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MODULI OF CURVES WITH
TWO EXCEPTIONAL WEIERSTRASS POINTS

STEVEN DIAZ

1. Introduction

As usual let Jί g be the moduli space of curves of genus g. Many interesting

subloci oίJtg are defined in terms of Weierstrass points.

(1.1) Definition, (a) For a curve C of genus g, a point/? e C and an integer k

with 2 < k < g we say p is a Weierstrass point of type k if h°(C, kp)> 2.

(b) Dk k = {[C]^Jfg: C possesses a Weierstrass point of type k}.

It is known that Dk k is an irreducible variety of dimension 2g - 3 + k (see

[1], [2], [7], [8]). Also for fixed A: with 2 < A: < g it is known that a generic point

in Dk k corresponds to a curve possessing only one Weierstrass point of type k

(see [4]). In this article we study the locus of curves with two Weierstrass points

of type k and more generally curves with a Weierstrass point of type k and a

Weierstrass point of type /.

A curve with two distinct points, one of which is a Weierstrass point of type

k and the other a Weierstrass point of type /, corresponds locally to a point

where Dk k and Dtl meet each other. By simply counting codimensions one

might then say that the expected dimension of the locus of points in Jί g

corresponding to curves possessing both a Weierstrass point of type k and a

distinct Weierstrass point of type / i s3g— 3 - ( g - & ) - ( g - / ) = g - 3 +

k + /. We show that if g is even and k, I ̂  \{g + 2) or if g is odd and k,

I > Kg + 3), then at least one component of this locus has this expected

dimension. In many cases when k and / are not in this range we will find

examples whose dimension is larger than this expected dimension.

Along the way we construct examples of reducible Hurwitz schemes in which

it can be seen that different components correspond to curves with signifi-

cantly different geometry. We also prove a lemma about the dimension of the

image of a Hurwitz scheme i n ^ # g .

We work over the complex numbers.
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2. Deformation theory

An important technique in this paper will be the use of deformation theory

of pointed curves to calculate the tangent spaces to subloci of Jtg defined in

terms of Weierstrass points. We use the theory developed in [4]. Here we

briefly review this and state the results we will need.

Consider a smooth curve C and n marked points Pι,mm',pn on C Let

Θ be the tangent bundle, K the canonical bundle, and Θ the structure

sheaf of C. First order deformations of C are classified by Hι(C, Θ) and first

order deformations of C together with Pι9—',Pn

 a f e classified by

Hι(C, Θ(-px- - - -/?„)). Given a rational function f on C whose divisor is

supported set theoretically on Pι,m''9pn and an element φ of

Hι(C, ©(-/?! /?„)), then it is possible to deform/along the deformation

of C, pl9- •,/?„ given by φ so that the divisor of / remains supported on the

deformations of the points if and only if the cup product φ d\ogf= 0 in

H\C, Θ).

One is usually interested in sets of the form ( ψ e Hι(C, θ(~Pι~ -pn))'

φ - d\ogf= 0}. By Kodaira-Serre duality this is the same as the annihilator of

the image of the multiplication map.

(2.1) H°(C,K)®{dlogf)^H0(C,2K(Pι+ •••+/>„))•

Now let C be a curve corresponding to a point in Dk k, p a Weierstrass point

of type k on C, / a rational function on C with divisor (/) = -kp + qλ 4-

• + qk and B the branch divisor of / away from p. Let π: ^g -> Δ be the

universal curve over a small neighborhood of [C] i n ^ # g (or if C has automor-

phisms the universal deformation of C). Denote by VDk k the locus of

Weierstrass points of type k near/? in ^g. Notice that near [C] the branch of

Dk k corresponding to p is the locus of all deformations of C for which it is also

possible to deform/?, qv- ,qk and/so that the divisor of/remains supported

on the deformations of/?, qv - -,qk. VDk k has a similar description.

Combining these descriptions of Dk k and VDk k with the previously men-

tioned deformation theory one can prove the following results (see [4] for more

details). Remember when we say "annihilator o f we are using Kodaira-Serre

duality.

(2.2) If k is the first nongap of/?, then the tangent space to VΌkk at/? has

the same dimension as VDk k and is given by TVDk k = annihilator of
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{H°(C9 K-qx qk) ® </log/ = H°(C92K + p - B)} in / / X ( C ©(-/>)).

If in addition A: + 1 is a gap for /?, then the tangent space to the branch of Dk k

corresponding to p has the same dimension as Dk k and is given by TDk k =

annihilator of { H°(C, K - p - qλ qk) ® Jlog / = H°(C, 2K - B)} in

H\C,Θ).

3. Curves with two exceptional Weierstrass points

First we construct some curves with two Weierstrass points of type k.

(3.1) Lemma. Fix integers g > 2 and k with 2 < k < g. Then there exists a

smooth curve C of genus g with two points /?, q e C satisfying the following

conditions.

(1) There exists a rational function f on C with divisor (f) = kp — kq.

(2) In the Weierstrass gap sequence for p the only nongaps smaller than the

largest gap are multiples ofk.

(3) In the Weierstrass gap sequence for q the first nongap is k.

Proof. A curve satisfying (1) can be obtained by constructing a k sheeted

cover of P 1 whose branching consists of 2 total ramification points and 2g

other simple branch points over distinct points. It is a simple matter to show

such covers exist, see for instance [5], To show that (2) can also be satisfied we

will first construct a singular curve and then smooth it.

Start with a smooth rational curve D expressed as a A: sheeted cover of P 1

with two points of total ramification. Let π: D -> P 1 be the covering map and

call p and q the two total ramification points on D. Choose g pairs of points xl9

yλ,- - ,xg, ygon D with ^(x,) = π ( ^ ) . If we identify each xt withy t to make g

simple nodes, then we obtain a singular curve of genus g. Call ii Df. Regular

functions on Df are regular functions/on D with/X c,) = /(>>,-), all /. Thus by

choosing the xt and yi appropriately we can make p on Df have a Weierstrass

gap sequence as described in condition (2) of the lemma. We may smooth the g

nodes to obtain a smooth curve C mapping to P 1 as described in the first

paragraph of the proof. (It is not hard to construct such a smoothing—see for

instance [6, §4].) By semicontinuity, p will continue to have the desired gap

sequence. Condition (3) follows because kp is linearly equivalent to kq.

Remark. Using this lemma it is easy to construct many examples of

reducible Hurwitz schemes. Choose integers k and g as in the lemma. Suppose

k is composite, say k = mn, m, n > 1. From the lemma we know that the

Hurwitz scheme Hk of [k sheeted covers of P 1 with two points of total

ramification and 2g other simple branch points over distinct points} has at

least one component a general point of which corresponds to a curve for which
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the first nongap for each of the two total ramification points is k. The same
statement is true with k replaced by m or n throughout. In all cases we may
assume that the two points of total ramification lie over 0 and oo. By raising
the function giving an m sheeted cover to the «th power or the other way
around we construct a k sheeted cover. Doing this for all points in Hm and Hn

we get at least two (one if n = m) other components of Hk. In one the first
nongap for the total ramification points is generically m and in the other it is
generically n. These are different components because they all have dimension
2g — 1. Notice that this shows that curves corresponding to points in different
components of a Hurwitz scheme can have significantly different geometry.

We must define precisely what we mean by the phrase "a component of the
locus of points corresponding to curves possessing both a Weierstrass point of
type k and a Weierstrass point of type /". Let C be a smooth curve of genus
g > 3, k and / integers with 2 < k, I < g - 1, and p and q two distinct points
on C which are Weierstrass points of type k and / respectively. Let π: #-> Δ
be the universal deformation of C. Let Wk (Wj) be the locus of Weierstrass
points of type k (/) near p (q). Choose an irreducible component X of
π(Wk) Π π{Wt). If X' is the image of X in Jί g, then there is a unique
irreducible sub variety of Jί g of dimension equal to the dimension of Xf

containing X'. Call it Y. Any point of Y will correspond to a curve possessing a
Weierstrass point of type k and a Weierstrass point of type / and, for a generic
point of y, these two Weierstrass points will be distinct. We will call Y "a
component of the locus of points corresponding to curves possessing both a
Weierstrass point of type k and a Weierstrass point of type /". Such sub varie-
ties of Jί g will be denoted by W(k, I).

In a sense this is incorrect terminology. Suppose that besides p and q there
are other Weierstrass points of type k or / on C. Based on current knowledge it
might be that Y is contained as a proper subvariety of an irreducible sub-
variety Z of Jί g such that any point in Z corresponds to a curve possessing a
Weierstrass point of type k and a Weierstrass point of type /.

(3.2) Theorem. Fix a genus g > 4. Choose two integers k and I with k,

/ < g — 1 and k, I > \{g + 2) if g is even, or k, I > \{g + 3) if g is odd. Then

there exists a component W(k, I) of the locus of points in Jίg corresponding to

curves possessing both a Weierstrass point of type k and a Weierstrass point of

type I which has dimension g — 3 + k 4- /.

Proof. From the description of these subvarieties in the preceding para-
graphs we see that locally W(k, I) is the intersection of two subvarieties of
dimensions 2g — 3 + A:and2g — 3 4- VmύάzJίg which has dimension 3g - 3.
Since Jίg is locally the quotient of a smooth variety by a finite group, we
conclude that W(k, I) has dimension at least g - 3 + k + /. Next, by looking
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at tangent spaces we show that this lower bound is the actual dimension when

k = I.

A curve C constructed in (3.1) represents a point in some W(k, k). The

tangent space to the branch of W(k, k) represented by p and q at [C] will be

the intersection of the tangent spaces to the two branches Dk k(p) and Dk k(q)

of Dk k represented by p and q at [C]. In the map of C to P 1 constructed in

(3.1) let B be the divisor consisting of the 2g simple branch points. Notice that

ΛΓ, the canonical divisor of C, is linearly equivalent to B — p — q. Using (2.2)

we obtain

TpDkk = a n n i h i l a t o r o f # ° ( C , 2 # - B -(k - l)q),

TqVDk k = a n n i h i l a t o r o f H ° ( C , 2 K + q- B - ( k - l ) p ) .

Inside Tq^g, intersect TqVDk k and π*TpDkk. The dimension of this intersec-

tion gives an upper bound on the dimension of W(k, k).

άimW(k, k) < g - 3 + 2k + άim{H°(C,2K - B -(k - l)q)

( 3 4 ) CaK +q-B-(k-

The vector space inside the braces is H°(C,2K - (k — l)p — (k — l)q) =

H°(C,K- 2kp) = 0.

Now we do the case k Φ I. We may assume k < I. Construct W(k, k) as

before. Near [C], Dk k(p) must be contained in a branch of Du. Call it

Dfj(p). By construction /z°(C, Ip) = 2. Theorem 2 in [7] then assures us that

VDfj is smooth near/7, which means that the singularities of Z>, /(/>), if any, are

mild enough so that on it intersections work out dimensionally as on a smooth

variety. On Dιt{p) the intersection Dkk{p)Cλ{Dιι{p)C\Dkk{q)} has at

least one component, W(k, k), of the minimum possible dimension. Therefore,

Dιj(p) Π Dk k(q) must have at least one component of the minimum possible

dimension. Take this as W{k, /).

4. Hurwitz schemes

When k and / are both smaller than is allowed in (3.2), then g - 3 + Λ; + /is

at most 2g — 2. The locus of points corresponding to hyperelliptic curves

which has dimension 2g - 1 is therefore a variety W{k, I) of dimension

greater than g — 3 + /: + /. The Hurwitz scheme of { k sheeted covers of P 1 of

genus g with two points of total ramification and 2g other simple branch

points over distinct points) also has dimension 2g - 1. One might therefore

expect that the image of this Hurwitz scheme in Jί g would also give rise to

varieties W(k, I) of dimension greater than g — 3 + k + I. We shall prove that
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this is at least sometimes true by proving a lemma about the dimensions of the

images of certain Hurwitz schemes i n ^ r

Let A: be a positive integer and B a sequence bλ, ,bh, where each bi is itself

a partition of k, that is, each bi is a set of integers biV- -,bLm(i) such that

Σji'i bjj = k. By branching as defined by bt we mean that over pt there are

m(i) points, one with ramification index equal to each of the bt j .

(4.1)

moduli space of the data π: C -> P 1 of degree /c, /?, ,ph e P 1

distinct points, C smooth irreducible curve; 77 has branching

over each/?, as described by &,, otherwise unbranched

There is a morphism σ: Hk B -* J( g, where g can be determined by the

Riemann-Hurwitz formula. Let Jίg be the Deligne-Mumford compactification

of Jί g. There exists a compactification Hk B of if^β such that σ extends to a

morphism σ: //^ # -> Jtg. This compactification was developed for the case of

simple branching in [6]. The same proof works for arbitrary preassigned

branching (see [3]). The points which are added to Hk B to get Hk B correspond

to admissible covers of reducible stable b pointed curves of arithmetic genus 0.

A stable b pointed curve is a reduced, connected curve C with at most

ordinary double points, plus b smooth points, /?1? -,ph e C such that every

smooth rational component of C contains at least 3 points which are either /?z's

or double points of C. A morphism π: C -> B, where B is a stable b pointed

curve of genus 0, is called an admissible cover if (1) C is reduced connected

and of arithmetic genus g, (2) m has degree k, (3) over pt the branching is as

described by bi9 and (4) any branching not over a pt must be over a double

point of B.

In general it is not known whether Hk B is nonempty. We will need the

following sufficient condition found in [5, Remark, p. 785].

(4.2) If there exists a permutation τ of (1, -,b} and an integer s with

1 < s < b such that
s b

Σ k - m(τ(i)) > k - 1 and Σ k - m(τ(i)) > k - 1,
i=l 1=5+1

then Hk B is nonempty. Branching data which satisfies this condition is said to

be splittable.

When Hk B is nonempty it clearly has dimension max(0, b — 3). We wish to

know the dimension of σ(Hk B), the image of Hk B mJίg.

(4.3) Lemma. Assume Hk B is nonempty and that all except possibly two of

the bi are of the form 2,1, ,1 . Then at least one component of σ(Hk B) has

dimension min{dim Hk β , dim J(g).
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Proof. We prove the equivalent statement for Hk B. The proof is by

induction on both g and b. The cases g = 0 or b = 2 or 3 are obvious. Assume

the theorem is true whenever the genus is less than g or the number of marked

points is less than b. Let pλ and p2 be the two marked points over which the

branching might not be simple. As usual let Δ equal Jίg — Jί r Since Δ is a

divisor on Jί ^ the lemma will be proven if we show that dimσί//^ β ) Π A =

min(Z> — 4, dim Jίg - 1).

We construct an admissible cover TΓ: C -> B representing a point in σ(Hk B)

Π Δ. B consists of two smooth rational curves Dx and D2 meeting transversely

at one pont q. Dλ contains pv- ,pb-2- &2 contains pb_ι, ph. Over Dl9 C

consists of a smooth curve Cλ of genus g - 1 filling all k sheets. Such a cover

exists by (4.2) because one can calculate that if the data bl9- ,bh_2 was not

splittable, then g would equal 0 and we would be done. Over Z>2, C consists of

k — 2 rational curves etale over D2 and one rational curve C2 two sheeted over

D2. Over q there is no branching. Let sλ and s2 be the two points of C\ Π C2.

Now we will show that the dimension of the image in~# g of the family of all

admissible covers like the one we have just constructed is min(6 — 4, dim J(g

- i )

Case 1. (ft - 2) - 3 < 3(g - 1) - 3.

By the induction hypothesis the choice of isomorphism class of Cλ varies in a

b — 5 dimensional family. For each choice of Cx the choice of sλ and s2 varies

in a one-dimensional family—by moving q. This gives a total of b — 4.

Case 2. (b - 2) - 3 > 3(g - 1) - 3.

In this case b - 3 ^ 3g - 3, so we want to show that our covers vary in a

3g — 4-dimensional family. By the induction hypothesis the choice of isomor-

phism class of C\ varies in a 3(g - 1) - 3-family and for each choice of C\

there is at least a one-dimensional choice of different maps of Cx to Dv As we

vary the choice of map of Cλ to Dλ the general fiber of the map must also vary.

This gives a two-dimensional family of choices of sx and s2. This gives a total

of 3g - 4. q.e.d.

Remark. One of the points on which attempts to generalize this lemma

seem to get stuck is the unsolved problem of when Hk B is nonemtpy. This

information is needed in order to know which admissible covers can be

constructed.

This lemma shows that at least one component of the Hurwitz scheme of { k

sheeted covers of P 1 of genus g with two points of total ramification and 2g

other simple branch points over distinct points} has an image in Jίg of

dimension 2g — 1. If k and / are both outside the range of (3.2) and / ^ k,

then this gives a component of W(k, /) of dimension larger than g — 3 + k 4- /.
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