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A FINITENESS THEOREM FOR NEGATIVELY
CURVED MANIFOLDS
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0. Introduction

The purpose of this paper is to investigate the topological structure of
negatively curved manifolds. We show the finiteness of the number of diffeo-
morphism classes containing complete (but not necessarily compact) negatively
curved manifolds with bounded volumes and curvatures. This result is related
to works of Wang, Cheeger, Gromov, and others. Hence we first give a rough
summary of some of their works.

Wang investigated the case of locally symmetric spaces. Let I b e a simply
connected symmetric space of noncompact type without factors of dimension
smaller than 4. Denote by Iso(X) the group of all selfisometries of X. Wang
considered subgroups Γ of I s o ^ ) acting on X effectively and properly
discontinuously. He proved that, for each positive number V, there exist only a
finite number of conjugacy classes of Γ satisfying Vol(Γ \ X) < V.

On the other hand, in [5], Gromov proved a finiteness theorem for Rieman-
nian manifolds M satisfying

(*) Vol(M) < V,

(**) 0 > sectional curvature > - 1 .

Namely, he proved that, for each positive number V and for each positive
integer n greater than 3, there exist only a finite number of diffeomorphism
classes containing compact ^-dimensional Riemannian manifolds M satisfying
(*) and (**).

In the case of locally symmetric spaces, Wang's result is stronger than
Gromov's. We reach the problem below.

Consider pairs ( X, Γ), where X is a simply connected and complete Rieman-
nian manifold and Γ is a group of isometries of X acting effectively and
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properly discontinuously. We say (X,T) and (X\ Γ') are equivariantly diffeo-
morphic to each other if there exist an isomorphism Φ: Γ -* Γ' and a
diffeomorphism /: X -> X' such that f(y(x)) = Φ(Ύ )(/(•*)) holds for every
y e Γ and x e X

Problem. Let « =£ 2, 3 be a positive integer and F a positive number. Then
there exist only a finite number of equivariant diffeomorphism classes contain-
ing (X, Γ) such that

0 > sectional curvature of X > - 1 ,

Vol(Γ\X)< V.

Gromov's theorem, described above, gives an affirmative answer to the
above problem in the case when the following conditions are satisfied:

(a) Γ \ X is compact.
(b) Γ acts freely on X.

One of the main theorems of this paper is a generalization of Gromov's
theorem to the case when (a) is not necessarily satisfied.

Theorem I. Let V be a positive number and let n be a positive integer with

n Φ 3, 4 (resp. n — 4). Then there exist only a finite number of diffeomorphism

classes {resp. homotopy types) containing n-dimensional Riemannian manifolds

M satisfying the following conditions:

(1) M has negative curvature or satisfies the visibility axiom of Eberlein &

O'Neill [3].

(2) sectional curvature of M > - 1 .

(3)Vol(M)< V.
We cannot replace Condition (2) by "M has nonpositive curvature". A

counterexample is given by §5.
Gromov used Cheeger's finiteness theorem (Theorem 3.1 in [2]) in the proof

of his theorem. To apply Cheeger's theorem directly, we have to restrict
ourselves to compact manifolds. Hence we need a noncompact version of
Cheeger's theorem in order to prove Theorem I. But it seems difficult to obtain
a noncompact version of Cheeger's theorem itself. Thus we divide the argu-
ment in Cheeger [2] into two parts and generalize each of them. Our generaliza-
tion of the first part is the following.

Theorem A. For each positive integer n and positive numbers a and D, there

exists a positive number εx(a, D) such that the following holds:

Suppose that N is a n-dimensional Riemannian manifold whose sectional

curvature is not smaller than - 1 , and that there is a closed geodesic I whose length

is smaller than ελ{a, D). Then, for each point p on /, we have
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Theorem A can be proved in exactly the same way as Cheeger [2, Corollary
2-2].

Our generalization of the second part is the following.
Theorem 1-1. Let α, b, c and V be positive numbers with a < b < c, and let n

be a positive integer not equal to 3 or 4 (resp. n — 3 or 4). Then there exist only a

finite number of diffeomorphism classes (resp. homotopy types) containing n-

dimensional Riemannian manifolds N satisfying the following conditions:

(1) -1 ^ sectional curvature < 1.

(2) Vol(JV) < V.

(3) There exist an open subset N' of N and a PL-homeomorphism Φ: N — N'

-> dN' X [0,1) which have the following properties:

(i) dN' is a codimension-1 PL-submanifold of N.

(ii) For an element p ofdN' the injectivity radius of N at p is greater than c.

(iii) For an element p ofΦ~ι (dN' X {1/2}), the injectivity radius of N at p is

greater than a and smaller than b.

We prove Theorem 1-1 in §§1 and 2. The argument in §1 is similar to the
argument in Cheeger [2] or Peters [15]. In §2, we treat the ends of N, making
use of a type of /z-cobordism theorem. To deduce Theorem I from Theorem 1-1
we need a description of the topological type of the set

{ x I the injectivity radius of N at x is smaller than a}.

(Here a is a positive small number.) Theorem 3-1 gives such a description. To
prove Theorem 3-1, we use results in Margulis [13] and Gromov [5]. We prove
Theorem I in §4, making use of Theorems 1-1 and 3-1.

In §6 we give an estimate on the number of homotopy types containing
manifolds satisfying the conditions of Theorem I (Theorem 6-6), making use of
Theorem 6-1, which gives an estimate on the number of homotopy types
containing manifolds satisfying the conditions of Theorem 1-1. When applied
to locally symmetric spaces, Theorems 6-6 together with Mostow's rigidity
theorem ([14], [16]) implies the following theorem.

Theorem II. For each positive integer n greater than 3, there exists a positive

number Cλ depending only on n such that the following holds:

Let V be a positive number. Consider the n-dimensional rank one locally

symmetric spaces whose volumes are smaller than V. Then, there exist at most

exp(exp(CxF)) isometry classes containing such spaces.

Remark. Gromov, in [7], stated a similar estimate in the case when M has
constant negative curvature. His upper bound is "something like V-
exp(exp(exp(F+ /?)))"• The author does not know whether his method is
similar to ours or not.
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Notation. Dn(r) = the ball of radius r centered at 0 in the flat «-dimen-
sional Euclidean space.

For a Riemannian manifold N, we put
c+(N) = the supremum of the sectional curvature of N,
c~(N) = the infimum of the sectional curvature of N,
Vol(TV) = the volume of N9

diam(iV) = the diameter of N.
For points p and qoiN and for a positive number r, set
Dp{r)= {s€ΞN\d(p,s)^r},
iN(p) = the injectivity radius of N at /?, that is sup{r| the restriction to

Dn(r) of the exponential map exp :̂ Tp(N) -> N, is injective},

C,( ) and ε,( ) always denote the positive constants depending only
on the numbers in the parentheses and on the dimension n.

1. A generalization of Cheeger's finiteness theorem—I

We prove Theorem 1-1 in this and the next sections. Since the proof is long,
we first give a rough summary of it. In this section we divide the set of all
manifolds satisfying the conditions of Theorem 1-1 into finitely many classes,
and we construct a local diffeomorphism /: Nλ — Nx(a/4) -> N2 for two
manifolds Nl9 N2 belonging to the same class. In §2 we modify/outside the set
Nx - Φ~ι(dNί X (1/2,1)) and make it a PL-homeomorphism between Nx and
N2. We need some conditions on/in order to make the argument in §2 go well.
These conditions are listed in Lemma 1-2 below.

Now we start the proof of Theorem 1-1. We may assume that N is
connected, since the number of connected components can be estimated in
terms of c and V. Set a = min(0/125, (c _ rf)/6,l/10), and N" = N' U
Φ~ι(dN' X (0,1/2]). For a positive number d smaller than c, we denote by
N(d) the connected component of N — N(d) which intersects with N'.

Lemma 1-2. The set of manifolds satisfying the conditions of Theorem 1-1 is
divided into finitely many classes V^- , ̂ Σ such that the following conditions are
satisfied:

(1)' For each ^k there exists a finite set Yk, and for each N e <βk there exists a
map ΨN\ Yk -> N{a/4) such that the a-neighborhoodofΨN(Yk) contains N(a/4\



NEGATIVELY CURVED MANIFOLDS 501

(2)' For two manifolds Nv N2 belonging to the same class <€k, there exists a
C°°-mapf: 7V/α/4) -> N2 which satisfies the following conditions:

(i) For any p e N£a//4\ there is a neighborhood U of p in N^a/4) such that the

restriction of f to U is a diffeomorphism to its image. (Hereafter we call a map a

local diffeomorphism if this condition is satisfied.)

(iϊ)For eachp, q e N{a/4\ we have d(f(p), f(q)) < d(p, q) + a.

(iii) For each i e Yk, we have d(fΨNι(i\ *^2(/)) < a.

(iv) For each i e Yk9 the inequality iNΨNι(i) > 3a/5 holds if and only if

iNΨNi(i)>3a/5.

(v) For each i ^Yk, the inequality iNΨNι(i) < (ft + c)/2 holds if and only if

iNΨNi(i)^(b + c)/2.

Proof. The proof of Lemma 1-2 is divided into three steps. In Step 1 we

construct the map ΨN. In Step 2 we divide the set of manifolds satisfying the

conditions in Theorem 1-1 into finitely many classes ^ , # Σ . In Step 3 we

construct the map /. The method used to construct / is similar to the argument

in Peters [15].

Step 1.

Assertion 1-3. There exists a positive number C2 such that

diam(jV ( a / 4 )) < C2Vaι~n

holds for every manifold N satisfying the conditions of Theorem 1-1.

Proof of Assertion 1-3. Let ZN = {Pi,— -,Pi, } be a maximal subset of

N(a/4) such that d(p, q) > α/20 holds for every p,q^ ZN with p Φ q. Then

Dp (α/20) (Pi e ZN) are disjoint to each other. On the other hand, since

iNγ(Pi) > a/20 and 1 > c+(N), there exists a positive constant 8 which de-

pends only on n and which satisfies Yo\(Dpι(a/20)) ^ 8an.

The above two facts imply

(1-1) #ZN < Vol(Λ0/(δα") ^ FV/(8a").

Now let p and q be elements of N{a/4\ Since ZN is maximal, the α/10-

neighborhood of ZN contains N{a/4\ Hence there exist elements /?/(1),

Pi(iy''' >Pi{m) °f %N s u c n t n a t t n e following conditions hold:
(a) Dp( Ί(a/10) Π Dpi{j+i)(a/10) Φ 0.

(b)p e Z>,/(1)(«/10) and 9 e Dpi{Ja/10).

Condition (c) imphes that

(1-2) m < #ZN.

For eachy ( < m), fix an element q} of D (a/10) Π Z) + i )(α/10). Then we

have

(1-3) d(qj, qJ+ι) < dmm(Dpιu+ι)(a/10)) < a/5.
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On the other hand, condition (b) implies

(1-4) </(?i, p ) < « / 1 0 and d(qm9q) < α/10.

By equations (l-l)-(l-4), we obtain

d(p,q) < rf(/N?i) + Σ d(qj9qJ+ι) + d{qmq)
7 - 1

< {2F/(«αM) + 2} α/10,

as desired. The proof of Assertion 1-3 is completed.

We construct the map ΨN in the following assertion.

Assertion 1-4. The set of manifolds satisfying the conditions in Theorem 1-1 is

divided into finitely many classes <€^9 , *&£) such that the following holds:
(1)" For each ^ ( 1 ) there exists a finite set γ£, and for each N e <^(1) there

exists a map ΨN: y£ -> N{a/4) such that the α/10 neighborhood of ^N(Yf

k)

contains N(a/4\

(2)" For two manifolds Nl9 N2 belonging to Cll) and for two elements ij of Y£9

the following holds:

(i) d(*Nι(i% ΨNι(j)) < d(ΨN2(il ΨNi(j)) + α/10.

(ii) iNι(ΨNι(i)) > 3α/5 holds if and only if i „£%&)) > 3α/5.

(iii) iNι(*Nι(i)) < (b + c)/2 holds if and only ifiNl(*Nl(i)) < (b + c)/2.

Remark. Conditions (1)" and (2)" correspond to the part of conditions (1)'

and (2)' in Lemma 1-2 concerning to the image of ΨN.

Proof of Assertion 1-4. For a positive number m, let m denote the set of all

positive integers smaller than m -f 1. For each manifold N satisfying the

conditions of Theorem 1-1, fix a subset ZN used in the proof of Assertion 1-3,

and fix a bijection ΨN: #ZN -> ZN. Let ̂ 2 ) be the set of all manifolds N

which satisfy the conditions of Theorem 1-1 and #ZN = k. Equation (1-1)

implies that the sets #/ 2 ) (/ = 1,2, ) are empty except finitely many ones.

Now (I)" holds because ZN is maximal.

On the other hand, Assertion 1-3 implies that the set [d(ΦN(i)9 ΦN(j))\i, j

< A:, Λ̂  G <#l2)} is bounded. It follows that we can subdivide the classes #/ 2 )

(/ = 1,2, ) into finitely many classes V{1\ ^2

( 1 ), - ,^ ( 1 ) , satisfying

(2)". The proof of Assertion 1-4 is completed.

Step 2. In this step, we divide each of the classes V^l) given in Assertion

1-4 into finitely many classes. Also, we do not change the set Yk and the map

For / e Yk and N e (S^)

9 we denote by φ ^ f the composition of the

exponential map, exp^: T^N{i){N) -+ N and an origin preserving isometric

embedding of Dn(6a/l0) into TΨN{0(N). If

(1-5),,,,„ D*N{i)(2a/10) Π D^ω(2a/10) Φ 0 ,
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then

and the map <p~N\j<pNl/. Dn(2a/l0) -* Dn(6a/l0) is well defined. We put

gNu.j = Ψ~NJ<PNJ> when (1-5), y Λ Γ holds.

Since Yk is a finite set, we can subdivide the classes ^ ( 1 ) (k = 1,2, ) into

finitely many classes if/3*, #2

( 3 ), such that the following holds: if Nx and N2

are contained in the same class ^ ( 3 ) , then, for each elements /, j of Yk9

(1-5); JNι holds if and only if (1-5), 7 ^ holds, in other words gNl.iyj is well

defined if and only if gN2-iyj is well defined.

On the other hand, since the sectional curvatures of our manifolds are

uniformly bounded, the maps g^., 7 are equicontinuous when TV moves in ^ p .

(See [2, Lemma 3,4]).

Therefore, using Ascoli-Arzela's theorem, we obtain the following. For an

arbitrary number θ we can subdivide the classes ^ ( 3 ) (k = 1,2, ) into

finitely many classes ^^4\ ^2

( 4 ), such that

holds for each/7 e D"(2a/lO) and /, j e Yk, if Nλ and N2 are contained in the

same class ^ ( 4 ) and if gN .iyJ is well defined. We will fix the number θ later.

Suppose / and j are elements of Yk such that gNUj is well defined. Then

d(ΨN(i), *N(j)) < iN(ΦN(i)) holds for every N e Cf >. Therefore there exists

a unique geodesic segment joining Ϋ^(i) with Ψ^O). Let P^ /^ : TΨN0)(N) -*

TΨN(J)(N) be the parallel displacement along this geodesic.

Since the maps

( Φ ^ y J i ^ / . / Φ ^ ) * : Γ0(Z)-(2α/10)) - Γ0(Z)"(2α/10))

are elements of SO(n), that is the group of linear isometries of Γ0(D"(2α/10)),

and since SO(n) is compact, we can subdivide the classes ^ ( 4 ) (k = 1,2, )

into finitely many classes # l 9 # 2 > ' ' * s u c n t n a t

holds for each Nx and N2 belonging to the same class Φk. Here d is a distance

function on SO(n).

Step 3. We prove that the classes c€k divided in Step 2 satisfy conditions
(1)', (2)' and (3)' in Lemma 1-2. We have already constructed the set Yk and
the map ΨN satisfying conditions (1)' and (2)'. We will construct the map / for

each pair (Nv N2) of elements of <£k.
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Following Peters, we use center of mass technique here. Let ηλ: N}a/4) -> [0,1]
be C°°-functions such that ΣieYk η, = 1 and that the support of η, is contained
in Dψ^^(6a/10).

For/? e Nfa/4) and q e N2, set

"(p,q)= Σ ( ^ ( p ) χ ^ X ( ί ) ' 4

(Remark that ifp is not contained in the image of Φ N f , then η^p) = 0. Hence
the above function is well defined.)

Let/(/?) be the point of N2 such that

= min ω(p,q).

The unique existence of such a point /(/*) is known and can be proved by
making use of the convexity of the function q -> ω(p, q). For these facts, see
Buser & Karcher [1].

On the other hand, Peters showed that if 0 < min(62~w, j8/700), then/is a
local diffeomorphism ([15, Lemma], where he treated the case when N was
compact, but his proof can be applied without any change to our case). Put
θ = min(62-", jβ/700). Then/satisfies condition (2)'(i).

By the definition of/, the inequality

d{f(p),*Nl(i))<6a/10

holds if

By using this fact and Assertion 1-3, we can easily prove that / satisfies
conditions (2)'(ii), (iii) and (3)r. Thus Lemma 1-2 is proved.

2. A generalization of Cheeger's finiteness theorem—II

In this section we complete the proof of Theorem 1-1. Take one of the
classes ^k given in Lemma 1-2. Suppose Nλ and N2 belong to ^k. If the
dimension is not 4, there exist only a finite number of diffeomorphism classes
in a given PL-homeomorphism class. Therefore it suffices to show that Nλ is
PL-homeomorphic to N2. (In the case when n = 3 or 4, it suffices to show that
Nλ is homotopy equivalent to N2.)

Let/: Nla/4) -> N2 and/': N2

(a/4) -* Nλ be the maps given in Lemma 1-2(2).
Assertion 2-1. (1) f(N}3a/4)) c 7V2

("/2). In particular, f'f\Npa/* is well de-

fined.
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(2) For every point p of Npa^4\ we have d(f'f(p), p) < 7α.
Proof. Using the fact |sectional curvature] < 1, we see easily that

(2-1) M / 0 - ί * ( 9 ) l <<*(/>><?)

holds for each/?, q e N with d(p, q) < π/4.
Now let p be an arbitrary point of N^a/A). By Lemma 1-2, there exists an

element y of Yk such that d(/?, ΨN(j)) < α. Therefore, (2-1) implies that

It follows that

(2-2) i J K ) W
> 3a/5 - α > llβ/20.

The first inequality follows from (2-1). The second inequality follows from
Lemma l-2(iii), (iv) and the fact iNι(ΨNι(j)) > 3a/5. The third inequality
follows from the fact a < a/20.

Equation (2-1), together with Lemma l-2(2)(ii) and the fact d(p, *Ni(j)) < a,
imply that

iN2(f(p)) > H«/20 - d(f(p)j(ψNι(q))) > llα/20 - 2α > a/2.

This proves (1) of Assertion 2-1.
By Lemma l-2(2)(ii), (iii), we have

d(f'{9NiU)), *Nι(j)) + 2« < 3a.

Using Lemma l-2(2)(ii), (iii) again, we obtain

d(f'f(p), P) < d(f'f(ψNι(j), f'f(p))) + d(ψNι(j), p) + 3a< 7«.

The proof of Assertion 2-1 is completed.
Assertion 2-2. The restriction of f to TV/ is a homotopy equivalence between

N{andN2.
Proof. Condition (4) in Theorem 1-1 implies that N{ is a deformation

retract of Nv Let^: Nx -> N{ andy2: N2 -> N{ be retractions. Set

/ = A/U'> f'=hΓ\Ni-
We will show that / '/ is homotopic to the identity map of N{. It can be

shown in a similar way that ff' is homotopic to the identity map of N{. Since
the maps j \ and j 2 are homotopy equivalences, Assertion 2-2 follows from the
above two facts.

To prove that / '/ is homotopic to the identity map, it suffices to show that
f'f\N' is homotopic to the inclusion map / of N{ into Nλ (because^ andy2 are
homotopy equivalences).



506 KENJIFUKAYA

By Assertion 2-1, we have

Therefore there exists uniquely a minimum geodesic segment /: [0,1] -> Nx

joining p with f'f(p), For each element t of [0,1] and for each p e 7V2, let
gt(p) denote the point on / such that d(p, gt(p)) = t d(p, q). Clearly g is
continuous, g0 = / and gχ *= f'f. Namely g is a homotopy from / to /'/. The
proof of Assertion 2-2 is completed.

Assertion 2-3. The restriction of f to N" is infective.
Proof, Let p9q be points of N{' such that f(p)=f(q\ (Recall that

Nx" = N{ U φ-^ΘΛY X [0,1/2]).) We will prove/? = q.
By Assertion 2-1(2), we have

d(p, q) < d{p, f'fip)) + dif'fiq), q) < Ua.

On the other hand, iN(p) is greater than 14α,
Hence there exists a geodesic /: [0,1] -> Λ̂  such that / is parametrized

proportionally to arc length and that 1(0) = /?, 1(1) = q and that the length of /
is smaller than 14αf

By Lemma l-2(ii), we have, for each s e [0,1],

d(f(p),f{l(s)))*ίd(p,l(s)) + a*ίl5a.

It follows that

fl([0,l])czD/lp)(15a).

Therefore, since iN (f(p)) > 15α, there exists a continuous map g: [0,1] X
[0,1] -> Df(p)(l5a) such that g(/,0) = β(t) and g(0, /) = g(l, 0 = g(t, 1) =

/ ( )
Claim. There exists a continuous map g: [0,1] X [0,1] -> iV/"/

fg=*gandg(t,Q)=l(t).
Before proving the claim, we prove Assertion 2-4 making use of the claim.
Since fg(t, 1) does not depend on t and since/is a local diffeomorphism, it

follows that g(/, 1) does not depend on t. In particular g(0,1) = g(l,l).
Similarly we obtain g(l, 0) -* g(l, 1) and g(0,1) = |(0,0).

Therefore

as required.
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Proof of the claim. We will prove by contradiction. Suppose the claim is

false. Then the following is valid, since /is a local diffeomorphism.

There exist s0, /0 ̂  ,[0,1] and a continuous map g(t0, •)

which maps s e [ 0, s0) to g(t, s) e N^a/2) and which satis-

(*) fies/(g(/0, s)) = g(t0, s) and g(to,0) = /(/0). Furthermore s0

is the maximum among the numbers which have the above

property.

We will deduce a contradiction from (*). For each s e [0, s0), we have

d(p, g(/0, s)) < d(p, f'f(p)) + d(f'f(p), f'g(t09 s))

This formula, together with Assertion 2-1(2), Lemma l-2(2)(ϋ) and the fact

g(t0, s) = Df(p)(l5a), implies that

(2-3) d(p, g(t0, s)) < Ίa +(d(f(p), g(/0, s)) + a) + la < 30α.

It follows from (2-3), (2-1) and the fact iNχ(p) > 3a/5, that

(2-4) iNι(g(^ *)) > 3^/5 - 30α > a/2.

Therefore, "all accumulation points of lim^.^ g(/0, s) are contained in

On the other hand,

(2-5) "/is defined on N{a/2) ",

(2-6) "/is a local diffeomoφhism",

(2-7) " lim fg(t09s) converges".

The facts (2-4)~(2-7) imply that lims^s g(t0, s) converges to a point of

ΛΓ(Λ/2). Hence g(ί0, •) can be extended to [0, s0 + δ) for sufficiently small δ.

This contradicts (*). Thus the proof of the claim is completed.

Assertion 2-4. f(dN{') czN2- N{.

(Remark. Condition (4)(ii) in Theorem 1-1 is added to make this assertion

valid.)

Proof of Assertion 2.4. Let/? be a point of dN". By Lemma 1-2(1)', there

exists an element/ of Yk such that

(2-8) d(p9ΨNι(j))^a.

Sincep e dN", condition (4)(ϋ) in Theorem 1-1 implies

(2-9) iNι(p)<b.

By (2-8), (2-9) and (2-1), we have

b + a < (b + c)/2.
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Therefore, using Lemma 1-2(2)', we have

(2-10) iN*N,U) < (* + c)/2.

On the other hand, by Lemma l-2(2)(ii), we have

(2 11) rf(^)'*^))<rf(^^

< 3a.

Inequalities (2-10), (2-11) and (2-1) imply

iN2(f(p))<(b + c)/2 + 3a<c.

This inequality, together with condition (4)(ii), implies

as required.

Assertion 2-5. The restriction off to dN" is a homotopy equivalence between

dNλ" andN2 - N{.

The proof of Assertion 2-5 is similar to the proof of Assertion 2-2, and hence

is omitted.

Set U = / ( # " ) - N{ and V= N2- / ( # " ) •

Assertion 2-6. The embedding iλ off(dN") into U and the embedding i2 of

f(dN{') into Vare homotopy equivalences.

Proof. In order to avoid complicated notations, we assume that N2 — N2 is

connected.

By Van-Kampen's theorem, we have

Assertion 2-5 implies that the inclusion map: f(dN") -> N2 induces an isomor-

phism on fundamental groups.

Using these facts, we can prove easily that iλ and i2 induce isomorphisms on

fundamental groups.

On the other hand, by using Assertion 2-6 and the Mayer-Vietoris exact

sequence

- • -> H*(f(dN{')) - Hm(U) θ H*(V) - H*(N2 - N{) -*

we can prove easily that iλ and i2 induce isomorphisms on homotopy groups of

any local coefficient system.

Assertion 2-6 follows easily from these two facts.

Assertion 2-7. IfnΦ3, 4, then Vis PL-homeomorphic tof(dN") X [0,1).
Proof. By condition (4) in Theorem 1-1, we can attach to N2 a boundary

87V2, which is PL-homeomorphic to dN2'9 and can make N2 a compact

PL-manifold N2. Set V = V U dN2.
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Since the restriction of / to JV/ is a PL-homeomorphism to its image and
since dN" is contained in N{, it follows that f(N") is a PL-submanifold of N2.

Now Assertion 2-7 implies that (V, f(dN")) and (F, dN2) are oo-connected.
Therefore, Theorem 7-11 in [13] implies that V -dN2 (= V) is PL-homeomor-
phic to f(dN") X [0,1), as required.

Assertion 2-7 implies that/I^, is extended to a PL-homeomorphism from Nλ

to N2. This completes the proof.

3. Negatively curved manifolds

In this section we review negatively curved manifolds. First we need some
notations. Let M be a complete Riemannian nonpositively curved manifold.
Let X be the universal covering space of M, and let π be the natural projection
m\ X -» Λf, and let Γ be the group τr1( M) acting on X as the group of covering
transformations.

In this section and the next, we assume either that X satisfies the visibility
axiom of Eberlein & O'Neill [3] or that M has negative curvature (namely, for
each point p of X and for each plane π c Tp(X), the sectional curvature of X
at 77 is strictly negative).

Let γ be a selfisometry of X. We call γ an elliptic isometry if γ has a fixed
point in X, a hyperbolic isometry if γ has a unique invariant geodesic and has
no fixed point in X, and a parabolic isometry if γ is neither elliptic nor
hyperbolic. For two points/? and q of X, we denote by p q the geodesic joining
p with q.

For a point/? of Xand subset^ of Γ, we set 8A(p) = infγe/ί-{i> d(p, γ(/?))
If A is invariant under the inner automorphisms of Γ, then δA is invariant by
the action of Γ. Hence 8A induces a function on M (= Γ \ X). We denote this
function also by 8A. It is easy to see that

δ r / 4 < 1M < V

We set

*a = XaX> Ma = Maj,

Tεp = subgroup of Γ generated by {y\d(y(p),p) < ε}.

Now we give a description of the set Ma. Assume M satisfies c~(M) > -1 ,
and Vol(M) < oo. Let ε2 be the MarguhY constant (see Gromov [5, 3-2] or
Buser & Karcher [1, 2-5]). Let ε be a positive number smaller than ε2. We
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denote by Sv S2, all connected components of Mε. Choose, for each /, one

of the connected components of T Γ " 1 ^ ) , and denote it by S; . In the case when

X satisfies the visibility axiom, Eberlein [4, Corollary 3-3] implies that there

uniquely exists a maximal almost nilpotent subgroup containing Tε p. (Here we

say a group is almost nilpotent if it has a nilpotent subgroup with finite index.)

It is easy to see that this group depends only on / and does not depend on

p e Sj. We denote this subgroup by Γf .

Theorem 3-1. Suppose that X satisfies the visibility axiom. Then, for each i,

one of the following statements holds:

(1) (a) St is diffeomorphic to an Rn~ι~bundle over Sι.

(b) Γ, is isometric to Z and all nontrivial elements of Γz are hyperbolic.

(c) There exists a geodesic I such that I is invariant by all elements of Yi and

that π(l) is a closed geodesic contained in St.

(2) (a) Γ, acts on Rnl freely such that

(i) Γ, \ R " ~ ι is compact.

(ii) Si is homeomorphic to [0,1) X (Γ \ R"" 1 ) .

(b) There exists a unique point on dX which is invariant by Γ,.

In the case when we do not assume the visibility axiom for X and when we

assume that X has negative curvature, an analogue of Theorem 3-1 holds. But

in this case, we do not know whether S, is homeomorphic to [0,1) X Γ, \ R n l

in case (2).

Theorem 3-2. Suppose X has negative curvature. Then, for each i, one of the

following statements holds:

(1) For each p e Si9 there exists uniquely a maximal almost nilpotent subgroup

Tpj containing Γε p. The group Tp , does not depend on p and depends only on i.

Put Γ, = Γ ^ . Then conditions (a), (b) and(c) in Theorem 3-1(1) hold.

(2) There exist a compact manifold L and a homeomorphism Φ between Sj and

L X [0,1) such that conditions (a) and (b) below hold for each p e L.

(a) Iftv t2 e [0,1) and iftλ < t2, then we have

Proofs of Theorems 3-1 and 3-2. First we need a lemma.

Lemma 3-3. //p0 e Sz and if Γε/?o contains a hyperbolic isometry, then, for

every p e Si9 the group Γε p contains a hyperbolic isometry.

Proof of Lemma 3-3. Set U = { p e Si\Tεp contains a hyperbolic isometry.}

Claim I. U is open.

Proof. Let p be an element of U. By the definition of U, there exists a

hyperbolic element in Tε p. Therefore, Gromov [6, 2-5] implies that all non-

trivial elements of Γe p are hyperbolic. Hence there exists a hyperbolic isometry
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γ such that δ{y^(p) < ε. Then there exists a neighborhood W of p such that

δ { γ } is smaller than ε in W. Hence W c U, as required.

Claim 2. U is closed in S,.

Proof. Let p be an element of St Π U. Since p is contained in S,, there

exists a nontrivial element γ of Γ such that 8{γ^(p) < ε. Hence there exists a

neighborhood W of p such that δ ί γ } is smaller than ε on W. Since p <Ξ £/, it

follows that I f Π ί / ^ 0. Let q <= W O U. Since Γ contains a hyperbolic

isometry, all elements of Γε q are hyperbolic [5, 2-5]. Hence γ is hyperbolic. It

follows that p e t/, as desired.

Since S, is connected, Lemma 3-3 follows from Claims 1 and 2.

We return to the proofs of Theorems 3-1 and 3-2. We show that (1) holds if

Tε p contains a hyperbolic element and (2) holds if Tεp does not contain a

hyperbolic element.

Case 1. The case when Γ̂  contains a hyperbolic element.

In this case, Lemma 3-3 and [5, 2-5] imply that there exists uniquely a

maximal almost nilpotent subgroup Γ̂  , containing Γε p, and that Γ ^ does not

depend on p. Then, Margulis' lemma ([1, 2-5], [5, 3-2]) and [5, 2-5] imply that

Γf = Z and that all nontrivial elements of Γ7 are hyperbolic with the same

invariant geodesic /. It is easy to see that St contains /. Let p be an element of St

and q be the element of / such that d(p, q) = d(p, I). Then, it is easy to see

that ~p~q c St. On the other hand, [5, 3-4] implies that S{ = Γ; \ ^ , Therefore St

is diffeomorphic to an R"~ ^bundle over S1. Thus we have proved that (1)

holds in this case.

Case 2. The case when Γε p does not contain a hyperbolic element.

In this case, we must prove Theorems 3-1 and 3-2 separately.

Proof of Theorem 3-1. Since all elements of Γ, are parabolic, Eberlein [4,

Corollary 3-3] implies that there exists p0 e dX such that Tpo = Γ;. Since a

parabolic isometry has only one fixed point, it follows that p0 is uniquely

determined.

We need some facts on horosphere here.

Let p0 be a point on 3X We define the Buseman function βpo as follows.

Take q ^ X, and let /: [0, oo) -> X be the half geodesic satisfying /[0, oo))

= Poa ~ {Po}' F o r a n element p of X, set βPo(p) = lim,.^(</(/(*), P) ~ O

Then, it is proved in Eberlein-O'Neill [3, p. 56, Propositions 3-1 and 3-5], that

the above functions converge to a C^-function of p, and the resulting function

does not depend on q modulo a constant number. Let us denote the limit by

β . For a point p0 on dX, a horosphere of p0 is a set which is {p e X\βpo(p)

= a } for some positive number a.

Lemma 3-4. Any horosphere is diffeomorphic to Euclidean space.
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Proof. Set V = {p e X\βPo(p) = β}.We prove that Fis diffeomorphic to
R" \ °

Take q ^ X - V such that q p0 Π V Φ 0. It is easy to see that q p0 Π V
consists of one point. Let o denote this point. Put x = gτsid(βpo). Then we see

Hence βpo has no singular point. It follows that V is a C^submanifold of X.
Denote by y the vector field on V such that y(p) is the orthogonal projection
to Tp(V) of d/dtpq(t)\t=0(<= Tp{X)). The vector field Ĵ  is continuous but not
necessarily differentiable.

Assertion 3-5. Ifp Φ 0, then y(p)Φ 0.
Proof. If y(p) = 0, then d/dtpq(t)\t=0 is parallel to x(p). Hence q, p and

p0 lie on one geodesic. It follows that q e qp^. Therefore p = o, as desired.
We return to the proof of Lemma 3-4. For a pointp of F, set g(p) = d(p, q).

It is easy to see that grad(g) = y. Hence, Assertion 3-5 implies that g has only
one critical point o in V.

If o is a nondegenerate critical point, Morse theory would imply the lemma.
But we do not know this fact. Hence we proceed as follows.

Choose a C°°-structure on V which is compatible with the C^-structure as a
submanifold of X. Let D be a neighborhood of o in V such that D is
diffeomorphic to Dnl. Let U and Uf be open subsets of V such that
o G ί / c ϊ / c t / ' c ί / ' c Int(Z)).

Sincey(p) is not equal to 0 for each/? not equal to 0, it follows that there
exists a C^-function gf on Fsuch that the following conditions are satisfied:

(1) g' is of C°° class onV- U.
(2) g' coincides with g in a neighborhood of o.
(3) g' is nonsingular on F - {0}.
(4) For every positive number b, the set { p e F|g'(6) < 6} is compact.
Let φ be a C°°-function on F satisfying the following conditions:

(2)<p(/?)=l,for/>eX-Zλ

Choose a (C00-) Riemannian metric on F and set z = φ grad g'.
By condition (1) on g' and condition (1) on φ, the vector field z is of C°°

class. Hence there exists a one-parameter family of transformations Φ, associ-
ated with z.

Condition (4) on g' and condition (2) on φ imply the following: for each
compact subset K of V there exists a positive number t(K) such that Φt(D)
contains K for each t ^ ΐ( K).
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Take a sequence of compact sets Kλ, K2, such that Ki c Ki+l9 and

U/ = 1 Ki = V. Define positive numbers tl9t2,' inductively as follows: tλ =

t(D U Kx), - -,ti+ι = t(Φt(D) U * . ) . Set Z), = Φ, (£>). Then 2), c Di+l9

Ui=lDt= V and each Z), is diffeomoφhic to D n ~ \l).

Therefore, the annulus theorem (see for example [12, Corollary 2-16-1])

implies that Di - Di_ι is PL-homeomorphic to S"~2 X [0,1). Therefore V is

diffeomoφhic to R"" 1 (see [11]). The proof of Lemma 3-4 is completed.

We return to the proof of Theorem 3-1.

We have shown that there exists uniquely an element p0 of X such that

Γ, = Γ^. It follows easily that

Si={peX\δΓι(p)<ε}.

By a method similar to the proof in [5, 3-4], we can prove that

(3-1) S,. =

We see easily that

(3-2) ppon X a Si for each/? e Sr

On the other hand, Eberlein [4, Lemma 3-l(e)] implies that there exists a

positive number a such that

(3-3) [peX\βPo{p)*°}cSf

Now set grad(/}po) = x. Since x is invariant by the action of Γf , it follows

that x induces a vector field on Sf = Γ, \ S,. We denote this vector field also by

x. Take the number a given in (3-3), and put S/ = { p e M\βpo(p) < a}.

By (3-2), we obtain a homeomoφhism h: Str -> S/ such that, for/? G 5/? two

points/? and h(p) are contained in the same orbit of x.

On the other hand, if we let V denote {p e X\βpo(p) = a), then Lemma

3-4 implies that F i s diffeomoφhic to R"\ On the other hand, Sf ^T^VX

[0,1). Therefore 5f. « Γ/f \ K X [0,1).

Since 9 ^ is closed in M - U,Int S,-, and since M - Uylnt St is compact, it

follows that 3S1, - Γ/f \ V is compact. Thus the proof of Theorem 3-1 is

completed.

Proof of Theorem 3-2 in the case when Tεp contains no hyperbolic elements.

Assertion 3-6. Suppose Tε q contains no hyperbolic elements for each q e St.

Then there exists a C™-vector field x on St such that the following holds:

Let p be an arbitrary point of St, and let yl9 γ 2, , be all elements of Γ such

that δ{y }(/?) = 8T(p). Then, for each j \ we have

(3-4) (
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Proof. Margulis' lemma and [5, 2-7], imply that, for each p e Si9 there

exists a vector x(p) e ^ ( X ) such that (3-4) holds for eachy. Then Assertion

3-6 follows by using a partition of unity.

Now we can complete the proof of Theorem 3-2. Assertion 3-6 immediately

implies that L = {p e *S'/|δΓ(/7) = ε/2} is a topological submanifold of St. It

is easy to see that L is compact.

Let % be the 1-parameter group of transformations associated to x. For each

point p of L, the intersection of dSt and {Ψ,(/?)|ί e R} consists of one point,

which we denote by Ψg(t)(p). For (/?, t) <Ξ L X [0,1), set

Then, clearly, F: LX[0, l)-> Sέ is a homeomorphism. Set Φ = F~ι. Condition

(2)(a) follows from Assertion 3-6.

Proof of condition (2)(b). If l i m s u p ^ ^ r ί Φ " ^ ^ , /)) Φ 0, then there exists

a sequence of elements, tv t2, * of [0,1) and a positive number θ such that

(3-5) tan(τ7// + 1/2) - tan(ir//2) > 1,

(3-6) δΓ(ψ-1(p,tι))>θ.

On the other hand, since the set K = {q e ^/l^pί/?) > ^} is compact, there

exists a positive number λ such that

(3-7) δΓ(q) ~ 8τ(Φ,(q)) <-λ

for every q ^ K and / > 1.

Equations (3-5)—(3-7) imply that

«r(φ-1(ί.O)<MΦ'1(P.<i-i))-λ.
This contradicts (3-6). The proof of Theorem 3-2 is now completed.

We call St an ε-tube if (1) is satisfied and we call 5f an ε-cusp if (2) is

satisfied.

Remark 3-7. For each point p of X, there exist a finite number of elements

ϊi> Ϊ2 ' " ' *>Y* °̂  Γ s u c n t n a t ^r = ϊϊύny^iC^γ) o n s o m e neighborhood of p.
Using this fact, we see that L is a PL-submanifold and that Φ is a PL-home-
morphism.

4. Proof of Theorem I

In this section, we prove Theorem I. We need the following lemma of

Gromov, which played the key role in the proof by Gromov of his finiteness

theorem.

In this section, we assume either that M has negative curvature or that the

universal covering space of M satisfies the visibility axiom.
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Let n > 4 be an integer. Let ε be a number smaller than ε2/2. Suppose M

satisfies Vol(M) < oo, c~(M) > -1 and dim(M) = n. Let S be an ε-tube of M

and S" be the 2ε-tube containing S, and let ττ(/) be the closed geodesic which is

contained in S and whose length is smaller than ε. Assume d(dS, π(l)) > 2ε

and d(M - 5, ττ(/)) > 3.

Lemma B (Gromov [5, 4.4]). There exists a positive number C3 such that

Vol(S') > C3 dmm(S)Pnε\

where pn = 1 if n > 8,/?w — 3/2 if n = 6orΊ,pn — 3ifn = 4 or 5.

Gromov, in [5], also remarked the following: for each δ > 0 we have a

constant C 4(δ) such that,

(4-1) Vol(S') > C 4 (δ) diam(S) εn

holds for M satisfying c+(M) < -δ in addition.

Gromov deduced, from Lemma B, the inequality

diam(M) < const \o\(M)Pn

in the case when M is compact. This formula does not hold in the case when M

is noncompact. But we can prove a similar formula.

Theorem 4-1. For each positive integer n with n ^ 4 and for each positive

number ε with ε < ε2/2, there exists a positive number C5(ε) such that the

following holds. If M is connected and satisfies dim(M) = n and c~(M) > - 1 ,

then we have

diam(M —(the union of all ε-cusps)) ^ C5(ε) Yol(M)Pn.

Theorem 4-1'. For each positive number δ and ε < ε2/2, there exists a

positive number C6(ε, δ) such that

diam(M -(the union of all ε-cusps)) < C6(ε, δ) Vol(M)

holds if M satisfies c+(M) < -δ in addition.

Proof of Theorems 4-1 and 4-1'. By iM < δ Γ , we have

(4-2) M - M ε c M - M(ε).

Hence Assertion 1-3 and (4-2) imply

diam(M - Mε) < C2 Vol(M) ει~n.

On the other hand, Lemma B implies

(4-4) diam(an ε-cusp of M) < (C^1 Vol(M) ε~n)P\

Theorem 4-1 immediately follows from (4-3) and (4-4). The proof of

Theorem 4-1 ; is similar.
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Theorem 4-2. For each integer n with n > 4, and for each positive number V,

there exists a positive number ε3(V) such that the following holds. If an

n-dimensional manifold M satisfies Vol(Af) < V and c~(M) > - 1 , then M

contains no ε3(V)-tubes. In other words, Mε^V) consists only on cusps.

Proof. We may assume that Mis connected. Since M - ME2 Φ 0 , we have

(4-5) Vol(M -(ε2/2-cusps)) > Vo\(Dn(l)) -(ε2/4)n.

Set

*3(V) = ^ ( ( ε ^ ) " Vol(Z)-(l)), C5(ε2/2) V'*).

We will prove by contradiction that M has no ε3(F)-tubes.

Suppose that S is an ε3(F)-tube of M. Take a point p0 on /. We see

(4-6) length of / < ε.

Since p0 is contained in a tube, it is not contained in any cusps. On the other

hand, Theorem 4-1 implies that

(4-7) diam(M -(ε2/2-cusps)) < C5(ε2/2) Vp».

Therefore, Theorem A, the definition of ε 3(F) and equations (4-6) and (4-7)

imply

Vol(M -(ε2/2-cusps)) < (ε 2 /4)" Vol(ZT(l)).

This contradicts (4-5). The proof of Theorem 4-2 is completed.

Proof of Theorem I. Now we can prove Theorem I. First we assume n > 4.

Set a = ε3(K)/64, b = ε3(F)/16 and c = ε 3(F)/8. Suppose M satisfies the

conditions of Theorem I. It suffices to show that M satisfies the conditions of

Theorem 1-1 when we take the numbers a, b and c as above.

It is clear that M satisfies Conditions (1), (2) and (3) in Theorem 1-1. We will

verify Condition (4). We treat only the case when the universal covering space

of M satisfies the visibility axiom. The proof in the case when M has negative

curvature is similar (use Theorem 3-2 instead of Theorem 3-1).

Set M' = M (Vy Theorem 4-2 implies that Mε ( K ) consists of cusps. Take

one of the cusps, and let us denote it by Sf . Let p be the point on dX such that

Γf- = Tpo. (We are using the notation used in Theorem 3-1.) Denote by Φ, the

PL-homeomorphism between Si and [0,1) X (Γf \ R""1) given in Theorem 3-2.

(As was remarked in 3-7, the homomorphism given in Theorem 3-2 is a

PL-homeomorphism.)

Then Φ/~
1([0,1) X (a point}) is an orbit of x. (Here x is the gradient vector

field of Buseman function.) Hence there exists a PL-homeomorphism Φ/:

St -> as,. X [0,1) such that

= [p e Sf.|
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Let Φ: M — M' -> (0,1) X 9M' be the PL-homeomorphism satisfying Φ | s

= Φ/

Now we will show that condition (3) is satisfied if we take this function Φ

and this open subset M'. (i) is clear.

Proof of (ii). We have

M* Π M(c) = { ^ E M\8T(p) > ε 3 ( F ) , iM(p) < ε 3 ( F ) / 8 } .

On the other hand, we see δ Γ / 4 < iM. Therefore we have M' Π M(c) = 0 ,

as desired.

Proof of (iii). Suppose p is an element of Φ\dM' X {1/2}). By the

definition of Φ, we have 8Γ(p) = ε 3 (F)/16. Hence

a = ε 3 ( F ) / 6 4 < iM(p) < ε 3 ( F ) / 1 6 = ft.

Therefore we have/? e M(ft) - M(a\ as desired.

Thus we have proved Theorem I in the case when n > 4.

In the case when n = 2, Theorem I can be easily deduced from Gromov's

Betti number estimate bt{M) < const Vol(M) [8, p. 12].

5. A counterexample

In this section, we given an example which shows that we cannot replace

Condition (2) in Theorem I by "Λf has nonpositive curvature".

Proposition 5-1. For each positive integer n greater than 2, there exists a

sequence of Riemannian manifolds Ml9 M2, * * which has the following proper-

ties:

(1) The volumes of'Mt (i = 1,2, ) are uniformly bounded.

(2) There exists a positive number CΊ such that

0 ^ sectional curvature of'Mi > -Cη

holds for each i.

(3) // / Φ j 9 then the Betti numbers of Mi and M- are distinct.

Since our construction is quite similar to the one in Gromov [5], we give only

an outline of the construction. (See also Eberlein [4, p. 459].) First we study the

case when n = 3. In [5], Gromov took infinitely many manifolds Xi9 which are

diffeomorphic to (Torus-two open disks) X circle. And he made a manifold

M^ by identifying one of the boundaries of Xt to that of Xt_x and by

identifying the other boundary of Xi to that of Xi+ι. Then M^ is a nonposi-

tively curved manifold which has finite volume and bounded curvature but

whose Betti number is infinite. Now, we take finitely many manifolds Xl9 , Xk

from Xi {\\ — 1,2, ). Then we get a manifold MΛ' by identifying their

boundaries in a similar way. The boundary of M^ is one of the boundaries of
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Xk. We modify Mk and obtain a closed manifold Mk. These manifolds have

required properties.

In the case when n Φ 3, we take Mk X (Sι)"~3.

6. An estimate on the number of homotopy types

In this section, we give an estimate on the number of homotopy types

containing manifolds satisfying the conditions of Theorem 1-1.

Theorem 6-1. In each dimension, there exists a positive number C8 such that

the following holds. For each positive number a, b, c and V satisfying a < b < c

and V < 1, there exist at most (d~nV)c*d "v homotopy types containing mani-

folds N satisfying the conditions of Theorem 1-1. Here we put d = min{α/3,

(b-c)/2,\).

Proof of Theorem 6-1.

Lemma 6-2. There exist positive numbers C9 and C 1 0 such that the following

holds. For each N satisfying the conditions of Theorem I, there exist open subsets

Dl9 - , DL of N such that following holds:

(1) L < C9Vd - n

(2) There exists U < L such that

(0

(ϋ)

L

U A
/ = 1

U

U D D 7V(C),
ι = l

(3) For each {z1?- -,/*} c {1>2, ,L}, the set Γ\j=ιDt is contractible if it is

nonempty.

(4) For each i < L,we have

#{j ^LlD ΠDjΦ 0} < C lo.

P/ΌO/. Let Z = {/7l5 /?2, } be a maximal subset of 7V(ί//4) such that

d{p, q) > d/2 holds for the two elements^ and q of Z. A method similar to

the proof of (1-1) in §1 shows that Dt = Dp.(d) has the desired property.

Now we construct a simplicial complex^M as follows:

(a) The vertex set of ̂ M is {1,2, ,L }.

(b) For 0 < iλ < i2 < < ik, the set {il9- —,ik} is the vertex set of some

simplex of £fM if and only if

D. n Di n - n Di Φ 0.

Denote by5?^ the full subcomplex of SfM whose vertex set is {1, ,L'}. The

suffix M is omitted when no confusion arises. Let \Sf\ and \&"\ be geometric



NEGATIVELY CURVED MANIFOLDS 519

realizations of Sf and ¥' respectively. It is well known that (3) in Lemma 6-2

implies that there exist homotopy equivalences
L V

Ψ: \<e\ -* U A and Ψf: \9"\ -> U A
/ = 1 / = 1

which commute with natural inclusions \£f'\ -> \S?\ and (J/ix Dt -> Uf=1 A

Now, by (1) and (4) in Lemma 6-2, we see easily that Sf satisfies the

following conditions:

(i) The number of vertices is smaller than C9Vd~n.

(ii) There exist at most C 1 0 vertices which can be joined with a given vertex

of S? by some 1-simplex of y .

We put C = the maximum integer smaller than C9Vd~n. Let Y be the set of

all simplicial complexes satisfying conditions (i) and (ii) above.

Lemma 6-3. There exists a constant Cu such that the number of isomorphism

classes containing elements ofYis smaller than (CnVd~n)CuVd ".

Proof. Let Δ c denote the simplex whose vertex set is (1,2, , C}. It is easy

to see that every element of Y can be represented as a subcomplex of Δc.

Let Z be the set consisting of all subcomplexes of Δ c which have less than

C 1 0 vertices.

Define a map Ω = (ω 1 ? ω2, ,ω c ) : Y -> Z c , as follows.

ωέ(όf) = the full subcomplex of ̂ whose vertex set is

{ j\j can be joined with / by some 1-simplex of Sf.}

Condition (ii) implies that ω ^ ) G Z. Hence the map Ω is well defined.

(Here we identified an element of 7 to a subcomplex of Δ c which is isomorphic

to it.)

Clearly Ω is injective. On the other hand, it can be proved by an easy

combinatorial argument that there exists a positive number C 1 2 depending only

on n, the dimension, and satisfying

# Z < Dn - CCl° < C 1 2 '{C9Vd~n)Cx\

Lemma 6-3 follows immediately from these two facts.

Now we return to the proof of Theorem 6-1. Since Sf' is a full subcomplex of

ya.ua since the order of the vertex set of ^ i s smaller than C, it follows that

there exist at most 2 C (CnVd~n)CnVd~n isomorphism classes containing pairs

(S^N, 6fχ) for some iV satisfying the conditions of Theorem 1-1.

Therefore Theorem 1-1 follows immediately from the lemma below.

Lemma 6-4. // (S?N, &#) is isomorphic to ( ^ , «£%)> then N is homotopy

equivalent to N'.

Proof. Let G be an Abelian group and let φ: πx(N) -> G be a homomor-

phism. G and φ induce local coefficient system on \5?\ and \£f'\. Let Gψ denote

this local coefficient system.
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Assertion 6-5. π^N) is isomorphic to the image of the homomorphism'.
πi(\&"\) ~^ ^ l d ^ Ί ) induced by the inclusion map. Also, for each G and φ, the

group H*(N\ Gφ) is isomorphic to the image of the homomorphism:

H*(\y% Gψ) -* H+(\S?\; Gφ) induced by the inclusion map.

Proof. Let Φ be the map given in condition (3) in Theorem 1-1. Set

ΛΓ" = φ~ι(dN' X [0,1/2]) U N\ Then the homomoφhism: πλ(N") -> πx(N)

is an isomoφhism. Hence considering the diagram

we can easily show that the homomoφhism: ^(U/Li Dt) -> πλ(N) is injective

on the image of the homomoφhism: πiQJfii Dt) -» πι(\J^ι D^).

On the other hand, since the homomoφhism: πλ(N') -> πλ(N) is an isomor-

phism, considering the diagram

we can easily show that the homomoφhism: ιπι^J^LιDi) -> πλ(N) is surjective.

The above two facts immediately imply the statement on the fundamental

groups. The proof of the statement on the homology groups is similar. The

proof of Assertion 6-5 is completed.

Now we return to the proof of Lemma 6-4. Let ψ be the isomoφhism

between {5fN, 5 ^ ) and (S?N , Sf^ ). Let φ: N{ -> N2 be the composition of the

following five maps: the injection: N{ -> Uf=1 Di9 the homotopy equivalence:

Uf=1 A -> \srNι\, the map |ψ|: \STNχ\ -• \STN^ the homotopy equivalence: | ^ J

-* Ufβ l />,- and the injection U/ix /),- -^ Λ .̂ Then, using Assertion 6-5, it is easy

to see that φ induces isomoφhisms both on fundamental groups and on

homology groups of any local coefficient system. Therefore φ is a homotopy

equivalence, as desired. Thus the proofs of Lemma 6-4 and that of Theorem

6-1 are completed.

Next, we give an estimate on the number of homotopy types containing

manifolds satisfying the conditions of Theorem I.

First we need an estimate on the number ελ(a, D) in Theorem A. Heintze &

Karcher [10, Corollary 2.3.2] gives

£ l ( α , D) > (2πa/No\{Sm)) sinh(Z>)"m + 1 .

Therefore there exists a constant C 1 3 such that

On the other hand, the number ε3(V) given in Theorem 4-2 is



NEGATIVELY CURVED MANIFOLDS 521

Therefore there exists a constant C 1 4 such that

e 3 ( K ) > e x p ( - C 1 4 K * " ) .

On the other hand, we have proved in §4 the following: if we put a =

ε 3 (F)/64, b = ε3(K)/16 and c = ε 3 (F)/8, and if we assume that M satisfies

the conditions of Theorem I, then M satisfies the conditions of Theorem 1-1.

Using these facts and Theorem 6-1, we obtain the following result.

Theorem 6-6. For each positive integer n greater than 3, there exists a

positive number C 1 5 such that the following holds. For each positive number V,

there exists at most exp(exp(C15F
;?/ι)) homotopy types containing manifolds

satisfying the conditions of Theorem I.

The number of homotopy types containing manifolds M satisfying c+(M) <

-δ in addition, can be estimated by exp(exp(C1 6(δ)F)). (This fact can be

proved by using Theorem 4-Γ instead of Theorem 4-1 in the proof of Theorem

6-6.) Using this fact and Mostow's rigidity theorem ([14], [16]), we can easily

prove Theorem II.
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