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A MULTIPLICITY ESTIMATE FOR
PROJECTIONS OF SURFACES

DANA W. NANCE

Let 0 < a < 1 and let /?„: R3 -> R3 be the orthogonal projection defined by

pp(x) = x — (x *>)*> for *> e S2. In this paper, we prove the following estimate

for a C 3 α embedded, orientable bordered surface M in R3:

/ n{v)dJe^lj [\\DN(x)\\2 +
JS2 JM

+ ( [6\\DN(w)\\

where n(v) = sup,eIm/, r{n(is y)}9 n(v, y) = JP0{M Π p;\y)}, N: M ^ S2

is an orienting unit normal vectorfield for M, T: 3M -> .S2 is a continuous unit

tangent vectorfield for 9M, Jί?°, Jfι and .Pf2 denote Hausdorff measures

(Jίf°(A) = card 4̂) and Z) and Z>2 denote covariant differentiation. With some

notational inconvenience one can easily generalize our work to treat immersed,

nonorientable surfaces. The full strength of the C 3 α hypothesis will be used

twice: in Lemma 5 to prove the condition

(A) Je2{v G S2: v - N(x) = 0, \(v9 DN(x))\= 0 for somex G M) = 0,

and in an argument at the end of Theorem 11. Elsewhere, C 3 will suffice.

We begin by describing the singularities that can occur under generic

projections of M and obtaining integral estimates on the curvature of the

projections of the singular sets.

Definition. Let S] = {x G M: V N(X) = 0, v (v, DN(x)) Φ 0} and

S2 = {x G M: v N(x) = v (v, DN(x)) = 0, v > (v ® v, D2N(x)) Φ 0,

|<*>, DN(x))\ Φ 0). Also let Cv = {x G M: y JV(JC) = 0).
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Lemma 1. If M is of class 2, then

ί ί Jίf0{y(Ξpp{SΪ):Neπor(pp(SΪ),y)}dJί?ιNdJί?2v
JS2 JS2nlmpv

= 2π[ J2N(x) dJί?2x.
JM

Proof. If T is a unit tangent vector to Sv

ι at x, the condition v

(p, DN(x)) Φ 0 implies that T Λ P Φ 0. If N G Im pv Π Nor(/>I,(S
r

I,
1), ^ ( x ) )

then Λr ί' = 0andiV τ = 0, hence N e Nor(S,\ x). Thus

ί ί ^ f ^ ^ j iVGNo^^jj)} dJ?ιNdJ?2v
JS2 Jlmp,,nS2

= f f Jf°{x e #:#<= Nor(M, x)} dJ
JS2 JN v = 0,\N\ = l

By applying the area formula to the set

Σ = {(P,N) ΪΞ S2 X S2: P - N = 0}

we interchange the order of integration, and the integral reduces to

2ττ ί Jίf°{x e M: Λ̂  G Nor(M, JC)} J^f 2 = 277/* /2iV(x
Js2 JM

Definition. If M is negatively curved at x (i.e. det DN(x) < 0), then there

exist two linearly independent unit vectors ev e2 ̂  Tan(M, JC) (unique up to

sign and order) such that et (eh DN(x)) = 0 (i = 1,2). These are called

asymptotic vectors at JC. If det DN(x) = 0 but | |£W(x)| | Φ 0 (i.e. rank Z)iV(x)

= 1), then there is a unique (up to sign) asymptotic vector P e Tan(M, x), and

we define eλ(x) = ̂ 2( J C) = ^

To apply the co-area formula with eλ and e2 as slicing functions, we need to

find D e ^ x ) at points where this exists. If e{ is a unit tangent vector

perpendicular to el9 by differentiating the equation ex (ev DN(x)) = 0 in

the directions eλ and e^ , we obtain

and

\(et, De^x)) -et\= h\et • ( ^ ® e 1 ( J D 2 N(

Moreover,

ΛΓ(x) • <e l f £>e i(x)> = -(eu DN{x)) • ex{x) = 0
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and

N(x) >(et, Deλ(x)) = -(el9 DN(x)) e{ (x) =\(el9 DN(x))\9

hence J2ex(x) = \\eλ (eλ <8> e1? D
2N(x))\. If /27V(jcr) > ε for all x' in a

neighborhood U of x, then, since \(el9 DN(x))\ = (J2N(x))ι/2, eι is a
Lipschitzian function in U, with a Lipschitz constant less than or equal to
ε ' 1 / 2 (Γ + K2), where T = sup\\D2N(x')\\ and ̂  = sup||£W(jc')ll

Lemma 2. // M is a manifold of class 3 which satisfies assumption (A),

j2Jίf°{x G M: *>• JV(JC) = y (v,DN(x)) = 0}j

Proo/. Let Mε = ( c G M: J2N(X) > ε}. If ί/ c Mε is a neighborhood on
which eλ and e2 are well defined, then

f Jί?°{x G I/: v N(x) = v (v,DN(x)) = 0}

= 2J \(\eλ (ex Θ e1? D
27V(x)) | + |e2 (e 2 Θ e2, D2N(x)) |)

\\D2N(x)\\dJίf2x.

Since the integrand in the second integral is independent of the way eλ(x) and
e2(x) are assigned, the above formula is also true globally, with U replaced by
Me. By applying Lebesgue's increasing convergence theorem, we obtain

f Jίr°{x<ΞM0:vN(x) = v (v,DN(x)) =0}
JS2

= f ^ ( | β l (e, 9 eλ, D2N(x)) \ + \e2 • (e2 ® e2, D2N(x)) |)

< ί \\D2N(x)\\dJr2x.

Since M\ Mo = (x G M: J2N(x) = 0}, by assumption (A)

f je°{x e M\M0: v > N(x) = v (v,DN(x)) = 0} J ^ 2 ^ = 0.
JS2

Adding the two integrals, we obtain the desired bound.
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Corollary 3. // M is a manifold of class 3 which satisfies assumption (A), then

forJίf2-almost all directions v, Cv = S} U S2.

Proof.

cp\(sϊus?)
= ( i G M r N(x) = v - (v, DN(x)) = 0, (v9 DN(x)) = 0}

u{x G Mo: v N{x) = ? (v,DN(x)) = v (P ® v,D2N(x)) = θ}.

(Here, as before, M o = (x G M: J2N(x) Φ 0}.) The first set is empty for

almost all P by assumption (A). Since

[v\ v - N(x) = v (v,DN(x)) = v - (v ® v,D2N(x)) = 0

for some x G M O }

= eλ{{x e M o : / 2 ^ ( x ) = 0}) U ^ 2 ({x e M o : / Λ ( J C ) = 0}),

the co-area formula shows that the second set is also empty for almost all v.

A partial proof of assumption (A) can be given in the spirit of Lemma 2. For

this we introduce the well-known principal curvature vectors Eλ(x) and E2(x)

(the eigenvectors of the linear map DN(x)\Ύa.n(M, x)) and the principal

curvatures λL = Eλ (El9 DN(x)) and λ 2 = E2 (E2, DN(x)).

Lemma 4. // M is a manifold of class 3,

M o = [x G M: / 2JV(JC) = 0, | | / )^(x) | | Φ θ},

thenJT2{v G S 2 : M 0 Π 5 ^ 0 } = 0.

Proo/. Let MO ε = {x G M: J2iV(x) = 0, \\DN(x)\\ > ε}. For any point

x G Λf0, one of the principal vectors, say £Ί(x), satisfies £Ί(x) (Eλ(x),

DN(x)) = 0, and hence coincides with the degenerate vectors eλ{x) = e2(x).

Moreover

J2Ex(x) = \Eλ (E2 β £ 2 , Z) 2 iV(x)>| |λ 1/(λ 1 - λ 2 ) | .

Hence M o c (JC G M:J2Eι = 0, ||X>iV(jc)|| =£0}. Since Ex is locally Lipschitzian

on MO ε, it follows that

JT2{v (Ξ S2: (Mo\MOε) Π Sv

2 Φ 0 } = 0 ,

from which the lemma follows immediately.

Lemma 5. Assumption (A) /20/ί/s /or any manifold of class (3, α) /or αj?y

α > 0.

Proof. To prove this it remains to show that J^2{v ^ S2\ v N(x) = 0

for some x G P } = 0, where P = {x G M: DN(X) = 0}. According to a

strengthened version of the Morse-Sard theorem proved recently by Y. Yomdin

[7], there exists a constant C(M, a) such that the set N(P) can be covered by

at most C(M, a)ε~2/2+a balls of radius ε for any ε > 0. (In Yomdin's notation,
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C(M, a) = Ao(2,2,2 + ά)C(M\ where C(M) is a constant depending on
||Λf | | 2 a and on the number of balls of radius \/2K needed to cover M, where
K=\\N\\\ = sup{||DΛΓ(;c)||: ; c e M } , a s before.) Corresponding to each ball
Bε c S2 of radius ε is a strip of width ε, Sec S2, such that if N(x) e Bε, then
Tan(M, x)Π S2 a Sε. Hence {v\ v e Tan(M, X ) , X E ? } can be covered by
C(M, α ) ε " 2 / 2 + α strips of width ε, and therefore

Jf2{v ^ S2:v ^ T a n ( M , x ) 9 x G P }

< C(M, α)ε" 2 / 2 + α(277ε) < Cεα/ 2 + α for any ε > 0.

Lemmas 1 and 2 are the two basic integral estimates used in proving the
multiplicity estimate. Next we consider the local behavior of the multiplicity
near fold points and cusp points.

Lemma 6. Let M be a manifold of class 2. Suppose x e S*, and let

y = PΛX)- Then there exists a neighborhood U of x with the following property.

For any σ such that σ v = 0, σ N(x) Φ 0, there exists ε > 0 such that

whenever \t\ < ε. (Either the + sign or the — sign holds throughout the interval.)

Proof. Let ex = v, e2 form an orthonormal basis of Tan(M, x). In a
neighborhood U of x9 M can be parametrized as the graph of a function / of
class 2:

Uε = { x + s e x + t e 2 + f ( s , t ) N ( x ) : \ ( s , t)\ < ε ) ,

where /(0) = 0, 3//3J(O) = 0, 3//3ί(O) = 0, 32//352(0) =. ̂  <e1? £>iV(x)>,
32//3^3/(0) = eλ <^2, i)iV(x)>, 32/(0)/3ί2 = e2 <e2, DN(x)). Since ^
(^ l5 DN(x)) Φ 0 and the second derivatives of/ are continuous, there exist
ε' > 0 and 8 > 0 such that |32//3s20, 01 > δ > 0 for all 0, /) such that
|(^, 01 < ε'. We let U= Uε,

If σ = σxN + σ2e2 G Im ̂  andj^r = ίσ, then

(Λll/Γ^^) = {* + ^ i + ^2^/(^ to2) = toι}.

Since |32//3^2 | > 0 in ί/(0, εr), the equation /(s, to2) = ίσx can have at most
two roots s such that \(s, t)\ < ε'. Suppose, without loss of generality, that
d2f/ds2 > 0. By hypothesis, σx Φ 0; assume, for example, oλ > 0. By the
implicit function theorem, there is, for each sufficiently small /, a unique
minimum m(t) of the function f(s, tσ2), and ra'(0) = 0. Thus there exists
ε" > 0 such that:

(a) if -ε" < / < 0, then tσλ < m(t), hence f(s, to2) = tσλ has no roots;
(b) if 0 < t < ε", then m(t) < tσv hence/(x, tσ2) = tσx has two roots;
(c) if / = 0, then m(t) = tov hence/(s, tσ2) = tσλ has one root.
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Lemma 7. // M is a manifold of class 3, x e S2, y = pv(x), there exists a
neighborhood U of x such that for any σ e Im pv such that σ N(x) Φ 0, there
exists ε' > 0 swc7z /Λα/ |r| < ε implies J^°{(pv\U)~ι(y + ίσ)} = 1.

Proof. When we parametrize M a s a graph, as in Lemma 6, we have
d2f(0)/ds2 = 0 and d3f(0)/ds3 = eλ (ex Θ ^ , £2W(.x)). (Note: this equality
does not always hold, but in this case is a consequence of the fact that
32/(0)/3s2 = 0.) Hence 33//3s3 Φ 0; again, without loss of generality, sup-
pose it is greater than 0. Also, since \e2 (el9 DN(x))\ = \(el9 DN(x))\ Φ 0,
d2f(0)/dsdt Φ 0. By continuity of the third derivatives, there exists ε > 0 such
that |(5, 01 < e implies that 33/(s, t)/ds3 Φ 0, d2f(s, t)/dsdt Φ 0. Let U =
{sex + te2+f(s,t)N:\(s,t)\<ε}.

By the mean-value theorem, the equation f(s, tσ2) = tσλ can have at most
three roots in s such that seλ + te2 + f(s, t)N G U, because d3f/ds3 > 0 for
all s in that interval. Setting gt(s) =/(.*, tσ2), we see that the equation
gt(s) = tσι has only one root under two circumstances:

(a) if gt(s) has no critical points;
(b) if gt has two critical points sλ(t) and s2(t) such that gt(sλ) < gt(s2) < tσλ

or tσλ < gt(Sι) < gt(s2).
Now suppose σ2 Φ 0.
By the implicit function theorem, gf has a unique minimum point so(t) for

small enough t, and ^ό(0 exists. Then

Hence Jί?°{s: g't(s) = 0} = 1 ± sign /, as in Lemma 6. (Note that at this point
we have used all three hypotheses 32/(0)/3^2 = 0, 33/(0)/3^3 Φ 0 and
d2f(0)/dsdt Φ 0.)

Suppose, for example, the + sign holds in the above equation. For / < 0 the
lemma is proved by (a) above. For t > 0 it is sufficient to show that Ig,^) ! <
\σxt\ and \gt(s2)\ < \σλt\ for sufficiently small r, where s^t) and ^2(/) are as
defined in (b). Indeed, from the Taylor expansions of f(s, t) and 3/(^, t)/ds it
follows that ^ ( 0 , s2(t) = O(tι/2) and f(sλ(t), t) = O(t3/2)\ hence \gt(st)\ =
O{t3/2){i = 1,2).

The remaining case σ2 = 0 is easy: the fact that/(s,0) = tσ2 has only one
root follows from the mean-value theorem and the fact that 33//3s3 Φ 0, and
does not even require the hypothesis d2f(0)/dsdt Φ 0.

Remark. The theory of the stability of singularities provides another ap-
proach to analyzing the multiplicity behavior of pv. Indeed, if ψ is any
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parametrization of a neighborhood of x, say with ψ^O) = 8ψ(O)/3;c1 — ex and
ψ2(0) = e2, then:

(a) if x is a fold point and ψ is of class 2, then (pv ° ψ)n(0) =£ 0 and so there
exist one-to-one functions gl9 g2 (of class 1) such t h a t ^ O ψ = g i 0 i 7 o g 2 o n a
small enough neighborhood of x, where F(xl9 x2) = ( c2, x2);

(b) if x is a cusp point and ψ is of class 4, then (/?„<> ψ) m (0) Φ 0 and
(Λ ° Ψ)i2(0) ^ 0, and there exist one-to-one functions g1? g2 (of class 1) such
that pv © ψ = gx © G ° g2 on a small enough neighborhood of JC, where G(JC1? JC2)

= ( *1 ~~ XiX2» •^2)-

Statement (a) is not too hard to prove, though decidedly nontrivial. State-
ment (b) is very subtle, and evidence of this fact is that it was first proved by
Whitney under the assumption that ψ is of class > 12 [6].

A key reason for the simplicity of Lemmas 6 and 7 as opposed to this
approach is the fact that we only need to obtain such estimates "in one
direction at a time", instead of having to obtain estimates that hold uniformly
in all directions. (For example, ε' in Lemmas 6 and 7 depends on the direction
σ.) Also, in Lemmas 6 and 7 we simply ignore the "trickiest" direction, σ = e2

(or -e2).
Lemma 8. Ifv^S2 satisfies the following conditions:
(1) Cv = Sϊ U Si
(2)jr°(s? n dλf) = 0,
(3) Tan(9M, x) Φ Tan(C,, x) when x e Cv Π 3M,
(4)Jίf°{x GaM ^G Tan(3M, JC)} = 0,
(5) all self-intersections ofpv{Cv U dM) are transverse,
(6) sup{Jίro[(pv\dMy\y)]:ye Im pv) = 2,

and if n(v) < 00, then there exists y e Im pv \pv(Cv U dM) such that
Jίf°{(pv\M)~ι(y)} = n(v). Hence {y: n(v, y) = n(v)} has nonempty interior.
7/(1 )-(5) hold and n(v) = 00, then {y: n(v, y) ^ N) has nonempty interior for
any N > 0.

Proof. Clearly if n(v) < 00 then there does exist y ^ Im pv such that
^°{(Pv\M)~l(y)} = w(^) L e t *i> ',χn b e t h e preimages of y under ( Λ | M ) .

If xt & Q, let Lζ be a neighborhood of jcf. such theitp^Uj is a diffeomoφhism;
otherwise choose \Ji as in Lemma 6 (if xf e S]) or Lemma 7 (if JC, e .S,,2). (If
jcy e 9M, Lζ- is to be inteφreted as a neighborhood diffeomorphic to an open
disk such that Uι, Cλ M is a half-disk.) By Lemmas 6 and 7 and hypotheses
(2)-(4), to each jcf. is associated an open half-plane Wι c Im /?y such that for
any σ ^ Wi there exists ε7 > 0 such that whenever 0 < / < ε;,

jr°{(pMr\y +
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where c = l i f ; c ; e 3 M U S;2, c = 2 if xι? e S,,1. If xt e Sj2, we may replace P^

with ^ U ( - ^ ) .

Let r = #°[p;\y) Π S,1] and 5 = JP°[/>;HjO Π ΘM] < 2. It is simple to

show (using hypothesis (5)) that there exists σ Φ 0 such that

Π S,1: σ e ^.} > [r/2] + 1,

{ ΘM: σ e Wt) > 2(r/2-

and σ e f\ e 5 2 Ŵ  U (-W^ ) Then for small enough /,

>(n-r-s) + 2([r/2] + 1) + 2(r/2 -

Since the line through y parallel to σ is transverse to ρv(Cv U 3M), j + /σ ^

^ ( Q U 9M) for small enough t, which proves the first conclusion. Replacing^

by y + to and choosing new neighborhoods Ut accordingly (which now all

project onto open neighborhoods of y + to), we easily show that the multiplic-

ity of pv\M is locally constant near such a point, establishing the second claim.

The final conclusion also follows by a trivial modification of the above

argument.

This provides us with sufficient local information on the multiplicity of

pv\M. It remains to demonstrate how to use a bound on the curvature of pv(Cv)

and the number of cusp points to obtain a global bound on the multiplicity.

To begin with, we prove the analog of our theorem for 1-dimensional curves

in 2-space.

Theorem 9. If C a R2 is a finite union of compact immersed curves of class 2

with disjoint boundaries andn(σ) = sup{^0[(/?σ |C)"1(>')]: ^ G I I Ϊ I pσ), then

f n{σ) dJfιo < 2 f \\DN{x)\\dJtrι

Jsi Jc

Proof. If Si = { j c e C : σ N(x) = 0, σ (σ, DN(x)) Φ 0} and Cσ =

C: σ N(x) = 0}, then

f \\DN{x)\\dtfιx = f JλN{x)d^ιx= f Jίr0(N-ι{σ})dJrιo
Jc Jc Jsi

Jf°{x e C: σ #(jc) = 0}
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If we define T to be a unit tangent vectorfield to C, we find that Jλτ{x) = r (r,
DN(x)), hence by the co-area formula and setting A = {x e C: Jλτ(x) = 0},

f J?°(Cσ\Sl)dJrισ= f J1τ(x)dJίTιx = 0.
JSι JA

Hence for almost all directions σ, Cσ = S*. In such a direction σ, the multiplic-
ity function «(σ, y) is easy to describe: it is locally constant on Im pσ \pσ(Cσ),
and has a discontinuity of magnitude at most In if JP°[(pa\C)~ι(y) Π S£] = w.
Since the multiplicity is 0 for large values of y, we conclude that (for almost all
σ ^ S1) n(σ) ^ Jίf°(Cσ) = Jίf°(S^), proving the theorem in the case where C
has no boundary. More generally, if C has m boundary points and σ is not
tangent to C at any boundary points (again, this condition holds for almost all
σ), then each boundary point xt introduces a discontinuity of magnitude 1 in
the multiplicity function «(σ, y) at yt = pa{Xi). Thus n(σ) < Jf°(Cσ) + ra/2,
and we obtain the desired result by integration.

Not only is this theorem of great interest in itself, but it also comes in handy
in proving the next lemma.

Lemma 10. If M c R3 is a manifold of class 3 and v is a direction such that:
(l) cv = sl u si
(2)fpΛC)J1N(y)dJίTιy<co9

ι

< oo,

(5)/°(ςn 3M)< oo,
and conditions (2)-(6) of Lemma 8 hold, then

2ττn(v) < 2 ί
JPΛQ)

Π

{In the above equations N refers either to Np ( 8 Λ / ) or Np ( C ) ? depending on

whether the integral is taken over pv(dM) or pv(Cv). These should not be confused

with NM, the normal map to the surface M.)

Proof. The idea is quite simple: apply Theorem 9 to the curve pv(Cp),
treating the points of pv{S2) and pv(Cv Π dM) as boundary points. One
complication arises, though: pv(Cv) is not a class two manifold in general.
Indeed, if φ is a parametrization of Cv in a neighborhood of a cusp point x
such that 0 < \Dφ(t)\ < oo for all /, then
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However, using the fact that φ is of class 2, we can show that the parametriza-

tion pv°Φ(tι/2) parametrizes pv(Cv) as a class 1 manifold-with-boundary:

indeed, it is readily verified that

if φ(0) is a cusp point.

Next we observe that the proof of Theorem 9 really required C to be only of

class one at the boundary points (so that, using the implicit function theorem,

we could assert that the multiplicity of (pσ\U)~1(y) is 0 on one side of pσ(x)

and 1 on the other side for some neighborhood U of x). Thus, if we assume

that M is of class two at the boundary, that Cv = S] U S;2, that Sj Π dM = 0

and that Tan(8M, x) Φ Tan(Q, JC) at all points j c e ς n ΘM, then pv(Cv)U

pv(dM) satisfies the (weakened) hypotheses of Theorem 9, with each point of

pv(S2) counted as a boundary point of two different arcs and each point of

pv(S} Π dM) as a boundary point of three. (If y is the image of more than one

point of (S] Π dM) U S;2, we count the multiplicity.)

Hence there exists σ G l m ^ such that for any z e lm(pσ © pv)9

27rjr°[(pσ\pv(Cv)y\z)} < if J.NdJ?1 + 2/ JλNdJfι

C; Π dM) = k.

To put it another way, any line Lσ parallel to σ intersects pv(Cv) U pv(dM) in

at most k points. Moreover, σ can be chosen so that for all but a measure zero

set of lines {Lσ ,}, Lσ intersectspv(dM) and/>„((?„) transversely at all points of

intersection and Lσ Π pv{S2) = 0, Lσ Π pv{Cv Π 3M) = 0 . On each such Lσ,

by Lemma 6 and a counting argument,

Thus «(?, j>) < A: on a dense subset of the plane, and by Lemma 8 we conclude

that n(v) < k. This proves the lemma.

Theorem 11 (Multiplicity Estimate for 2-Manifolds in R3). // M c R3 is a

manifold-with-boundary of class (3, a) and dimension 2, and if n(v) =

f n{v)d^2^2( \\DN\\2 dJT2 + 2 f \\D2N\\dJT2

JS2 JM JM

+ 6 f \\DN\\dJf1 + 8 f \\Dτ\\dJrι,
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where N: M -> S2 is the Gauss map and τ: dM -> S2 is a unit tangent vector

field to dM.

Proof. We have already seen that

f f JιNdJίfιdJίr2ι> < 2τ7 f \\DN(x)f dJ^2x (Lemma 1),
Js2 J

Pv{Cv)
 JM

f je°(s}) d^2v < f \\D2N{x)\\dJf2x (Lemma 2).

To prove the theorem, we need integral estimates on the two boundary terms

Jί?°(Cv Π dM) and JpΛ9M) Jι(N

Pv(dM)) ά3^λ > a n d w e n e e d t o P r o v e t h a t condi-

tions (2)-(6) of Lemma 8 hold for 3tf2-almost all v. (Condition 1 is just
assumption (A), and conditions (2)-(5) of Lemma 10 are guaranteed by the
integral estimates we will obtain.)

Define £ = {(JC, v) e dM X S2 such that v Λ̂ ( c) = 0}, and let Q(x, v) = p,
P(x, v) = x for any (x, v) G B. By computing a basis for Tan(Z?, (JC, v)), one
easily computes the Jacobians J2Q and JλP9 and obtains

[ Jf°{x (ΞdM:v N(x) = 0} dJίf2 = f J2Q(χ9 v) dJT2(x, v)
JS2 JB

= ί ί \v(τ,DNM)\dJί?ιvdJfιx
JdM JPN(X) = O

= 4 ί I ( r, DNM) \d3fιx (since F" |cos fl|dβ = 4

which gives us the desired estimate on Jίf°(dM Π Cv).
By a similar computation,

ί ί Ji(NpΛdM)(y)) d^yd^2v = 8τr/ \\Dτ(x)\\dJrιx.

In this calculation, we are justified in assuming Jι(Np^dM)) is defined for all
y e pv(dM) and ^2-almost all v because the only singular points of pv(dM)
are points x where v e Tan(3M, x). By the co-area formula, Jfι{v e S2:
^ G Tan(3M, x) for some JC G 3M} < 00, hence theJί?2 measure of that set is
0.

Next we verify that JίT°(S2 Π dM) = 0 for almost all .̂ By definition,
S2 Γ\ dM a dM0 = dM Π {JC: det ZW(JC) # 0}, and the functions ^(JC) and
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e2(x) are defined locally on dM. By hypothesis, M is of class 3 at the
boundary, so eλ and e2 are locally Lipschitzian and e1(3M0) and e2(dM0) are
countably ^-rectifiable; hence JF2(e1(dM) U e2(9Af)) = 0. This is equiva-
lent to the desired assertion.

Next we verify condition (3) of Lemma 8. If τ(x) is, as before, a unit tangent
vectorfield to dM, another way of saying Tan(3M, x) = Tan(Q, x) is v (τ(x),
DN(x)) = 0 or J2Q(x, v) = 0, where Q: B -* S2 is as defined before; hence

f JίT°{x <ΞM\v N(X) = 0,V (T(JC), DN(X)) = 0} dJίf2v = 0,
JS2

as desired.
It is trivial that condition (4) of Lemma 8 holds for^2-almost all v.
Finally, we wish to show that conditions (5) and (6) of Lemma 8 hold for

^2-almost all v. We define the functions vλ\ dM X dM -> S2, v2. dM X M -*
S2 and v3: M X M ̂ > S2 by the identical formulas *>,(.*, y) = (x — y)/\x — y\.
It is then easy to check that (assuming x Φ y)

(1) J2vλ = 0 <-> det[x - y, τ(x), τ(> )̂] = 0 <-> self-intersection of ̂ (ΘM) at
pVι(x) = pv (y) is not transverse;

(2) J2v2 = 0 « J ; G Q 2 and det[x - y, τ(x), (v, DN(y))] = 0 <-> the inter-
section of pV2(dM) andpV2(CV2) atpV2(x) = pV2(y) is not transverse;

(3) /2ϊ>3 = 0 « x, j £ Q and iV(x) = JV(j) <̂  the self-intersection of
pV3(CV3) atpV3(x) = Λ3(^) is not transverse.

Thus the set of v e S 2 for which condition (5) fails is U^{(x, j>): J2

vi(x> y)
= 0}), and has measure 0 by the Morse-Sard theorem. (Note that C 3 α is
precisely the degree of smoothness needed to achieve this result for the map

To verify condition (6), let Π = {(x, y, Z ) G 3 M X 3 M X dM: xΦ y,y Φ z,
x Φ z, (x — y) A (x — z) = 0}. Let v4: Π -> S 2 be given (once again!) by
v4(x, y, z) = (x — y)/\x — y\. Π is readily seen to be a 1-manifold except at
points (x, y, z) for which det[x - y, τ(x), r(y)] = 0. Hence, in view of the
equivalence (1) above, Jf2[v4(Π)] = 0.

Thus all the hypotheses of Lemma 10 are satisfied for^2-almost all v, and
by integrating the estimate of Lemma 10 over S2 we obtain

f n{v)d^2v^l\ \DΉ(x)f dtf2x + 2\ \\D2N(x)\\dJf2x
JS2 JM JMM JM

+ 6 ί WDNix^d^x + 8 f
JdM JdM

Theorem 11 enables us to prove a generalization of a 1-dimensional integral
geometric result given in [5].



A MULTIPLICITY ESTIMATE 341

Proposition 12. // M c £(0, R), dM = 0 and fM\\DN\\2 dtf2 < Kv

jM \\D2N\\ dJίf2 < K2, thenJίT2(M) < (Kλ + K2)R2.

Proof. Let «£? denote the set of oriented lines in R3, and let μ denote the

invariant measure of £P under Euclidean motions. Then

JίT2(M) = (277)"1 f Jf°{l Π M) dμ

h2 h\\v

= (277)"1 f (τrR2)n(v) dJίT2p < (K1 + K2)R2.
JS2

Remark. The corresponding 1-dimensional result is that J^ι{C) < KR for

a closed curve of total absolute curvature K contained in a ball of radius R. I.

Fary claimed to prove the result of Proposition 12 without the bound K2 [2].

His proof, however, is erroneous, in that he makes use of the 1-dimensional

result without taking into account the possible existence of cusp points. This,

of course, is precisely what forced us to introduce the third-derivative integral

in the first place. While we do not have an example showing that K2 must be

present in Proposition 12, it seems unlikely that the assertion can be proved in

general without it.

Conclusion. The preceding Theorem 11 shows that, if M is a sufficiently

smooth compact manifold-with-boundary, then for Jtf2-almost all directions

v G S2 it can be viewed as the graph of a multiple-valued function over the

plane Im pv. In particular, it is the graph of a Q{v)-valued function/„, where

f Q{v) dtf2 < cί ί \\DN\\2dJίf2 + f \\D2N\\dJίr2

Js2 \ JM JM

+ f WDNWdJT1* f \\Dτ\\dJί?>1).

Such multiple-valued functions have been defined and studied extensively by

F. Almgren (see [1]), in whose work they have already proved to be a very

versatile analytic tool for the study of variational problems.

In the second part of the author's Ph.D. thesis [4], the question of whether

one can obtain a global estimate on the modulus of continuity of the functions

/„ was studied. Under more restrictive assumptions on the manifold M, this

turned out to be possible:

Theorem. // M c R3 is a nonpositively-curved surface of class 4 such that

det DN(x) Φ 0 for all x e ΘM, then the function

C(v) = sup{|/,(x) -fv{y)\/\x ~
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is Jί? 2-measurable and

~ > < oo fora < 3/238.

(The norm in the expression \fv(x) — fv(y)\ is essentially the flat norm on

integral currents.) This result requires a more careful analysis of the singular

set of the projection pv than the present paper; a proof will be published

elsewhere.

The role of the multiplicity estimate for 1-dimensional manifolds (Theorem

9) in proving the multiplicity estimate for 2-dimensional manifolds suggests the

possibility of an inductive argument to prove a similar estimate for higher-

dimensional manifolds. I am presently investigating that question.
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