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A REMARK ON EXTREMAL KAHLER METRICS

MARC LEVINE

Introduction

In recent years, results from partial differential equations and differential
geometry have had striking applications to the study of compact Kahler
manifolds. As a notable example, the works of Aubin [1] and Yau [8], [9] on
the Calabi conjecture on the existence of Kahler-Einstein metrics imply that an
algebraic surface, with ample canonical sheaf and with c\ = 3c2 a so-called Φ2
surface, is uniformized by the ball in C2. This union of algebraic and
differential geometry is accomplished by the existence of a particularly nice
metric, whose differential geometric properties accurately reflect the complex
analytic structure of the manifold.

The Kahler-Einstein metrics are solutions of a certain variational problem,
introduced by Calabi in [2] and [3]. Specifically, one considers the functional S
which assigns to each Kahler metric on a compact complex manifold M the
integral over M of the squared scalar curvature. The functional S is restricted
to the metrics with a given Kahler class ω in H2(M, R), and a critical point for
Sω is called an extremal Kahler metric. From the Euler equation for Sω (see
Calabi [4]), one sees that metrics with constant scalar curvature, a fortiori
Kahler-Einstein metrics, are extremal. On the other hand, Calabi has exhibited
algebraic surfaces which have an extremal metric, but have no metric of
constant scalar curvature.

The purpose of this note is to exhibit examples of compact Kahler manifolds
which do not admit an extremal Kahler metric. The recent work of Calabi [5]
includes a structure theorem for the group of holomorphic automorphisms of a
Kahler manifold M which has an extremal metric; in particular, if the
dimension of the automorphism group of M is positive, the group must contain
a nontrivial compact real Lie subgroup. The examples given here all fail to
have such a compact subgroup of their automorphism group. This does not
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give a direct explanation as to why the variational problem of finding an

extremal metric does not in general have a solution, and it remains to give

general criteria under which the problem can be solved.

The author would like to thank Professor Calabi for generously taking the

time to explain and discuss his work of Kahler geometry.

We will retain the notations of [5]. We first extract a useful bit of informa-

tion from the structure theorem proved there.

Lemma 1. Let M be a compact Kahler manifold with Kahler class ω. Suppose

there exists an extremal Kahler metric (g) in the class ω. Suppose further that the

connected component of the identity $0(M)ofthe group of holomorphic automor-

phisms of M is nontriυial. Then φ o ( M ) contains a compact {real) Lie subgroup

of positive dimension.

Proof. Let R be the scalar curvature of the metric (g). If R is constant,

then by a theorem of Lichnerowicz and Matsushima [6], [7], φ o ( M ) is

reductive, i.e. there is a compact real Lie subgroup U of φ o ( M ) such that

φ o (Λf) is the smallest complex Lie subgroup containing U. This proves the

lemma in this case. If R is not constant, then the vector field Z o = ΐ 3(V—1 R)

is holomorphic and nonzero [4, Theorem 2.1]. It is established in the proof of

Theorem 3 of [5] that Z o is a Killing field on M with respect to (g), hence the

(compact) group of holomorphic isometries of M has positive dimension. This

completes the proof.

We now proceed with our construction. We note without proof the following

simple result.

Lemma 2. Let M be a compact Kahler manifold, p a point of M and u:

M* -» M the blow-up of M at p. Then u induces an isomorphism of φ o (M p *)

with the isotropy subgroup $0(M)pof $0(M).

We first construct a series of examples of Kahler manifolds Mn with φ o ( M n )

the additive group Cn. We restrict ourselves to the case of surfaces; one can

easily mimic the construction in higher dimensions.

Fix a positive integer «, and let p: E -> CP 1 be the rank two holomorphic

vector bundle over P 1 whose sheaf of sections is Θpι(n) Θ Θpι. Let q: S -» P 1

be the P 1 bundle P(E). S is the well-known Hirzebruch surface Σn. Also, S

contains a unique section to q with self-intersection — n, which we denote by

fits into an exact sequence

1 - P(Aut(£)) - φ o ( S ) Λ AutίP 1) - 1,

where the subgroup P(Aut(£)) of φ 0 ( S ) is the subgroup which acts trivially

on the base P 1 . Each element of §0(S) fixes Co, and we can view the map i as

the restriction of §0(S) to Co.
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The group Aut(E) is the group of invertible matrices of the form (g^) with

a G Aut(Θ(n)) = C*, γ e Aut(0) = C* and 0 e Hom(0, Θ{n)). This last

group is the same as i/°(P\ @(n)\ which we regard as the group of homoge-

neous forms of degree n on the base P1.

Let a, b and c be distinct points on Co, and let d and e be distinct points on

the fiber q~\q(a)), different from a. Let Mn be the blow-up of S at b, c, d and

e. We note that any element of §0(S) which fixes b must fix the fiber

q~ι{q(b)) = q~ι(q(a)), and as the point a is the intersection of this fiber with

Co, a must be fixed as well. Thus φo(ΛfM) is the subgroup of φ o ( 5 ) fixing α, b,

c, d and e. In particular, every element of § 0 (M M ) fixes three points on Co and

on q~ι(q(a)), so each element must act as the identity of these two curves.

φ o ( M w ) is therefore the subgroup of P(Aut(£)) acting as the identity on

q~1(q(a)). Thus φ o ( M Λ ) is the group of matrices

H°(P\ , β(q(a)) = θ} = C"

Our next example is a surface with automorphism group the Heisenberg

group

c M3(C).

This surface is obtained by blowing up CP 2 according to the following

diagram (the points to be blown up are starred).

1

,0

a

1 y
1,
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In words, we first blow up P 2 at (1,0,0) to obtain the surface Sv Let Eι be
the exceptional curve, and let L be the proper transform of the line x2 = 0 (we
use homogeneous coordinates (JC0: xx: x2) on P 2). Eλ and L intersect at a
single point a\ let S2 be the blow-up of Sλ at a. We let E2 be the new
exceptional curve, and denote the proper transforms of Eι and L by E[ and ZΛ
One easily sees that an element of φ o (^i) ^ e s a ^ a n ( * OΏty ^ ^ ^ x e s »̂
whence &0(S2) *s Λe subgroup of PGL3(C) of upper triangular matrices. The
curves E[ and E2 are also fixed by φo(S2), hence the point of intersection, b, is
also fixed. Let S3 be the blow-up of S2 at b, let E3 be the exceptional curve over
Z>, and let E{\ E2 and L" be the proper transforms of E{9 E2 and ZΛ Let c be
the point of intersection of E2 and E3, and let d and e be points on
E3 - (E2 U is") and E2 - (E3• u £ 0 , respectively. Finally, we let S4 be the
blow-up of S3 at ί/ and e.

Since b is fixed by §0(S2), §0(^3) equals §0(^2)- The curves E2 and £3 are
stable under φ o (S 3 ); we now compute the action on these curves.

In a neighborhood of the point c, S3 has local coordinates u = x\x^/x\ and
v = JCI/JC2*O- ^2" is defined near c by w = 0, E3 is defined near c by v = 0, υ
restricts to a parameter on E2\ and w restricts to a parameter on £ 3 . We see
that a matrix

1 a β

y 8
0 ε

sends υ to

and sends u to

rrr/ \ 2 2 / 1 1 /I \ / /
/ I i f I —— O V I Y* -4— /V "V" 1 As V I / I Λ/ V

i VM; ~" ε x2V x:0 ^ a X l + P Λ : 2 / / W Λ : 1

When restricted to £ 2 ' , £3 respectively, this gives
τ(v) = (Y2A)^; Γ(w) = (ε2/γ3)w.

Since φo(^3) already fixed two points on £ 2" and £"3, φo(^4) consists of
those T as above which act as the identity on E2 and E3. For this to occur, we
must have γ 2 = ε and γ 3 = ε2, i.e. γ = ε = 1, and §0(S4) is the Heisenberg
group, as desired.

There are many simple examples of surfaces for which the existence of an
extremal Kahler metric is not known. It was pointed out to me by G.
Schumacher that all the examples described here have nonpositive first Chern
class; among surfaces with positive first Chern class (Del Pezzo surfaces) only
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P 2 , P 1 X P1, and the blow-up of P 2 at one point are known to support an
extremal metric. In the first two cases, the metrics are Einstein; in the third, the
metric has nonconstant scalar curvature (see Calabi [4, §3]). For the blow-up of
P 2 at two points, nothing is known except that an extremal metric would have
nonconstant scalar curvature.
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