CONFORMAL DEFORMATION OF A RIEMANNIAN
 METRIC TO CONSTANT SCALAR CURVATURE

RICHARD SCHOEN

A well-known open question in differential geometry is the question of whether a given compact Riemannian manifold is necessarily conformally equivalent to one of constant scalar curvature. This problem is known as the Yamabe problem because it was formulated by Yamabe [8] in 1960. While Yamabe's paper claimed to solve the problem in the affirmative, it was found by N. Trudinger [6] in 1968 that Yamabe's paper was seriously incorrect. Trudinger was able to correct Yamabe's proof in case the scalar curvature is nonpositive. Progress was made on the case of positive scalar curvature by T. Aubin [1] in 1976. Aubin showed that if $\operatorname{dim} M \geqslant 6$ and M is not conformally flat, then M can be conformally changed to constant scalar curvature. Up until this time, Aubin's method has given no information on the Yamabe problem in dimensions 3, 4, and 5 . Moreover, his method exploits only the local geometry of M in a small neighborhood of a point, and hence could not be used on a conformally flat manifold where the Yamabe problem is clearly a global problem. Recently, a number of geometers have been interested in the conformally flat manifolds of positive scalar curvature where a solution of Yamabe's problem gives a conformally flat metric of constant scalar curvature, a metric of some geometric interest. Note that the class of conformally flat manifolds of positive scalar curvature is closed under the operation of connected sum, and hence contains connected sums of spherical space forms with copies of $S^{1} \times S^{n-1}$.

In this paper we introduce a new global idea into the problem and we solve it in the affirmative in all remaining cases; that is, we assert the existence of a positive solution u on M of the equation

$$
\begin{equation*}
\Delta u-\frac{n-2}{4(n-1)} R u+u^{(n+2) \wedge n-2)}=0 \tag{0.1}
\end{equation*}
$$

[^0]where $R>0$ is the scalar curvature of M. We denote the linear part of the operator in (0.1) by L, thus
$$
L u=\Delta u-\frac{n-2}{4(n-1)} R u .
$$

The operator L is a conformally invariant operator in that it changes by a multiplicative factor when the metric of M is multiplied by a positive function. Observe that the question (0.1) is (a normalized version of) the Euler-Lagrange equation for the Sobolev quotient $Q(\varphi)$ for functions φ on M which is given by

$$
Q(\varphi)=\frac{\int_{M}\left(|\nabla \varphi|^{2}+(n-2) R \varphi^{2} / 4(n-1)\right) d v}{\left(\int_{M}|\varphi|^{2 n / n-2)} d v\right)^{(n-2) / n}}
$$

The Sobolev quotient $Q(M)$ is then defined by

$$
Q(M)=\inf \left\{Q(\varphi): \varphi \in C^{1}(M)\right\}
$$

The number $Q(M)$ depends only on the conformal class of M. By choosing functions φ which are supported near a point of M, it follows easily that

$$
\begin{equation*}
Q(M) \leqslant Q\left(S^{n}\right) \tag{0.2}
\end{equation*}
$$

for any n dimensional manifold M. In this paper we show that equality holds in (0.2) if and only if M is conformally diffeomorphic to S^{n} with its standard metric. An argument which is by now standard and which originates in [6] shows that if $Q(M)<Q\left(S^{n}\right)$, then there exists a minimum for $Q(\varphi)$ over functions $\varphi \in C^{1}(M)$. This minimizing function then becomes a positive solution of (0.1) on M.

In order to prove that $Q(M)<Q\left(S^{n}\right)$ for a manifold M conformally different from S^{n}, we need only exhibit a function φ on M with $Q(\varphi)<Q\left(S^{n}\right)$. Since one can come arbitrarily close to $Q\left(S^{n}\right)$ by a function φ which is supported near a point $o \in M$, it is natural to perturb such a function to make it nonzero but small away from o. Since the nonlinearity of (0.1) involves a higher power of the solution, one expects small solutions to be very close to solutions of $L u=o$. The only positive solution of $L u=o$ defined outside a point $o \in M$ is (a multiple of) the Green's function of L. (Note that L is invertible because R is positive.) The question of whether one can satisfy the inequality $Q(\varphi)<Q\left(S^{n}\right)$ reduces to the behavior of the Green's function G near its pole o. If we assume that the metric of M is conformally flat in a neighborhood of o, then G has an expansion in suitable coordinates near o as follows:

$$
G(x)=|x|^{2-n}+A+O(|x|) .
$$

The sign of the constant term A in this expansion is then the crucial ingredient. If A is positive, then one can find a function φ which is a small multiple of G outside a neighborhood of o and which satisfies $Q(\varphi)<Q\left(S^{n}\right)$. On the other hand, it is a theorem of the author and S. T. Yau that $A \geqslant 0$ and $A=0$ only if M is conformally equivalent to S^{n}. The case $n=3$ follows from the positive mass theorem [3] since the metric $\hat{g}=G^{4 / n-2)} g$ is scalar flat and asymptotically Euclidean,

$$
\hat{g}_{i j}=\left(1+A|y|^{2-n}\right) \delta_{i j}+O\left(|y|^{1-n}\right) \quad \text { for }|y| \text { large }
$$

where $y=|x|^{-2} x$. The case $n=4$ is a consequence of the positive action theorem [4]. The higher dimensional case follows from related techniques and will appear in [5]. In this same paper [5] we have generalized the method of E . Witten [7] (see also [2]) to prove $A>0$ in case M is a spin manifold. Thus we have $Q(M)<Q\left(S^{n}\right)$ provided M is conformally flat near some point. The same argument works for an arbitrary three dimensional manifold since the Green's function has the above expansion generally in three dimensions. By a delicate perturbation argument (see §2) we are able to handle general compact manifolds of dimensions 4 and 5 . Thus, combined with the results of [1], we have an affirmative solution of the Yamabe problem for any compact Riemannian manifold of dimension greater than two.

We recently learned that Rui-Tao Dong showed that solutions blow up near a single point at most.

1. The Sobolev quotient of a conformally flat manifold

In this section we assume M is a compact Riemannian manifold with metric g, o is a point of M, and g is conformally flat in a neighborhood of o. Let $Q(\varphi)$ denote the Sobolev quotient of a function φ on M, and let $E(\varphi)$ denote the energy associated with L, that is

$$
\begin{gathered}
E(\varphi)=\int_{M}\left(|\nabla \varphi|^{2}+\frac{n-2}{4(n-1)} R \varphi^{2}\right) d v \\
Q(\varphi)=\frac{E(\varphi)}{\left(\int_{M}|\varphi|^{2 n / n-2)} d v\right)^{(n-2) / n}}
\end{gathered}
$$

By changing the metric g conformally we may assume that g is flat near o. Let x be Euclidean coordinates centered at o so that $g_{i j}=\delta_{i j}$ in the x coordinates. Observe that the functions

$$
u_{\varepsilon}(x)=\left(\frac{\varepsilon}{\varepsilon^{2}+|x|^{2}}\right)^{(n-2) / 2}
$$

for $\varepsilon>0$, are solutions on \mathbf{R}^{n} of the equation

$$
\Delta u_{\varepsilon}+n(n-2) u_{\varepsilon}^{(n+2) /(n-2)}=0
$$

Multiplying this equation by u_{ε} and integrating by parts gives

$$
\int_{\mathbf{R}^{n}}\left|\nabla u_{\varepsilon}\right|^{2} d x=n(n-2) \int_{\mathbf{R}^{n}} u_{\varepsilon}^{2 n /(n-2)} d x
$$

From here we can express $Q\left(S^{n}\right)$ in terms of u_{ε} :

$$
\begin{equation*}
Q\left(S^{n}\right)=\frac{\int_{\mathbf{R}^{n}}\left|\nabla u_{\varepsilon}\right|^{2} d x}{\left(\int_{\mathbf{R}^{n}} u_{\varepsilon}^{2 n /(n-2)} d x\right)^{(n-2) / n}}=n(n-2)\left(\int_{\mathbf{R}^{n}} u_{\varepsilon}^{2 n /(n-2)} d x\right)^{2 / n} . \tag{1.1}
\end{equation*}
$$

Let G be the positive solution (a multiple of the Green's function) of $L G=0$ on $M-\{o\}$ which behaves like $|x|^{2-n}$ near 0 . Since G is a harmonic function near o, it has an expansion for $|x|$ small

$$
\begin{equation*}
G(x)=|x|^{2-n}+A+\alpha(x) \tag{1.2}
\end{equation*}
$$

where $\alpha(x)$ is a smooth harmonic function (near 0) with $\alpha(0)=0$. Let ρ_{0} be a small radius, and $\varepsilon_{0}>0$ a number to be chosen small relative to ρ_{0}. Let $\psi(x)$ be a piecewise smooth decreasing function of $|x|$ which satisfies $\psi(x)=1$ for $|x| \leqslant \rho_{0}, \psi(x)=0$ for $|x| \geqslant 2 \rho_{0}$, and $|\nabla \psi| \leqslant \rho_{0}^{-1}$ for $\rho_{0} \leqslant|x| \leqslant 2 \rho_{0}$. We now construct a piecewise smooth test function φ on M as follows:

$$
\varphi(x)= \begin{cases}u_{\varepsilon}(x) & \text { for }|x| \leqslant \rho_{0} \\ \varepsilon_{0}(G(x)-\psi(x) \alpha(x)) & \text { for } \rho_{0} \leqslant|x| \leqslant 2 \rho_{0} \\ \varepsilon_{0} G(x) & \text { for } x \in M-B_{2 \rho_{0}}(0)\end{cases}
$$

In order for the function φ to be continuous across $\partial B_{\rho_{0}}(0)$ we must require ε to satisfy

$$
\begin{equation*}
\varepsilon_{0}\left(\rho_{0}^{2-n}+A\right)=\left(\frac{\varepsilon}{\varepsilon^{2}+\rho_{0}^{2}}\right)^{(n-2) / 2} \tag{1.3}
\end{equation*}
$$

We compute $E(\varphi)$ as a sum of the energy in $B_{\rho_{0}}(0)$ and the energy in $M-B_{\rho_{0}}(0)$. Using the equation for u_{ε} we have, after an integration by parts,

$$
\int_{B_{\rho_{0}}(0)}\left|\nabla u_{\varepsilon}\right|^{2} d x=n(n-2) \int_{B_{\rho_{0}(0)}} u_{\varepsilon}^{2 n / n-2)} d x+\int_{\partial B_{\rho_{0}}(0)} u_{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial r} .
$$

Using (1.1) and the definition of φ we have

$$
\begin{equation*}
\int_{B_{\rho_{0}}(0)}|\nabla \varphi|^{2} d x \leqslant Q\left(S^{n}\right)\left(\int_{B_{\rho_{0}}} \varphi^{2 n \wedge n-2)} d x\right)^{(n-2) / n}+\int_{\partial B_{\rho_{0}}(0)} u_{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial r} \tag{1.4}
\end{equation*}
$$

Evaluating the energy of φ on $M-B_{\rho_{0}}$ we have

$$
\begin{aligned}
& \int_{M-B_{\rho_{0}}}\left(|\nabla \varphi|^{2}+\frac{n-2}{4(n-1)} R \varphi^{2}\right) d v=\varepsilon_{0}^{2} \int_{M-B_{\rho_{0}}}\left(|\nabla G|^{2}+\frac{n-2}{4(n-1)} R G^{2}\right) d v \\
&+ \varepsilon_{0}^{2} \int_{B_{2 \rho_{0}}-B_{\rho_{0}}}\left(|\nabla \psi \alpha|^{2}-2 \nabla G \cdot \nabla(\psi \alpha)\right) d x .
\end{aligned}
$$

Since $|\alpha(x)| \leqslant c|x|$, we see that $|\nabla(\psi \alpha)| \leqslant c$ for $\rho_{0} \leqslant|x| \leqslant 2 \rho_{0}$. Therefore we have for a constant c

$$
\begin{aligned}
\int_{M-B_{\rho_{0}}}\left(|\nabla \varphi|^{2}\right. & \left.+\frac{n-2}{4(n-1)} R \varphi^{2}\right) d v \\
& \leqslant \varepsilon_{0}^{2} \int_{M-B_{\rho_{0}}}\left(|\nabla G|^{2}+\frac{n-2}{4(n-1)} R G^{2}\right) d v+c \rho_{0} \varepsilon_{0}^{2}
\end{aligned}
$$

Since G satisfies $L G=0$, the first term on the right becomes a boundary integral

$$
\int_{M-B_{\rho_{0}}}\left(|\nabla \varphi|^{2}+\frac{n-2}{4(n-1)} R \varphi^{2}\right) d v \leqslant-\varepsilon_{0}^{2} \int_{\partial B_{\rho_{0}}} G \frac{\partial G}{\partial r}+c \rho_{0} \varepsilon_{0}^{2} .
$$

Combining this with (1.4) we have

$$
\begin{align*}
E(\varphi) \leqslant Q\left(S^{n}\right) & \left(\int_{B_{\rho_{0}}} \varphi^{2 n / n-2)} d v\right)^{(n-2) / 2} \\
& +\int_{\partial B_{\rho_{0}}}\left(u_{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial r}-\varepsilon_{0}^{2} G \frac{\partial G}{\partial r}\right)+c \rho_{0} \varepsilon_{0}^{2} \tag{1.5}
\end{align*}
$$

If M is not conformally equivalent to S^{n}, it follows from [3], [4] and [5] that $A>0$. We use this to show that the last two terms in (1.5) are negative if $\rho_{0}, \varepsilon_{0}$ are chosen small. For $|x|=\rho_{0}$ we have from (1.2) and (1.3)

$$
\begin{aligned}
\frac{\partial u_{\varepsilon}}{\partial r}-\varepsilon \frac{\partial G}{\partial r} & \leqslant-(n-2)\left[\left(\frac{\varepsilon}{\varepsilon^{2}+\rho_{0}^{2}}\right)^{(n-2) / 2} \frac{\rho_{0}}{\varepsilon^{2}+\rho_{0}^{2}}-\varepsilon_{0} \rho_{0}^{1-n}\right]+c \varepsilon_{0} \\
& =-(n-2) \varepsilon_{0} \rho_{0}^{-1}\left[\left(\rho_{0}^{2-n}+A\right)\left(\left(\frac{\varepsilon}{\rho_{0}}\right)^{2}+1\right)^{-1}-\rho_{0}^{2-n}\right]+c \varepsilon_{0} .
\end{aligned}
$$

Using the inequality $\left(t^{2}+1\right)^{-1} \geqslant 1-t^{2}$, we get

$$
\begin{aligned}
\frac{\partial u_{\varepsilon}}{\partial r}-\varepsilon_{0} \frac{\partial G}{\partial r} & \leqslant-(n-2) \varepsilon_{0} A \rho_{0}^{-1}+c \rho_{0}^{-1-n} \varepsilon^{2} \varepsilon_{0}+c \varepsilon_{0} \\
& \leqslant-(n-2) \varepsilon_{0} A \rho_{0}^{-1}+c \rho_{0}^{-1-n} \varepsilon_{0}^{n /(n-2)}+c \varepsilon_{0}
\end{aligned}
$$

where the second inequality follows from (1.3). Using this in (1.5) we have

$$
\begin{align*}
E(\varphi) \leqslant & Q\left(S^{n}\right)\left(\int_{B_{\rho_{0}}} \varphi^{2 n \wedge n-2)} d v\right)^{(n-2) / n} \tag{1.6}\\
& -(n-2) \sigma_{n-1} A \varepsilon_{0}^{2}+c \rho_{0}^{-n} \varepsilon_{0}^{1+n / n-2)}+c \rho_{0} \varepsilon_{0}^{2}
\end{align*}
$$

where σ_{n-1} denotes the volume of S^{n-1}. Since $A>0$, by choosing ρ_{0} small and ε_{0} much smaller than ρ_{0}, we have $Q(\varphi)<Q\left(S^{n}\right)$. Thus we have shown the following result.

Theorem 1. If M^{n} is a compact Riemannian manifold which is conformally flat in an open set and is not conformally diffeomorphic to S^{n}, then the Sobolev quotient of M is strictly less than that of S^{n}.

The proof given above works for $n=3$ without the conformally flat assumption because the function $G(x)$ has the expansion (1.2) generally in this case.

Proposition 1. If M is a compact three-dimensional manifold which is conformally different from S^{3}, then the Sobolev quotient of M is strictly less than that of S^{3}.

Proof. Let x be normal coordinates centered at 0 , and note that $G(x)$ satisfies

$$
G(x)=|x|^{-1}+A+O(|x|)
$$

for x small. Let $u_{\varepsilon}, \psi, \varphi$ be as above, and apply the same argument. Correction terms must be introduced in $B_{\rho_{0}}$ to account for the difference between g and the Euclidean metric. We see easily that

$$
\begin{gathered}
\int_{B_{\rho_{0}}}\left(\left|\nabla u_{\varepsilon}\right|^{2}+8^{-1} R u_{\varepsilon}^{2}\right) d v \leqslant \int_{B_{\rho_{0}}}\left|\nabla u_{\varepsilon}\right|^{2} d x+c \rho_{0} \varepsilon_{0}^{2} \\
\int_{B_{\rho_{0}}} u_{\varepsilon}^{6} d x \leqslant \int_{B_{\rho_{0}}} u_{\varepsilon}^{6} d v+c \varepsilon_{0}^{4}
\end{gathered}
$$

Since the error terms are allowable, we see that the above proof succeeds for $n=3$.

2. The Sobolev quotient of a general four and five dimensional manifold

For $n=4$, 5 we will remove the restriction that M be conformally flat in an open set. First observe that there is no loss of generality in assuming that $R \equiv 0$ in a neighborhood of a point $o \in M$ since this can be accomplished by multiplication of the metric by a function. Let x denote a normal rectangular
coordinate system centered at o, and $r=|x|, \xi=x /|x|$ a corresponding polar coordinate system. The metric g of M can then be written

$$
g=d r^{2}+r^{2} h_{r}
$$

where h_{r} is a metric on S^{n-1} with h_{0} being the standard metric. Given $\rho>0$ with ρ small, let $\zeta(r)$ be a smooth nonincreasing function satisfying $\zeta(r)=1$ for $r \leqslant \rho, \zeta(r)=0$ for $r \geqslant 2 \rho,\left|\zeta^{\prime}(r)\right| \leqslant c \rho^{-1}$, and $\left|\zeta^{\prime \prime}(r)\right| \leqslant c \rho^{-2}$ for all $r>0$. We now define a modified metric ${ }^{\rho} g$ on M by setting ${ }^{\rho} g=g$ on $M-B_{2 \rho}$, and

$$
\rho_{g}=d r^{2}+r^{2}\left(\zeta(r) h_{0}+(1-\zeta(r)) h_{r}\right) \quad \text { for } r \leqslant 2 \rho
$$

Thus ${ }^{\rho} g$ is Euclidean in B_{ρ} and agrees with g outside $B_{2 \rho}$. It is easy to check that the curvature tensor of ${ }^{\rho} g$ is bounded independent of ρ. Let L_{ρ} denote the linear operator taken in terms of ${ }^{\rho} g$,

$$
L_{\rho}=\Delta_{\rho}-\frac{n-2}{4(n-1)} R_{\rho} .
$$

Let λ_{ρ} denote the lowest eigenvalue of L_{ρ}, and λ the lowest eigenvalue of L. Since (M, g) is conformal to a metric of positive scalar curvature, we have $\lambda>0$. Let G denote the multiple of the Green's function of L with pole at o normalized so that $\lim _{|x| \rightarrow 0}|x|^{n-2} G(x)=1$. We need the following lemma.

Lemma 1. The eigenvalues λ_{ρ} converge to λ as ρ tends to 0 , and hence $\lambda_{\rho}>0$ for ρ sufficiently small. Thus L_{ρ} has a positive solution G_{ρ} with pole at o normalized so that $\lim _{x \rightarrow 0}|x|^{n-2} G_{\rho}(x)=1$. The functions G_{ρ} converge (as $\rho \downarrow 0$) uniformly to G in C^{2} norm on compact subsets of $M-\{o\}$. For $n \geqslant 4$ the following estimates hold for $x \in B_{2 \rho}$:

$$
\begin{gathered}
\left|G_{\rho}(x)-|x|^{2-n}\right| \leqslant c|x|^{\alpha-n}, \\
\left|\nabla\left(G_{\rho}(x)-|x|^{2-n}\right)\right| \leqslant c|x|^{\alpha-n-1}
\end{gathered}
$$

for any $\alpha \in(3,4)$, where c depends on α but not ρ. (Actually one can take $\alpha=4$ provided $n>4$.) In the second inequality above, ∇ denotes the gradient with respect to g.

Proof. The first statement follows from the fact that ${ }^{\rho} g$ converges in C^{1} norm to g as $\rho \downarrow 0$ and R_{ρ} is uniformly bounded. We omit the details. We next prove the inequalities by observing that if $\rho_{1}>0$ is fixed and sufficiently small, we have $\Delta_{\rho}|x|^{\alpha-n} \leqslant-\varepsilon(\alpha)|x|^{2-n}$ and $\left.\left.\left|\Delta_{\rho}\right| x\right|^{2-n}\left|\leqslant c_{1}\right| x\right|^{2-n}$ for $x \in$ $B_{\rho_{1}}(0)$. Therefore we can choose c sufficiently large so that for $x \in B_{\rho_{1}}(0)$,

$$
\begin{gathered}
\Delta_{\rho}\left(|x|^{2-n}+c|x|^{\alpha-n}\right) \leqslant 0 \\
\Delta_{\rho}\left(|x|^{2-n}-c|x|^{\alpha-n}\right) \geqslant 0 \\
\rho_{1}^{2-n}-c \rho_{1}^{\alpha-n} \leqslant 0
\end{gathered}
$$

It can then be seen from the maximum principle that

$$
|x|^{2-n}-c|x|^{\alpha-n} \leqslant G_{\rho}(x) \leqslant|x|^{2-n}+c|x|^{\alpha-n} .
$$

The second inequality then follows from the gradient estimate for elliptic equations noting that the metrics ${ }^{\rho} g$ are all uniformly equivalent to g. The convergence of G_{ρ} to G now follows because we have a uniform upper bound on G_{ρ} and hence on its derivatives on compact subsets of $M-\{o\}$. Any limit of G_{ρ} is forced to have the correct singularity from the above inequality and hence G_{ρ} converges to G. This completes a sketch of the proof of Lemma 1.

Since the metrics ${ }^{\rho} g$ are Euclidean in $B_{\rho}(0)$, the function G_{ρ} is harmonic in B_{ρ} and hence has an expansion for $|x|$ small,

$$
G_{\rho}(x)=|x|^{2-n}+A_{\rho}+O(|x|), \quad A_{\rho} \geqslant 0 .
$$

Therefore we have inequality (1.6) for $\left(M,{ }^{\rho} g\right)$ for $\rho_{0}<\rho$. To relate this information back to (M, g) we let φ be as in $\S 1$ (constructed from ($M,{ }^{\rho} g$)) and observe

$$
\begin{equation*}
\int_{B_{\rho_{0}}}|\nabla \varphi|^{2} d v=\int_{0}^{\rho_{0}}\left|\frac{d \varphi}{d r}\right|^{2} \operatorname{Vol}_{g}\left(\partial B_{r}\right) d r \tag{2.1}
\end{equation*}
$$

since $\varphi=u_{\varepsilon}$ in $B_{\rho_{0}}$ is a function of r. The following observation about $\mathrm{Vol}_{g}\left(\partial B_{r}\right)$ is necessary.

Lemma 2. For r small, the asymptotic formula

$$
r^{1-n} \operatorname{Vol}_{g}\left(\partial B_{r}\right)=\sigma_{n-1}-\frac{\sigma_{n-1} r^{2}}{6 n} R(0)+O\left(r^{4}\right)
$$

holds, where $\sigma_{n-1}=\operatorname{Vol}\left(S^{n-1}\right)$.
Proof. Let $g_{i j}$ be the expression of g in terms of rectangular normal coordinates x, and let $g=\operatorname{det}\left(g_{i j}\right)$. By direct calculation

$$
\begin{aligned}
\frac{\partial \sqrt{g}}{\partial x^{i}} & =\frac{1}{2} \sqrt{g} \sum_{k, l} g^{k l} g_{k l, i}, \\
\frac{\partial^{2} \sqrt{g}}{\partial x^{i} \partial x^{j}}(0) & =\frac{1}{2} \sum_{k} g_{k k, i j} .
\end{aligned}
$$

Therefore, by Taylor's theorem,

$$
\sqrt{g}(x)=1+\frac{1}{4} \sum_{i, j, k} g_{k k, i j} x^{i} x^{j}+\sum_{i, j, k} a_{i j k} x^{i} x^{j} x^{k}+O\left(|x|^{4}\right)
$$

where $a_{i j k}$ depends on the third derivatives of \sqrt{g} at $x=0$. Setting $r=|x|$, $x=r \xi, \xi \in S^{n-1}$ we have

$$
\operatorname{Vol}_{g}\left(\partial B_{r}\right)=r^{n-1} \int_{S^{n-1}} \sqrt{g}(r \xi) d \xi
$$

where $d \xi$ is the volume element for the unit S^{n-1}. Then we have from above

$$
r^{1-n} \operatorname{Vol}_{g}\left(\partial B_{r}\right)=\sigma_{n-1}+\frac{\sigma_{n-1} r^{2}}{4 n} \sum_{i, k} g_{k k, i i}+O\left(r^{4}\right)
$$

where we have used the obvious facts

$$
\int_{S^{n-1}} \xi_{i} \xi_{j} d \xi=\frac{\sigma_{n-1}}{n} \delta_{i j}, \quad \int_{S^{n-1}} \xi_{i} \xi_{j} \xi_{k} d \xi=0
$$

Direct calculation in normal coordinates shows

$$
R(0)=-\frac{3}{2} \sum_{i, j} g_{i i, j j}(0),
$$

thus completing the proof of Lemma 2.
Since we have chosen $R(0)=0$, we now have from (2.1), letting ∇^{ρ} denote the gradient with respect to ${ }^{\rho} g$,

$$
\begin{equation*}
\int_{B_{\rho_{0}}}|\nabla \varphi|^{2} d v \leqslant \int_{B_{\rho_{0}}}\left|\nabla^{\rho} \varphi\right|^{2} d x+c \int_{B_{\rho_{0}}}|\nabla \varphi|^{2}(x)|x|^{4} d x . \tag{2.2}
\end{equation*}
$$

From the definition of φ we have

$$
\int_{B_{\rho_{0}}}|\nabla \varphi|^{2}(x)|x|^{4} d x=(n-2)^{2} \varepsilon^{n-2} \int_{B_{\rho_{0}}} \frac{|x|^{6}}{\left(\varepsilon^{2}+|x|^{2}\right)^{n}} d x .
$$

The change of coordinates $y=\varepsilon^{-1} x$ and simple computation gives

$$
\int_{B_{\rho_{0}}}|\nabla \varphi|^{2}(x)|x|^{4} d x \leqslant c \varepsilon^{n-2} \rho_{0}^{6-n}
$$

for $n=4,5$. Using this in (2.2) then gives (for $n=4,5$)

$$
\begin{equation*}
\int_{B_{\rho_{0}}}|\nabla \varphi|^{2} d v \leqslant \int_{B_{\rho_{0}}}\left|\nabla^{\rho} \varphi\right|^{2} d x+c \rho_{0}^{6-n} \varepsilon_{0}^{2}, \tag{2.3}
\end{equation*}
$$

where we have used (1.3) which says $\varepsilon_{0} \approx \varepsilon^{(n-2) / 2}$.
Observe generally that if $f(r)$ is any nonnegative radial function on $B_{2 \rho}$, it follows from Lemma 2 that

$$
\begin{equation*}
\int_{B_{\rho}} f d v \leqslant \int_{B_{\rho}} f d v_{\rho}+c_{1} \int_{B_{\rho}} f(|x|)|x|^{4} d x, \tag{2.4}
\end{equation*}
$$

where $d v_{\rho}$ denotes the volume element of ${ }^{\rho} g$. We use this to estimate the energy of φ on $B_{2 \rho}-B_{\rho_{0}}$. First observe that for $\rho_{0} \leqslant|x| \leqslant 2 \rho_{0}$ we have

$$
\frac{\partial G_{\rho}}{\partial r}=(2-n) r^{1-n}+O(1), \quad\left|\hat{\nabla} G_{\rho}\right| \leqslant c
$$

where c depends on ρ and $\hat{\nabla}$ denotes the spherical gradient, that is, the gradient with respect to $r^{2} h_{r}$. From (2.4) we then have

$$
\int_{B_{2 \rho_{0}}-B_{\rho_{0}}}|\nabla \varphi|^{2} d v \leqslant \int_{B_{2 \rho_{0}}-B_{\rho_{0}}}\left|\nabla^{\rho} \varphi\right|^{2} d v v_{\rho}+c \varepsilon_{0}^{2} \int_{B_{2 \rho_{0}}-B_{\rho_{0}}}|x|^{6-2 n} d x+c \rho_{0} \varepsilon_{0}^{2}
$$

For $n=4,5$ this gives

$$
\begin{equation*}
\int_{B_{2 \rho_{0}}-B_{\rho_{0}}}|\nabla \varphi|^{2} d v \leqslant \int_{B_{2 \rho_{0}}-B_{\rho_{0}}}\left|\nabla^{\rho} \varphi\right|^{2} d v_{\rho}+c \rho_{0} \varepsilon_{0}^{2} \tag{2.5}
\end{equation*}
$$

where c depends on ρ but not on ρ_{0}.
We now estimate the integral over $B_{2 \rho}-B_{2 \rho_{0}}$. This is more delicate because we need constants independent of ρ for which we employ Lemma 1. Throughout the following argument we use c_{1} to denote a constant independent of both ρ and ρ_{0}. For $2 \rho_{0} \leqslant|x| \leqslant 2 \rho$ we have $\varphi=\varepsilon_{0} G_{\rho}$, so we estimate the square gradient of G^{ρ}. We first do the radial derivative

$$
\begin{aligned}
\left(\frac{\partial G_{\rho}}{\partial r}\right)^{2} & =\left(\frac{\partial}{\partial r}\left(G_{\rho}-r^{2-n}\right)+\frac{\partial}{\partial r}\left(r^{2-n}\right)\right)^{2} \\
& =\left(\frac{\partial}{\partial r}\left(G_{\rho}-r^{2-n}\right)\right)^{2}+2(2-n) r^{1-n} \frac{\partial}{\partial r}\left(G_{\rho}-r^{2-n}\right)+(2-n)^{2} r^{2-2 n}
\end{aligned}
$$

Using (2.4) on the third function on the right we find, by Lemma 1 and the fact that we are using normal coordinates,

$$
\begin{aligned}
\int_{B_{2 \rho}-B_{2 \rho_{0}}}\left(\frac{\partial G_{\rho}}{\partial r}\right)^{2} d v \leqslant & \int_{B_{2 \rho}-B_{2 \rho_{0}}}\left(\frac{\partial G_{\rho}}{\partial r}\right)^{2} d v_{\rho} \\
& +c_{1} \int_{B_{2 \rho}-B_{2 \rho_{0}}}\left(r^{2 \alpha-2 n}+r^{\alpha+2-2 n}+r^{6-2 n}\right) d x
\end{aligned}
$$

for any $\alpha \in(3,4)$. In particular, for $n=4,5$ we get (choosing $\alpha=3.5$)

$$
\int_{B_{2 \rho}-B_{2 \rho_{0}}}\left(\frac{\partial G_{\rho}}{\partial r}\right)^{2} d v \leqslant \int_{B_{2 \rho}-B_{2 \rho_{0}}}\left(\frac{\partial G_{\rho}}{\partial r}\right)^{2} d v_{\rho}+c_{1} \rho^{1 / 2}
$$

From Lemma 1 we have $\left|\hat{\nabla} G_{\rho}\right| \leqslant c_{1} r^{\alpha-n-1}$, from which we easily see

$$
\int_{B_{2 \rho}-B_{2 \rho_{0}}}\left|\hat{\nabla} G_{\rho}\right|^{2} d v \leqslant \int_{B_{2 \rho}-B_{2 \rho_{0}}}\left|\hat{\nabla}^{\rho} G_{\rho}\right|^{2} d v_{\rho}+c_{1} \rho .
$$

Combining these with (2.3) and (2.5) we have

$$
\begin{equation*}
\int_{B_{2 \rho}}|\nabla \varphi|^{2} d v \leqslant \int_{B_{2 \rho}}\left|\nabla^{\rho} \varphi\right|^{2} d v_{\rho}+c \rho_{0} \varepsilon_{0}^{2}+c_{1} \rho^{1 / 2} \varepsilon_{0}^{2} \tag{2.6}
\end{equation*}
$$

Note that R_{ρ} does not vanish in $B_{2 \rho}-B_{\rho}$, so for $\sigma \in[\rho, 2 \rho]$ we estimate its integral on B_{σ}. First observe that in rectangular normal coordinates ${ }^{\rho} g_{i j}=\zeta \delta_{i j}$ $+(1-\zeta) g_{i j}$. We see, by direct calculation,

$$
R_{\rho}=\sum_{i, j}\left({ }^{\rho} g_{i j, i j}-{ }^{\rho} g_{i i, j j}\right)+O\left(|x|^{2}\right)
$$

and hence, by Stokes theorem,

$$
\int_{B_{\sigma}} R_{\rho} d v_{\rho}=\int_{\partial B_{\sigma}} \sum_{i, j}\left({ }^{\rho} g_{i j, i} r_{j}-{ }^{\rho} g_{i i, j} r_{j}\right)+O\left(\sigma^{n+2}\right)
$$

Since $R \equiv 0$ in B_{σ}, we have

$$
\int_{\partial B_{o}} \sum_{i, j}\left(g_{i j, i} r_{i}-g_{i i, j} r_{j}\right)=O\left(\sigma^{n+2}\right)
$$

Therefore

$$
\int_{B_{o}} R_{\rho} d v_{\rho}=\zeta^{\prime}(\sigma) \int_{\partial B_{\sigma}}\left(\sum_{i, j}\left(\delta_{i j}-g_{i j}\right) r_{i} r_{j}-\sum_{i}\left(\delta_{i i}-g_{i i}\right)\right)+O\left(\sigma^{n+2}\right)
$$

Since x^{i} are normal coordinates, the first term in the integral vanishes, and, as in Lemma 2, Taylor's theorem gives

$$
\sum_{i}\left(g_{i i}-\delta_{i i}\right)=\frac{1}{2} \sum_{i, j, k} g_{i i, j k}(0) x^{j} x^{k}+O\left(r^{4}\right)
$$

After integration the quadratic term vanishes and since $\zeta^{\prime}(\sigma)=O\left(\sigma^{-1}\right)$ we finally have

$$
\begin{equation*}
\int_{B_{\sigma}} R_{\rho} d v_{\rho}=O\left(\sigma^{n+2}\right) \tag{2.7}
\end{equation*}
$$

We now compute by Lemma 1 for $\alpha \in(3,4)$

$$
\left|\int_{B_{2 \rho}-B_{\rho}} R_{\rho} G_{\rho}^{2} d v_{\rho}\right| \leqslant\left.\left.\left|\int_{B_{2 \rho}-B_{\rho}} R_{\rho}\right| x\right|^{4-2 n} d v_{\rho}\left|+c_{1} \int_{B_{2 \rho}-B_{\rho}}\right| x\right|^{2+\alpha-2 n} d x
$$

On the other hand we have

$$
\begin{aligned}
& \int_{B_{2 \rho}-B_{\rho}} R_{\rho}|x|^{4-2 n} d x=\int_{\rho}^{2 \rho} \sigma^{4-2 n} \frac{d}{d \sigma}\left(\int_{B_{\sigma}} R_{\rho} d v_{\rho}\right) d \sigma \\
&=(2 \rho)^{4-2 n} \int_{B_{2 \rho}} R_{\rho} d v_{\rho}+(2 n-4) \int_{\rho}^{2 \rho} \sigma^{3-2 n}\left(\int_{B_{o}} R_{\rho} d v_{\rho}\right) d \sigma
\end{aligned}
$$

Applying (2.7) we therefore have

$$
\left.\left|\int_{B_{2 \rho}-B_{\rho}} R_{\rho}\right| x\right|^{4-2 n} d v_{\rho} \mid \leqslant c_{1} \rho^{6-n} .
$$

Thus for $n=4$, 5 we have shown (again $\alpha=3.5$)

$$
\left|\int_{B_{2 \rho}-B_{\rho}} R_{\rho} \varphi^{2} d v_{\rho}\right| \leqslant c_{1} \rho^{1 / 2} \varepsilon_{0}^{2},
$$

which combined with (2.6) shows

$$
E(\varphi) \leqslant E_{\rho}(\varphi)+c \rho_{0} \varepsilon_{0}^{2}+c_{1} \rho^{1 / 2} \varepsilon_{0}^{2} .
$$

Combined with (1.6) we then have

$$
\begin{aligned}
E(\varphi) \leqslant & Q\left(S^{n}\right)\left(\int_{B_{\rho_{0}}} \varphi^{2 n /(n-2)} d v_{\rho}\right)^{(n-2) / n}-(n-2) \sigma_{n-1} A_{\rho} \varepsilon_{0}^{2} \\
& +c \rho_{0}^{-n} \varepsilon_{0}^{1+n /(n-2)}+c \rho_{0} \varepsilon_{0}^{2}+c_{1} \rho^{1 / 2} \varepsilon_{0}^{2} .
\end{aligned}
$$

Arguing as above, we can replace $d v_{\rho}$ by $d v$ in the integral to obtain

$$
\begin{align*}
E(\varphi) \leqslant & Q\left(S^{n}\right)\left(\int_{M} \varphi^{2 n /(n-2)} d v\right)^{(n-2) / n}-(n-2) \sigma_{n-1} A_{\rho} \varepsilon_{0}^{2} \tag{2.8}\\
& +c \rho_{0}^{-n} \varepsilon_{0}^{1+n /(n-2)}+c \rho_{0} \varepsilon_{0}^{2}+c_{1} \rho^{1 / 2} \varepsilon_{0}^{2}
\end{align*}
$$

where c depends on ρ but c_{1} does not. If we can establish the inequality

$$
\begin{equation*}
\frac{\lim }{\rho \rightarrow 0} A_{\rho}>0 \tag{2.9}
\end{equation*}
$$

then we can finish the proof by fixing ρ small, then fixing ρ_{0}, and finally choosing ε_{0} sufficiently small. The following lemma gives a condition under which (2.9) holds.

Lemma 3. If the metric $G^{4 /(n-2)} g$ is not Ricci flat on $M-\{o\}$, then (2.9) holds.

Proof. For notational simplicity we let \bar{g} denote ${ }^{\rho} g$ for any ρ, and \bar{G} the corresponding Green's function. Suppose $G^{4 /(n-2)} g$ is not Ricci flat on M $\{o\}$, and let K be a compact subset of $M-\{o\}$ on which $G^{4 /(n-2)} g$ is not Ricci flat. From Lemma 1 we see that for ρ small the metric $\bar{G}^{4 /(n-2)} \bar{g}$ is not Ricci flat on K. Let χ be a smooth nonnegative function with compact support in $M-\{o\}$ with $\chi \equiv 1$ on K. For a tensor $S=S_{i j}$ with compact support in $M-\{o\}$ we introduce the notation

$$
g^{t}=\bar{G}^{4 /(n-2)} \bar{g}+t S, \quad R_{i j}^{t}=\operatorname{Ric}\left(g^{t}\right)
$$

and let R^{t} denote the scalar curvature of g^{t}. Let u_{t} denote the solution of

$$
\begin{gather*}
\Delta_{t} u_{t}-\frac{n-2}{4(n-1)} R^{t} u_{t}=0 \quad \text { on } M-\{0\} \tag{2.10}\\
u_{t}(0)=1
\end{gather*}
$$

Such a solution exists for $|t|<\delta_{0}$, with δ_{0} depending only on g and S. In fact, we can write $u_{t}=H_{t} \bar{G}^{-1}$, where H_{t} is the normalized Green's function for the metric $\bar{g}+t \bar{G}^{-4 /(n-2)} S$ which exists for $|t|<\delta$ by Lemma 1.

Since this metric is Euclidean near 0 we have for $|x|$ small

$$
\begin{aligned}
H_{t}(x) & =|x|^{2-n}+\overline{A_{t}}+O(|x|) \\
\bar{G}(x) & =|x|^{2-n}+\bar{A}+O(|x|)
\end{aligned}
$$

from which it follows that for $|x|$ small

$$
u_{t}(x)=1+\left(\overline{A_{t}}-\bar{A}\right)|x|^{n-2}+O\left(|x|^{n-1}\right)
$$

Integrating (2.10) with respect to $d v^{t}$, the volume element of g^{t}, and using Stoke's theorem we find

$$
\bar{A}-\overline{A_{t}}=\left(4(n-1) \sigma_{n-1}\right)^{-1} \int_{M-\{o\}} R^{t} u_{t} d v^{t}
$$

Differentiating the integral on the right and evaluating at $t=0$ we find

$$
\left.\frac{d}{d t} \int_{M-\{o\}} R^{t} u_{t} d v^{t}\right|_{t=0}=-\int_{M-\{o\}}\left\langle\operatorname{Ric}\left(g^{0}\right), S\right\rangle d v^{0}
$$

where we have used $R \equiv 0, u_{0} \equiv 1$. Taking $S=-\chi \operatorname{Ric}\left(g^{0}\right)$ we make the term on the right positive; in fact, since we assume $G^{4 /(n-2)} g$ is not Ricci flat on K, and $G_{\rho}=\bar{G}$ is close to G in C^{2} norm (Lemma 1) on the support of χ, we find

$$
\left.\frac{d}{d t} \int_{M-\{o\}} R^{t} u_{t} d v^{t}\right|_{t=0} \geqslant \delta_{1}>0
$$

where δ_{1} is independent of ρ. Also by Lemma 1 the metrics g^{t} vary smoothly in t up to any order on the support of χ uniformly in ρ. Thus there exists t_{0} small so that $\bar{A}-\bar{A}_{t_{0}} \geqslant \delta_{2}$ with $\delta_{2}>0$ independent of ρ. Thus we have for ρ small

$$
\bar{A}=A_{\rho}=\bar{A}_{t_{0}}+\left(\bar{A}-\bar{A}_{t_{0}}\right) \geqslant \delta_{2} .
$$

This establishes (2.9), and proves Lemma 3.
Finally we must analyze the case when $G^{4 /(n-2)} g$ is Ricci flat. We will show that this can only hold if M is conformally equivalent to S^{n}. First observe that ($M-\{o\}, G^{4 /(n-2)} g$) is asymptotically Euclidean in the sense that the metric $\hat{g}=G^{4 /(n-2)} g$ satisfies for $|y|$ large, $y \in \mathbf{R}^{n}$,

$$
\begin{equation*}
\hat{g}_{i j}(y)=\delta_{i j}+O\left(|y|^{-2}\right) \tag{2.11}
\end{equation*}
$$

where $y=|x|^{-2} x, x$ near 0 in normal coordinates. The following result is of independent interest.

Proposition 2. Let (N, \hat{g}) be a Riemannian manifold which is asymptotically Euclidean in the sense of (2.11). If \hat{g} is Ricci flat, then (N, \hat{g}) is isometric to \mathbf{R}^{n} with its Euclidean metric.

Proof. The conclusion of Proposition 2 is not difficult if \hat{g} is sufficiently near the Euclidean metric at infinity. We use the Ricci flat assumption to improve the decay of \hat{g}. A standard argument asserts the existence of harmonic coordinates v^{1}, \cdots, v^{n} defined near infinity such that $v^{i}=y^{i}+O\left(|y|^{-1}\right)$ so that in terms of v coordinates the metric satisfies (2.11). We simply rename v^{i} to be y^{i}, so that without loss of generality we can take y^{i} to be harmonic coordinates. The Ricci flat condition then implies for all i, j

$$
\left|\Delta \hat{g}_{i j}\right| \leqslant c|\nabla \hat{g}|^{2}
$$

This shows that $\Delta \hat{g}_{i j}=O\left(|\mathrm{y}|^{-6}\right)$ and hence elliptic theory gives an improvement on the decay of \hat{g}; in fact, one derives in a standard way

$$
\hat{g}_{i j}(y)=\delta_{i j}+A_{i j}|y|^{2-n}+O\left(|y|^{1-n}\right)
$$

where $\left(A_{i j}\right)$ is a constant $n \times n$ matrix. By rotating the y coordinates we may assume ($A_{i j}$) is diagonal. The condition that y^{j} be harmonic implies $A_{j j}$ $=\frac{1}{2} \sum_{i} A_{i i}$. Since this holds for each j and $n>2$, we conclude that $A_{i j}=0$ and hence we have

$$
\hat{g}_{i j}(y)=\delta_{i j}+O\left(|y|^{1-n}\right)
$$

We may assume that each y^{j} is a global harmonic function on N, possibly linearly dependent away from infinity. The Bochner formula for y^{i} then shows $\Delta\left|\nabla y^{i}\right|^{2}=2\left|\nabla \nabla y^{i}\right|^{2}$ since \hat{g} is Ricci flat. We clearly have

$$
\left|\nabla y^{i}\right|^{2}=1+O\left(|y|^{1-n}\right), \quad \nabla\left|\nabla y^{i}\right|^{2}=O\left(|y|^{-n}\right)
$$

Integrating the Bochner formula over a large ball gives

$$
2 \int_{B_{R}}\left|\nabla \nabla y^{i}\right|^{2} d v=\int_{\partial B_{R}} \frac{\partial}{\partial \vec{n}}\left|\nabla y^{i}\right|^{2}=O\left(R^{-1}\right)
$$

where \vec{n} is the outer normal to ∂B_{R}. Letting R go to infinity then shows $\nabla \nabla y^{i} \equiv 0$ and hence ∇y^{i} is a parallel vector field for each i. It follows immediately that $\left(y^{1}, \cdots, y^{n}\right): N \rightarrow \mathbf{R}^{n}$ defines an isometry. This proves Proposition 2.

Combining Lemma 3 and Proposition 2 with our previous work, and taking into account the results of Aubin [1] we get our main theorem on the Sobolev quotient.

Theorem 2. Let M^{n} be a compact Riemannian manifold with $n \geqslant 3$. If M is not conformally diffeomorphic to S^{n}, then the Sobolev quotient $Q(M)$ is strictly less than $Q\left(S^{n}\right)$.

3. Conformal deformation to constant scalar curvature

We now prove our main theorem concerning conformal deformation. The argument used here is that of Trudinger [6]. Essentially the same argument was used later by Aubin [1]. We repeat the argument for the sake of completeness since it is very simple.

Theorem 3. Any compact Riemannian manifold $\left(M^{n}, g\right)$ has a conformally related metric $u^{4 / n-2)} g, u>0$, of constant scalar curvature.

Proof. Let $\alpha \in[1,(n+2) /(n-2)], \alpha_{0}=(n+2) /(n-2)$, and consider the ratio

$$
Q_{\alpha}(\varphi)=\frac{E(\varphi)}{\left(\int_{M}|\varphi|^{\alpha+1}\right)^{2 / \alpha+1}}, \quad \varphi \in H_{1}(M)
$$

where $H_{1}(M)$ is the Sobolev space of function with L^{2} first derivatives. It is elementary from the Sobolev embedding theorem, and was proved by Yamabe [8] that there exists, for any $\alpha \in\left(1, \alpha_{0}\right)$, smooth functions $u_{\alpha}>0, \int_{M} u_{\alpha}^{\alpha+1} d v$ $=1$, satisfying

$$
Q_{\alpha}\left(u_{\alpha}\right)=\min \left\{Q_{\alpha}(\varphi): \varphi \in H_{1}(M)\right\}
$$

We denote this value by $Q_{\alpha}(M)$ so that $Q_{\alpha_{0}}(M)=Q(M)$. Moreover, u_{α} satisfies the Euler-Lagrange equation

$$
\begin{equation*}
\Delta u_{\alpha}-\frac{n-2}{4(n-1)} R u_{\alpha}+Q_{\alpha}(M) u_{\alpha}^{\alpha}=0 \tag{3.1}
\end{equation*}
$$

One attempts to take the limit as $\alpha \uparrow \alpha_{0}$. Since we have a uniform bound on the H_{1} norm of u_{α}, by weak compactness we can find a weakly convergent sequence $\left\{u_{\alpha_{i}}\right\}$. The weak form of (3.1) is

$$
\int_{M}\left(\nabla \eta \cdot \nabla u_{\alpha}+\frac{n-2}{4(n-1)} R u_{\alpha} \eta-Q_{\alpha}(M) u_{\alpha}^{\alpha} \eta\right) d v=0
$$

for any $\eta \in C^{\infty}(M)$. Since H_{1} is compactly contained in L^{p} for any $p<$ $2 n /(n-2)$, it follows easily that the weak H_{1} limit u of the sequence $u_{\alpha_{i}}$ satisfies the limiting equation. (Note that one sees immediately that $\lim _{\alpha \rightarrow \alpha_{0}} Q_{\alpha}(M)=Q(M)$.) A regularity result of Trudinger [6] then implies that u is smooth. One need only show that u is nonzero, and this is where Theorem 2 enters. Given $P \in M$ and $\rho>0$ and small, let η be a smooth
function on M which is equal to one in $B_{\rho}(P)$ and zero outside $B_{2 \rho}(P)$. Multiply (3.1) by $\eta^{2} u_{\alpha}$ and integrate by parts to get

$$
\int_{M} \eta^{2}\left|\nabla u_{\alpha}\right|^{2} d v \leqslant-2 \int_{M} \eta u_{\alpha} \nabla \eta \cdot \nabla u_{\alpha}+c \int_{M} \eta^{2} u_{\alpha}^{2}+Q_{\alpha}(M) \int_{M} \eta^{2} u_{\alpha}^{\alpha+1}
$$

This easily implies for any $\varepsilon>0$

$$
(1-\varepsilon) \int_{M}\left|\nabla \eta u_{\alpha}\right|^{2} d v \leqslant c(\varepsilon) \rho^{-2} \int_{M} u_{\alpha}^{2}+Q_{\alpha}(M) \int_{M} \eta^{2} u_{\alpha}^{\alpha+1}
$$

where $c(\varepsilon)$ depends on ε and M. The Sobolev inequality in $B_{2 p}$ holds with the Euclidean Sobolev constant $Q\left(S^{n}\right)$ plus an error term which is of order ρ^{2} because the metric is Euclidean up to second order. Therefore we have

$$
\begin{align*}
& (1-\varepsilon)\left(Q\left(S^{n}\right)-c \rho^{2}\right)\left(\int_{M}\left(\eta u_{\alpha}\right)^{2 n /(n-2)} d v\right)^{(n-2) / n} \tag{3.2}\\
& \leqslant c(\varepsilon) \rho^{-2} \int_{M} u_{\alpha}^{2}+Q_{\alpha}(M) \int_{M} \eta^{2} u_{\alpha}^{\alpha+1}
\end{align*}
$$

Now observe that $\eta^{2} u_{\alpha}^{\alpha+1}=\left(\eta u_{\alpha}\right)^{2} u_{\alpha}^{\alpha-1}$ and hence

$$
\begin{aligned}
\int_{M} \eta^{2} u_{\alpha}^{\alpha+1} & \leqslant\left(\int_{M}\left(\eta u_{\alpha}\right)^{2 n /(n-2)}\right)^{(n-2) / n}\left(\int_{M} u_{\alpha}^{(\alpha-1) n / 2}\right)^{2 / n} \\
& \leqslant\left(\int_{M}\left(\eta u_{\alpha}\right)^{2 n /(n-2)}\right)^{(n-2) / n}
\end{aligned}
$$

where we have used Hölder's inequality twice, have normalized g so that $\operatorname{Vol}_{g}(M)=1, \int_{M} u_{\alpha}^{\alpha+1}=1$, and the fact that $(\alpha-1) n / 2 \leqslant \alpha+1$. Since our theorem is trivial if M is conformally diffeomorphic to S^{n}, we assume that is not the case, and hence by Theorem 2 we have $Q(M)<Q\left(S^{n}\right)$. In particular, for α near α_{0} we have $Q_{\alpha}(M)<Q\left(S^{n}\right)$. Now we fix ε, ρ small enough to absorb the last term on the right of (3.2) to the left to get

$$
\left(\int_{M}\left(\eta u_{\alpha}\right)^{2 n /(n-2)} d v\right)^{(n-2) / n} \leqslant c \int_{M} u_{\alpha}^{2} d v .
$$

Since η is one on $B_{\rho}(P)$, we can take a finite covering of M by balls of radius ρ and sum these inequalities to obtain

$$
\left(\int_{M} u_{\alpha}^{2 n /(n-2)} d v\right)^{(n-2) / n} \leqslant c \int_{M} u_{\alpha}^{2} d v
$$

Since $\alpha+1 \leqslant 2 n /(n-2)$, this implies

$$
1 \leqslant c \int_{M} u_{\alpha}^{2} d v
$$

This gives a uniform lower bound on the L^{2} norm of u_{α}. Since H_{1} is compactly contained in L^{2}, the same lower bound holds on u, and hence u is nonzero. This completes the proof of Theorem 3.

References

[1] T. Aubin, The scalar curvature, Differential Geometry and Relativity, edited by Cahen and Flato, Reider, 1976.
[2] T. Parker \& C. Taubes, On Witten's proof of the positive energy theorem, Comm. Math. Phys. 84 (1982) 223-238.
[3] R. Schoen \& S. T. Yau, On the proof of the positive mass conjecture in General Relativity, Comm. Math. Phys. 65 (1979) 45-76.
[4] ___ Proof of the positive action conjecture in quantum relativity, Phys. Rev. Lett. 42 (1979) 547-548.
[5] , The geometry and topology of manifolds of positive scalar curvature, in preparation.
[6] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1968) 265-274.
[7] E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381-402.
[8] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37.

[^0]: Received September 13, 1984.

