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THE LOCAL ISOMETRIC EMBEDDING INI?3 OF
2-DIMENSIONAL RIEMANNIAN MANIFOLDS

WITH NONNEGATIVE CURVATURE

CHANG-SHOU LIN

0. Introduction

In this paper, we will study the local isometric embedding into R3 of
2-dimensional Riemannian manifold. Suppose that the first fundamental form
Edu2 + IFdudv + Gdv2 is given in a neighborhood of p. We want to find
three functions x(u, v), y(u, υ), z(u, v), such that

(0.1) dx2 + dy2 + dz2 = Edu2 + IFdudv + Gdv2

in a neighborhood of p.
This embedding problem has already been solved when the Gaussian

curvature K does not vanish at p. It is still an open problem when K vanishes
at p. Actually, A. V. Pogorelov gave a counterexample that there exists a C 2 1

metric with no C 2 isometric embedding in R3. In Pogorelov's example, in any
neighborhood of /?, there is a sequence of disjoint balls in which the metric is
flat. And the Gaussian curvature K of this metric is nonnegative. The main
theorem of the paper is the following.

Main Theorem. Suppose that the Gaussian curvature of a Cs metric is
nonnegative for s ^ 10, then there exists a Cs~6 isometric embedding in R3.

Instead of studying the nonlinear system (0.1) of first order, we will study a
second-order Monge-Ampere equation satisfied by a coordinate, say z. The
equation can be derived as follows: If the Gaussian curvature of Edu2 +
IFdudv + Gdv2 — dz2 vanishes, then z must satisfy

(0 2) ( Z n " Γ " Z ί ) ( Z 2 2 " Γ22Z<") ~ ( Z l 2 " Γ ί 2 Z <) 2

= K{EG- F2 - Ez\- Gz2
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where zλ = (3z/3w), z 2 = (dz/dv), ztj are second derivative of z, and Γ^ are

symbols. Conversely, suppose z satisfies (0.2), then the metric Edu2 +

IFdudv + Gdv2 - dz2 is flat. Hence there exists a coordinate system x, y,

such that dx2 + dy2 = Edu2 + IFdudv + Gdv2 - dz2 which is (0.1).

In this paper, we will prove that there exists a smooth local solution of (0.2),

provided K is nonnegative.

We may assume p is the origin (0,0), and .K (0,0,0) = 0. Set u = ε2x,

v = ε2y, z = (v2/2) + ε5w. (0.2) becomes

K , - e2T2

iy - e 3 I > J ( l + εwyy - ε2T2

2y - ε 3 Γ 2 >J

-(ewxy - e2T2

2y - ε 3 Γ/ 2 wJ 2 - K(ε2x, ε2y, ε 3

V w ) = 0,

where Λ:X = JC, x 2 = j>. Cancelling ε on both sides, we have

(0.3) wxx + εF(ε,x,j;,VH;,V2>v)' = 0,

where

F ( ε , x, y, Vw, V 2 w) = (wx x - εT2

xy - ε 2 I > J ( w y y - εT2

2y - ε2T[2wx)

-{™xy ~ ^iiy ~ B2Ti2wx)
2 - T2

xy - ε Γ > X / -(K(ε2x,ε2y,ε3vw))/ε2.

Fix xo,yo>Q> consider a rectangle D: D = {(x, y)\\x\ ^ x0, \y\ <y0}.

Choose two nonnegative cut-off function χ, G C°°(2)) as follows:

cut-off the nonlinear term by

F(ε, x,y, Vw, V2w)

- e2T{2w )T{2w )
ε

In the following, we will consider the following equation instead of (0.3):

(0.4) wxx + εF(ε, x9 y, Vw, V 2 w) = 0.

For any smooth function w defined in Z), define

(0.5) G(w) = wxx + εF(ε,x,
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Lemma 0.1. Suppose |w|C2(D) < 1, and θ > 0 be a constant such that

Then if ε is sufficiently small, Lθ(w)p = L(w)p + θχxpyy is a degenerate
elliptic second-order equation where L(w)p is the linearized equation of (0.4)
about w.

Proof. Suppose the linearized equation is L(w)ρ = pxx + εΣaiJpxx +
lower order term. We want to prove the determinant of

1 + εaΛΛ εaΛΊ

εa12 εa22 + θ

is nonnegative. The determinant is, after a straight computation,

εa22(l + εau) - ε2a\2 + θXι(l + εau) = εXlG(w) + χ\K + θXι(l + εau).

In the computation, we use Xi * χ 2

 = Xi So if ε is small, then the determinant
> 0. q.e.d.

In the following sections, we will prove that there exists a smooth solution of
(0.4). In §1, we will study existence, regularity, and estimates of the degenerate
elliptic equation Lθ(w). In §2, we will modify the Nash-Moser-Hόrmander's
iterative scheme to solve (0.4). Then we will complete the proof of the Main
Theorem.

1. Linear theory

In this section L will represent as a degenerate elliptic operator of second-
order defined in a rectangle D = {(x, jμ)| |JC| < x0, \y\ <j>0} Consider the
following boundary value problem:

2

Lp = pxx+ Σ ^ijPXlXj + aiPx + ai9y + ap = g in D;

p(*o>y) = p(-χo>y) = °

Assumption. All the coefficients aij9 at, and a vanish near y = ±y0. And

Σ K 7 l c 4 + \ai\cA + \a\cΛ < Q ε ' w n e r e ^o is a fiχe^ constant.
Set

p ( x , j ) = M (x,>;)e- λ * 2 , λ > 0 .

Then (1.1) becomes
2 2

(1.2) /,7 = i /=i
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where

(1.3)

λ = -4(1 + an)λx

b2= -4al2λx

h = -2(1 + an)\ + 4(1 + an)λ2x2 - 2bx\x + a.

Instead of studying equation (1.2), we will consider the following regulariza-

tionof(1.2):

9 2 • ' g in D;(1.4) L,u=-v[D*B--\u + Lu

u(xo,y) = u(-xo,y) = 0;

where Du = (j>0

2 - y2)(du/dy), D* is the adjoint of D, and v > 0 is a small
constant, λ will be chosen large but independent of v and ε, and always
satisfies λx0 < 1.

Theorem 1.1. Suppose all coefficients are smooth and ε, v are small. Then
there exists so(ε, v) > 0 such that for any g e HS(D), s < s0, there exists a
unique solution u e HS(D) of (1.4) and the following estimates are true:

(i 5) ι ι«ιμ<«

Cs w α constant which is independent of v and ε.
if5 is the Sobolev space with the norm: | |iι | |^ = (Σ H < J | | /) α w| | !2) 1 / 2 where

Da is any αth derivative.
Throughout the section, C always be a constant which is independent of v,

and will change from line to line, λ > 0 will be a fixed number throughout. We
will divide the proof of Theorem 1.1 into several lemmas. First, we will prove
the existence of weak solution of (1.4).

Suppose M, φ are smooth functions and satisfy the boundary conditions

w(*o> y) = w(-*o> y) = Φ(*o> y)= Φ(-χo> y) = ° τ h e n

φxux + f DφDu
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Define H1 as the space consisted of functions u such that M, DU, UX are in

L2(D\ and satisfy u(x0, y) = u(-x0, y) = 0,

Lemma 1.2 (existence of weak solution). Given g e L2(D), then there exists

a unique u e Hι such that

Qv(φ, u) = - (φ, g) for any φ e i/ 1 .

Proof. Qv(φ, u) is a bounded bilinear form of Hι. We want to prove

(1.6) QV(Φ>Φ) > C l l j M | 2

Because 3Z?1/8x involves λ, we write

- *

\f ^
We note

/
I r , 3 φ 2 1 r oc>2 9 , r , ^ C i

bΊφΛ,φ = — I σ ? - τ — = - - — — φ , so t h a t / b^φώ < C ε / φz y 2 J ay 2 J ay J y J
Thus we only have to estimate / bλφxφ. Suppose \x > λ 2 be eigenvalues of

+ an au

al2 a22

and υι

9 υ2 are unit eigenvectors such that

near y = ±y0. Define φv φ2 by the following

since v2 is the eigenvector with eigenvalue λ 2 ,

2

v2 = - 1 + fln - λ 2

is small. Also by the relation of wx, u^, M1? W2, we have

(1.7)' Φ, = —
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Hence

where we use Schwartz inequality and the fact that λx is close to 1 when ε is

small, and C is a constant independent of λ. Here λx0 < 1 is required. Hence,

if λ - C > 1, then

(1.8)

f - c)/

Then we apply Lax-Milgram's theorem to get a weak solution, q.e.d.

We will prove that the weak solution is smooth provided g is smooth. Since

Lv is elliptic inside D, u may be supposed smooth inside D by regularity

theorem of elliptic equation. We only have to prove that u is smooth up to

boundary of D.

Lemma 1.3. Suppose g e HS(D\ vs2 < 1, λ is large, and u is the weak

solution of (1.4), then u, Du, ux e HS(D).

Proof. Define aε(y) > 0 as follows:

lyj-y2 iϊ-yo + -ε^y^yo--ε,
(1.9) aJy)={ e έ

Λ ~~ i ' y ^ Λ "» »

z z
ιθ if

where Cλ is a constant independent of ε. Define D-u = a-E(du/dy). Differenti-

ating (1.4) by Z)-, we have LvD-u = Dεg 4- [L,,, Z)-]w. Taking the inner product

with D-w, we have
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Since we have already known u e Hι,

where C2 is independent of ε. Thus

[ L r , A l = -»[D*D,De}+[L,Dε]

= -i>{D*[D,Dι]+[D*,Di]D)+[L,Di],

\(Diu,D*[D,Di]u)\ = \{DDiu,[D,Di]u)\

< C\\Du\\L>-WDD^i? < C2\\DD-eu\\L2,

by (1.9). Similarly,

Because each term in [L, Z>έ] involves α/y , 6,-, and ^-derivatives of aip bj
which vanish near y = ±y0, [L, Dέ] = [L, Z>] for έ is small. Combining all
estimates, gives

so that

where C5 is a constant independent of ε. Taking the limit ε -> 0, we have

I \Dux\
2 + f \D2u\2 < +00.

From (1.4) we also conclude

Define

\ linear in between.

Define D-εu = a-e(y)(du/dy), and Du = (y2 - y2)(du/dy) = a(y)(du/dy). By
the previous step, we know

DD-εu, biUχ^

Differentiating (1.4) by D-e, we have
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Taking the inner product with Z)-w, yields

* [ / |Z)A«|2 + |2)-«J2] + ( λ - c)||A«||2

LJ

< -(biU,b-tg) +(biu,[bi,LV]U),

by (1.8).

Since (θάj/θjO = const Φ 0 only for yl - ε2 < j>2 < >>0

2, |[£>, Z)J]M|

for some constant Cx independent of ε. Thus

\{biu,D*[Dtbi]u)\<C2\\Dbtu\\Ll-\\biu\\L2.

Similarly, we have

\{b-εu, [D*,bi]Du)\^ c3(\\DbΈu\\L2 + i) | lA"IL-

As before, [L, Z)-] is independent of έ if έ is small. Hence, we have

(1.10)

for a constant C4 independent of έ. Using Schwartz inequality, we have

independent of ε. Taking the limit ε | 0 , we have uy, Duy, uyx e L2, which is

the case s = 1.

We can prove Lemma 1.3 by induction on s. Now suppose w, MX, DU e i/5;

we want to prove w, wx, DM G /fs+1. Differentiating (1.4) by 3 y 3 ^ 5 , we have

. / ds

(in) -̂  ' y ' y

~df + other term ^

The other term in the above expression consists of derivatives of order 5 + 1,

or s with vanishing coefficients near y = ±yQ, and derivative of order < s;

hence g5 G Hι(D). As the same proof in the previous step, it is easy to prove



LOCAL ISOMETRIC EMBEDDINGS IN R3 221

Differentiating (1.11) by Dε and doing the same steps as (1.10), we have

V

Henceϊif vs2 <

2

+
L2

1 and

n

μ l .

Λ S "

λ is large,

L2

2

L2_

+ ( λ -

edys L2

4-

then

j _
Γ 1 ε 3j s dx

c)

+ V

JΛ

0

Db

_L

I2

h

u
s

E O

/ 2

3 5

2

ύ

'JL

+

M

L2

2

L2

εdys

5-—"

1

2

L

is bounded and independent of ε. Taking the limit ε i 0, we prove

3 ί + 1 « ds+2u 3 i+1M _ w2ίD- L\D).
dy1' dys+dlχy dys+1

From (1.4), (1 + v + an)uxx — g + D*Du + terms with coefficients vanishing

on y = ±y0 + lower order terms. Differentiating the above express by

(dk/dxkχds-k/dys-k), k = 0,l,2, ,s, we conclude with ux e Hs+ι(D).

The fact

0 , 2 ) 0 e^(Z)) and «xeH'+1(D)

implies w, Du and ux e HS+1(D). Thus we have finished the induction step.

Proof of Theorem 1.1. To prove estimate (1.5), we may assume g and u are

both smooth functions. Differentiating (1.4) by ds/dys, we have

We want to estimate

Since

D*D, \u = —
dy J

3'u

2sD*-r— -Γ-T + terms with v derivatives of order < s,
3^ 3j

2J 3 j \dy
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we have

(1.12)
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Σc,
3 / L2

Let Da denote any derivative of order \a\. We will use following inequalities

which come from interpolational inequalities immediately:

where |α| + \β\ = s, and ||κ||Loo < C | | M | | ^ 2 . Using integration by part and

(1.13), we can estimate

3 2 ds 1

(1.14)

> κ

dy" [ Vdxflxj' dys

Similarly,

d'u \ 9 d5

dys' I ι dXj' dys

dsu

(1.15)
dsu

Combining (1.12), (1.14), (1.15) and the assumption, we have

dy I θ j '

where

Now denote us = 9sw/3>>5, and u[ as defined in (1.7), i.e.,

u:
= u[υι + wJ

2i;
2.

We want to prove the following inequalities by induction on s\

(1.16)0 is just (1.8). Suppose we have proved (1.16)s-l. By (1.8),

bll»
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By (1.7)'we have

Solving for uxx from (1.4), and differentiating by

ds~2 , Λ

we have
dxkdys

dsu

L1

dsu
s-k

Summing over k,

By (1.18> and (1.16)5-1,

Now we can estimate the right-hand side of (1.17)y,

\2 + f \D*ή + \ j \x(u$ + f\ux

If Cs'(v + ε) < 1 and λ - C > 2, we have

Because of (1.19)5, this is equivalent to (1.16)J, and we finish the induction
proof. Then (1.5) follows from (1.16)5.
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Hence we have proved Theorem 1.1. q.e.d.
Let L(w) be the linearized equation of G(w) = wxx + εF(ε, x, j , Vw, V2w)

about w. Define

)\LX(D) and Lθ(w)p = L(w)ρ -

By Lemma 0.1, Lθ(w) is a degenerate elliptic operator. In terms of w,

dF _ ^ F

Hence

|fli7-|C2 a n d |tf,|C2 < C ε | w | c 4 < C0ε|w|/f6.

Therefore we have the following.
Corollary 1.4. Suppose \\w\\H6 < 1 and ε, θ, are sufficiently small, then there

exists an integer S0(ε,θ) depending on ε and θ such that if g e Hs, 0 < s < ^0,
then there exists a unique solution p e Hs of the equation:

(1.20) Lθ(w)p = g inD;

p{χo>y) = p(-χo>y) = °;

and furthermore the following estimates are true

Proof. Let Uθ be the regularization (1.4) and ρv be the unique i/s-solution.
In terms of w, we have

For s ^ 2, Theorem (1.1) implies

where C5 is independent of v. Taking v -> 0, we have the estimate (1.21). For
5 = 0, (1.8) implies

f w2

where w = eλχ2g. Therefore j u2 < C/g2. For s = 1, differentiate (1.20) by
3/9j>. Using integration by parts,

By assumption ||w||^6 < 1, we have
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By (1.8), we have

[t is equivalent to

9M

dy

9p

2

L2

2

I2

L2

I2

9M

dy

| 9 p

\dy

+ ε||w
L2

+ 4P\
\L2

I2,}

I2,}
We have

= g - Σ ^ijPXiXj ~

Multiplying p and integrating both sides,

Combining this and the above estimate of ||9ρ/9.y||L2> we have
^i, provided ε and θ are small.

2.

In this section, we will modify the Nash-Moser-Hόrmander's scheme to solve
the nonlinear equation:

(2.1)
+ εF(ε,x, y, Vw, V2w) = 0 in D;

χn, y) = w(-χn, v) = 0.

Smoothing operators Sθ. We have a family of smoothing operator Sθ9 θ > 1,
satisfying the following properties:

(Sx) Sθ: HS{D) -> HS(D) is a linear bounded operator for any s, s'.
(52) ||Sθu\\Hs < Cβs-s'\\u\\HS,, if s> s'.
(53) ||κ - S , M | | ^ < C^^^llt/ll^, if s > s'.
One way to obtain the smoothing operators is the following: Consider a

smooth domain D D D. We can extend functions u in HS(D) to a function ύ
of ^'(Z>), and satisfies

||fi||ff*(D)< CS\\U\\H>(D).

Suppose Sθ be a family of smoothing operator in H\D) satisfying (S1)-(S3).
Then we define Sθ in HS(D) by Sθu = Sθu\D. It is easy to prove Sθ satisfies
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Nash-Moser-Hormander's scheme. Choose μn = 2M, Sn = Sμn, and w0 = 0.

We will construct wn by induction on n as follows: Suppose w0, wl9 , wn have

been chosen. Define wn+ι = wπ + pn where pn is the solution of

/ 2 1 x Lθn(
Vn)(>n = Sn ™ D>

where υn is defined as υn = S wn9

(2.2) θn = \G{υn)\LX,

and gπ will be specified later. For 7 < n, the quadratic error Qj is defined as:

G(wJ+1) = G(wj) + L(wj)Pj + Qj(wj,Pj)

= G(Wj) + Ltj(wj)Pj - θjXι{Pj)yy + Qj(wj,Pj)

= G(wj) + 1*^(0^+(Lβj(wj) - Ltj(Όj))pj - θjXl(Xj)yy + QJ(WJ,PJ).

Denote

(2.3) βj = (Lβj(wj) - Lβj(υj))Pj - θjXl(Pj)yy + QJ(WJ, Pj),

(2-4) £,= Σ>,
/-o

Hence Gίv^+j) = G(wj) + gj + e}. If we set g 0 = -S0G(w0) and

gj = S,_!£•_!- Ŝ .E,. + (S,._! - $ ) G ( w 0 ) for j > 0,

then

7-0

(2.5) = G(w0) - SnG(w0) - SnEn + En + en

= (l-Sn)G(Wo)+(I-Sn)En + en.

Theorem 2.1. Suppose F G C5*, 5 + > 6, αwd ε w sufficiently small. Then

the sequence { wn } converges to a solution w of (0.4) in H5*1.

In the following, we will give a proof of convergence of wn. The proof is

essentially the same as the usual proof of Nash-Moser-Hόrmander's scheme.

We include it for convenience. We will use the notation \\u\\s to denote Sobolev

norm | |w| |^.

First, recall a well-known lemma.

Lemma 2.2. For any two functions w, υ, the following inequality is true:

\\DauDβυ\\Li< c ^ N I H M k + HI/HMIW'
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where

This inequality follows from inteφolational inequality immediately.

Fix an integer s > 0, and ε is chosen sufficiently small so that estimate

(1.21) can be applied for 0 < s ^ s. 0 < έ < 1, b > 0 are fixed, b will be

chosen as large as possible. We want to find constant Cl9C2, * ,C6, and δ

which depends only on s, and ε, and independent of j9 such that the following

inequalities are true:

CXS if j - b < - ε ,

(P3)j \\wj\\6 and | | ι ;,. | | 6«l;

(P4)j K - 0,-H, < C^μJ-* forO<s<ί ;

(Qδ if ί - b < - I ,

I V-^oUIΛ • 11 o U ^ C ,

(P6)j Iky-ill < Q*2^--? f o r ° < s < s - 2 ;

(P7)j \\gj\\s<Csδ
2μyb ΐorO ^s^s;

(P8)j βy < C6δμy

4"6.

We will prove (Pl)j-(P8)j by induction on j. At the beginning, we may

assume G(κ>0) e i/ J and ε is very small so that (P1)O-(P8)O is true. For

j = 0, we only have to check (P7)o and (P8)o. Now suppose (Pl)j-(P8)j are

true for 0 < j < n, and we want to prove (Pl ) n + 1 -(P8) n + 1 .

( P l ) n + 1 : Applying Corollary 1.4, we have for 0 < s < s,

(2.6) < Ct{

<Cs(C5 + C3C5)Sy-h,

provided 6 < b. Hence, if δ is small, | | p j | s < 8μs

n~
b.
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Us-b<-e, \\wn + 1\\s < δΣf.Qμj'' = Cxδ; if s - b > e,

7-0

(P3)n + 1 : I K + 1 | | 6 < Cx« by (2.6) and (P2)n + 1,

so if 8 is chosen very small, then

K + i l l β * ! a n d ll^+ill
( P 4 ) n + 1 : F o r 0 < J < 5 ,

(P5) n + 1 : l l ^ + 1 | | s + 4 < C y n

< (c2δ + c ^ + i

Using interpolational inequality for b + ε < 5 < s + 4,

Ik.+il l^Cjβμ^.

For 0 < 5 < b — ε, we have

lk+1IL<QK+1IL<CiCA

( P 6 ) n + 1 : en = (Lβπ(wπ) - L ί>(o( l))p - θnXl(pn)yy +

Using Lemma 2.1, we have

Ik; Ho < c\\wm - oj3\\pj3

,-b
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and

11,-2 < c{\\wH - vH\\,\\Pn\\c* + I k - d

by (2.6). Then, using interpolational inequality, we have, 0 < s < 5 - 2, ||
< Cβ2μs~h for some constant Q. Thus

IIP'ΊI < Γ 0 II n II < Γ Γ ft2ιι4~bιιs-b + 2 < CC F\2ns~b

\\en \\s ̂  ^s^nllPwIls + l ^ U J C 6 ° MM ^n ^ <-/-6° /*n >

here we use (P8)n. Since

<" = G(wn + ι) - G(wn) - L(wn)pn = £ (1 - θ | ^ G ( w π + tp)dt,

using Lemma 2.1, we have

IIC Ho < c(lkllc><z» + II^+ 1 | |^(Z»)IIPJI3 < C5^- k » < cβ 2

μ; 6,
here we use (P3)n, (P3)n + 1, and (Pl) n + 1 . Similarly,

By inteφolational inequality, we have, for 0 < s < 5 — 2,

Ik'ΊI,«<?i«V.-6.
Combining estimates of | |β;||,, IKH,, H O I , , we have proved (Pό)n + 1.

( P 7 ) n + 1 : g Λ + 1 = S n £ n - Sn+1En+ι +{Sn - Sn+1)G(w0)

= (Sn - Sn+1)En - Sπ+1en +(Sn - Sπ+1)G(w0);

En = Σ ^
7 = 0

(Ί l\ II F II < V II* II < r fi2 V ιι 5~ 2~ f e < r ?\1u~s-1~b

\L'1) l l ^ n l l ί - 2 ^ L , \\ej\\s-2 ^ C 4 ° Z^ /*7 ^ C 4 ° MM »
7=0 y=0

provided s - 2 - b > 0;

llgΛ+illo < Q{μMI^IL-2 + IkJIo + K'-WGMIL} < c;β2μ-*i;

provided ε is sufficiently small and

(2.8) j . > 6;
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By interpolational inequality, we have proved (P7)n + 1.

G(on+1) = G(wn+ι) + G(υn+1) - G(wn+1)

= (/ - Sn)G(w0) + ( / - Sn)En + en + G(υn+1) - G(wn+ι).

\\G(vn+1)\\L~ < C{\\(I - Sn)G(w0)\\2

+ | | (/ - Sn)En\\2 + \\ej2 + \\vn+1 - wn+1\\4}

2-*+ 4- j + c2syn-\} < CM~Λ-
Hence, if we assume (2.6), (2.7), and (2.8), we have proved the induction step.

Proof of Theorem 2.1. Suppose s* > 6. Choose b = s* — 1/2, ε = 1/2.
For n ^ w, s < b,

K - H J U Σ llp,l<β " l (2-J)b-'<+oo.
j = m j = m — \

Hence wn converges to w in H**'1. By (2.15),

< ? K + 1 ) = (/ - SH)G(w0) + (/ - Sn)En + en.

By (P6)j, wehavelimM_ + 0 0 | |G(ww + 1)| |5 +_1 = 0. Hence G(w) = 0, i.e., we have
found a solution of (0.4).

Remark. Suppose our original metric is Cs. Then

By Theorem 2.1, we require s — 3 > 6, i.e., s > 9 and the solution w e i/5~4

References

[1] R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982)
65-222.

[2] H. Jacobowitz, Local isometric embeddings of surfaces into Euclean four space, Indiana Univ.
Math. J. 21 (1971) 249-254.

[3] J. J. Kohn & L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm.
Pure Appl. Math. 20 (1967) 797-872.

[4] A. V. Pogorelov, An example of a two-dimensional Riemannian metric not admitting a local

realization in E3, Dokl. Akad. Nauk, USSR 198 (1971) 42-43.

INSTITUTE FOR ADVANCED STUDY




