By (1.18)s and (1.16)s-1,

$$
\begin{align*}
\|u\|_{H^{s}} & \leqslant C_{s}\left\{\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\left\|u_{1}^{s-1}\right\|_{L^{2}}+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)+\|g\|_{H^{s}}\right\} \tag{1.19}\\
& \leqslant C_{s}\left\{\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\|g\|_{H^{s}}+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)\right\}
\end{align*}
$$

Now we can estimate the right-hand side of (1.17)s,

$$
\begin{aligned}
& \nu\left(\int\left|u_{x}^{s}\right|^{2}+\int\left|D u^{s}\right|^{2}\right)+\frac{1}{2} \int \lambda_{1}\left(u_{1}^{s}\right)+\int \lambda_{2}\left|u_{2}^{s}\right|^{2}+(\lambda-C) \int\left|u^{s}\right|^{2} \\
& \quad \leqslant C_{s}^{\prime}\left\{(\nu+\varepsilon)\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}+\|g\|_{H^{s}}+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)\right\}\left\|\frac{\partial^{s} u}{\partial y^{s}}\right\|_{L^{2}}
\end{aligned}
$$

If $C_{s}^{\prime}(\nu+\varepsilon)<1$ and $\lambda-C \geqslant 2$, we have

$$
\begin{aligned}
& \nu\left(\int\left|u_{x}^{s}\right|^{2}+\int\left|D u^{s}\right|^{2}\right)+\frac{1}{2} \int \lambda_{1}\left(u_{1}^{s}\right)^{2}+\int \lambda_{2}\left|u_{2}^{s}\right|^{2}+\int\left|u^{s}\right|^{2} \\
& \quad \leqslant C_{s}^{\prime}\left\{\|g\|_{H^{s}}+\|u\|_{H^{s-1}}+\|u\|_{H^{2}} \Gamma(s)\right\}\left\|u^{s}\right\|_{L^{2}} .
\end{aligned}
$$

Because of (1.19)s, this is equivalent to (1.16)s, and we finish the induction proof. Then (1.5) follows from (1.16)s.

Hence we have proved Theorem 1.1. q.e.d.
Let $L(w)$ be the linearized equation of $G(w)=w_{x x}+\varepsilon F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right)$ about w. Define

$$
\theta=|G(w)|_{L^{\infty}(D)} \quad \text { and } \quad L_{\theta}(w) \rho=L(w) \rho+\theta \chi_{1} \rho_{y y}
$$

By Lemma 0.1, $L_{\theta}(w)$ is a degenerate elliptic operator. In terms of w,

$$
a_{i j}=\varepsilon \frac{\partial F}{\partial w_{i j}}, \quad a_{i}=\varepsilon \frac{\partial F}{\partial w_{i}} .
$$

Hence

$$
\left|a_{i j}\right|_{C^{2}} \quad \text { and } \quad\left|a_{i}\right|_{C^{2}} \leqslant C \varepsilon|w|_{C^{4}} \leqslant C_{0} \varepsilon|w|_{H^{6}} .
$$

Therefore we have the following.
Corollary 1.4. Suppose $\|w\|_{H^{6}} \leqslant 1$ and ε, θ, are sufficiently small, then there exists an integer $S_{0}(\varepsilon, \theta)$ depending on ε and θ such that if $g \in H^{s}, 0 \leqslant s \leqslant s_{0}$, then there exists a unique solution $\rho \in H^{s}$ of the equation:

$$
\begin{align*}
& L_{\theta}(w) \rho=g \text { in } D \tag{1.20}\\
& \rho\left(x_{0}, y\right)=\rho\left(-x_{0}, y\right)=0
\end{align*}
$$

and furthermore the following estimates are true

$$
\begin{equation*}
\|\rho\|_{H^{s}} \leqslant C_{s}\left\{\|g\|_{H^{s}}+\|w\|_{H^{s+4}}\|\rho\|_{H^{2}}\right\} . \tag{1.21}
\end{equation*}
$$

Proof. Let L_{θ}^{ν} be the regularization (1.4) and ρ^{ν} be the unique H^{s}-solution. In terms of w, we have

$$
\Gamma(s) \leqslant \varepsilon C_{s}^{1}\left(\|w\|_{H^{s+4}}+1\right) .
$$

For $s \geqslant 2$, Theorem (1.1) implies

$$
\left\|\rho^{\nu}\right\|_{H^{s}} \leqslant C_{s}\left\{\|g\|_{H^{s}}+\|w\|_{H^{s+4}}\left\|\rho^{\nu}\right\|_{2}\right\},
$$

where C_{s} is independent of ν. Taking $\nu \rightarrow 0$, we have the estimate (1.21). For $s=0,(1.8)$ implies

$$
\int u^{2} \leqslant-\left(L_{\theta} u, u\right)=-\left(e^{\lambda x^{2}} g, u\right),
$$

where $u=e^{\lambda x^{2}} g$. Therefore $\int u^{2} \leqslant C \int g^{2}$. For $s=1$, differentiate (1.20) by $\partial / \partial y$. Using integration by parts,

$$
\left|\left(\frac{\partial u}{\partial y},\left[L_{\theta}, \frac{\partial}{\partial y}\right] u\right)\right| \leqslant C\left(\left|a_{i j}\right|_{C^{2}}+\left|a_{i}\right|_{C^{2}}\right)\|u\|_{H^{1}}^{2}
$$

By assumption $\|w\|_{H^{6}} \leqslant 1$, we have

$$
\left|\left(\frac{\partial u}{\partial y},\left[L_{\theta}, \frac{\partial}{\partial y}\right] u\right)\right| \leqslant C_{1} \varepsilon\|u\|_{H^{1} .}^{2}
$$

By (1.8), we have

$$
\left\|\frac{\partial u}{\partial y}\right\|_{L^{2}}^{2} \leqslant C_{2}\left\{\left\|\frac{\partial g}{\partial y}\right\|_{L^{2}}\left\|\frac{\partial u}{\partial y}\right\|_{L^{2}}+\varepsilon\|u\|_{H^{1}}^{2}\right\} .
$$

It is equivalent to

$$
\left\|\frac{\partial \rho}{\partial y}\right\|_{L^{2}}^{2} \leqslant C_{2}^{\prime}\left\{\left\|\frac{\partial g}{\partial y}\right\|_{L^{2}}\left\|\frac{\partial \rho}{\partial y}\right\|_{L^{2}}+\varepsilon\|\rho\|_{H^{1}}^{2}\right\} .
$$

We have

$$
\left(1+a_{11}\right) \rho_{x x}=g-\sum_{(i, j) \neq(1.1)} a_{i j} \rho_{x_{i} x_{j}}-\sum_{i} a_{i} \rho_{x_{i}} .
$$

Multiplying ρ and integrating both sides,

$$
\int \rho_{x}^{2} \leqslant C_{2}\left\{\|\rho\|_{L^{2}}\|g\|_{L^{2}}+\varepsilon\|\rho\|_{H^{1}}^{2}\right\} .
$$

Combining this and the above estimate of $\|\partial \rho / \partial y\|_{L^{2}}$, we have $\|\rho\|_{H^{1}} \leqslant$ $C\|g\|_{H^{1}}$, provided ε and θ are small.
2.

In this section, we will modify the Nash-Moser-Hörmander's scheme to solve the nonlinear equation:

$$
\begin{align*}
& w_{x x}+\varepsilon F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right)=0 \text { in } D \tag{2.1}\\
& w\left(x_{0}, y\right)=w\left(-x_{0}, y\right)=0 .
\end{align*}
$$

Smoothing operators S_{θ}. We have a family of smoothing operator $S_{\theta}, \theta>1$, satisfying the following properties:
$\left(\mathrm{S}_{1}\right) S_{\theta}: H^{s}(D) \rightarrow H^{s^{\prime}}(D)$ is a linear bounded operator for any s, s^{\prime}.
$\left(\mathrm{S}_{2}\right)\left\|S_{\theta} u\right\|_{H^{s}} \leqslant C_{s} \theta^{s-s^{\prime}}\|u\|_{H^{s^{\prime}}}$, if $s \geqslant s^{\prime}$.
$\left(\mathrm{S}_{3}\right)\left\|u-S_{\theta} u\right\|_{H^{s}} \leqslant C_{s} \theta^{s^{\prime}-s}\|u\|_{H^{s}}$, if $s \geqslant s^{\prime}$.
One way to obtain the smoothing operators is the following: Consider a smooth domain $\tilde{D} \supset D$. We can extend functions u in $H^{s}(D)$ to a function \tilde{u} of $\dot{H}^{s}(\tilde{D})$, and satisfies

$$
\|\tilde{u}\|_{H^{s}(\tilde{D})} \leqslant C_{s}\|u\|_{H^{s}(D)} .
$$

Suppose \tilde{S}_{θ} be a family of smoothing operator in $\dot{H}^{s}(\tilde{D})$ satisfying $\left(\mathrm{S}_{1}\right)-\left(\mathrm{S}_{3}\right)$. Then we define S_{θ} in $H^{s}(D)$ by $S_{\theta} u=\left.\tilde{S}_{\theta} \tilde{u}\right|_{D}$. It is easy to prove S_{θ} satisfies $\left(\mathrm{S}_{1}\right)-\left(\mathrm{S}_{3}\right)$.

Nash-Moser-Hörmander's scheme. Choose $\mu_{n}=2^{n}, S_{n}=S_{\mu_{n}}$, and $w_{0}=0$. We will construct w_{n} by induction on n as follows: Suppose $w_{0}, w_{1}, \cdots, w_{n}$ have been chosen. Define $w_{n+1}=w_{n}+\rho_{n}$ where ρ_{n} is the solution of

$$
\begin{align*}
& L_{\theta_{n}}\left(v_{n}\right) \rho_{n}=g_{n} \quad \text { in } D, \tag{2.1}\\
& \rho_{n}\left(x_{0}, y\right)=\rho_{n}\left(-x_{0}, y\right)=0,
\end{align*}
$$

where v_{n} is defined as $v_{n}=S_{\mu_{n}} w_{n}$,

$$
\begin{equation*}
\theta_{n}=\left|G\left(v_{n}\right)\right|_{L^{\infty}}, \tag{2.2}
\end{equation*}
$$

and g_{n} will be specified later. For $j \leqslant n$, the quadratic error Q_{j} is defined as:

$$
\begin{aligned}
& G\left(w_{j+1}\right)=G\left(w_{j}\right)+L\left(w_{j}\right) \rho_{j}+Q_{j}\left(w_{j}, \rho_{j}\right) \\
& \quad=G\left(w_{j}\right)+L_{\theta_{j}}\left(w_{j}\right) \rho_{j}-\theta_{j} \chi_{1}\left(\rho_{j}\right)_{y y}+Q_{j}\left(w_{j}, \rho_{j}\right) \\
& \quad=G\left(w_{j}\right)+L_{\theta_{j}}\left(v_{j}\right) \rho_{j}+\left(L_{\theta_{j}}\left(w_{j}\right)-L_{\theta_{j}}\left(v_{j}\right)\right) \rho_{j}-\theta_{j} \chi_{1}\left(\chi_{j}\right)_{y y}+Q_{j}\left(w_{j}, \rho_{j}\right)
\end{aligned}
$$

Denote

$$
\begin{gather*}
e_{j}=\left(L_{\theta_{j}}\left(w_{j}\right)-L_{\theta_{j}}\left(v_{j}\right)\right) \rho_{j}-\theta_{j} \chi_{1}\left(\rho_{j}\right)_{y y}+Q_{j}\left(w_{j}, \rho_{j}\right), \tag{2.3}\\
E_{j}=\sum_{i=0}^{j-1} e_{i} \tag{2.4}
\end{gather*}
$$

Hence $G\left(w_{j+1}\right)=G\left(w_{j}\right)+g_{j}+e_{j}$. If we set $g_{0}=-S_{0} G\left(w_{0}\right)$ and

$$
g_{j}=S_{j-1} E_{j-1}-S_{j} E_{j}+\left(S_{j-1}-S_{j}\right) G\left(w_{0}\right) \quad \text { for } j>0
$$

then

$$
\begin{align*}
G\left(w_{n+1}\right) & =G\left(w_{0}\right)+\sum_{j=0}^{n} g_{j}+E_{n}+e_{n} \\
& =G\left(w_{0}\right)-S_{n} G\left(w_{0}\right)-S_{n} E_{n}+E_{n}+e_{n} \tag{2.5}\\
& =\left(I-S_{n}\right) G\left(w_{0}\right)+\left(I-S_{n}\right) E_{n}+e_{n}
\end{align*}
$$

Theorem 2.1. Suppose $F \in C^{s_{*}}, s_{*}>6$, and ε is sufficiently small. Then the sequence $\left\{w_{n}\right\}$ converges to a solution w of (0.4) in $H^{s *-1}$.

In the following, we will give a proof of convergence of w_{n}. The proof is essentially the same as the usual proof of Nash-Moser-Hörmander's scheme. We include it for convenience. We will use the notation $\|u\|_{s}$ to denote Sobolev norm $\|u\|_{H^{s}}$.

First, recall a well-known lemma.
Lemma 2.2. For any two functions u, v, the following inequality is true:

$$
\left\|D^{\alpha} u D^{\beta} v\right\|_{L^{2}} \leqslant C_{s}\left\{\|u\|_{L^{\infty}}\|v\|_{H^{s}}+\|u\|_{H^{s}}\|v\|_{L^{\infty}}\right\},
$$

where

$$
D^{\alpha}=\frac{\partial^{\alpha_{1}+\cdots+\alpha_{n}}}{\partial x^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}}, \quad s=\alpha_{1}+\cdots+\alpha_{n}+\beta_{1}+\cdots+\beta_{n} .
$$

This inequality follows from interpolational inequality immediately.
Fix an integer $\tilde{s}>0$, and ε is chosen sufficiently small so that estimate (1.21) can be applied for $0 \leqslant s \leqslant \tilde{s} .0<\bar{\varepsilon}<1, b>0$ are fixed. b will be chosen as large as possible. We want to find constant $C_{1}, C_{2}, \cdots, C_{6}$, and δ which depends only on \tilde{s}, and $\bar{\varepsilon}$, and independent of j, such that the following inequalities are true:
$\left(\mathrm{P}_{1}\right)_{\mathrm{j}}$

$$
\left\|\rho_{j-1}\right\|_{s} \leqslant \delta \mu_{j-1}^{s-b} \quad \text { for } 0 \leqslant s \leqslant \tilde{s} ;
$$

$$
\left\|w_{j}\right\|_{s} \leqslant \begin{cases}C_{1} \delta & \text { if } s-b \leqslant-\bar{\varepsilon} \tag{P2}\\ C_{1} \delta \mu_{j}^{s-b} & \text { if } s-b \geqslant \bar{\varepsilon}\end{cases}
$$

$$
\begin{equation*}
\left\|w_{j}\right\|_{6} \quad \text { and } \quad\left\|v_{j}\right\|_{6} \leqslant 1 \tag{P3}
\end{equation*}
$$

$$
\begin{equation*}
\left\|w_{j}-v_{j}\right\|_{s} \leqslant C_{2} \delta \mu_{j}^{s-b} \quad \text { for } 0 \leqslant s \leqslant \tilde{s} ; \tag{P4}
\end{equation*}
$$

$$
\left\|v_{j}\right\|_{s} \leqslant \begin{cases}C_{3} \delta & \text { if } s-b \leqslant-\bar{\varepsilon} \tag{P5}\\ C_{3} \delta \mu_{j}^{s-b} & \text { if } s-b \geqslant \bar{\varepsilon}\end{cases}
$$

$$
\begin{equation*}
\left\|e_{j-1}\right\|_{s} \leqslant C_{4} \delta^{2} \mu_{j-1}^{s-b} \quad \text { for } 0 \leqslant s \leqslant \tilde{s}-2 ; \tag{P6}
\end{equation*}
$$

$$
\begin{equation*}
\left\|g_{j}\right\|_{s} \leqslant C_{5} \delta^{2} \mu_{j}^{s-b} \quad \text { for } 0 \leqslant s \leqslant \tilde{s} \tag{P7}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{j} \leqslant C_{6} \delta \mu_{j}^{4-b} . \tag{P8}
\end{equation*}
$$

We will prove $(\mathrm{P} 1)_{\mathrm{j}}-(\mathrm{P} 8)_{\mathrm{j}}$ by induction on j. At the beginning, we may assume $G\left(w_{0}\right) \in H^{s *}$ and ε is very small so that $(\mathrm{P} 1)_{0}-(\mathrm{P} 8)_{0}$ is true. For $j=0$, we only have to check (P7) $)_{0}$ and $(\mathrm{P} 8)_{0}$. Now suppose $(\mathrm{P} 1)_{\mathrm{j}}-(\mathrm{P} 8)_{\mathrm{j}}$ are true for $0 \leqslant j \leqslant n$, and we want to prove $(\mathrm{P} 1)_{\mathrm{n}+1}-(\mathrm{P} 8)_{\mathrm{n}+1}$.
$(\mathrm{P} 1)_{\mathrm{n}+1}$: Applying Corollary 1.4, we have for $0 \leqslant s \leqslant \tilde{s}$,

$$
\begin{aligned}
\left\|\rho_{n}\right\|_{s} & \leqslant C_{s}\left\{\left\|g_{n}\right\|_{s}+\left\|v_{n}\right\|_{s+4}\left\|g_{n}\right\|_{2}\right\} \\
& \leqslant C_{s}\left\{C_{5} \delta^{2} \mu_{n}^{s-b}+C_{3} C_{5} \delta^{2} \mu_{n}^{s+4-b} \mu_{n}^{2-b}\right\} \\
& \leqslant C_{s}\left(C_{5}+C_{3} C_{5}\right) \delta^{2} \mu_{n}^{s-b},
\end{aligned}
$$

provided $6 \leqslant b$. Hence, if δ is small, $\left\|\rho_{n}\right\|_{s} \leqslant \delta \mu_{n}^{s-b}$.

$$
\begin{aligned}
&(\mathrm{P} 2)_{\mathrm{n}+1}: w_{n+1}=w_{n}+\rho_{n}=\sum_{j=0}^{n} \rho_{j}, \\
&\left\|w_{n+1}\right\|_{s} \leqslant \sum_{j=0}^{n}\left\|\rho_{j}\right\|_{s} \leqslant \delta \sum_{j=0}^{n} \mu_{j}^{s-b} .
\end{aligned}
$$

If $s-b \leqslant-\bar{\varepsilon},\left\|w_{n+1}\right\|_{s} \leqslant \delta \sum_{j=0}^{\infty} \mu_{j}^{-\bar{\varepsilon}}=C_{1} \delta$; if $s-b \geqslant \bar{\varepsilon}$,

$$
\begin{aligned}
\left\|w_{n+1}\right\|_{s} & \leqslant \delta \mu_{n+1}^{s-b} \sum_{j=0}^{n}\left(\frac{\mu_{i}}{\mu_{n+1}}\right)^{s-b} \\
& \leqslant \delta \mu_{n+1}^{s-b} \sum_{j=0}^{\infty}\left(2^{-j}\right)^{\bar{\varepsilon}}=C_{1} \delta \mu_{n+1}^{s-b} .
\end{aligned}
$$

$(\mathrm{P} 3)_{\mathrm{n}+1}:\left\|w_{n+1}\right\|_{6} \leqslant C_{1} \delta$ by (2.6) and (P2) $)_{\mathrm{n}+1}$,

$$
\left\|v_{n+1}\right\|_{6} \leqslant \tilde{C}\left\|w_{n+1}\right\|_{6} \leqslant C_{1} \tilde{C} \delta,
$$

so if δ is chosen very small, then

$$
\left\|w_{n+1}\right\|_{6} \leqslant 1 \quad \text { and } \quad\left\|v_{n+1}\right\|_{6} \leqslant 1
$$

(P4) $)_{n+1}$: For $0 \leqslant s \leqslant \tilde{s}$,

$$
\begin{aligned}
\left\|w_{n+1}-v_{n+1}\right\|_{s} & =\left\|w_{n+1}-S_{\mu_{n+1}} w_{n+1}\right\|_{s} \leqslant C_{s} \mu_{n+1}^{s-\tilde{s}}\left\|w_{n+1}\right\|_{\tilde{s}} \\
& \leqslant C_{s} C_{1} \delta \mu_{n+1}^{s-\tilde{s}} \mu_{n+1}^{\tilde{s}-b} \equiv C_{2} \delta \mu_{n+1}^{s-b} .
\end{aligned}
$$

(P5) $)_{\mathrm{n}+1}:\left\|v_{n+1}\right\|_{\tilde{s}+4} \leqslant C_{s} \mu_{n+1}^{4}\left\|w_{n+1}\right\|_{\tilde{s}} \leqslant C_{s} C_{1} \delta \mu_{n+1}^{\tilde{s}+4-b}$,

$$
\begin{aligned}
\left\|v_{n+1}\right\|_{b+\bar{\varepsilon}} & \leqslant\left\|v_{n+1}-w_{n+1}\right\|_{b+\bar{\varepsilon}}+\left\|w_{n+1}\right\|_{b+\bar{\varepsilon}} \\
& \leqslant\left(C_{2} \delta+C_{1} \delta\right) \mu_{n+1}^{\bar{\varepsilon}} .
\end{aligned}
$$

Using interpolational inequality for $b+\bar{\varepsilon} \leqslant s \leqslant \tilde{s}+4$,

$$
\left\|v_{n+1}\right\|_{s} \leqslant C_{3} \delta \mu_{n+1}^{s-b} .
$$

For $0 \leqslant s \leqslant b-\bar{\varepsilon}$, we have

$$
\left\|v_{n+1}\right\|_{s} \leqslant C_{s}\left\|w_{n+1}\right\|_{s} \leqslant C_{1} C_{s} \delta .
$$

(P6) ${ }_{\mathrm{n}+1}: e_{n}=\left(L_{\theta_{n}}\left(w_{n}\right)-L_{\theta_{n}}\left(v_{n}\right)\right) \rho-\theta_{n} \chi_{1}\left(\rho_{n}\right)_{y y}+Q_{n}\left(w_{n}, \rho_{n}\right)$

$$
\begin{aligned}
& \equiv e_{n}^{\prime}+e_{n}^{\prime \prime}+e_{n}^{\prime \prime \prime}, \\
e_{n}^{\prime} & =\left(L_{\theta_{n}}\left(w_{n}\right)-L_{\theta_{n}}\left(v_{n}\right)\right) \rho_{n} .
\end{aligned}
$$

Using Lemma 2.1, we have

$$
\begin{aligned}
\left\|e_{n}^{\prime}\right\|_{0} & \leqslant C\left\|w_{n}-v_{n}\right\|_{3}\left\|\rho_{n}\right\|_{3} \leqslant C_{2} \delta^{2} \mu_{n}^{3-b} \mu_{n-1}^{3-b} \\
& =C_{2} \delta^{2}\left(\frac{1}{2}\right)^{3-b} \mu_{n}^{6-2 b}=\left(2^{b-3} C_{2} \delta^{2}\right) \mu_{n}^{6-b} \mu_{n}^{-b} \leqslant 2^{b-3} C_{2} \delta^{2} \mu_{n}^{-b},
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|e_{n}^{\prime}\right\|_{\tilde{s}-2} & \leqslant C\left\{\left\|w_{n}-v_{n}\right\|_{\tilde{s}}\left\|\rho_{n}\right\|_{C^{2}}+\left\|w_{n}-v_{n}\right\|_{C^{2}}\left\|_{n}\right\|_{\tilde{s}}\right\} \\
& \leqslant C\left\{\left\|w_{n}-v_{n}\right\|_{\tilde{s}}\left\|\rho_{n}\right\|_{4}+\left\|w_{n}-v_{n}\right\|_{4}\left\|\rho_{n}\right\|_{\tilde{s}}\right\} \\
& \leqslant C\left\{C_{2} \delta^{2} \mu_{n}^{\tilde{s}-b} \mu_{n}^{4-b}+C_{2} \delta^{2} \mu_{n}^{4-b} \mu_{n}^{\tilde{s}-b}\right\} \\
& \leqslant 2 C C_{2} \delta^{2} \mu_{n}^{(\tilde{s}-2)-b} \mu_{n}^{6-b} \leqslant 2 C C_{2} \delta^{2} \mu_{n}^{(\tilde{s}-2)-b}
\end{aligned}
$$

by (2.6). Then, using interpolational inequality, we have, $0 \leqslant s \leqslant \tilde{s}-2$, $\left\|e_{n}^{\prime}\right\|_{s}$ $\leqslant C_{s} \delta^{2} \mu_{n}^{s-b}$ for some constant C_{s}. Thus

$$
\left\|e_{n}^{\prime \prime}\right\|_{s} \leqslant C_{s} \theta_{n}\left\|\rho_{n}\right\|_{s+2} \leqslant C_{s} C_{6} \delta^{2} \mu_{n}^{4-b} \mu_{n}^{s-b+2} \leqslant C_{s} C_{6} \delta^{2} \mu_{n}^{s-b},
$$

here we use (P8) ${ }_{n}$. Since

$$
e_{n}^{\prime \prime \prime}=G\left(w_{n+1}\right)-G\left(w_{n}\right)-L\left(w_{n}\right) \rho_{n}=\int_{0}^{1}(1-t) \frac{\partial^{2}}{\partial t^{2}} G\left(w_{n}+t \rho\right) d t
$$

using Lemma 2.1, we have

$$
\left\|e_{n}^{\prime \prime \prime}\right\|_{0} \leqslant C\left(\left\|w_{n}\right\|_{C^{2}(D)}+\left\|w_{n+1}\right\|_{C^{2}(D)}\right)\left\|\rho_{n}\right\|_{3}^{2} \leqslant \tilde{C} \delta^{2} \mu_{n}^{2(3-b)} \leqslant \tilde{C} \delta^{2} \mu_{n}^{-6},
$$

here we use (P3),$(P 3)_{n+1}$, and (P1) ${ }_{n+1}$. Similarly,

$$
\begin{aligned}
\left\|e_{n}^{\prime \prime \prime}\right\|_{\tilde{s}-2} & \leqslant C\left\{\left(\left\|w_{n+1}\right\|_{\tilde{s}}+\left\|w_{n}\right\|_{\tilde{s}}\right)\left\|\rho_{n}\right\|_{4}^{2}+\left(\left\|w_{n+1}\right\|_{4}+\left\|w_{n}\right\|_{4}\right)\left\|\rho_{n}\right\|_{4}\left\|\rho_{n}\right\|_{\tilde{s}}\right\} \\
& \leqslant C\left\{2 C_{1} \delta^{3} \mu_{n+1}^{\tilde{s}-b} \mu_{n}^{2(4-b)}+\delta^{2} \mu_{n}^{\tilde{s}-b+4-b}\right\} \leqslant \tilde{C}_{1} \delta^{2} \mu_{n}^{\tilde{s}-2-b} .
\end{aligned}
$$

By interpolational inequality, we have, for $0 \leqslant s \leqslant \tilde{s}-2$,

$$
\left\|e_{n}^{\prime \prime \prime}\right\|_{s} \leqslant \tilde{C}_{1} \delta^{2} \mu_{n}^{s-b}
$$

Combining estimates of $\left\|e_{n}^{\prime}\right\|_{s},\left\|e_{n}^{\prime \prime}\right\|_{s},\left\|e_{n}^{\prime \prime \prime}\right\|_{s}$, we have proved (P6) ${ }_{\mathrm{n}+1}$.

$$
\begin{gathered}
(\text { P7 })_{n+1}: g_{n+1}=S_{n} E_{n}-S_{n+1} E_{n+1}+\left(S_{n}-S_{n+1}\right) G\left(w_{0}\right) \\
=\left(S_{n}-S_{n+1}\right) E_{n}-S_{n+1} e_{n}+\left(S_{n}-S_{n+1}\right) G\left(w_{0}\right) ; \\
E_{n}=\sum_{j=0}^{n-1} e_{j} ;
\end{gathered}
$$

$$
\begin{equation*}
\left\|E_{n}\right\|_{\tilde{s}-2} \leqslant \sum_{j=0}^{n-1}\left\|e_{j}\right\|_{\tilde{s}-2} \leqslant C_{4} \delta^{2} \sum_{j=0}^{n-1} \mu_{j}^{s-2-b} \leqslant C_{4} \delta^{2} \mu_{n}^{\tilde{s}-2-b} \tag{2.7}
\end{equation*}
$$

provided $\tilde{s}-2-b>0$;

$$
\left\|g_{n+1}\right\|_{0} \leqslant C_{s}\left\{\mu_{n}^{2-\tilde{s}}\left\|E_{n}\right\|_{\tilde{s}-2}+\left\|e_{n}\right\|_{0}+\mu_{n}^{-s_{*}}\left\|G\left(w_{0}\right)\right\|_{s_{*}}\right\} \leqslant C_{4}^{\prime} \delta^{2} \mu_{n+1}^{-b}
$$

provided ε is sufficiently small and

$$
\begin{equation*}
s_{*} \geqslant b \tag{2.8}
\end{equation*}
$$

$\left\|g_{n+1}\right\|_{\tilde{s}} \leqslant C\left\{\mu_{n+1}^{2}\left\|E_{n}\right\|_{\tilde{s}-2}+\mu_{n+1}^{2}\left\|e_{n}\right\|_{\tilde{s}-2}+\mu_{n+1}^{\tilde{s}-s_{*}}\left\|G\left(w_{0}\right)\right\|_{s_{*}}\right\} \leqslant C_{4}^{\prime \prime} \delta^{2} \mu_{n+1}^{\tilde{s}-b}$.

By interpolational inequality, we have proved $(\mathrm{P} 7)_{\mathrm{n}+1}$.

$$
(\mathrm{P} 8)_{\mathrm{n}}: \theta_{n+1}=\left\|G\left(v_{n+1}\right)\right\|_{L^{\infty}} . \mathrm{By}(2.5),
$$

$$
\begin{aligned}
G\left(v_{n+1}\right) & =G\left(w_{n+1}\right)+G\left(v_{n+1}\right)-G\left(w_{n+1}\right) \\
= & \left(I-S_{n}\right) G\left(w_{0}\right)+\left(I-S_{n}\right) E_{n}+e_{n}+G\left(v_{n+1}\right)-G\left(w_{n+1}\right) . \\
\left\|G\left(v_{n+1}\right)\right\|_{L^{\infty}} \leqslant & C\left\{\left\|\left(I-S_{n}\right) G\left(w_{0}\right)\right\|_{2}\right. \\
& \left.\quad+\left\|\left(I-S_{n}\right) E_{n}\right\|_{2}+\left\|e_{n}\right\|_{2}+\left\|v_{n+1}-w_{n+1}\right\|_{4}\right\} \\
\leqslant & C\left\{\mu_{n}^{2-s_{*}}\left\|G\left(w_{0}\right)\right\|_{s_{*}}+\mu_{n}^{4-\tilde{s}}\left\|E_{n}\right\|_{\tilde{s}-2}+\mu_{n}^{2-b}+\left\|v_{n+1}-w_{n+1}\right\|_{4}\right\} \\
\leqslant & C\left\{\mu_{n}^{2-s_{*}}\left\|G\left(w_{0}\right)\right\|_{s_{*}}+C_{4}^{\prime} \delta^{2} \mu_{n}^{\tilde{s}-2-b+4-\tilde{s}}+C_{2} \delta^{2} \mu_{n+1}^{4-b}\right\} \leqslant C_{6} \delta \mu_{n+1}^{4-b} .
\end{aligned}
$$

Hence, if we assume (2.6), (2.7), and (2.8), we have proved the induction step.
Proof of Theorem 2.1. Suppose $s_{*}>6$. Choose $b=s_{*}-1 / 2, \bar{\varepsilon}=1 / 2$. For $n \geqslant m, s<b$,

$$
\left\|w_{n}-w_{m}\right\|_{s} \leqslant \sum_{j=m}^{n}\left\|\rho_{j}\right\|_{s} \leqslant \delta \sum_{j=m-1}^{n-1}\left(2^{-j}\right)^{b-s}<+\infty .
$$

Hence w_{n} converges to w in $H^{s_{*}-1}$. By (2.15),

$$
G\left(w_{n+1}\right)=\left(I-S_{n}\right) G\left(w_{0}\right)+\left(I-S_{n}\right) E_{n}+e_{n} .
$$

By (P6) $)_{\mathrm{j}}$, we have $\lim _{n \rightarrow+\infty}\left\|G\left(w_{n+1}\right)\right\|_{s_{*}-1}=0$. Hence $G(w)=0$, i.e., we have found a solution of (0.4).

Remark. Suppose our original metric is C^{s}. Then

$$
F\left(\varepsilon, x, y, \nabla w, \nabla^{2} w\right) \in C^{s-3}
$$

By Theorem 2.1, we require $s-3>6$, i.e., $s>9$ and the solution $w \in H^{s-4}$ $\subset C^{s-6}$.

References

[1] R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982) 65-222.
[2] H. Jacobowitz, Local isometric embeddings of surfaces into Euclean four space, Indiana Univ. Math. J. 21 (1971) 249-254.
[3] J. J. Kohn \& L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967) 797-872.
[4] A. V. Pogorelov, An example of a two-dimensional Riemannian metric not admitting a local realization in E_{3}, Dokl. Akad. Nauk, USSR 198 (1971) 42-43.

[^0]: Received November 12, 1984. Supported in part by the NSF Grants MCS-8108814 (A02) and DMS-8301394.

