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EXAMPLES OF SIMPLY-CONNECTED
SYMPLECΉC NON-KAHLERIAN MANIFOLDS

DUSA MCDUFF

1. Introduction
A symplectic manifold (Af, σ) is a pair consisting of a 2/ί-dimensional

manifold M together with a closed 2-form σ which is nondegenerate (that is, σn

never vanishes). The form σ determines two pieces of topological data: the
cohomology class a = [σ] e H2(M; R) and a homotopy class of reductions of
the structural group of the tangent bundle of M to U(n) = Sp(2w;R), and
hence a homotopy class [/] of almost complex structures on M. Gromov
showed in his thesis that, if M is open, any such pair (α, [/]) may be realised
by some symplectic form (see [3], [4]). If M is closed, an must be a generator of
H2n(M; R) which is positive with respect to the orientation defined by [/]. But
even with this condition, it is not known whether the corresponding statement
is true. In fact, very few closed symplectic manifolds are known. Any Kahler
manifold is symplectic. Thurston showed in [6] how to construct a non-Kahler
closed symplectic manifold. His examples are nil-manifolds and so are not
simply-connected. (A similar example was known to Serre. See [10], Problem
42. Thurston's construction is further developed in [9] and [3].)

In [3] Gromov points out that if the symplectic manifold (M, σ) is sym-
plectically embedded in (X, ω), then one can "blow up" X along M to obtain a
new symplectic manifold (X, ώ). In this note we use this technique together
with a symplectic embedding theorem (see [5], [2], [7]) to construct some
simply-connected, closed symplectic manifolds which are not Kahler.

Here is one such example. Let (M, σ) be Thurston's 4-dimensional sym-
plectic, but non-Kahler manifold. It is the quotient R4/I\ where Γ is the
discrete affine group generated by the unit translations along the xv JC2, x3-axes
together with the transformation (xλ, x2, x3, xΛ) >-> (xΎ 4- x2, JC2, JC3, XΛ + 1).
Thus M i s a Γ2-bundle over T2. Its symplectic form σ lifts to dx1 A dx2

+ dx3 Λ dx4 on R4. Note that σ is integral, that is, [σ] e H2(M; Z). Further,
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the Betti numbers βx(M) and β3(M) equal 3. Since these are odd, M has no
Kahler structure. Another non-Kahler feature of M is that it does not satisfy
the Lefschetz theorem, that is, multiplication by [σ] does not induce an
isomorphism from H\M\ R) to H3(M; R).

Tischler proves in [7] (see also Narasimham and Ramanan [5] and Gromov
[2], [3]) that the complex projective space CPΠ, with its standard Kahler form
ω0, is a universal integral symplectic manifold. In other words, any manifold
with integral symplectic form σ may be embedded in CP" for suitably large n
by a map / such that /*ω0 = σ. In fact, Gromov proves in [3, 3.4.2] that if
dim M = 2 m one can take n = 2m + 1. Thus, we may embed Thurston's
manifold (M, σ) in (CP5, ω0). Let (X, ώ) be the symplectic manifold obtained
by blowing up CP 5 along M. Then we claim

Theorem. (X, ώ) is a simply-connected, symplectic closed manifold with
β3(X) = βλ(M) = 3. Hence Xis not Kahler.

We will also see that X does not satisfy the Lefschetz theorem.
This theorem is proved as follows. In §2 we show how to blow up any

manifold X along a codimension 2 k submanifold M whose normal bundle
v(M) has structural group U(k). The resulting manifold X covers X in the
sense that there is a smooth map φ: X -> X which is a diffeomorphism outside
φ~ιM and which restricts over M to a fibration with fiber CP*" 1 .

Proposition 2.4. If X is the blow up of X along M, then ̂ X = mxX. Further,
the real cohomology H*X of X fits into a short exact sequence of graded
R-modules

0 -> H*X -> H*X -+A*->0,

where A* is a free module over H*(M) with one generator in each dimension 2/,
1 < / < k - 1.

If (Λf, σ) is a symplectic submanifold of (X, ω), then its normal bundle
v{M) may be canonically embedded in the tangent bundle TX as the ω-
orthogonal complement to TM c TX. Hence ω restricts to give a canonical
symplectic (i.e., skew-symmetric and bilinear) form on v(M). It follows that
the structural group of v(M) reduces to U(k). Therefore the blow up X of X
along M is defined. In §3 we prove

Proposition 3.7. // M is compact, the blow up X of (X, ω) along (M, σ)
carries a symplectic form ώ which equals φ*ω outside a neighborhood ofψ~ιM.

The theorem follows immediately from these two propositions. Notice that
the construction in the theorem may be varied considerably. For example, we
could start with any 2w-dimensional Kahler manifold (Λf, σ) and blow up a
point. The resulting manifold X contains a copy of CP"" 1. If we now blow up
X along any symplectic submanifold of CPn~ι which has an odd Betti number,
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we will obtain a symplectic manifold (X, ώ) with an odd Betti number. Further
X will be simply-connected if M is.

2. The topology of the blow up

In this section we suppose that M is a compact submanifold in I of
codimension 2 k such that the structural group of its normal bundle E -> M
reduces to U(k). We will show how to blow up X along M to obtain a
manifold X, and will discuss the topology of X. We assume throughout that
k > 2, since, when k = 1, X equals X and all our results are trivial.

First, we construct X. By assumption, the normal bundle E -» M may be
identified with P X υ(k)C

k -» M for some principal U(k)-bund\e P -> M. Let
L -> C P ^ " 1 be the canonical line bundle over CPk~ι. Since U{k) acts on L by
bundle automorphisms, we may form the fiber bundles π: E -* M and p:
M -> M which are associated to P -> M and have fibers L and CPk~ι

respectively. Thus, E is a complex line bundle over the projectivization M of E,
and there is the commutative diagram:

(2.1)

- M

Here Eo, Eo are the nonzero vectors in E, E and φ is induced by the obvious
map L -> C^. Note that φ|£Ό is a diffeomorphism. The space E is called the
blow up of E along M. It fibers over M with fiber E = L = CPk — pt, where
CP* is CPk with the opposite orientation. Let V be a subdisc bundle of is
which is diffeomorphic to a closed tubular neighbourhood W of Af in X, and
set F = φ-ψ.

Definition 2.2. The blow up X of Jf along M is the smooth manifold

X - W U dy V,

where ΘFis identified with 9Win the obvious way.
Our first lemma will be needed in §3. Consider the fibration π: E -> M.

Each fiber F is a line bundle over CP*" 1 . Let aP e / ί 2 (F) be the class
represented by the pull-back of the Kahler form ω0 on CPk~1. Then the real
cohomology H*(F) of F is generated as an algebra by ap, with the relation
4=0.
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Lemma 2.3. There is a unique class a e H2(E) which restricts to ap on each

fiber F and to 0 on H2(E0). Further H*(E) is a free module over H*(M) with

generators 1, a,- -,ak~1.

Proof. The first Chern class of the dual of the tautological line bundle over

E clearly has the properties required of a. The rest of the lemma then follows

from the Leray-Hirsch theorem.

Proposition 2.4. ττxX = πxX. Further, there is a short exact sequence

0 -> H*(X) -> H*(X) ^A*^0,

where A* = coker(i/*M in H*E) is a free module over H*M with generators

a,'",ak~1.

Proof. Since X= X - WU dyV, we have

Now, πx(X — W) = πλX by general position, since W retracts onto M and M

has codimension ^ 4 in X. Further, because V and W both fiber over M with

simply-connected fibers, it is easy to see that the inclusion dV ^ V induces an

isomorphism on πv Hence πλX = πλX.

Next, observe that the map φ: X -» X has degree 1 and so induces an

isomorphism on H2n, where dim X = 2n. Since for every nonzero a e H*(X)

there is b e H*(X) such that aU b generates H2n, it follows that φ*:

H*(X) -> H*(X) is injective. Therefore, there is a short exact sequence

0 -» H*(X) -+ H*(X) ^ H* + ι(Xy X) ^ 0,

where the last group is interpreted as the relative cohomology of the pair

(Cφ, X\ and where Cφ is the mapping cylinder of φ. In order to calculate

H* + 1( X, X), consider the commutative diagram:

M<— >V

i i

Since φ takes X — M diffeomorphically onto X — M, it follows by excision

that H*(X, X) = H*(V,V). By Lemma 2.3, H*(V) = H*(M) injects into

H*(V\ and //*(F) = H*(M) is generated as an #*(F)-module by the ele-

ments 1, a,- ,ak~ι. Therefore, there are short exact sequences

0 -+ i/ '(F) ^ ^ ( F ) - # ί + 1 ( K , F) ^ 0,

and H* + 1(V, V) = H* + 1 ( ^ , X) is additively isomorphic to A* = H*(M) Θ

(θ/Γ/Zα')- q.e.d.

We will say that the Lefschetz theorem holds for a symplectic manifold

(X, ω) of dimension In if, for all i = 1, ,« — 1, multiplication by an~ι
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induces an isomorphism from H\X) to H2n~\X\ where a = [ω] e H2(X).
It is well known that this theorem holds for compact Kahler manifolds. On the
other hand, one can easily check that it fails in the case of Thurston's
4-manifold. The next result implies that it also fails for the manifold (X9ώ)
constructed by blowing up CP" along Thurston's manifold. As we will see in
§3, the form ώ, when restricted to V, represents the cohomology class b + εa
G H2(V\ where ft = [σ] G H2(M), ε > 0, and we identify H*(V) with
H*(M) ® Z[l, '9a

k~ι] as in Lemma 2.3.
Proposition 2.5. Let (M9σ) be a symplectic submanifold of CP" of codimen-

sion 2k whose Chern classes all vanish. Further, suppose that ώ is a symplectic
form on the blow up X of CPn along M such that [ώ\V] = b + εa. Then, if the
Lefschetz theorem fails for Λf, it fails also for X.

Proof. Using Proposition 2.4 and the fact that X = CP", one sees easily
that the restriction map H\X) -> H%V) is injective for i < 2(n - k) =
dim M, and has kernel generated by a suitable power of b if / > 2(n — k),
where b e H2(X) restricts to b G H2(V). By Lemma 2.3, there is a relation of
the form

ak = uk + uk_λa + + uλa
k~ι

in H*(V), where uέ G H2i(M). Because the construction of E and a is
universal, the M/ must be characteristic classes of E. In fact, w7 = -ct(E). But
£,•(£) = cl (ΓCPπ|Af) = ("T1)^7 because the Chern classes of M vanish. There-
fore, each ut is a multiple of ft1", and we have

k-\

(i) αΛ = Σ μjajbk-J.
7 = 0

It follows that

k-\

(ii) 5* = Σ VjάJbk-j,
y-O

where 5 e //2(X) restricts t o α e H2(V). Note also that, becausebn~k+1 = 0,
there is a relation

(iii) 5ftw~/c+1 = vbn~k+2.

By hypothesis there is a nonzero element ι> G Hι(M) for some i < n — k
such that vb"~k~i = 0. By (i) this implies that

H~'~2ea)H~'~2 = Σ X^a*"''-*-1 = 0.
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Therefore, if w e Hi+2(X) restricts to aυ, we have w(b + εα) / I ~ / " 2 = 0, unless

2n — i — 2 is an even number > 2(« — k). In the latter case, w(b + εά)n~ι~2

is a multiple of &w~m, where 2m = i + 2 < 2λ;. Observe, however, that when

m < A: the elements άJT)m~jJ = 0, ,m, are linearly independent in H2m(X\

and the equation

W-o

in the unknowns Λ:0, ,JCW always has a nonzero solution either for v = 0 or

for v — 1. For by (ii), (in) the left-hand side may be written as a linear

combination of the m + 1 terms Z>w~m and άJbn~m~J\ k-m^j^k-1.

Thus we have two systems of m + 1 equations in m + 1 unknowns, one of

which must have a nonzero solution. Because w cannot equal ΣJJ=QXjάJΊ>m~\ it

follows in either case that multiplication by (b + εά)n~2m is not injective on

H2m(X).

3. The symplectic structure of the blow up

In this section we construct the symplectic form ώ on X, using a procedure

outlined by Gromov in [3]. Since there is a canonical almost complex structure

on the fibers of π: E -> M, it is easy to construct ώ there. However, we must

also control ώ in the transverse directions, and for this we need the regularity

Lemma 3.6.

The normal bundle E -» M of (M, σ) in (X, ω) may be identified with the

ω-orthogonal complement of TM in TX\M. Thus ω restricts to give a canonical

translation invariant symplectic form on each fiber of E. We will denote the

zero section of E -> M by Z, and will assume throughout that M is compact.

Lemma 3.1. There is a closed 2-form p on E which restricts to this canonical

form on each fiber and to σ on Z = M. We may assume further that TZ is

p-orthogonal to the tangent space of each fiber.

Proof. Let {Lf} be an open cover of M such that each E\Uι is trivial. For

each /, let βt be a 1-form on ττ~ιUi which is 0 on Z Π tπ~ιUi and is such that dβt

restricts to the canonical form on each fiber of E. Then take p = ττ*σ +

Σ diλjβj), where { λ z} is a partition of unity subordinate to { Uι). q.e.d.

Since p is nondegenerate on Z, it is nondegenerate on a neighborhood of Z.

Further, by construction, there is a bundle isomorphism TE\Z -> TX\M which

takes p to ω. Hence, by [8, Theorem 4.1], a neighborhood W of M in X is

symplectically isomorphic to a neighborhood V of Z in E. We may assume that

V is a compact disc bundle over M so that X = X — M U dyV Sisin Definition

2.2. Our aim is to define a symplectic form p on V which equals φ*p near dV.
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Recall from (2.1) that we have a commutative diagram:

We write Z for the zero section of π, and Z for the zero section φ *(Z) = M of
q. The typical fiber of/?, respectively π, will be called F9 respectively F9 so that
F is the canonical line bundle over F = CPk~ι. Observe, further, that because
the action of U(k) on CPk~ι preserves the Kahler form ω0, each fiber F
carries a canonical form which we also call ω0.

Lemma 3.2. There is a closed 2-form a on M which restricts to ω0 on each
fiber F of p and pulls back to an exact form on Eo.

Proof. Let b = (q*)~ι{a\ where a e H2(E) is the class mentioned in
Lemma 2.3. Clearly, it suffices to construct a closed 2-form a on M which
represents the class b and restricts to ω0 on each F. Such a exists by Thurston's
argument in [6]. Namely, one takes any representative β of b, and then puts
a = β + ̂ (ΣCλ, o /j)γf), where {λ,} is a partition of unity on M and the γ, are
1-forms defined on the sets/?"1^), chosen so that for every fiber F over L̂  the
restriction of β 4- dyt to F equals ω0. For more details see [1].

Lemma 3.3 [6]. There is an ε0 > 0 such that the form p*σ + εa is nondegen-
erate on M whenever 0 < ε < ε0.

Proof. For each x e M, let

Wx= { v e TxM:a(v,t) = O9Vte TXF)

be the α-orthogonal complement to the tangent space TXF of the fiber through
x. Because a is nondegenerate on each fiber i% TXM splits as the direct sum
TXF Φ Wx. Hence, the differential/?*: TM -> TM is injective on each Wx, and
p*σ\Wx is nondegenerate. By the compactness of M, there is an ε0 > 0 such
that p*σ + εa is nondegenerate on each Wx for all ε < ε0. Since p*σ = 0 on
TXF, the subspaces TXF and Wx are orthogonal with respect to /?*σ 4- εa. It
follows easily that/?*σ 4- εa is nondegenerate on M for 0 < ε < ε0.

Lemma 3.4. There is an εx > 0 such that the form pε = <p*p + εq*a is
nondegenerate on V whenever 0 < ε < εv

Proof. By construction, pε\F = ψ*ω1 4- ςr*ω0, where ω0, ωx are the stan-
dard Kahler forms on CPk~ι and C* respectively. Therefore, if / is the
standard almost complex structure on F, φ*ωι(v, Jv) and q*ωo(v, Jv) are > 0
for all v e TF. Since the kernel of φ*: TE -> Γis consists of vectors tangent to
the fibers of the projection Z -> M and since q*ω0 is nondegenerate on these
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fibers, it follows easily that ρε\F is nondegenerate for all ε > 0. Hence, if g is a
Riemannian metric on E which restricts on each F to the Kahler metric
g(v9 w) = px(v, Jw), there is a constant K > 0 such that

(i) max{pε(ί, /'): t' e Γx/, ||ί'|U = l} > ̂ I I Φ

for all r e TXF, x e F and ε > 0, where ||ί| |^ = g(ί, /). Further, because φ*p
restricts to/7*σ o n Z ^ M and is nondegenerate on the fibers of the line bundle
E -> M, it follows from Lemma 3.3 that pε is nondegenerate on TXE for all
X G Z , provided that 0 < ε < ε0.

It remains to show that ρε is nondegenerate on V — Z. To do this, we adapt
the argument of Lemma 3.3. For each x e V — Z, define

Wx={ve TXE: φ*p(v, t) = 0, Vt G 7;#}.

Because φ*p is nondegenerate on F — Z, the tangent space TXE splits as the
direct sum TXF θ W .̂ Further, we will prove below that the following result
holds.

Lemma 3.5. Given any Riemannian metric on E, there are constants cl9 c2 > 0
such that for all w e Wx and x e F — Z,

In other words, the subspaces Wx do not get too close to ker φ* c TXF as x
approaches Z.

Because p is nondegenerate on the compact set F, there is a constant i^' > 0
such that, for all v e TXV and * e F, we have

max{p(t;, o'): v' e i K, ||^'||^ = l} > ^iklU

This implies, by Lemma 3.5, that there is a constant c' > 0 such that, for all
w e Wx and Λ: e V — Z, we have

max{φ*p(H>, w'): w' e PFX, ||H>'||£ = l} ^ c'HwH .̂

Hence, if ε2 is sufficiently small, we have exactly the same kind of estimate for
ρc, 0 < ε < ε2, namely: there is c > 0 such that

(ii) max{pε(w, w'): W e ^ x , \\W'\\E = l} > c||w||£

for all w e fl^, c e F - Z, and all 0 < ε < ε2.
To show that pe is nondegenerate on V — Z, it suffices to show that, for all

j c e F - Z and nonzero v e Γx£, there is ι/ e T^E such that ρε(v, v') Φ 0.
Choose C so that
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for all x e V and υ, υ' e TXV. (Here and subsequently || || denotes || | | έ.)
Further, let

ελ = min(εo,ε2,Kc/2C2).

Then, given υ = t + w with \\w\\ < K\\t\\/C, choose tf e Γ^F with ||ί'|| = 1 and
so that pε(7, t') is a maximum. Because TXF and Ŵ  are φ*p-orthogonal, we will
have

Φ 0 since ||w|| < / φ | | / C .

On the other hand, if \\w\\ > K\\t\\/C, choose w' e ^ with ||w'|| = 1 and so
that pε(w, w') is a maximum. We then have

|pβ(ί + w, w')| = |pε(w, w') + εα(/, w')|

^ 0 since \\w\\ > K\\t\\/C,

provided that ε < εv Therefore ρε is nondegenerate on V for 0 < ε < ελ as
required.

Proof of Lemma 3.5. For x e E, let Wx be the p-orthogonal complement of
the tangent space to the fibers of TΓ. E -> M. Then iΓ= \JWX is a smooth
subbundle of TE which, by the choice of p, equals TZ along the zero section Z
of 7r. Also H^ = ψ*(WψW) for jc G F - Z. Since the kernel of φ*: TE -> ΓE
consists of the tangent spaces to the fibers of the projection Z -• M, it clearly
suffices to prove the following regularity lemma.

Lemma 3.6. Let Hr= UWX be any Cιsmooth subbundle of TE which equals
TZ along Z, and let Wx = φ*(Wφ(x)) for x e E - Z. Then the closure in TE of
the set V){WX\ x ^ E — Z) contains no nonzero vectors which are tangent to the
fibers ofm\Z-* M.

Proof. The blow up C* of Ck at 0 sits inside C* X CPk~ι as the submani-
fold {(z1?- ",zk; [wp :wj): ziwj = ZjWiy Vi, j). Further φ: Ck -> CΛ is just
given by the projection C ^ x C P ^ - ^ C * . Thus the map

(zl9w2, 9 w k ) >-+ ( z l 9 Z M , " -tzw, [l:w2:- :wk])

provides local coordinates for a neighborhood of the point (0, ,0;
[1:0: :0]) in Ck. It follows that E may be covered by open sets in which φ:
E -* E takes the form

(yi>--,ym; zi,w2>- >wk) *+ ( Λ Γ Λ ^ W . W ^ uxck

9
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where (yl9- yym) e Rm are coordinates on ί / c M . Using coordinates (y; ζ)
= (>Ί> ' m>ym

m9 fi»"' "»£*) o n ^ x Ck c ^ ' w e m a y W Γ ^ t e * e r e a ^ subspace Wx

as

W; = { v e 7;£: # » + Σft , β (* f) * , ( * ) = 0}

for suitable complex valued (^-functions bia and for x near Z. Hence Ŵ  =

Ψ*(w

Ψ(x)) i s g i y e n by the equations

Because Wx approaches TXZ as x approaches Z, the functions bia(y, ζ) tend to
zero as ξ -» 0. Thus

*/«(?(*)) = M ^ ; z i ' *iw2> * ^ i ^ ) = °(l zil) a s z i ^ °
Further, observe that as the point x approaches Z, the coordinate zτ(x) tends
to 0. It follows easily that the functions dzλ(υ) and dwa(v) of the dyt{v\
υ ^ Wχ9 are uniformly bounded in a neighborhood N of Z. This implies that
the closure of ΌWX in TE\N contains no nonzero vectors v with dyt(v) = 0,
i = 1, ,m. The lemma follows.

We are finally ready to construct the symplectic form ώ on the blow up.
Proposition 3.7. If M is compact, the blow up X of (X, ω) along (M, σ)

carries a symplectic form ώ which equals φ*ω outside a neighborhood ofφ~ιM.
Proof. Since q*a is exact on i£0 by Lemma 3.2, there is a 1-form /? on i?0

such that a = dβ on Eo. Let λ be a smooth function on Ϋ which equals 1 near
Z and 0 near the boundary of V. Then define p by:

'p. onZ,
P \φ p + βέ/(λi8) o n F - Z .

Clearly p is a smooth 2-form on V. Since φ*p is nondegenerate on F - Z , it
follows easily from Lemma 3.4 that p will be nondegenerate on V if we choose
ε sufficiently small. Therefore, because p = φ*ρ outside a neighborhood of Z in
Int K, we may define ώonX = X — WU dy Fby setting it equal to ω on X — W
and to p on V. q.e.d.

Note. By construction, ώ = ρε 4- (exact) on V. Also [pj = [φ*p] + ε[̂ r*α]
= ττ*[σ] + εa by Lemma 3.2. Hence [ώ\V] = Z> + εα as in Proposition 2.5.
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