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THE LOCAL ISOMETRIC EMBEDDING IN R? OF
2-DIMENSIONAL RIEMANNIAN MANIFOLDS
WITH NONNEGATIVE CURVATURE

CHANG-SHOU LIN

0. Introduction

In this paper, we will study the local isometric embedding into R*® of
2-dimensional Riemannian manifold. Suppose that the first fundamental form
Edu®+ 2Fdudv + Gdv? is given in a neighborhood of p. We want to find
three functions x(u, v), y(u,v), z(u, v), such that

(0.1) dx? + dy? + dz* = Edu® + 2Fdudv + Gdv*®

in a neighborhood of p.

This embedding problem has already been solved when the Gaussian
curvature K does not vanish at p. It is still an open problem when K vanishes
at p. Actually, A. V. Pogorelov gave a counterexample that there exists a C>!
metric with no C? isometric embedding in R>. In Pogorelov’s example, in any
neighborhood of p, there is a sequence of disjoint balls in which the metric is
flat. And the Gaussian curvature K of this metric is nonnegative. The main
theorem of the paper is the following.

Main Theorem. Suppose that the Gaussian curvature of a C° metric is
nonnegative for s > 10, then there exists a C*~ isometric embedding in R>.

Instead of studying the nonlinear system (0.1) of first order, we will study a
second-order Monge-Ampére equation satisfied by a coordinate, say z. The
equation can be derived as follows: If the Gaussian curvature of Edu? +
2Fdudv + Gdv? — dz? vanishes, then z must satisfy

(0.2) (211 - Plilzi)(zzz - PZiZZi) _(212 - rfzz;)z
= K{EG — F*> - Ez} - Gz{ + 2Fz, - 2, } = K(u,v,Vz),
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where z, = (39z/0u), z, = (3z/0v), z,; are second derivative of z, and T}, are
symbols. Conversely, suppose z satlsfles (0.2), then the metric Edu® +
2Fdudv + Gdv* — dz? is flat. Hence there exists a coordinate system x, y,
such that dx? + dy? = Edu* + 2Fdudv + Gdv* — dz? which is (0.1).

In this paper, we will prove that there exists a smooth local solution of (0.2),
provided K is nonnegative.

We may assume p is the origin (0,0), and K(0,0,0) = 0. Set u = &’x,
v = g%y, z = (v2/2) + £’w. (0.2) becomes

(sw — e Thy — e3F1’1wxl)(1 + ew,, — e Thy — €3F212Wx,)
—(ew -’ Thy - e3l"1’2wx,)2 — K(e*x, €%y, e8vw) =0,

where x; = x, x, = y. Cancelling ¢ on both sides, we have

(0.3) W, + eI:"(e,x, y,Vw, Vzw) =0,

where

F(e,x,y,vw, viw) = ( —elfy—e Flllwx,)(wyy —elhy - fzrzlzwx,)
—( eruy 2I'llzw ) Fny eF{lwxl—(K(ezx,ezy,e3Vw))/ez.

Fix x4, yo > 0, consider a rectangle D: D = {(x, y)||x| < x¢, |¥| < Yo}
Choose two nonnegative cut-off function x; € C*(D) as follows:

. Yo . 3y
1 if|Y|< 3, 1 if|y|< 4",
X117 3 X2 =
. Yo o
0 1f|y|>—4 , 0 if|y|> 3

cut-off the nonlinear term by

F(e, x,y,vw,v?w)

= xo{ (e = Ty = 0w, ) (v, = eTy = T,

)2 3 K(&%x, €%y, e2vw) }

_ T2, 2!
(le elpy —¢ F12wx, 2

€
_€X2(r11W T11y>
In the following, we will consider the following equation instead of (0.3):
(0.4) w,, + eF(e,x, y,vw, v?w) = 0.
For any smooth function w defined in D, define
(0.5) G(w) =w,, + eF(e,x,y,Vw, V2w).
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Lemma 0.1.  Suppose |w|c>py < 1, and 8 > O be a constant such that
|G(w) |z=p) < 6.
Then if ¢ is sufficiently small, Ly(w)p = L(w)p + 0x.p,, is a degenerate
elliptic second-order equation where L(w)p is the linearized equation of (0.4)
about w.
Proof. Suppose the linearized equation is L(w)p = p,, + el a; Pxix, T
lower order term. We want to prove the determinant of

1+ ea ea
A - 11 12
ea,, eay, + 0x;,

is nonnegative. The determinant is, after a straight computation,
eay (1 + eay) — e%ad + O0x,(1 + eay;) = ex;G(w) + x2K + 0x,(1 + eay,).
In the computation, we use x; - x, = X;- So if € is small, then the determinant
> 0. qed.
In the following sections, we will prove that there exists a smooth solution of
(0.4). In §1, we will study existence, regularity, and estimates of the degenerate
elliptic equation Ly(w). In §2, we will modify the Nash-Moser-Hormander’s

iterative scheme to solve (0.4). Then we will complete the proof of the Main
Theorem.

1. Linear theory
In this section L will represent as a degenerate elliptic operator of second-
order defined in a rectangle D = {(x, y)||x| < x4, |¥| <)o} Consider the
following boundary value problem:
2
Lo=p, + Y ;P + 410+ a0, +ap =g in D;
(1.1) ij=1
p(x9,¥) = p(=xg,y) = 0.
Assumption. All the coefficients a,;, a;, and a vanish near y = +y,. And
Xla,lcs + la;lcs + lalcs < Coe, where G is a fixed constant.
Set
p(x’y)=u(x’y)e—>\x2’ A>0.
Then (1.1) becomes

2 2
Lu=u,+ Y aju,, + 2 bu, +hu= Mg,
(1.2) ij=1 i=1

“(xo’Y) = u(—xo,y) =0,
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where
b, = —4(1 + a;))Ax + a,
(1.3) b, = —4a;,Ax + a,,
h==2(1+a;)A+ 4(1 + a;;)Nx? — 2b)Ax + a.

Instead of studying equation (1.2), we will consider the following regulariza-
tion of (1.2):

82
Lu= —V[D*D -—

u+ Lu=g in D;
0x2

(1.4)
u(xy,y) =u(—xp,y)=0

where Du = (yZ — y?)(du/dy), D* is the adjoint of D, and » > 0 is a small
constant. A will be chosen large but independent of » and e, and always
satisfies Ax, < 1.

Theorem 1.1. Suppose all coefficients are smooth and €, v are small. Then
there exists sy(e,v) > 0 such that for any g € H°(D), s < s,, there exists a
unique solution u € H*(D) of (1.4) and the following estimates are true:

(1.5) lullz < C{l gl + T(s)llulle},

where

I(s)=X% {”aij”HHZ +5;

i,j

e A

IH“T}’

and C; is a constant which is independent of v and e.

H* is the Sobolev space with the norm: ||ul| g« = (£, < || Dul|72)"/* where
D is any ath derivative.

Throughout the section, C always be a constant which is independent of »,
and will change from line to line. A > 0 will be a fixed number throughout. We
will divide the proof of Theorem 1.1 into several lemmas. First, we will prove
the existence of weak solution of (1.4).

Suppose u, ¢ are smooth functions and satisfy the boundary conditions

u(xg, y) = u(—=xq, y) = ¢(xq, y) = ¢(—xo, ) = 0. Then
0,(¢,u)= —(¢,Lu)= v[/ ou, +fD¢Du} -I-f ou, +/a,jux¢

35 (o ; ) o=
[0

Nl»—a
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Define H! as the space consisted of functions u such that u, Du, u_ are in
L*(D), and satisfy u(x,, y) = u(—xy, y) =0
aalll = llwllz2 + | a2 + [, || 2

Lemma 1.2 (existence of weak solution). Given g € L*(D), then there exists
a unique u € H*' such that

0,(¢,u)= —(¢,8) forany¢ € H.
Proof. Q,(¢,u)is a bounded bilinear form of H'. We want to prove

(1.6) 0,(6,¢) > Clisll> Ve e H.

Because 3b,/0x involves A, we write

0.(6.6)=»|[ 2+ ID¢IZ]+f¢3+élf “3e o
,82
axax )}d)z
We note

= = - _ 2
fb2¢<i> 2fb28y 2/6 ¢, sothatfb2¢y¢<Csf¢.
Thus we only have to estimate [ b,¢,¢. Suppose A; > A, be eigenvalues of
(1 + ay, au)

_éfb,.¢x’¢+f[ h+Z

a1, a

and v', v? are unit eigenvectors such that

= (4]0 o= (-0

near y = +y,. Define ¢,, ¢, by the following

Px
(1.7) (qb = ¢, 0" + 0%,
y
since v? is the eigenvector with eigenvalue A ,,
2
a,,v
U% - _ 122

1 + au - Az

is small. Also by the relation of u,, u, u,, u,, we have
1 2,2

vip, + vlvz¢y

1-(o})’

(1.7 b, =

X
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and therefore

1 bivi(e?)y b,vi19
e

1‘(”1) ("1)2

1 a bIU%l)% 2 b1011¢1¢
= — — _——— ¢) _—
2/ V1-(a1) /1—(vil)2

Hence
[ bss|<cfe+3 [ N,

where we use Schwartz inequality and the fact that A, is close to 1 when & is
small, and C is a constant independent of A. Here Ax, < 1 is required. Hence,
if A — C>1,then

0.(¢,9) > v[f o+ [ |D¢|2]

+%f Mot + [ Agd + (A= ) f ¢ > vlloll.

Then we apply Lax-Milgram’s theorem to get a weak solution. q.e.d.

We will prove that the weak solution is smooth provided g is smooth. Since
L, is elliptic inside D, u may be supposed smooth inside D by regularity
theorem of elliptic equation. We only have to prove that u is smooth up to
boundary of D.

Lemma 1.3. Suppose g € H(D), vs* <1, X is large, and u is the weak
solution of (1.4), then u, Du,u, € H*(D).

Proof. Define a,(y) = 0 as follows:

(1.8)

ye—-y* if —yo+E<y<y,— &

(1.9) a,(y) =

>

N | o

. g
0 1f)’>)’o_§’)’<_YO+

where C, is a constant independent of & Define D.u = a,(du/0y). Differenti-
ating (1.4) by D,, we have L,D.u = D.g + [L,, D,]u. Taking the inner product
with D.u, we have

”[f IDEuxlz + IDDEUIZ] < —(Du, L,Du)

= —(Du,D.h) —(D.u,[L,, D.]u).
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Since we have already known u € H',

(Do, D,g) | < Dtz - Digl < .
where C, is independent of €. Thus

[(L,,D,]= -v[D*D,D,] +[L, D,]
= —v(D*[D,D,] +[D*, D] D) +[L, D],
|( D, D*[ D, D,]u)|=|(DDw, [D, D,]u)|
< C|Dul| 2 - || DDl 2 < G| DDl 2,

by (1.9). Similarly,

(D, [D*, D] Du) || < C;l| DDu] .

b

Because each term in [L, D;] involves a,;, b,, and y-derivatives of a,;, b,
which vanish near y = +y,, [L, D] = [L, D] for & is small. Combining all
estimates, gives

2 2
o [ 10wl + [ 10DF) < DDl

so that

[ 1Das,l* + [ |DDal* < (),
where C is a constant independent of &. Taking the limit £ — 0, we have
f IDux|2+f |D2u]2< + 0.
From (1.4) we also conclude
u,, € L*D).
Define
1 if y2<yf — &%,
a(y) =10 if y2=)2
linear in between.

Define D,u = a,(y)(du/dy),and Du = (y¢ — yH(Qu/dy) = a(y)du/dy). By
the previous step, we know
DD.u, Du, € L*(D).
Differentiating (1.4) by D,, we have
Lv(beu) = I.)Eg +[L,, bz]“-
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Taking the inner product with D.u, yields
2| [ 19Dl + 1D P + (= ©)l Bl
< _(Déu9 bég) + (Déu9 [Dz’ Lv]“)’
by (1.8).
[L,, D)= —v[D*, D,]D - »D*[D, D] +[L, D],

%, a)d
oy %oy oy

Since (3d,/dy) = const # 0 only for y2 — &> < y? < y2, [D, D,Ju| < C,|D,ul,
for some constant C; independent of &. Thus

I(D::u’ D*[D* De]“) l < Cz” DZ)E“HL2 : " DE””LZ'

Similarly, we have

[D,D,] = (a

|(D, [D*, D,] Du) | < (|| DDl 2 + 1) ]| Dyt -
As before, [ L, D] is independent of & if € is small. Hence, we have
10 L1PPal: +1Dalia] + (0= )l Dl
< Co{IDaull 2 I gl + v DDyl 2 - || Do 2 + || Do 2 }
for a constant C, independent of & Using Schwartz inequality, we have
IDDaul|,> + 1| Dau, fl 2 + 1| Dl 2 < Cs

independent of & Taking the limit €0, we have u , Du ,u,, € L?, which is
the case s = 1.

We can prove Lemma 1.3 by induction on s. Now suppose u, u,, Du € H*;
we want to prove u, u,, Du € H**1, Differentiating (1.4) by 9°/9y°, we have

s s - 2.2 s
L)+ 20220 2] S0, )
(1.11) 7 ' .o
= g + other term = g
ays - gs'

The other term in the above expression consists of derivatives of order s + 1,
or s with vanishing coefficients near y = +y,, and derivative of order < s;
hence g, € H'(D). As the same proof in the previous step, it is easy to prove

DZ(gy‘f) and D(Zy";) in L3(D).
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Differentiating (1.11) by D, and doing the same steps as (1.10), we have

s, 112 s+1 2
o| 100,24 +|p. 24 | +(a - ¢)|b,L¥
0y°|| ;2 dy°ox| . 0y°|l 2
. - 0%u ” 0°u — 0°u
<C sl || Den— DDE Eas
4{”g ”H ay 12 ay ay 2
s s 2
N o] . 'D;a‘ﬁ }
ay 2 8y 12
Hence if »s% < 1 and A is large, then
s s+1 s
pp, 2" o+ p o ul |pdu
eay ansax L say: .

is bounded and independent of &. Taking the limit & | 0, we prove
as+1u as+2u as+1

Y e L¥(D).

S+1° s+d1x’ ay:+1

dy dy
From (1.4), 1 + v + ay;)u,, = g + D*Du + terms with coefficients vanishing
on y = ty,+ lower order terms. Differentiating the above express by
(8% /3x*)(3°~%/9y*~*), k=0,1,2,---,s, we conclude with u, € H**(D).
The fact
0°u 0‘u
9y’ 9y*
implies u, Du and u, € H**'( D). Thus we have finished the induction step.
Proof of Theorem 1.1. To prove estimate (1.5), we may assume g and u are
both smooth functions. Differentiating (1.4) by 9°/9y*, we have

0°u) 0% 0°
L,,( ay‘) =9 + [L,,, ays]u.

0°u 9°
(5;’ [Lwa—ys]“)'

We want to estimate

Since
[D*D ]u——2D* “
dy
u , da du a_aD(al)2
3y’ 3y6y dy ~\ oy’
_ 1| peda(du)’ 0°u
—ZWD ay(ay‘) <cf 3y’
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we have
LR
d'u

(1.12) (?-—’j-,[D*D, as]u) -

dy dy ay'|l 2
Let D* denote any derivative of order |a|. We will use following inequalities
which come from interpolational inequalities immediately:

(1.13) ID*uD?v |2 < C(llull=llvllae +llullmlloll=),
where |a| + |B| = s, and ||u||;» < C||u|| 2. Using integration by part and
(1.13), we can estimate

ou [ 00w
ay*’ ""f'ax,.ax,’ ay |*

< Cfllagllallulle +lulla -la .. )

<XC

I<s

1.14
(1.14) v
9y*|,

Similarly,

(55 e ]
(55 [+ 37 )
Combining (1.12), (1.14), (1.15) and the assumption, we have
[

F(S) = Z “aij ||Hs+2 + ”bk ”I-l'”rl + ”h
Now denote u°® = 9°u/dy*, and uj as defined in (1.7), i.e.,

us
X
3| =it + usv?
u
v

>

< G{lbllallulle +ullael ;]

o
9y*||,

)

o°u

(1.15) Wy

< C{llullw—|rle + Al el ullm}

L2

u

ay’

< C{(v + e)llullm + T(s)lullne}

bl
LZ
where

|

We want to prove the following inequalities by induction on s:

s 2 s 2 R R s 2
g L1 L 10T G + [ A + f ]
< Gfllgllm + T(s)lullm ).
(1.16)0 is just (1.8). Suppose we have proved (1.16)s-1. By (1.8),

o [ 1l + 10wl + 3 [ MG+ [ M) + (=€) f 1P

(1.17)s < = (v, L) <llwlle |l gl
+C{(v + e)llullw + T(s)llullm }u 2.
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By (1.7)" we have
g e < G0 s+l )
< Gllut 2 + ellwsz}

Solving for u, , from (1.4), and differentiating by
as—Z

(1.18)s

W’ k=0,-+,5—2,
we have
d°u < C{ 0°u d‘u
Axk+2gys—k-2|| = Tk axk1ay k| ax*ay k| 2

H@hawwmlﬂwmwuﬁ.

Summing over k,

oul ” °u
a)’s“L2 oy 'ox

fulbr < {hel +| |

ﬂwma+wmwoﬁ.

By (1.18)s and (1.16)s-1,

d°u _
Jubr < G| 5] g + Nl + DT (5) + Db
(1.19)s L
du
<c{|S4 el +lulr + hulwr(s))
Y2

Now we can estimate the right-hand side of (1.17)s,

o [ 1l + [ 10wF) + 3 [ MGut) + [ A+ (=€) f 1P

0°u 0°u
ay* 0y*
If C/(v + &) <land A — C > 2, we have

o[ 1l f 10w+ 3 f A+ sl + f
< S/ (ghr + Nl + JulleT(5)} Ju

Because of {1.19)s, this is equivalent to (1.16)s, and we finish the induction
proof. Then (1.5) follows from (1.16)s.

L

< C;{(v+ e)

gl uller + ““””2””}“

L2
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Hence we have proved Theorem 1.1. q.e.d.
Let L(w) be the linearized equation of G(w) = w_, + eF(e, x, y, Vw, V2w)
about w. Define

0 =[G(w)|r=py and Lg(w)p = L(w)p + 0x1p,,-

By Lemma 0.1, Ly(w) is a degenerate elliptic operator. In terms of w,

a,-j=saaTF, ai=e§—£.
ij i
Hence
layles and [a,]c < Celwles < Coelwlae.

Therefore we have the following.

Corollary 1.4. Suppose ||w|| s < 1 and ¢, 8, are sufficiently small, then there
exists an integer Sy(¢, 0) depending on ¢ and 0 such that if g € H*, 0 < s < sy,
then there exists a unique solution p € H°® of the equation:

Ly(w)p=g inD,;
p(x0,y) = p(=xo,y) = 0;
and furthermore the following estimates are true

(1.21) lollz < C{lgllm +Iwllm==sllplz2}-

Proof. Let L} be the regularization (1.4) and p” be the unique H*-solution.
In terms of w, we have

(1.20)

T(s) < eCl([lwlae=e +1).
For s > 2, Theorem (1.1) implies
lelle < C{llg wl e’ |2},

where C, is independent of ». Taking » — 0, we have the estimate (1.21). For
s = 0, (1.8) implies

w + vl

fuz < —(Lgu,u) = —(e""zg,u),

where u = e**’g. Therefore [u? < C[g?% For s =1, differentiate (1.20) by
d/dy. Using integration by parts,

ou 9
(@’ [Lﬂ’@]“)

By assumption ||w|| ;s < 1, we have

ou 0
(w [Lv’@]“)

2
< C(laij‘cl +|ailcz)”u”HI-

2
< Ceeflulm.
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By (1.8), we have

dul’ { 0g ou 2 }
—l < G(lF> —  + ellul[m}.
E)y 12 2 ay 12 ay L ” ”H
It is equivalent to
ag dp 2 }
< - + & 1),
“wy |5 |34+ <leli

We have

(1 + all)pxx =8~ Z aijpx,xj - Zaipx,’
G, H#1.D i

Multiplying p and integrating both sides,

[ o< &{llellgle + ol ).

Combining this and the above estimate of ||dp/dy|;2, we have ||p||;n <
C| gl s> provided & and 6 are small.

2.

In this section, we will modify the Nash-Moser-Hormander’s scheme to solve
the nonlinear equation:

w,, + eF(e,x,y,vYw,v*w) =0 in D;
w(xo,y) = w(=x9,y) =0

(2.1)

Smoothing operators S,. We have a family of smoothing operator S,, 6 > 1,
satisfying the following properties:

(S,) S4: H(D) —» Hs'(D) is a linear bounded operator for any s, s

(S2) ISpull g < CI*~* [l oy if 5 >

(S3) llu = Spull yor < CO°~*I[ul] e >

One way to obtain the smoothing operators is the following: Consider a
smooth domain D D D. We can extend functions u in H*(D) to a function #
of H*(D), and satisfies

Iz < Cllullm o).

Suppose S, be a family of smoothing operator in H5(D) satisfying (S1)-(S5).
Then we define S, in H°(D) by Spu = Syit| p. It is easy to prove S, satisfies
(81)-(S5).
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Nash-Moser-Hérmander’s scheme. Choose p, = 2%, S, =S, , and w, = 0.

We will construct w, by induction on »n as follows: Suppose wy, w;,- - -, w, have
been chosen. Define w, ,; = w, + p, where p, is the solution of

LO,,(Un)pn = 8&n in D’
Pa(x0, ¥) = p,(—x0,¥) =0,
where v, is defined as v, = S, w,,
(22) 0n=|G(Un)|L°°’
and g, will be specified later. For j < n, the quadratic error Q is defined as:
G(Wj+1) = G(Wj) + L(Wj)pj + Qj(wj’ Pj)
= G(w) + Lo (w)p; — Ox:(p)) ,, + Q,(w;,p))
= G(w) + Ly (00, + (Lo (w) = Ly (1)) 0, = Ox:(x,) ,, + Q,(w.0)).
Denote

(23) &= (Lo(w) = Ly (1))p; — 6x:(p)) ,, + Q;(w;.0)),

(2.1)

Jj-1
(2.4) E = goe,..

Hence G(w;,,) = G(w)) + g, + ;. If we set g, = —S;G(w,) and
g8 =S _.E_, - SE; +(Sj—1 - Sj)G(WO) for j > 0,

then
G(wn+l) = G(WO) + Z gj + En + €,
j=0
(2.5) =G(wy) —SG(wy) —S,E,+ E, + e,

=(1-5,)G(w) +(1 = S,)E, +e,.

Theorem 2.1. Suppose F € C**, s, > 6, and ¢ is sufficiently small. Then
the sequence {w,) converges to a solution w of (0.4) in H** .

In the following, we will give a proof of convergence of w,. The proof is
essentially the same as the usual proof of Nash-Moser-Hormander’s scheme.
We include it for convenience. We will use the notation [Ju||, to denote Sobolev
norm ||u|| gs.

First, recall a well-known lemma.

Lemma 2.2. For any two functions u, v, the following inequality is true:

[ D*uDPo |2 < C{[|ull=llv

w ot ul

wloll},
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where

gt e,
D= e STttt B 4B,

This inequality follows from interpolational inequality immediately.

Fix an integer § > 0, and ¢ is chosen sufficiently small so that estimate
(1.21) can be applied for 0 < s <35. 0 <&<1, b> 0 are fixed. b will be
chosen as large as possible. We want to find constant C,,C,,---,C,, and 8
which depends only on 3§, and &, and independent of j, such that the following
inequalities are true:

(Pl)j I|Pj_1||s < Sujill’ for0 < s < §;
foX) ifs—b< —
(P2); il < {clsuj-"’ ifs—b>g
(P3); [wll, and [ull, <1
(P4); w, = vll, < Gow™" for0 <5 <35;
foX ifs—b< -5,
(ps), Iol < { e it ps s
(P6); lle,_1ll, < Cd%w5=7 for0<s<5-2;
(P7); lg,ll, < Cs6%w3™" for0 < s <5;

(8), g < Gt

We will prove (P1);-(P8); by induction on j. At the beginning, we may
assume G(w,) € H*+ and ¢ is very small so that (P1),—(P8), is true. For
J = 0, we only have to check (P7), and (P8),. Now suppose (P1);~(P8); are
true for 0 < j < n, and we want to prove (P1), ,—~(P8),, ;.

(P1),,,: Applying Corollary 1.4, we have for 0 < s < 3,

lealls < C{llgalls + 10,1l all 8,12}
(2.6) < G Cs8%u70 + CiCs8%w3 4Pl b )
provided 6 < b. Hence, if § is small, ||p,,||s

(Pz)n+l: Was1 = Wy + P, = Z_}=0pja

Wl < Z lo;ll, < 6 Zu
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If s —b< —& |Wll, SOZTop; "= Ci8if s — b > g

n s—b
;
” +l”s = 8"“n+1 ( : )
j=0 | P ES]

W1 E (2_1) = C18I"‘n+l

j=0
(P3)n41% [W,41lle < C,8 by (2.6) and (P2),,, 4,
loas1ll < Cliw,iills < C.C8,
so if 8 is chosen very small, then
lIw, +1||6 <1 and |o,.4fls<1
(P4 .y For0 <5 <33,
"Wn+1‘“vn+1" ” Su. W n+1H Cs 3 llWn s s
< COO s = Gl
(PS) s’ 10nrillssa < ClialWoialls < GO

N0as1llore <UOnir = Wosrllpse T IWaiillore
< (CH + Cd)pipr-
Using interpolational inequality for b + e < s < § + 4,
lonally < G335
For0 < s < b — & we have
lons1lls < Cllwnsnlls < CCS.
(P6)ps1: €, = (Lg(W,) — Lo (v, )P — 0,X1(p,),, + Cu(Wys 0,)
=e,+e/+e,”,
e, = (Lo,,(wn) - Lo,,(Un))Pn
Using Lemma 2.1, we have

”e ”0 C"W Uy ”3||Pn||3 C282 3 bi

3-b
— C282(%) IL?’ 2bh _ (2b_3C262) b —b < 2b 3C 82 —b
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and
lenlls=2 < C{lIwa = valldlpallc2 + 1w, = v, llall el }
< C{lw, = vlllpalls +lw, = vallallall;}
<C{C282Hi— 4— b+C82 4 b sn b}
2CC 82 (E-Z)—b 6—b < 2CC. 82M(3—2)—b

by (2.6). Then, using interpolational mequahty, we have, 0 < s < §— 2, |le
< CS8%s* for some constant C,. Thus

lexll, < Cllpallesa < CCO%W o002 < CCO%3

here we use (P8) . Since

e =G(w,,,)— G(w,) — L(w,)p, = f(l—t)——G(w+tp)dt
using Lemma 2.1, we have

e, llo < (”W lc2cpy + 1w, +1"C2(D))"pn"3 CoM2C0 < €%y,
here we use (P3),, (P3),.;, and (P1) ;. Similarly,

e s < {1l + Il el + (1l + el el
{2C183u,,+1u2(4 b) 4 62u§n—b+4—b} < C o320,
By interpolatlonal inequality, we have, for0 < s < § — 2,
lle,” Il < é182 5l

”n

Combining estimates of |le, ||, |le)|l;, lle,” |l;» we have proved (P6),, . ;-
(P7) i1 8ni1 = S,E, = SpirEpir +(S, = S,.1)G(w;)
=(S,— S,.1)E, — n+le +(S, = 8,41)G(wp);

j=0

alls

n 9

n—1

(2.7) E,l:-2 < ): lejll,_, < Cad® X w5727 < 8757777,
Jj=0 Jj=0

provided § — 2 — b > 0;

” gn+1”0 < Cs{p‘i—iu En ”5—2 + “en ”0 + p‘;s‘
provided e is sufficiently small and
(2.8) S« > b;

I&nlls < C{BEANEN—s + hllenllsoy + w5l G(wo) |, | < Ci8mizt

G(wy) [, } < Cid%7 2y
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By interpolational inequality, we have proved (P7),,, ;.
(P8): 6,1 = 11G(V,41)ll 1= By (2.5),

G(0,11) = G(W,11) + G(v,,1) = G(w,1)
= (I-5,)G(wp) +(I = 8,)E, + e, + G(v,,1) — G(w, ).
1G(0,41) || < C{”(I — 5,)G(w) |,
+[(1 - Sn)Enllz +leally + 101 = Waialla)
< cw BNE Ny + 1278 + 01 = Wl
< c{w + ORI czszu,,ﬂ} Ceduih.

Hence, if we assume (2.6), (2.7), and (2.8), we have proved the induction step.
Proof of Theorem 2.1. Suppose s, > 6. Choose b =s, —1/2, ¢ =1/2.
Forn>m, s <b,

n n—1
lw, = wal,< X ol <8 £ @7 "<+
Jj=m

Jj=m-1

Hence w, converges to w in H**~!, By (2.15),
( +1) (I_Sn)G(w0)+(1_Sn)En+en‘
By (P6);, we have lim,, , , [|G(w, 1)l

found a solution of (0.4).
Remark. Suppose our original metric is C°. Then

= 0. Hence G(w) = 0, i.e., we have

se—1

F(s,x,y,Vw,Vzw) e C 3,

By Theorem 2.1, we require s — 3 > 6, i.e., s > 9 and the solution w € H*™*
C Cs—6.
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