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0. Introduction

Investigating Hubert modular surfaces, Hirzebruch found a very interesting
relation between the signature defect associated to a cusp of a Hubert modular
surface and the value at s = 1 of a certain L-series [24, §3]. Hirzebruch's result
is interesting since it gives a topological meaning to these values of L-series.
However, Hirzebruch's proof is based on very explicit calculations and gives
no deeper explanation of this connection between these topological and
arithmetic invariants associated to a real quadratic field. He uses his beautiful
explicit resolution of the cusp singularities of the compactified surface to
compute the signature defect of the cusps. On the other hand, C. Meyer [28]
has calculated the value at s = 1 of the corresponding L-series and it turns out
that this value coincides with the formula for the signature defect of the cusp
given by Hirzebruch. Guided by this result, Hirzebruch conjectured that for all
Hubert modular varieties associated with a totally real number field of
arbitrary degree the signature defects of the cusp singularities are still given by
values at s = 1 of certain L-series associated with the corresponding cusp [24,
p. 230]. Actually, Hirzebruch's conjecture is more general. It is related to
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"cusps", which may not occur as cusp singularities of any Hubert modular

variety (cf. [24, p. 230]). The L-series in question have been studied by Shimizu

[38]. Now, for higher dimensional Hubert modular varieties the geometry of

the cusp singularities is much more complicated than in the two-dimensional

case, and there is no hope of getting explicit formulas. The attempt to prove

Hirzebruch's conjecture was one of the main motivations for the work of

Atiyah, Patodi and Singer on spectral asymmetry [3]. Their work was an

attempt to understand the significance of Hirzebruch's result in the wider

context of Riemannian geometry. In their paper they extended Hirzebruch's

signature theorem to the case of manifolds with boundary. The main result of

[3] is that for a compact oriented Riemannian manifold with boundary 7,

which, near Y, is isometric to the product Y X [0,1], the differential geometric

signature defect δ(Y) is a nonlocal spectral invariant of Y. This is the so-called

Eta-invariant η(0). A proof of Hirzebruch's conjecture along these lines has

been developed by Atiyah, Donnelly and Singer [2]. The idea is to apply the

results of [3] to the boundary Y of a neighborhood of a cusp.

The purpose of this paper is to understand Hirzebruch's result from a

different point of view. It turns out that Hirzebruch's conjecture is a conse-

quence of a certain ZΛindex theorem. To explain the main idea we consider

the Hubert modular group. Let F/Q be a totally real number field of degree n

and class number 1. Let ΘF be the ring of integers and consider the Hubert

modular group Γ = SL(2, ΘF). Γ acts properly discontinuously on the product

H" of upper half-planes and Γ \ H W has only one cusp. Let M = 0F and

V = Oγ . The cusp oo is of type (M, V) in the sense of Hirzebruch [24]. Let

^ ( Γ \ H W ) be the space of Γ-invariant harmonic forms on H", which are

square integrable mod Γ and let ^ ( ^ ) ± ( Γ \ H W ) be the ±l-eigenspaces of the

involution T defined by the *-operator. Then, using results of Harder [19], one

can show that

Let Λ* = Λ*(Γ \ HM) be the space of Γ-invariant differential forms on Hn and

let Λ*±= Λ* ± (Γ\H") be the ± 1-eigenspace of T. Consider the signature

operator D = d + d*: Λ*_-> AIL. It has a well-defined ZΛindex, which is given

by

( w ) - dim ( )

Thus Sign(Γ\H / I) = Ind LiD. Now, one can use the method of the heat

equation as in the compact case to compute the ZΛindex. Let Δ + = D*D and

Δ_ = DD* be the Laplacians on Λ*±. The restriction of Δ ± to the space of

compactly supported differential forms has a unique self-adjoint extension Δ ±



SIGNATURE DEFECTS AND VALUES OF L-SERIES 57

to an operator in L2Λ*±. Using the theory of Eisenstein series [20] one proves
that L2Λ*± admits an orthogonal decomposition

L2Λ*±= L2A*±Θ L2Λ*±

such that Δ ± decomposes discretely in LdA*±, and L2

CA*± is the subspace of
absolute continuity of Δ± . Let Δd

± be the restriction of Δ + to L2

dA\ and
consider the corresponding heat operators exp(-^ ± ) . L2

dK*± contains the
space of cusp forms LlA*± (see the end of §3 for its definition). Using some
results related to Selberg's trace formula, one can show that exp(-tΔd

+)
restricted to the subspace LQΛ*±C L2

dA*± is of the trace class for each t > 0.
Moreover, by analysing the constant terms of the Eisenstein series, it turns out
that the orthogonal complement of L^A\ in L2

dh*± is finite dimensional. Thus
expί-zΔ^) are trace class operators for each t > 0 and

IndL2D = Tr(exp(-rΔ*+)) - Tr(exp(-ίΔl)).

As in the compact case there is a smooth kernel K±(z9 z', t\ which
represents the heat operator exp(-fΔ^) and its trace is given by the integral of
tr A^(z, z, t) over Γ \ H". Selberg's trace formula tells us how to compute this
integral. Each conjugacy class of Γ makes a certain contribution to the trace of
exp(-ίΔ^). A careful analysis of the different conjugacy classes shows that
only elliptic and parabolic conjugacy classes give a nonzero contribution to

f trtf+(z,z,ί)- f tiK-(z,z9t).
JT\Hn JT\Un

If z e H π is an elliptic fixed point of Γ, then the contribution of the elliptic
conjugacy classes with fixed point z is precisely the cotangent sum δ(z)
associated with the quotient singularity z [24, §3.3]. Let M = ΘF9 V = Θ%2 and
let L(M, V, s) be the L-series associated to (M, V) (see (5.53) for its definition).
Then the parabolic contribution turns out to be

-ζ</(M)L(M,V,l), whererf(M) = (DF/Q)1/2.

Thus, if zl9 ,zm G Hw represent the quotient singularities of Γ \ H", then

Sign(Γ\H") = IndL2i) = £ δ(z. ) + -
7 - 1

There is another formula for Sign(Γ\HM), proved by Hirzebruch [24, §3,
(20)]. The contribution of the elliptic fixed points is the same as above, but the
contribution of the cusp has to be replaced by the signature defect δ(oo)
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associated to the cusp oo. Thus, comparing these two formulas, we get

IT

which is Hirzebruch's conjecture in this particular case.
In the same way one can compute the ZΛindex of other classical operators.

If we consider the Dolbeault operator 3 + 9 *: ΣqA
paq -> ΣqA

paq+\ it turns
out that its index is related to the dimension oϊJί?cζ;n~p(T \ H")—the space of
harmonic cusp forms of bidegree (p, n — p) on Γ \ FP. Using Selberg's trace
formula, we compute the index of the Dolbeault operator. In this way we get a
formula for the dimension otJ^n~p (Γ \ H").

Of course, everything that we described for the Hubert modular group
SL(2, ΘF) of a totally real number field F of class number one, can be extended
to an arbitrary irreducible discrete subgroup Γ c (SL(2,R))Π of finite co-
volume. However, if Γ has several Γ-inequivalent parabolic fixed points
xl9 ,xh9 then by this method we only get

where δ(xt) is the signature defect associated with xt and xt is of type (Mt, Vt)
[24]. To overcome this difficulty, it is natural to consider Riemannian mani-
folds X, which are obtained by taking a single cusp, chopped off near infinity,
and gluing it together with a compact Riemannian manifold, which has the
same boundary. Each cusp of Γ \ H " can be described by a lattice M in a
certain totally real number field F of degree n and a subgroup V c U^ of
finite index [24], [38]. The Riemannian manifold X has a decomposition
X = X0U Xv where Xo is compact and Xx is isometric to a cusp of type (M, V)
for some M and V as above. We call X a Riemannian manifold with a cusp of
type (M, V). Thus, the attempt to prove Hirzebruch's conjecture by the meth-
ods described above, leads very naturally to the problem of extending the
results concerning the spectral resolution of the Laplacian of the locally
symmetric space Γ \ H " to manifolds X with a cusp of type (M,V). This
problem has been considered by the author for manifolds which are natural
generalizations of the R-rank one case [30], [31]. In principle the same methods
can be used in our situation because the "analysis near infinity", i.e. analysis
on the cusp, reduces to harmonic analysis. Selberg's trace formula has to be
replaced by the asymptotic expansion of the heat kernel. Then, one can
compute the lAindex of the signature operator as above. There are no quotient
singularities, but there will be the contribution JxL(p\ where L(p) is the
Hirzebruch polynomial in the Pontrjagin forms. On the other hand, there is a
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formula for S\%μ{X\ which is analogous to Hirzebruch's formula [24, §3, (20)].
The proof of Hirzebruch's conjecture will be a consequence of these calcula-
tions.

We are not going to carry out this program in the present paper. The locally
symmetric case which we shall consider in this paper illustrates that the
principle, which relates signature defects of cusps and values of L-series at
s = 1, is essentially based on a ZΛindex theorem.

The paper is organized as follows. In §§1 and 2 we recall some facts about
homogeneous vector bundles, invariant differential and integral operators and
harmonic analysis. §3 collects the pertinent results from the theory of Eisen-
stein series and the spectral resolution of the regular representation. We
explicate these results for our situation. In §4 we discuss Selberg's trace
formula. It turns out that for G = (SL(2,R))M and Γ c G any lattice, the
restriction of the operator Rγ\G(f) t o the discrete spectrum L^(T\ G) is of
the trace class for all/ e (^1(G). Therefore, we can use the version of the trace
formula established by Osborne and Warner for a rank one lattice [32]. For the
applications we have in mind it is necessary to evaluate the different terms
occurring in the trace formula explicitly. We do this up to a stage which is
sufficient for our purpose. The case when / e C™(G) is bi-invariant under
K = (SO(2))/1 has been treated by P. Sograf [39] for n = 2 and by I. Efrat [15]
in general. In this case the trace formula has been brought to a final form. The
trace formula has been used by I. Efrat to establish WeyΓs law for the
asymptotic distribution of eigenvalues for any lattice in (SL(2, U))n with n > 2.

In §5 we use the trace formula to compute the index of the signature and the
Dolbeault operator. In this way we get our main result, Theorem 5.71.
Theorem 5.82 gives our formula for the dimension of Jίrcζ;n~p(T\Hn). This
generalizes parts of the results of Matsushima and Shimura [27] to the case of
nonuniform lattices.

Finally, in §6 we discuss briefly our approach to prove Hirzebruch's conjec-
ture in general.

Acknowledgements. The author is indebted to W. Hoffmann (Berlin) for
some suggestions and for pointing out several mistakes. The work of D.
Barbasch and H. Moscovici [6], [29], which has been brought to our attention
by H. Moscovici, was important for the final preparation of this paper.

1. Preliminaries

Let G = (SL(2, U))n and K = (SO(2))n. K is a maximal compact subgroup
of G and we have G/K = Hn, where H is the upper half-plane. Let Q D f be
the corresponding Lie algebras and let B be the Killing form of g. The
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orthogonal complement of ϊ in g with respect to B will be denoted by p.
Q = ϊ θ p is the Cartan decomposition. If n = 1, we denote the corresponding
objects by Go, Ko, g0, ϊ 0 , t)0. Let JC0 e Hw be the coset eK. The projection
G -> G/X induces an isomorphism p -> ^c0H

M. Let σ: # -> GL(F) be a finite
dimensional representation. To σ corresponds a homogeneous vector bundle
E(σ) -> Hw. Let C°°(£) be the space of C°°-sections of E. C°°(£) can be
identified with the space of ^-invariants (C°°(G) Θ E)κ of C°°(G) <8> £ with
respect to the action k *+ R(k) ® σ(k) of K, where i£ is the right regular
representation of G. Similarly, the space of L2- sections of E will be identified
with (L2(G) <8> E)κ. The tangent bundle THn is associated to the adjoint
representation Ad^: K -» GL(t)). Therefore, a C00-vector field on Hw can be
identified with a C°°-map φ: G -> ^)c such that φίgA:"1) = Ad^(/c)φ(g),
k ^ K, g e G. Correspondingly, a /?-form ω e A^(H") is a C°°-maρ ω:
G -> Λ^t)c, which satisfies ω(gk~ι) = Λ^Ad*(A:)ω(g). Here t>c = t> ® R C .
Let 8(0c) be the center of the universal enveloping algebra U ( g c ) o f g c and
let Ω e 3(0c) ^ e t n e Casimir operator. If Δ^ is the Laplacian on Λ^(Hn) with
respect to the invariant metric, then we have Kuga's Lemma

Consider the following elements of §1(2, R): W =(_%), H = (ι

0_%) and Y =
(?<}). Then f0 = RW, j>0 = UH θ UY and, if Bo is the KilUng form of g0,
then B0(H, Y) = 0. Let H} and Ypj = 1, ,«, be the elements of g withy'th
component equal to H and Y respectively and the others equal to zero. Ad ,̂:
K -> GL(t)c) can be diagonalized. Eigenvectors are

(1.1) Ej^Hj + iYj, j = !,•••,*,

where

Adi^E/ = exp(±2iθJ)EJ

±,

cos θ, sin θ, \

Thus, if we choose ί)c = ϊ c as the Cartan algebra of g c, then the vectors (1.1)
are the nonzero root vectors. Let Φ be the set of roots. We choose the system of
positive roots Ψ = {OL^— ,an} such that Q%j: = CEf. Note that each root is
noncompact. Let Wbe the Weyl group of (g c , ί)c). We have W = { ± l}n.

Let G = UAK be the Iwasawa decomposition of G. Every gG SL(2,R) can
be uniquely written as

/ I x\[y Cos0 άnθ\
g lθ l j o v"1 / 2 I-sinβ COS0Γ
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In this way we introduce coordinates {x, y9 θ) e Un X (U+)n X [0, 2π)n

on G. Consider the C°°-functions φβ: G -> pc defined by φ±(nak) =

exp( + 2/0(fc7))£/, j = 1, ,#i. Since φ/ίgfc"1) = Ad(A:)φ/(g), φ/ corre-

sponds to a vector field Zy* on H" and a calculation shows that Z + =

4/>y 8/3zy and Z~= -4iyfi/%zJ9 where zy = jcy. + />y. Finally, note that the

Casimir operator on G is given by

Ω = Σ j(Hj

We add some remarks about invariant differential and integral operators. If π

is any representation of G on a topological vector space V, we denote by Vκ

the space of ^-invariant vectors in V and by F 0 0 the space of C00-vectors. Let

α,: K -> U{Ei), i = 1,2, be two finite dimensional unitary representations of

# . K acts on U ( Q C ) ® Έnά(El9 E2) by Ad Θ σ2 <8> σf1, where End(Ev E2) =

E2® Ef. Let ( U ( g c ) Θ E n d ί ^ , £2))^ b e t h e space of AΓ-invariants with

respect to this action and let D = ΣiZi Θ C, be an element of ( U ( g c ) ®

End(.E1, E2))κ. Let π be any unitary representation of G on a Hubert space

3tfm. Then we let π(D) be the operator from (Jί^ Θ JBi)*" to ( ^ <8> £2)^ with

domain (J^ 0 0 ® EJK

9 which is defined by

(1.3)

Let ^ -> Hn be a homogeneous vector bundle defined by the isotropy repre-

sentation σ: K -> GL(F). Let L: C°°(£) -» C^ί.C) be a G-invariant integral

operator. If we identify C°°(£) with (C°°(G) ® F)^, then the kernel e of L

will be an element of L2(G X G) ® End(F), which satisfies

(0 e(ggl9gg2) = e ( g l 5 g 2 ) ,

(ii) e(gιklyg2k2) = σ(k{1)oe(glyg2)oσ(k2),

for all g , g ! , g 2 e G,k1,k2<EK.

If L is symmetric, then e satisfies symmetry

where * denotes the adjoint operation in End(F). Let h(g) = e(l9 g). Then

h: G -> End(F) and e(g1? g2) = Aίgf^)- Moreover, by (ii) we get

(1.4) h(kιgk2) = o{kι)oh(g)oo(k2).

The space of all C°°-functions /: G -> End(F) which satisfy (1.4) will be

denoted by Lσ(G). We introduce some spaces of functions: ^P(G, σ), 0 < p

< 00, is Harish-Chandra's space of /?-integrable rapidly decreasing functions

of type σ. It is defined as follows. For Dl9 D2 e U ( g c ) and / e Lσ(G) let
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f(Dλ\ g; D2) have the usual meaning [40, p. 104]. If r e U, Dv D2 e U(g c ),
/ e Lσ(G) and 0 < p < oo, define

(1.5) , / i U / ) = sup ^/^I '

where δ(g) = </(x0, gxo)> ^ t n e geodesic distance on H", and

/

with the usual notations. Then

(1-6)

Finally, if Γ c G is a discrete subgroup, we denote by R TχG the regular
representation of G on L 2 ( Γ \ G ) or C°°(Γ\G). Let σ: K -> GL(F) be a
finite-dimensional representation. Then we set

where K acts via i£Γ\G ® σ.

2. Harmonic analysis on G

In this section we collect some facts about unitary representations of
G = SL(2,R))". Let TΓ be any irreducible unitary representation of G. There
exist irreducible unitary representations πt of SL(2,IR) such that π = ® π

= 1 ττi

[13, Proposition 13.1.8]. Let Θπ be the character of IT. If φ e C0°°(G) is a
product

ψ(g) = Πφ,(g, ), φ, e CO°°(SL(2,K)),
/ = 1

then

where Θw is the character of TΓ̂  This reduces harmonic analysis on G to that on
SL(2,R).'Now, consider G0 = SL(2,R), Ko = SO(2). We denote by Θ^,
λ e R, the character of the principal series representation π£ and by Θ^,
n e M, the character of the discrete series representation π^. Θ^ and Θ^ are
tempered distributions. This follows from [40, Theorem 8.3.8.2] and the explicit
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character formulas for Θ̂ = and Θ^ [25]. Note that the complementary series

representations of Go do not have tempered characters [40, p. 174]. The matrix

/ cos0 sin#\ K

\-sin0 cos0/ °

will be denoted by k{θ). Let (π, Hv) be an irreducible unitary representation

of Go and let Hn<zHπ, « e Z , be the subspace {v e Hπ\π(k(θ))v =

exp(inθ)υ}. Then dim Hn < 1 (cf. [25]) and the restriction of π to Ko has a

direct sum decomposition HIT = Φ« e Z 7ίM. If Hn Φ 0, we choose υn e ifM with

||ι;Λ|| = 1 and set

(2.1) Φ^n(g)=(<π{g)υn,υn).

The spherical trace function Φπ n satisfies Φ^^ίl) = 1 and

Moreover, if/ e ^ ( G Q ) , then

= Σ ί f(g)ΦwJg)dg.

Assume that / e C0°°(G0) satisfies /(ik(^)gA:(β2)) = exp(-/m(^ + Θ2))f(g).

If we use the Cartan decomposition Go = K0AQK0 to calculate

(2.2) β9(f) = ΓΊ{at)Φ^m{at)M2t) Λ,

where at e ^ ^ . If TΓ = TΓ^, λ e R, we set Φ£n = Φ^ „ and if π = π±, m G N,

m ^ 2, we set Φ,^,, = Φw>π. The Casimir operator Ω acts on a principal series

representation 77J

±, 5 e zΊR, of Go by π*(Ω) = (5 2 — l)//4 and on a discrete

series representation π ^ , fc e N, A: > 2, by ̂ ( Ω ) = fc(fc - 2)7/4 [17]. There-

fore

(2-3)

Let r(z, z') be the hyperbolic distance on H. For g e G let θ(g) e [0,2τr) be

determined by g = nak(θ(g)). By an easy calculation one can show that

{-n/2

J - &

is bi-invariant under K. The map g G A^\ G/A' -> ch r(g/, /) e [1, oo) is a

diffeomorphism. Therefore, there exists φWj7l e C°°([l, oo)) such that

(2.4) ^,n(s) = e i n H 8 ) \ 1 L ^
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Note, that φWjΠ satisfies φw>M(l) = 1. We rewrite (2.3) in terms of φ^ n. It follows
as in [16] that φπ n satisfies

du2 u2-\du 2(u + l)(u2-l) u2 - 1 / Vt"

where

\k(2-k)/4, ifπ = πk

±,k<=N,k>2.

Let λ = (1 - s2)/4, ί £ C , and consider this differential equation with λπ

replaced by λ. The unique solution φ which satisfies φ(l) = 1 is the Legendre
function

F denotes the hypergeometric series. Note that Ps n satisfies Ps n = P_s „ and

P = P
1 s,n *• s-n'

3. Eisenstein series and the spectral resolution

We start by recalling some facts about discrete subgroups of (SL(2, U))n. Let
F/Q be a totally real number field of degree n. The ring of integers of F will
be denoted by 0F. Let ^ 0 be the algebraic group SL(2)//Γ defined over F and
let S?= ^F/Q^O t>e the algebraic group obtained from ^ 0 by restriction of
scalars a la Weil [42]. ^is defined over Q and has Q-rank one. Let G = &(M)
be the group of real points of ^ . G is isomorphic to (SL(2, U))n. Moreover note
that 3ί(Q) s SL(2, F) and 9(Z) = SL(2, ΘF\ the Hubert modular group of
the field F. If we identify G with (SL(2,IR))W, then SL(2, F) corresponds to a
subgroup of (SL(2, U))n. This subgroup is obtained by sending {a

c

h

d) e SL(2, F)
to

where x •-> jc(ί) is the Ah embedding of F in R. Therefore SL(2, ΘF) =
is a discrete subgroup of (SL(2, U))n.

A subgroup Γ c G is called arithmetic if: (1) Γ c #(Q) and (2) Γ is
commensurable with
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Thus, Γ is a subgroup of SL(2, F) which is commensurable with the Hubert

modular group SL(2, ΘF). An arithmetic subgroup Γ c G has the following

properties:

(1) Γ is a discrete irreducible subgroup of G.

( 2 ) V o l ( Γ \ G ) < oo. _

(3) Γ has at least one parabolic fixed point on Hw.

Moreover, rank(Γ) = 1 (see [32] for the definition of rank(Γ)). On the other

hand, Selberg's rigidity theorem [37] states that any subgroup Γ c G which

satisfies (l)-(3) is conjugate in G to a group commensurable with the Hubert

modular group of some totally real number field F of degree n.

Let Γ c G be an arithmetic subgroup. We discuss some aspects of the

spectral resolution of the regular representation of G on L2(T\G). We start

with the theory of Eisenstein series. The basic references are [20], [26] and [33].

For all details we refer the reader to these references. Since Γ is arithmetic, we

can use Harish-Chandra's approach [20]. Eisenstein series are associated with

the Γ-cuspidal parabolic subgroups P c G [26], [33]. In our case one can

describe the Γ-cuspidal subgroups P c G a s follows. Let £8 c SL(2) be a Borel

subgroup defined over F and let ^ = RF/ς]ίdS. &<z <g is a Borel subgroup

defined over Q. Set P = &>(M). Then P c G is a Γ-cuspidal subgroup and all

Γ-cuspidal parabolic subgroups arise in this way (cf. [20]). Since rankQ S? = 1,

all Γ-cuspidal subgroups of G are Γ-percuspidal (cf. [32]). We denote the

unipotent radical of 9 by °U. Let fc &> be a maximal torus of @. 3Γ\$ defined

over Q and 0> = <% 9°. Let J / C ^T)e the Q-split component of ^and M c <Γ

the anisotropic sub torus. Then 3~=s0'J( and ^ = <% - sέ - J(. Consider the

corresponding groups of real points P = ^(IR), M = ̂ #(IR), . Then P =

UAM. U is the unipotent radical of P. We call this decomposition of P

Langlands decomposition of P over Q. The group UM has the following

alternative description. Let a: 38 -> Gm be the positive root, a induces a

homomorphism

and if we compose a^ with the norm homomorphism

we get a homomorphism

Let °P = {p e P\\a£p) = 1}. Then UM =°P and U\°P = U\ UM = M.
Therefore, we get a natural homomorphism πP\M: °P -* M. Let KM =
WP\M(K rι°^>)> where K = (SO(2))". KM is a maximal compact subgroup of M
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and 77>|Λ/ is an isomorphism of K Π°P onto KM. Since T splits over R, it
follows that KM is finite. In particular (KM)° = {1}. Let XM = M/KM. Then
XM = M°/(KM)° = M°. Further note that Γ Π P = Γ Π°P and Γ Π U\ Uis
compact. In our case U is abelian and isomorphic to Un. Γ Π U can be
considered as a discrete subgroup of translations of Un. Therefore T Π U\U
is an ̂ -dimensional torus (S1)". Let

Γ^ is an arithmetic subgroup of M. Since ̂ # has Q-rank zero, it follows that
TM \ M is compact. Let

(3.1) Γ £ = ( Γ M . KM)CΛM\

Since M is commutative, we get TM\XM = Tjk\ Λf °. Therefore, Γ M \ JiM is a
torus of dimension n — 1. We have an exact sequence

Let °X=°Pxθ9 where X O G H " is the coset eK. ° I c H " is a subspace of
codimension one. If we use the above remarks, it follows that

is a locally trivial fibration over TM\XM = (S 1 )"" 1 with fibre Γ n U\U =
(Sι)n. This fibration has a description in terms of the number field F [38]. We
describe TM and T Γ\ U. There exists a unique x e (P1(R))W such that P is the
stabilizer of x in G. x is a parabolic fixed point of Γ and Γ Π P is the stabilizer
of x in Γ. Let P^ be the stabilizer of oo e (P^R))11 in G. There exists
p e SL(2, F ) such that PP = P^ where PP denotes conjugation with p. Thus
px = oo and x e P 1(F). The group PΓ is again arithmetic and commensurable
with Γ. Further P(ΓX) = ( T ) ^

Lemma 3.2. Lei p e SL(2, i7) fee 5«c/i /Λαί PP = P^. 77iere exw^ α subgroup
Vλ c ίP* of finite index such that

Let ί/^i^M^ = P^ be the Langlands decomposition of P^. Then
P(ΓΛ/) = (PΓ)Λ / Q O. Since PΓ is arithmetic, we can assume that PΓ = Γ and
P = P^. Let δ°e Γ^, δ = (g 2-0- Since TM = M n (Γί/), there exists γ e Γ
such that γ = (o α-0 with a,b e F. Since Γ is arithmetic, Γ/Γ Π SL(2, β?F) is
finite. Therefore, there exists n (Ξ N such that yn = (g" *-,) is in Γ Π SL(2, ίPF),
i.e., an,a~n ^ ΘF. Hence, 0 and a'1 are algebraic integers. Since a e i% we get
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a e φ*. Let

0

^0 ε"1

Since TM\M is compact, TM has rank n — 1. Therefore, it follows from

Dirichlet's unit theorem that Vλ c ΘF is a subgroup of finite index. Note that

Vλ is independent of the particular choice of p. q.e.d.

The group P (Γ Π U) = (PΓ) n U^ consists of matrices (* f) with μ G F.

Since Γ Π t / \ £/ is compact, the set of all such μ e f forms an additive

subgroup M c F of rank «, i.e. M c F is a lattice. The lattice M depends on

the choice of p, but the strict equivalence class of M is uniquely determined (M

and M' are called strictly equivalent, if there exists a e F, a totally positive,

such that M = αM'). Thus we have

Lemma 3.3. For each T-cuspidal parabolic subgroup P c G there exists

p e SL(2, F\ a lattice M c F and a subgroup Vλ c ΘF of finite index such that
PP = PTO and P (Γ Π P) is an extension ofVA by Vλ

0 -> M - ^ P ( Γ Π P) -> F x -> 1,

vvAere

and

^0 ε

Since Γ Π P i s the normalizer of Γ Π U in Γ, we get an action of ΓM on

YOU. This action corresponds to the action of Vλ on M which is given by

μ -> ε2μ, ε G F 1 ; |i G M. Let U^ be the group of all totally positive units ε of

ΘF such that εM = M. The group U^ is abelian of rank n - 1 [11] and

(Vλ)
2 c t/,J is a subgroup of finite index. In general, P (Γ n P) is not the

semidirect product of M and Vx with respect to the action of V1 on M defined

above. However H2(VV M) is finite.

The fibration TOP \°X -+ΓM\XM is equivalent to the fibration

(3.4) P(Γ Π P)V(°X) -*o(TM)V(XM).

If P^ = U^A^M^ is the Langlands decomposition of P^ over Q, then
p(X^) = χM 9 p(TM) = (pT)Moo and P(°X) is the orbit of x0 under U^M^.

This is the subspace

ι = l
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Let

0 is isomoφhic to Y. This isomorphism is given by

(o λ-iH"->0~(λ2i, ,λ*)6r.

Thus XMχ = ( M ^ ) 0 = Y. The projection W -* Y is given by zy •-> Im zΓ The

group of°°units Fx acts on Y by ε y = ( ( ε ^ ) 2 ^ , - ,(ε( f l ))2yII), ε e Fx. Let

V = (yλ)
2. V can be identified with a discrete subgroup of Y and p(ΓM)\Λ r

M

= V\ Y. U^is isomoφhic to Un. By sending μ G M t o (JLI(1), ,μ(/ί )) e IRΠ"

the lattice M is mapped isomoφhically to a lattice in IR n which we also denote

by M. The exact sequence of Lemma 3.3 shows that the fibration (3.4) is

equivalent to the fibration

(3.5) P(Γ Π?)\^^V\7

with fibre M \ Un. Let f be the image of Γ in (PLj(R))π. Then we have a

corresponding extension

(3.6) 0 ^ M -»p(Γ~ni>) -• V -> 1,

where

and

(
This is the description given in [24].

Now we turn to the theory of Eisenstein series on Γ \ G. We recall the

general context in which Eisenstein series are defined. Let σ: K -> GL(F) be a

finite dimensional representation. Let P c G be a Γ-cuspidal parabolic sub-

group as above with Langlands decomposition P = UΛM over Q. Let S M be

the center of the universal enveloping algebra of the Lie algebra m of M and

consider a representation

of 3 M We consider the vector space

s/(TM\M, σ, χ) = {ψ: TM\M -» F|ψ e C°°, ψίmAr1) = σ(*)ψ(m),

* e ^ , (Zψ)(m) = χ(Z)(ψ(m)), Z e 3 M
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Since ΓM\M is compact, we need no growth condition and s/is a space of

automorphic forms in the sense of Langlands [20]. j^is finite dimensional [20]

and coincides with the space L2( TM\M, σ, χ ) of cusp forms of type (σ, χ).

We extend Φ e s/(TM\ M, σ, χ ) to a function

(3.7) ΦS:T ΠP\G-> V9

depending on i G C , by Φs(uamk~ι) = σ(k)Φ(m)e(s+1)]na, where « 6 { / ,

a *ΞA+

9m <= M,k<= Ktιndln:A + ^ Lie(Λ) = R. Φsis in C°°(Γ n ? \ G , σ ) .

The Eisenstein series attached to P and Φ is defined as

(3.8) E(P9Φ9s9g)~ Σ Φ,(ϊ«)
Γn?\Γ

for Re(s) > 1. E(P, Φ, s, g) has a meromorphic continuation onto the entire

5-plane. As a function of g it belongs to C°° ( Γ \ G , σ) and it is slowly

increasing on any Siegel domain [20]. Let 8 i = 8 ( α c m c ) . In our case we have

3 i = S(ac)S(mc). Let μ: 3 ~* 8 i be the Harish-Chandra homomorphism

[20,1, §6]. If Z G 3 let μ(Z) = Σ^xf,^ with ff. G S(mc) and 9 / G S ( α c ) . For

s G C let

Then the Eisenstein series satisfies

(3.9) R(Z)E(P9 Φ, s, g) = χ ( μ , ( Z ) ) £ ( P , Φ, s, g)

for each Z G 3 [20, II, §2].

Let Pt c G, i = 1,2, be two Γ-cuspidal parabolic subgroups with Langlands

decomposition Pi = UiAiMi defined over Q. Let Φ G L X ( Γ M I \ M 1 ? σ, χ ) and

consider the Eisenstein series E(Pl9 Φ, s, g) attached to Pι and Φ. The con-

stant term of E(Pl9 Φ, s, g) along P2 is defined as

(3.10) Er>(Pl9 Φ, 5, g) = / £ ( P X , Φ, s, u2g) du29
Jmυ2\υ2

where the Haar measure on U2 is normalized by the condition

Vol^ ( Γ π ί / 2 \ l / 2 ) = l. For all facts concerning the theory of the constant

term and the functional equations satisfied by the Eisenstein series we refer to

[20], [26]. For simplicity we shall assume in the sequel that all Γ-cuspidal

parabolic subgroups are Γ-conjugate. Thus, we can restrict ourselves to the

case Pλ = P2 = P. Since P is fixed, we shall write £(Φ, s, g) instead of

E(P, Φ, s, g). The Weyl group W(A) of (G, A) operates in a natural manner

on the group QM oi characters of 3 M Let w G W{A) be the nontrivial

element. There exists a linear map

(3.11) C(χ, σ, s): L2(TM\M, σ, χ ) - L2(TM\M9 σ,"χ),
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which is meromorphic in,sEC, such that

(3.12) EP(Φ9 s, g) = Φ,(g) + (C(χ, σ, *)Φ)_,(g)

for each Φ e L 2 (Γ M \M, σ, χ). There is an orthogonal sum decomposition

(3.13) L2(TM\M) = 0 m(τ, ΓM)tfτ,

where ra(τ, Γ^) < 1 and Hτ = CT. Since M = M° X KM, a character T is

uniquely determined by JT and TI^ . From this one can conclude that

dimL^Γ^XM, σ, χ) < 1 and L 2 (Γ M \M, σ, χ) coincides with one of the

spaces Hτ. IfwG W(A) is the nontrivial element, then we have w~ιmw = m~ι,

m e M. Therefore, wχ =£ χ if χ =£ 0. Thus, all characters χ # 0 are unramified.

This is an important observation because it implies

Lemma 3.14. Let σ <E K, χ*Ξ %M and Φ <Ξ L 2 ( Γ M \ M , σ, χ ) . If χΦ09

then E(Φ, s, g) is holomorphic in the half-plane Re(5 ) > 0.

Proof. The poles of E(Φ, s, g) and C(χ, σ, s) coincide. If so, Re(s0) > 0,

is a pole of C(χ, σ, s1), then s0 is simple and ^ 0

 G (0» 1]» [20, IV]. Let

γ ( j 0 ) = -2ττRes(C(χ, σ, s) Φ C ( w χ , σ, 5))

and consider γ ( J 0 ) as an operator in

L 2 ( ( Γ M \ M , σ, x) Θ L 2 ( Γ M \ M , o»χ).

y(s0) is a positive semidefinite operator (see [1]). The proof of this fact is

similar to the proof of Lemma 2.1 in [41]. On the other hand, y(s0) maps

L2(TM\M9σ9χ) into L 2 ( ( Γ M \ M , σ, w χ ) and vice versa. If " X Φ χ9 then

L2(TM \ M, σ, χ ) and L2(TM \ M, σ, w χ ) are orthogonal subspaces of

L2(TM\M). Thus Tr(γ(so)) = 0. But γ(.s0) is positive semidefinite. Hence

γ(^ 0 ) = 0. There is another way to see this by using (3.9). If s0 e (0,1] is a pole

of £ ( Φ , 5, g), then it follows from (3.9) and (312) that Res 5 = = J o £(Φ, 5, g) is a

nonzero ZΛeigenfunction of 3 with character χ(μ 5 o ( )) Let Ωy be the Casimir

element of the 7 th component of G. If we appeal to Corollary 1.2 of [29], it

follows that R(Ωj),j = 1, ,«, are self-adjoint operators in L 2 ( Γ \ G, σ). On

the other hand, an easy computation shows that χ(μ J o(Ω y)) is real for ally iff

X = 0. q.e.d.

We shall discuss now the Eisenstein series which occur in our situation. Let

P^ be the stabilizer of the cusp 00. We shall describe only the Eisenstein series

which are associated to P^. The others can easily be related to these. For

simplicity we delete the index and write P instead of P^. Let P = UAM be the

Langlands decomposition over Q. The basic representation is Λ* Ad p: K ->

GL(Λ*£ C ) . If σ e K occurs in Λ*Ad p , then it follows from (1.1) that

<*\κM — l Therefore, we shall restrict ourselves to characters σ e ί with
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o\κM = 1. In this case we have

where Γ£ is defined by (3.1). Note that K{M^= {1} and TMKM\M =
Γ £ \ M°. M° is isomoφhic t o Λ = { λ e ( R "T|ΠΓ=i λ, = 1), where (* J-i) ->
(λ1 ? ,λn). According to Lemma 3.2 there exists a subgroup Vλ c 0* of finite
index such that

Thus, Γ£corresponds to the subgroup V{ = {(|ε(1)|, ,|ε<n)|)|ε e Vx) of Λ. F(
is free abelian of rank n — 1 by Dirichlet's unit theorem. Let i / c R n~1 be the
hyperplane Σ x, = 0 and let L c i/ be the additive subgroup of rank n — 1
which corresponds to F[ under the map λy -»log λy. Then Γ^\M° = L\H

1 1

where r is a character, Hτ = CT and m(τ, Γ^) < 1. Each T is an eigenfunction
of the Laplacian Δ M of the torus Γ^\ M°. The characters T with m(τ, Γ^) =£ 0
can be described as follows.

Let {εl9- ,επ_1} be a system of independent generators of the free part of
Vx and let ltj = log|εp}|, 1 < / < Λ - 1, lnj = l//ι, y = 1, ,«. The matrix
(/,-y) has rank «. A fundamental domain of L c H is the set

/ z - l

ι = l

Let

(3.15) 5 = (lij)'1.

The isomoφhism L \ H s (S 1 )"" 1 is given by

If ω e Z w - 1 let (^ω)y be they th component of B[%]. Then

We define the character τω: Λf -• C x by
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Then τω(TMKM) = 1. Thus m(τω, TM) = 1 and each character T with m(τ, TM)

Φ 0 is of this form. Let σ e £ , σ | ^ = 1 and ω e Z""1. τω determines a

character χω^ 8M a n d τω

 G £ 2 ( Γ M \ M, σ, χ ω ) . We shall denote the Eisen-

stein series which is associated to (τω, σ) by Eω(σ, s9 g). The constant term of

Eω(σ, s, g) along P is of the form

(3.17) Efta, S9 g) = Φβ f,(g) + Cω(σ, s)Φ_ω,

where Φω s is the function which is defined by Φω s(uamk) =

σ(k)~1τω(m)e(s+1)]na and Cω(σ, 5) is a meromoφhic function of s e C. Let

Ω G 3 be the Casimir element. It follows from (3.9) by an easy computation

that

(3.18) R(Q)Eω(σ,s,g) ^ *
7 = 1

Let E/1, j=l,- ,«, be the basis of pc defined by (1.1). We set Ej =

-iEj+/4,j = 1, ,Λ. Then £. = £~/4. We identify t)c with its dual *)£ via the

Killing form and we introduce the following notations: By /, /, we denote

subsets {/1? Jp} of {1, ,w} with iλ < i2 < < ip. The cardinality of /

will be denoted by |/|. For /, / as above we set

(3.19) Όj j = Eh A Λ Et Λ EΛ Λ Λ Ej .

Let χ: SO(2) ̂  C x be defined by χ(k(θ)) = elmiθ and put

(3.20) */.,(*) «Πx(*.)Πx(*y)-
ιe/ ye/

The set {vj j\Iy J c {1,••-,«}} forms a basis of Λ*££ which consists of

common eigenvectors of {Λ* Aά\{k)\k G K) with Λ* Ad*(k)vT j =

Oj j{k)υjj. The Eisenstein series Eω(σjj,s9 g) corresponds to a Γ-invariant

differential form on Hn of bidegree (p,q), p = \I\9 q = \J\ For γ E G , and

z e H " l e t

wherey(γ, z) = (cz + d)/(cz + d)iϊy = (a

c

 b

d) and z e H. Then

Γ / x - / Λdzr dzJ

where dzr = ί/ẑ  Λ —- Λ dzn dzJ = dz~Λ Λ - Λ dϊj, yτ = Π ί e / ^ and the
function/ω 7 y satisfies
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for γ 6 Γ. To describe fωIJ we use the coordinates (x, y, θ) on G introduced

by (1.2). It is easy to see that

/../>,*)- Σ J,Λz,yrιflyJM
wK"')'«'+l)/i.

TnP\T J = 1

We calculate the constant term of Eω(θj y , s, g) along P. Let Φω s be defined

by

(for simplicity we suppress the indices /, /). The constant term is given by

TnP\T/Tnυ

where

ί Φ«,
J(Γnυnvp)\υ

[20, II]. If (Γ Π P)γ(Γ Π U) is the trivial double coset, then we get Φ5?γ(g) =

Φω s(g). If γ represents a nontrivial double coset, then U ΠyP = {1} and

Φj,γ(g) = /ί/Φω,j(ϊM^) ^ w We have to insert the explicit expression for Φω 5

and compute the resulting integral. To describe the final result, we introduce

some notation. Let S = / U / - (/ Π /), S = {1, -,n} - S and d = \S\. For

co G Z π ~ 1 we define the Γ-factor

( 3 ' 2 1 ) * ϋ r ( ( 5 + l)/2 + Vi(Λ«)Λ)"

For μ e F x let

(3.22) Xω(/*) = Π|/ i ( y ) Γ 2 i " ( B ω ) y .

If Γ is the Hubert modular group SL(2, 0F) of a field F with class number one,

then the cusp at infinity is of type (0F, Op1). In this case χ ω is a Grόs-

sencharacter of the field F as defined by Hecke [21]. Now, let

(-l)d2(1~s)dπ(n+d)/1

(3.23) C > / > / ' S ) = Vol(ΓΠί/\ί/) Γ - ^ ( ί )

Σ J
γGΓΠP\Γ/ΓΠί/



74 WERNER MULLER

where γ = {a

c

b

d) and N(c) = ΠJLi cU). Then the constant term is given by

By similar calculations one can determine the constant term along any other
Γ-cuspidal parabolic subgroup P c G .

If Γ is a principal congruence subgroup of SL(2, ΘF)9 then one can describe
the intertwining operator C(s) explicitly in terms of L-series associated with
the field F. We consider the simplest example. Assume that F/Q is a totally
real number field with class number one and let Γ = SL(2, ΘF). Then there
exists only one Γ-conjugacy class of Γ-cuspidal parabolic subgroups of G. The
stabilizer of oo in Γ is

The cusp oo is of type (ΘF, Θp2) in the sense of [24] and the characters χω,
ω e Z"" 1 , defined by (3.22), coincide with Hecke's Grόssencharacters [21]. Let
us denote the infinite sum in (3.23) by ξ(s). An easy calculation gives

where

Finally note that Vol(Γ n U\U) = (DF/Q)1/2, where DF/Q is the discrimi-
nant of the field F. By these remarks we obtain

(1 ~>Λ\

(3-24)

Let RT\G be the right regular representation of G on the Hubert space
L 2 ( Γ \ G). Using the theory of Eisenstein series one gets an orthogonal sum
decomposition

(3.25) L 2 ( Γ \ G ) = L 5 ( Γ \ G ) Φ ^ ( Γ \ G ) ,

where L2

d(T\G) and L2

C(T\G) are invariant subspaces in which RT\G

decomposes discretely and continuously respectively. Z^(Γ\ G) contains the
invariant subspaces LQ(Γ \ G) of cusp forms. Recall that / e L2(T \ G) is a
cusp form if for each Γ-cuspidal parabolic subgroup P c G with unipotent
radical U one has JΓnυ\υf(uS) du = 0 for almost all g E G . Let L2

es(T \ G)
be the orthogonal complement of L2

Q(T\G) in L2

d(T\G). L2

CS(T\G) is
generated by the residues of all Eisenstein series with respect to poles in (0,1]
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[1]. The proof of this fact is essentially the same as the one given in [1]. Let
Rγ\G, Rr\Gi Rψ\G a n c l RΓ\G b e the restriction of RT\G to the corresponding
invariant subspaces L Q ( Γ \ G), •'• . Let a e ^ι(G). Then Rγ\G(ά) is a trace
class operator [33, Theorem 8.2]. In our case we have

Theorem 3.26. Let a e V\G) be right K-finite. Then the operator Rγ\G(a)
is of the trace class.

Proof. We know that Rf^G(a) restricted to the space of cusp forms is of
the trace class. Since a is right K~ fixate there exist σ1, ,σr e K such that
Rf^G(a) restricted to the orthogonal complement of ® jΓ - 1L^ s(Γ\G, σ, ) in
L2

es(T\G) is zero. Each L%s(T\G9σi) is generated by the residues of the
poles, which he in Re(s) > 0, of all Eisenstein series E(Φ, s, g) with Φ e
L2(TM\M, σi9 χ) and χ runs over 3 M . L e t σ G K be given. It follows from
Lemma 3.14 that the space of those Eisenstein series, which are associated to σ
and Φ e L 2 (Γ Λ / \M, σ, χ) and which can have poles in Re(s) > 0, is finite
dimensional. Since each Eisenstein series can have only finitely many poles in
the half-plane Re(s) > 0 [20, IV, §7], it follows that dim L*QS(Γ \ G, σ,) < oo,
i = 1, ,r. Thus Rf^G(a\ restricted to L?e s(Γ\ G), is of finite rank. There-
fore, Rγ\G(a) is a trace class operator.

4. The Selberg trace formula

Let Γ c G be as in §3. In our computation of the index of the signature
operator we are going to use the Selberg trace formula developed by Osborne
and Warner [32] for a lattice of rank one. In this section we explain some facts
connected with the trace formula. For all details regarding the trace formula
the reader is referred to [1], [32]. The situation which we consider is much
simpler than the general case of a rank one lattice treated in [32]. The
contribution of the various conjugacy classes to the trace formula can be
computed rather explicitly. The trace formula for the case where/ e Q°(G) is
AΓ-bi-invariant has been established by P. Sograf [39] for n = 2 and by I. Efrat
[15] in general.

Let σ: K -* GL(F) be a finite-dimensional representation and let <^7l(G, σ)
be defined by (1.6). For any/ e Vι(Grσ} we set

(4.1) *Γ\G(/) = JG

Rτ\G(g) ®f(g) dg.

Rγ\G(f) is a bounded operator on the Hubert space L2(T \ G) ® V. Let

(4.2) Po

κ
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be the orthogonal projection of L2(T\G)<8 V onto its ^-invariant part

L2(Γ \ G, σ). Since/ e V\G, σ), it follows from (1.4) that

Thus, relative to the splitting

L2(Γ\G)® F = L 2 ( Γ \ G , σ ) Θ L 2 ( Γ \ G , σ ) ± ,

RΓ\G(f) has the form

with Rσ(f) acting on L 2 (Γ\G, σ). RT\G(f) is an integral operator whose

kernel is given by

(4.4)
γ<EΓ

The series converges uniformly on compact subsets. The Casimir operator

Ω e 8(9c) induces an operator Δσ on C0°°(Γ\G, σ) = (C0°°(Γ\G) ® F ) ^

which we call Laplacian. By [29, Corollary 1.2] Δσ has a unique self adjoint

extension Δσ to an unbounded operator in L2(T \ G, σ). Let

and

From (3.25) we get a decomposition

(4.5) L 2 ( Γ \ G , σ ) = L 2 ( Γ \ G , σ ) θ L 2 ( Γ \ G , σ ) .

Δσ decomposes discretely in L2

i(Γ\ G, σ) and continuously in L 2 ( Γ \ G, σ).

This decomposition is invariant under Rσ(f). Let Rd

a(f) and Rc

σ(f) be the

restrictions of Rσ(f) to the corresponding subspaces. These operators are

integral operators. We denote by tr the trace in End(F).

Proposition 4.6. Let σ: K -* GL(F) be a finite-dimensional unitary represen-

tation and letf e &\G, σ). 77ien Rr\G(f) a n d Rί(f) a r e t r a c e c l a s s operators.

Moreover, tr/ e ^ ^ G ) , tr/w πg

Proof, σ splits into characters σ = Θ/I^T,, η G ̂ . Let ϋ l 9 ,ϋr G Fbe an

orthonormal basis such that σ(k)υi = ^(A:)^ and let //y(g) = (f(g)vi9 fy).

With respect to the basis Ϊ;1?•••,£;,., Rγ\G(f) is represented by the matrix

(Rr\G(fij)). Thefj are right j^-finite functions in ^ ( G ) . Thus, by Theorem
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3.26, Rr\G(fij) are trace class operators and this implies that Rγ\G(f) is of

the trace class. (4.3) shows that Rd

a(f) is also a trace class operator and

TτRd

σ(f) = Tr R^G(f). Since tr/ = Σr

i=ifn, tr/is a right infinite element of
l and it is obvious that

Σ TrΛίNG(/H) = TrΛίNC(tr/). q.e.d.
1 = 1

Let K0(g, g') be the kernel of Rγ\G(f). Then one has

(4.7) TτRdr\c(f) = Jί ^K0(g9 g) dg.

The integral on the right-hand side can be calculated along Selberg's path [1],

[32]. By Proposition 4.6 it is sufficient to consider the case where σ e K. Before

stating the trace formula, we have to discuss the classification of elements of Γ

and to introduce some notation. All details concerning the classification of

elements of Γ can be found in [32, §5], [38, §1].

Given γ G Γ, we denote by Gy (resp. Γγ) its G-centralizer (resp. Γ-central-

izer). We write {y}G (resp. ( γ } r ) f°Γ the conjugacy class of γ in G (resp. Γ).

Let Z Γ be the center of Γ. By our assumption, Γ c G is an irreducible discrete

subgroup. An equivalent condition is that Γ contains no element γ = (γ 1 ? , γM)

with γ Φ 1 and γ, = 1 for some i. The only possible central elements of Γ are

± 1 . This follows from the assumption Γ c SL(2, F) and [38, §1]. An element

γ e Γ, γ = (γ l 9 ,γπ), is called elliptic, parabolic or hyperbolic if all compo-

nents γf as elements of SL(2,R) are of the corresponding type. Every element

of Γ which is not central and which is different from all types above, is called

mixed. If γ is mixed, then its components are either elliptic or hyperbolic. The

hyperbolic elements are divided in two classes. The first class consists of those

hyperbolic elements such that none of its fixed points on Hn is a parabolic

fixed point of Γ. The remaining elements are in the second class. If γ Φ ± 1 ,

then Γγ \ Gy is compact, except in the case where γ is a hyperbolic element of

type II. If γ is hyperbolic of type II, then Γγ \ Gy is isomorphic to the product

of IR and a compact group. For a rank one lattice Γ, Osborne and Warner

defined in [32, §5] a decomposition Γ = Z Γ U Ts U Tp (disjoint union). Z Γ is

the center, Ts consists of elements γ e Γ with the property that ( γ } Γ Π ? = 0

for all Γ-percuspidal parabolic subgroups ? c G and TP is the complement of

Z Γ U Γs in Γ. ΓP has an additional decomposition TP = TP(r) U TP(s) in

"regular" and "singular" elements (see [32, §5] for the definition). In our case

we have Z Γ c {±1}, Ts is the union of the elliptic, hyperbolic type I and

mixed elements, TP(r) is the set of hyperbolic type II elements and TP(s) is the

set of parabolic elements.



78 WERNER MULLER

To simplify notation, we make the following assumption about our discrete
subgroup Γ.

Assumption. There is only one T-conjugacy class of T-percuspidal parabolic
subgroups P c G .

In other words, Γ \ HM has a single cusp. We make this assumption to keep
the notation in a manageable form. But all our calculations can easily be
extended to the case of several cusps. An example of a discrete group, which
satisfies our assumption, is the Hubert modular group SL(2, ΘF) of a field F
with class number one.

We denote by P the stabilizer of oo. Let P = UAM be the Langlands
decomposition of P over Q. Note that in our case M is commutative. This will
simplify some terms occurring in the trace formula. An element in TM is called
regular if its centralizer in U is trivial. Let Γ ^ r J c Γ ^ b e the set of all regular
elements of TM and let TM(s) c ΓM be the complement of TM(r). TM(s) are the
singular elements of Γ^. For 8 e TM we let t(8) = |det(Ad(δ)|u — 1)|, where u
denotes the Lie algebra of U.

Consider the orthogonal sum decomposition (3.13). Given χ e QM, let
L 2 (Γ Λ / \M, x) be the sum of the irreducible subspaces of L2(TM\M) with
infinitesimal character χ. The Weyl group W(A) acts on |} M . If # e

L 2(rM\M,X).
Mlet

For # G W(A)\SM and s e C let r^s be the representation of P = UAM on
L 2 ( Γ M \ M , #) which is defined by r&s(uam) = RTM^M(m)eslna and let π#s

= IndpO^,s)
 τ h e Hubert space 3V^S of π^s consists of all measurable func-

tions Φ: G -> L2(TM\ Λf, #) which satisfy

Φ(ιιαιtιg) = e^+ι^aRΓ^M(m)(Φ(g))

and which have the property that

\\Φ\\2=f f \Φ(k)(m)\2dmdk< oo.
JKJTH\M

77̂  s is unitary if s lies on the imaginary axis. For σ e K let Jί?#s(σ) be the
σth-isotypic component of Jί?# 5. There is a canonical identification^ s(σ) =
θ e ^ ^ 2 (Γ Λ / \ M, σ, x). The theory of Eisenstein series produces certain inter-
twining operators

which are meromorphic in s e C. C#(s) maps Jf?#tS(σ) into J(?#_s(σ) and it
satisfies the functional equation

Cd(ί)C#(-j) = Id
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(see [32], [33]). By Proposition 4.6, we can use the trace formula established in
[32].

Theorem 4.8. Let f be a K-finite function in ζ€p(G\ 0 < p < 1. Then
Rγ\G{f) is a trace class operator and ΊτRγ^G(f) is the sum of the following
terms:

(i) (central)

Vol(Γ\G γ )/ f{g-ιyg)dg.

(ii) (elliptic, hyperbolic type I, mixed)

(S) Σ Vol(Γ γ \G γ )/ f{g-ιyg)dg.

The sum runs over all T-conjugacy classes of elements of Ts.
(iϋ) (type II hyperbolic)

Csff(δu)du

The sum runs over all T—conjugacy classes of elements of TM(r). Cδ is a certain
constant depending on 8. It is defined in [32, p. 69]. a is the positive root of A,
w e W(A) the nontrivial element of the Weyl group of A and H(wu) e α the
unique element which is determined by the Iwasawa decomposition ofwu.

(iv) ( parabolic)

(s) Σ lim^(zt/e(/,z)),

where (s)Σ is the sum over all T-conjugacy classes of elements ofTM(s) and

Us(f,z)

= ( f ( Σ f(m-1a-1u-1yuam)e-2<>z+1)h"'dudadm.
JA JTM\MJTΓ\U\U e S [ / n Γ ( j )

(v) (intertwining)

J-Σ ί TrU(f)fc»(s)C»(-s))\ds\.
4π φ •/Re(s)=o \ ' as I

(vi) (residual)
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We shall apply this version of the trace formula to our situation. For this

purpose we have to compute some of the terms occurring in the trace formula

more explicitly. Let σ e K and let σ = ®\λop where σy: SO(2) -> C x is a

character. Moreover, we assume that/(g) = Πy=1/)(gy), where/^ e <gp{G^ σy)

with 0 < p < 1 and/y satisfiesjf.(g) = /)(-g).

(i) ΓAe central term. Above we have seen that Z Γ c { +1} . Thus, the central

contribution is

|Z Γ |Vol(Γ\G)/(l).

(ii) The elliptic term. Let γ e Γ be elliptic. We have Γγ = Z//Z. Let γ0 e Γγ

be a generator of Γγ. γ0 is a primitive elliptic element and γ = γ^, 1 < q < I. γ0

is conjugate in G to an element k e K with

2m
cos—η s i n

I
2w. 2π

-sin—ry cos

ry, /) = l y = 1, •••,«.

Moreover, GΛ = ^ . Hence Vol(Γγ \ Gy) = (2ττ)y/ and

(4.9)
Gy\G K\G

f{g-ιkg)dg

= Π/

The corresponding orbit integrals on Go are calculated in [17]. We use formula

(2) of I, §5.4 in [17]. Let φ e Vι(G0) and assume that φ(-g) = φ(g). Then

(4.10) + Σ
m = 2

dλ.

(iii) The type I hyperbolic term. Let γ e Γ b e hyperbolic of type I. Let
(λ 0

λ'1 λ G R ;

γ is conjugate in G to an element a e Πy=1 Do with

J 0

0
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where γy denotes theyth component of γ, Gy is conjugate to ΠjLi Do and
n

ί f(g-1yg)dg=ί f(g-1ag)dg=Uf fj{g'\g) dg.
Gγ\G TIZ>0\G 7 = 1 ^Γ>o\^o

The orbit integrals on Go can be calculated as in [17]. Let φ e (^1(G0) be such
that φ(-g) = φ(g) and let a = (g«-i), α # ± 1 . Then formula (2) of I, §5.3 in
[17] gives

/ ψ{g~lag) dg = — - ^ r f θ λ

+ ( φ ) M ί λ t/λ.

Let

Then we obtain

JGΎ\G

(iv) The mixed term. Let γ e Γ b e mixed. Every component γy of γ is either
elliptic or hyperbolic. The corresponding orbit integral splits again into a
product of orbit integrals with respect to Go and we can use the same
calculations as in (ii) and (ϋi).

(v) The type II hyperbolic term. According to Lemma 3.2 there exists a
subgroup Vλ c Θ* of finite index such that

0

For υ^V1 let 8V = (gj-i). We determine r M ( r ) and Γ M 0).
Lemma 4.12. TM(s) = Z Γ .
Proo/. Let δυ e ΓM(^). Then there exists « e ί / , M # l , such that δ̂ w = u8υ.

This implies ϋ = ± 1. Thus TM(s) c { ± 1}. Recall that Z Γ c { +1}. If -1 e Γ,
then -1 G TM and therefore ΓM(^) = { ±1} = Z Γ . Now assume that -1 £ Γ,
but -1 e Γ^. Then there exists a e F, such that γ = (~o_ί) e Γ. Since Γ is
commensurable with SL(2, ΘF\ there exists k e 1̂1 such that

Let b = (Ik 4- l)α. Then ("J_f) e Γ n SL(2, ΘF). On the other hand, since
(I I) e SL(2, β?F) and Γ is commensurable with SL(2, ΘF) there exists meJV
such that
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This implies

( 2 *

Therefore -1 ί ΓM and Γ^O) = {1} = Z Γ . q.e.d.
By Lemma 4.12 we have ΓM(r) = TM — Z Γ and the regular conjugacy

classes {Sjr^ c a n ^ e identified with the set V — {±1}. The constant ι(δ) is
defined as |det(Ad(δ)|u - 1)|. Hence

The integrals occurring in the contribution of the type II hyperbolic conjugacy
classes can be computed as follows.

(f(δυu)du=fl f J
JU j=\ JU0

f,\
0

\-l du.

Let

λ 0
0 λ-1 ±1,

and let φ e V\G0, σ), σ e Ko. If we use formula 1.2 of V, §1 in [25] and
formula (2) of I, §5.3 in [17], then we get

f ψ(aλu) du=\\- λ'ι\ ί φ(g~ιaλg) dg
(4.13)

Let

Since v(1) • • • r ( π ) = 1, it follows from (4.13) that

For/ e and λ ¥= +1 we put
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where w0 = (_?£) and α0 is the positive root. Then we get the following
expression for the type II hyperbolic contribution:

/

υΦ±l

(4.14)

υΦ±l

where Π ( y ) denotes the product with 7th factor deleted and Cυ is a certain
constant depending on v.

(vi) The parabolic term. According to Lemma 3.3 there exists a lattice M c F
such that Γ Π ί / = {(* f)|/ι G M}. F o r μ E M let

0 1 / \0 1

Recall that TP{s) is the set of parabolic elements in Γ. If δ G ΓM(.S), then, by
Lemma 4.12, we obtain (8U) Π TP(s) = 8(U Π TP(s)) = 8(U Π Γ). Using
these remarks we can conclude that

is equal to

|Z Γ | Vol(Γn U\U)

( 4 * 1 5 ) •/* ί Σ f(m-ιa-%am)e-2(z+Vι»adadm.
J T M \ M J A G M o

/
JTM\MJA

By Lemma 3.2 there exists a subgroup Fx c 0£ of finite index such that
ΓM = {(υ

0 °υ-ι)\v G Vλ}. If -1 ί F l 9 then the map v e Kx -^ i;2 e (FO2 is an
isomorphism and if -1 e Fx, its kernel is { ±1}. Let V = (VJ2. Then (4.15) is
equal to

(4.16) Vol(ΓΠ U\U)f f Σ f{m-la-\am)e-2(z+1)lnadadm.

Let εj

μ = μU)ΛμU\ j=l,'-,n, and let εμ G Γ Π ί/ be the matrix with y'th
component

0 0
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Further, let aμ e A be the element which has all components equal to

( » 0 \

and let m e M be defined by

, σ > -
\N(μ)\1/n

o

1/2

-1/2

Then γμ = mμaμεμaμ

Λmμ

Λ. If we change variables in (4.16) by m *-* mμm and

a •-» α α, then (4.16) is equal to

(4.17)

Vol(Γ n

7 / Σ
JMJA μG(M-O)/V

For ε = (c l 5 ,επ), with εf e { ± 1 } , let w(ε) G [/be the element with y'th

component equal to (\ε{)J = 1, ,w. Moreover, for Re(^) > 1, let

(4.18) ? ε (M,V,5)= Σ
μe(M-0)/V

Then (4.17) can be rewritten as

Vol(Γ Π t/\£/)
(4.19) r r

Σ ?ε(M,V, z + l ) / I f(m-1a-1u(ε)am)e-2(z+1)laadadm.

The integral is holomorphic at z = 0. Concerning fε(M,V, .s) we have the

following

Lemma 4.20. i w each ε e { ± 1 } " , fε(M, V, s) has an analytic continuation

to the entire complex plane with a simple pole at s — 1. The residue is indepen-

dent ofε.

Proof. For a e (Z/2Z)W let λα be the character of F x defined by

for μ e F x . Set

L(M,V,λα,5)= Ms)
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The functions L(M,V, λfl, s), a e (Z/2Z)W, and £e(M,V, s), ε e {±l} n , are
linearly equivalent. Let λα(ε) = ΠJLxίε,-)*'. Then we have

(4.21) 2"f.(M, V, ,) = Σλ α (ε)L(M, V, λβ, * ) .

Using Hecke's method [22], one can show that L(M, V, λα, s) has an analytic
continuation to the entire complex plane. If λα Φ 1, then L(M, V, λα, s) is an
entire function. L(M,V,1, .s) has a simple pole at s = 1. This together with
(4.21) proves the lemma, q.e.d.

Let

f.(M,V,*) = ^ - + ao(e) + O ( J - 1)

be the Laurent expansion of fe(M, V, 5) at s = 1. Then it follows from (4.19)
and Lemma 4.20 that the parabolic contribution is equal to

Vol(Γ Π U\ U)l-2a_X f f Ha)f{m-ιa-1u(ε)am)e-2^°dadm
\ £ M A

(4.22) +Σao(e)f ff(m-1a-1u(ε)am)e-2iDadadm).
ε M A j

We compute now the integrals occurring in (4.22). We start with some
comments on the choice of the invariant measures. The measure on M has been
normalized by the requirement

//(*)*- ////
UXAXMXK

f e C0(G). The measure on K is normalized by the condition Yo\(K) = 1 and
U has the measure induced from the natural Euclidean structure on u. On A,
the measure is determined as follows. We have P = @(F ΘQ R), where ^ c
SL(2) is the standard Borel subgroup. The fundamental dominant weight α:
@ -> Gm induces a homomorphism \a\: P -> (R + ) x , which is the composition
of α^: 3&(F ΘQ R) -» Gm(F ®Q R) and the norm homomorphism v\ (F ®Q R)
-> (R + ) x . The kernel of \a\ is UM and |α| induces an isomoφhism \a\:
A -> (R + ) x . We choose the measure on A which corresponds to dt/t under \a\.
Furthermore, we have M = ΛΓ° X KM, where KM = M n K and ΛΛf ° =
Π"=i Ao. Let rfm0 be the measure on M° so that da dm0 = Π]=ιdaj. Then the
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normalized measure on M is dm = dmo/2n. This implies

f ίf(m-1a-1u(ε)am)e-2lnadadm

(4.23) =Π /
7 = 1 JA0

/ fj(gMej)g)dg9

where w(εy) = (o?) I n order to calculate these integrals, we use Theorem 6.7
of [5]. Let φ e C0°°(G0) and w± = (JJ ±}) Then this theorem states that there
exists a constant C, which is independent of φ, such that

(4.24) lim θί φ(g-ιk(±θ)g)dg=cί <p{g~ιu±g) dg.
θ-+0+ JK0\G0

 JU0\G0

This theorem can be extended to functions φ e (^7l(G0). Using formula (2) of
I, §5.4 in [17}, one can compute the left-hand side of (4.24). The result is

(4.25) 4 ^ 2

The constant C in (4.24) can be determined as follows. Using formula (2) of I,
§5.3 in [17] and formula 1.2 of V, §1 in [25], we obtain

ί <p(a-1u+a)e-2]nada+ f φ(a-1u_a)e -2]na da

-hmλί ψ{aλu) du = ̂  lim |λ - λ"1! f ψig'^χg) dg
1 λ ^ 1 JU0

 l λ - l JA0\G0

f
A0\G0

(Note that our integral is 2I(aλ) in the notation of [17, I, §5.3].) Combined
with (4.25) this gives C = 1/2. Now, let us assume that φ satisfies φ(-g) =
φ(g). If we use (4.24) together with (4.25) we obtain

±TΓW(θo+(φ)-θo~(φ))

m = 2
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We apply this formula to each/^ e ^ ( G Q , Oj),j = 1, ,n, and compute in
this way the second integral occurring in (4.22). Now we turn to the first
integral in (4.22). We introduce the following distributions on Go: For / e
^\G0) and u e Uo, u Φ 1, we set

G(f,u)= f ln(a)f(a-1ua)e-2inada.

As above we obtain

f f \n(a)f(m-1a-1u(ε)am)e-2hladadm
JM JA
f f

JM JA
(4.27)

Σ

where HU) denotes the product withyth factor deleted. By changing variables
we get

V))f + Jf/((i -f))f

We assume that/satisfies/(g) = /(-g). If we use the calculations by which we
pinned down the constant in (4.24) then we get

f f(u)du = j -

By similar arguments one can show that

G(f, u+) + G(f, «_) = -\Γ (ln|*D/((!

Let

If we sum over all ε e { ±1}W in (4.27), then we get the following expression
for the first sum in (4.22):

(4.28) ^ V o K Γ n t f M O Σ jΓWD/y((J {
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(vii) The intertwining and the residual term. By our assumption we have

/ e <tfp(G, σ), where O\KM = 1. L e t ^ s(σ) be the σth-isotypic subspace. Then
π#s(f) maps Jf*,, into Jί^ 5(σ). Since O\KM = 1, we have by §3 that

The restriction of the intertwining operator C#(s) t o ^ s(σ) coincides with the
operator 0 ^ C(χ, σ, 5), where C(χ, σ, 5) is the operator (3.11). There exists
ί o G Z " " 1 such that L 2 (Γ£\M°, χ) = Cτω, where τω is the character (3.16).
We introduce the quasicharacter χωs: P -> C x by χωs(uam) = τω(m)es]na.
Let ττω s = IndJ(χ ω 5 ) and let Θωs be the character of πωs. Then the trace of
π#s(f)(d/ds)C#(s)C#(-s) coincides with the trace of this operator restricted

s(σ) and this trace is equal to

if ω Φ 0, and

if co = 0. Thus, the intertwining term is

(4 29) i i , l ) - . θ "
In the same way one can show that the residual term is given by

(4.30) -iΘ o > o(/)C o(σ,0).

5. The index of the signature and the Dolbeault operator

Let Γ c G be as in §3 and assume that n = 2ρ, p e M. We shall now
investigate the ZΛindex of the signature operator on Γ \ Hn by using Selberg's
trace formula. Since Γ may have elements of finite order, we have to modify
the usual definition of the signature operator. Let Λ*(Γ\H W ) be the space
of C°°-differential forms on H" which are Γ-invariant. According to §1,
Λ*(Γ\H W ) can be identified with the space C°°(Γ\ G, Λ* Ad*). By
Λ*)(Γ \ H") we denote the subspace of Λ*(Γ \ Hw), consisting of forms with
compact supports mod Γ. Since Γ acts by isometries on H", it follows that
Λ*(Γ\H W ) is invariant under the Hodge *-operator. Let T be the involution
on Λ*(Γ\H") defined by TΦ = ip(p~1)+n *Φ for Φ ε Λ / ; ( Γ \ H " ) . The
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+ 1-eigenspaces of T are denoted by Λ*±= A ^ Γ X H " ) . Let 8 be the codif-
ferential on Λ*(Γ\H Π ). d + 8 anti-commutes with T and its restriction to
Λ*_(Γ \ Hn) is by definition the signature operator

(5.1) D: Λ* ( Γ \ H Λ ) -> Λ* ( Γ \ H M ) .

Let & c H" be a fundamental domain of Γ. The ZΛnorm of Φ e Λ*(Γ \ H")
is defined as

||φ||2= fφ Λ ^φ

We denote by L2Λ*(Γ \ Hw) the Hubert space of ZΛforms. L2Λ*(Γ \ H") can
be identified with L 2 (Γ\G, Λ* Ad*). By L2Λ*±(Γ\HΠ) we denote the + 1-
eigenspaces of T, acting on L2Λ*(Γ\HW). Now, consider D with domain
ΛS f +(Γ\Hπ), where A*> f ±(r\Hn) are the ± 1-eigenspaces of T restricted to
Λ^(Γ\H Π ) , and let D be its closure in L2. The ZAindex of the signature
operator is by definition

IndL2 D = dimkerZ) — dimcokerD.

We have to show that this number exists. Let D*: Λ*(Γ \ HM) -> Λ*(Γ \ Hn)
be the formal adjoint operator to D and let D* be the closure in L2 of D*
acting on Λ$_(Γ \ Hw). Note that D* is the restriction of d 4- 8 to Λ*(Γ \ H").
D* is the adjoint operator to D. If Γ has no elements of finite order, then
Γ \ H π is a complete Riemannian manifold and the assertion is a consequence
of the results of [12]. In general, Γ has a normal subgroup I\ of finite index
which contains no elements of finite order [36]. Since I\ \ Γ is finite, we have

L 2 Λ*(Γ\H") = L 2 Λ * ( Γ 1 \ H " ) Γ A Γ

 c L 2Λ*(Γ 1\HW)

and this reduces our problem to the torsion free case. Let

Δ + = D*D and Δ~= DD*.

Δ± are the Laplacians on Λ*±(Γ \ HΛ). By using the same arguments as above,
we obtain that Δ±, acting on Λ£ ± (Γ\H W ), is essentially self adjoint. We use
the same notation Δ 1 for the unique selfadjoint extension to L2Λ*±(Γ\HM).
Then kerΔ + = kerZ) and kerΔ"= kerϊK Let

jr&(T\Έί») = { Φ e Λ*(Γ\HM) |ΔΦ = 0, ||Φ||L2 < oo}.

This is the space of Γ-invariant square integrable harmonic forms on H n . The
involution acts o n ^ } ( Γ \ H w ) and we denote b y ^ ) ± ( Γ \ H " ) the corre-
sponding ± 1-eigenspaces. Then kerΔ±= Jf^JJ\Hn).

Proposition 5.2. The spaces J f ( £ ) ± ( Γ \ H w ) are finite dimensional and the

L2-index of the signature operator D is given by

IndL2 D = dim Jf^9+(T\H") - dim ^ _ ( Γ \ H w ) .
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Proof. It follows from Theorem 5.5 in [10] that ^ ( | ) ± ( Γ \ H W ) are finite
dimensional. Above we have seen that kerZ> = ^ ( £ ) + ( Γ \ H w ) and kerD* =
^ (2)-(Γ \ H n ) . This proves the second statement, q.e.d.

Let ^ } ( Γ \ H " ) be the space of Γ-invariant square integrable harmonic
p-ϊoτms on HM. Since T: ^ ( Γ \ H W ) -+je$t-p(T\Hn), it follows that
^ ( Γ \ H " ) θ ^ - ' ί Γ X H " ) , 0 </> < n, and J ^ ( Γ \ H W ) are invariant
under T. Let ̂ U ( Γ \ H " ) and J ^ ) ± ( Γ \ H M ) be the corresponding + 1-
eigenspaces of T. Then

Jf (* ) ) ±(Γ\H») =

Moreover, if 0 < p < n, then

* & > ± ( Γ \ H " ) = (Φ ± τΦ|Φ

Thus dim J ^ + ( Γ \ H") = dim J ^ _ ( Γ \ HM) for/? < « and therefore

(5.3) IndL2D = dim Jf(2") + ( Γ \ H " ) - d i m ^ _ ( r \ H n ) .

We can continue now as in the compact case. Let L^Λ*±(Γ\Hw)c
L2Λ*±(Γ \ H") be the subspace which is spanned by the eigenforms of Δ*. By
Theorem 5.5 of [10], the eigenspaces of Δ* are all finite dimensional. D carries
eigenforms into eigenforms with the same eigenvalue and it defines an isomor-
phism on the eigenspaces which correspond to nonzero eigenvalues. Let Δ J be
the restriction of Δ 1 to LjΛ*±(Γ\HΛ) and consider the corresponding heat
operators exp(-ίΔj), / > 0. We will show that exp(-ίΔJ) are trace class
operators. Thus

(5.4) \nάoD = Tr(exp(-/ΔJ)) - Tr(exp(-/Δ;)).

As in the compact case there are kernels which represent the heat operators
exp(-ίΔJ). They are obtained from the kernels of the heat operators expί-ίΔ^1)
by subtracting the continuous part. The heat kernels we are considering are
closely related to the spinor heat kernels studied by Barbasch and Moscovici in
[6]. We shall use the results of [6] to determine the relevant properties of our
heat kernels.

Let T: A*pc -> A*pc be the involution defined by τX = iP^-^+n * X, if
I e Appc, and let Λ*±£c be the +1 -eigenspaces of T. Λ*Ad* decomposes
into two representations

(5.5) σ±:K^GL(A^±pc).

Let Δ ± be the Laplacians on Λ*±(HW) = (C°°(G) ® A*±$c)
κ. Δ± is the restric-

tion of -R(Ω) ® IdΛ*± t > c to the ̂ -invariant part of C°°(G) <S> A*±$c. If we
restrict A 1 to (C0°°(G) Φ A*±pc)

κ, then it has a unique selfadjoint extension to
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an unbounded operator in L2Λ*±(H") = (L2(G) ® A*±$c)
κ

9 for which we use
the same notation Δ* (see [29, Corollary 1.2]). For each / > 0, the heat
operator exp(-ίΔ±) is a G-invariant smoothing operator. Therefore, there exists

which is in C 0 0 Π L2 and which satisfies (1.4) with respect to σ ±, such that

(5.6) exp(-t~A±)Φ(g) = jhϊ{g-ιg')Hg') dg*

for Φ (Ξ (L2(G) ® A*±\)c)
κ. We have to show that hf e <£P{G, o%Q<p <

1, where σ ± is the representation (5.5), and that exp(-/ΔJ) = Rγ^G(hf). For
this purpose we consider the Dirac operator. We choose ί)c = f c as a Cartan
subalgebra of g c . The vectors i^ * e {)c,j = 1, ,H, defined by (1.1), are the
nonzero root vectors and all roots are noncompact. The system of positive
roots ψ is chosen as in §1. Moreover, p = \Σa(£ψ a and WΊs the Weyl group of

( 0 c f)c) N o w > l e t

s±: Spin(ί)) -> GL(5 ( ±)

be the half-spin representations [34] and let 5±: %o(pc) -> EndίS1^ be the
differential. Via ad, ϊ c operates on )pc. When pc is endowed with the Killing
form, this action becomes skew symmetric.

ad:f c -^δo(t ) c ) .

Let

τ ± : ϊ c

be defined by τ ± = ^ ± °ad. For w e PΓ let Fw p be the irreducible ϊc-module
with weight wp and let

τw p: ϊ c -» End(Fwp)

be the corresponding representation. Then we have

(5-7) S±= Θ KP
W*ΞW

det(w)= ±1

as ϊ c-modules (see [34, Lemma 2.2]). Now, let $ ± = φ f I

β l C £ /

± . Then £ c =
t) + θ t)_. We consider A*p_. Since £ r Λ Λ Er9 1 < ^ < < ip^ n,
is a basis of A*}5_, it follows from (1.1) that the weights of the ϊc-module
Λ*t>_ are given by {-α^ — — αJ: |1 < iλ < < ip < n). Moreover, for
each weight -α, — ••• — «,. there exists a unique w ^ W such that p — α t i —
. . . _ a. = Wp. Thus, the weights of Vp Φ Λ*^_ are given by {wρ|w
and (5.7) implies that
(5.8) 5 + e r = F p ® Λ**)_
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as ϊc-modules. In the same way one can show that

(5.9) 5 + θ 5 " = F_p® Λ t>+

as ϊc-modules. Since pc = £ + θ £_, we get

Λ**)c = (Λ*t)+) (8>(Λ*ί)_) = (S+θ 5"

On the other hand, it is known [4] that

[Λ**,c] - [ Λ * f c ] = [ S + θ S - ] ( [ 5 + ] - [ 5 - ] )

in the representation ring R(tc). Therefore

(5.10) A*±pc = ( 5 + θ S~) ® S*

as f c-modules. For W E ίfwe set

(5-11) ^ ^ β S * .

where Kwp is defined above. The representation τwp ® s ±: f c -> End(2s^) lifts

to a representation of K. Each I G ( ) C defines a map c( X): S *-» S τ which is

the Clifford multiplication by X. Let { Xl9 , X2n } be an orthonormal basis of

t) and set

(5.12) itf-Σ x βid^β

Then Z)^ e U ( g c ) Θ Hom(Ev^, E*) is AΓ-invariant. Therefore, it defines a

G-invariant first-order differential operator Q± from (C°°(G) ® E±)κ to

(5.13) Λ ± = Σ wp
i = l

^ is the Dirac operator. Let ΔJ = &*&*- We use Proposition 3.1 of [34] to

compute ΔJ. In our case we have p = pM, pc = 0 and ||wp||2 = ||p||2. Thus, we

get

(5.14) Δ

But -R(Ω) <8> Id£± is the restriction of -2£(Ω) ® IdΛ* p to the subspace

(C°°(G) ® ̂  ̂ ) ^ and A±= -R(Ώ.) Θ IdΛ*±t) by Kuga's Lemma. Δ±, restricted

to (C^°(G) ® E^)κ

9 has a unique selfadjoint extension to an operator in

(L2(G) β ̂ v^)^ [29]. We shall use the same notation ΔJ for this selfadjoint

extension. Let exp(-ίΔ^), / > 0, be the semigroup generated by Δ±. For each

/ > 0, exp(-rΔ^) is a G-invariant smoothing operator. Therefore, by §1, there

exists a kernel function
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which is in C0 0 Π L2 and which satisfies (1.4) with respect to the representation

If 7r is a unitary representation of G, Ω the Casimir operator and D* the
operator (5.12), let 7r(Ω) and π(D^) be the operators defined by (1.3). One can
generalize Proposition 3.1 of [34] to the case of any unitary representation π
(see [6,1.3.6]). If we apply this formula to our situation, then we get

(5.15) π(D?)π{D±) = -»

because ρc = 0 and ||κ>p||2 = | |p | | 2 . Now, let

3>±d is an operator from (L2

d(T \ G) ® E±)κ to (L2

d(T \G)9 E*)κ. Further-
more, let

It follows from (5.15) that

If we apply Proposition 2.1 of [6], then we get

(5-16) ( )

On the other hand, we have ΔJ = -Rf^G(Ω) ® Id Λ . „, and, by (5.8) and
(5.10),

H") = (Ld(T\G)

= 0 (Ld(Γ\G)®Ewη
K.

Therefore, ΔJ d is the restriction of ΔJ to the subspace (Lj(Γ\ G) Θ E±)κ.
Let Pw be the orthogonal projection of L^Λ*±(Γ\Hn) onto (L j (Γ\G)®
E^)κ. Then it follows from these remarks that

(5.17) exp(-rΔ±)= £ expί-ίΔ^)?,, .

Let/?^: Λ*±£c -» ^ be the orthogonal projection with respect to the identifi-
cation of A*±pc with (S+Φ S") Θ S± by (5.10). It is clear that

(5.18) Λ /

±(g)= Σ h±g(g)oPw9

we W

where A^ is the kernel of expί-rΔ1). Then (5.16) and (5.17) imply that

(5.19) () ()



94 WERNER MULLER

Moreover, it follows from Proposition 2.4 of [6] that h~t e VP(G, τwp Θ s*)
for all p > 0. Thus, by (5.18), Λ±e V^G^o*) for all p > 0. If we use
Proposition 4.6, then we can summarize our results by

Theorem 5.20. Let hf be the kernel of the heat operator expί-ίΔ*), acting on
L2Λ*±(HW). Then hf e if *(G, σ ±) for each p > 0, wΛerέ? σ ± is ίΛe representa-
tion (5.5). //ΔJ w the restriction o/Δ± to ίλe subspace L^Λ*±(Γ \ H"),

α«ί/ Rγ\G(h*) is a trace class operator.
Corollary 5.21. Let D: Λ*(Γ \ Hn) -> Λ*(Γ \H M ) &e /Ae signature opera-

tor. Then its L?-index is given by

Proof. Since exp(-ίΔJ) are trace class operators, we can use (5.4). The
corollary follows from Theorem 5.20 and Proposition 4.6. q.e.d.

Let ht=tτh*—tτhy. Then, by Corollary 5.21, we have

(5.22) lndL2 D =

We shall now use Selberg's trace formula to compute the right-hand side of
(5.22). For this purpose we have to describe the function ht explicitly. This
problem can be reduced to the description of the heat kernel on the upper
half-plane.

The representations (5.5) can be decomposed into one-dimensional represen-
tations:

where [χ: σ ̂  denotes the multiplicity of the character χ in σ ±. For χ e K let

L2{G,χ) = {/e L\G)\f{gk-') = χ(k)f(g), k e K).

Moreover, let E±(χ) c A*±ρc be the χ-isotypical subspace. Then

L2(G, χ) c L2(G) is invariant under iί(Ω), because Ω e 3 ( g c ) . Let Δ χ =
-R(Ω)\L2(G χ) and let P± be the orthogonal projection of (L2(G) ® A
onto the subspace L2(G, χ) ® E ±(χ). Then it is clear that

(5.23) exp(-ίΔ±)= £ (exp(-ίΔχ) ® I d £ ± ( χ ) ) Pχ±.
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exp(-/Δ χ) is a G-invariant smoothing operator. Let hf e C°°(G) be its kernel

and let/?^ be the orthogonal projection of A*±pc onto E±(χ). It follows from

(5.23) that

Therefore

(5.24) trΛ,+-trΛ,-= £ (lχ: °+] ~[χ:

On the other hand, we have

(5.25) trσ+-trσ-= I ([χ:σ+]-[χ:

Consider the half-spin representations T ± : f c -> End(5 ±). Then, by (5.10), we

g e t σ ± = ( τ + θ O Θ T 1 . Thus t r σ + - trσ~= ( t r τ + + t rτ~)( t rτ + - trτ~)and,

using (5.7), we get

trσ + - trσ"= Π (ea/2 + e~α/2) ΓΊ (^α / 2 " e~a/2)

(5.26)

Let ω: SO(2) -^ C x be defined by ω(k(θ)) = e2iθ. For each w e PΓ we define

the character χ ^ ^

(5.27) X»(*)= Π «
7 = 1

where >v7 is theyth component of w. Put Λ^ = hfw. If we combine (5.24)-(5.26),

we get

(5.28) trΛ ί

+-trΛ,-= Σ det(vv)^.

This together with Corollary 5.21 gives

Proposition 5.29. The L2-index of the signature operator is given by

Our problem now is to determine h™. Let χ G l Then χ = ®J=ιXj, where

Xj e ^ 0 . Thus
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and R(Ω) = Σ"=ιR(Ωj\ where Ωy is the Casimir operator of theyth compo-

nent of G. Therefore, it is sufficient to consider the case of SL(2, R). For / G Z

let σ7: SO(2) -+ C x be defined by ot(k(β)) = e2ilθ. L2(G0, σ7) c L2(G0) is

invariant under R(Ω). Let Δ7 be the restriction of -R(ίl) to the subspace

L2(G0, σ7). Δ7 is the Laplacian on the space of automorphic forms of weight /

on the upper half-plane [16]. With respect to the coordinates (1.2), Δ7 is given

by

dx2 dy2

Let pj'y e CX(GO) be the kernel of the heat operator exp(-ίΔ,), t > 0. For

w e Wlet Iw = {/'|vv, = Id}, where w = (wx, ,wn). We shall write/?,* instead

of p\±1). From the considerations above it follows that

(5.30) h?(g) = Π Λ+(ft) Π PΓ(gj).

We continue with the study of the kernel/?,(/). It is easy to relate Δ7 to a certain

spinor Laplacian by using the same arguments as above. Let ( ί ) 0 ) c = ( ϊ o ) c ^ e

the Cartan algebra of ( g o ) c and let a be the root which is given by α((_^ J)) =

2ι. Let s<y: ( ϊ o ) c -* Endί^o1) be the representations induced by the half-spin

representations. The weight of the (ϊo)c-module Sςf is ±a/2. Let Vι be the

(f 0)c-module with weight (/ - l/2)α and let Ff = V{ Θ S^. Then L2(G0, σ7)

Df: (L 2 (G 0 ) ® F ^ ) ' -, (L 2 (G 0 ) Θ F7

be the Dirac operator [34]. Then by Proposition 3.1 of [34]

/)-oZ>+= -R(Q) ® IdF/±+

Thus exp(-/Δ7) = exp(/4|/(/-l)|)exp(-ίZ)7~oi)7

f). If we apply Proposition

2.4 of [6], we get/?/0 e ^P(GO, σ7) for all^ > 0. Sincep$l) is the kernel of the

heat operator exp(-ίΔ7) it has the following properties:

(i) 3/>,(/)/9' = -Λ(Q)Λ(/).

(ii)/?r

(/), as t -> 0, converges to the Dirac delta measure at 1.

In addition, we have seen that

(iii)/>,(/) <= <#P(GO, σ7) for all/? > 0.

It is known that the characters of the discrete series and of the principal

series are tempered distributions (§2). Since/?/0 e ^P(GO), p > 0, we can use

the Plancherel formula for SL(2, U) [25, VIII, §4] to expand /?,(/) in terms of

spherical functions. Note that pjl)(-g) = Λ(/ )(g). This follows from the fact
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that/?,(/) satisfies p\ι\gk) = σ,(/:)/?,(/)(g), k e K. Thus, the Plancherel expan-
sion of pW is given by

(5.31) + l-/0 0Tr(^(W'))^(g)*)λth(^) Jλ.

We have to compute the traces occurring in (5.31). We start with

Tr(πλ

+(/?,(/>)τrλ

+(g)*). Choose v e # λ

+ with ||i;|| = 1 and ̂ (k(θ))v = β2"'p.

Since/>,(/) e ^P(GO, a,), it follows that

Let Φλ(ί, g) = (πχ(pll))v,πχ(g)v) and recall that the Casimir operator

acts on H£ by ττλ

+(Ω) = -(1 + λ2)Id/4 [17,1, §3]. Therefore, by (i), we get

3 _ ( v 1 + λ 2 _ ( v

Moreover, by (ii),

lim < ( p < > - lim / p^(g)^(g)υdg = v.

This implies

(5.32)

In the same way one can determine ^r{ir^{p\l))v^(gy\ The Casimir opera-

tor acts on the discrete series representation 77^ by *„(&) = m(m - 2)Id/4,

(see §2). Let H{±m) be the space of the representation π± and let H^±m) =
fff>Iw,±(A:(β))ϋ = eipθυ). Then

H(m)= ΊB H{

p

m) and H{~m) = ^® H{

p~
m\

Assume that H^ = 0 (Hfrm) = 0). Since p& e ^^(Go, σ7), it follows that

π+(pW) = 0 (π-(pll)) = 0). Thus, if / > 0 (/ < 0), only those discrete series

representations π+ (π~) can make a nontrivial contribution to the Plancherel

expansion of p$ι\ for which m = 2k and 1 < k < |/|. Now let m = 2A: > 0 be

such that i / ^ w ) # 0. Choose 1; e fT^ m ) with ||i;|| = 1. Then
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If we use the properties (i) and (ii) of p\l) in the same way as above, we get

(5.33) T T r t a ί ί A ( 0 ) )
where Φjk^i a r e Λe spherical trace functions introduced in §2. Thus, we have

proved

Lemma 5.34. The Plancherel expansion of the kernel p^ of the heat operator

exp(-/Δ7) is given by

Moreover, the discrete and the principal series characters have the following

values at p^:

© + ( (0) = /exp(Λ(Λ- l)t) ifl> 0, m = 2k, I < A: < /,
m lO otherwise,

©-( (0)= /exp(A:(A:-/)0 *//< 0, m = 2fc, 1 < fc <-/,
m 10 otherwise.

Remark. The values of the characters of the discrete and principal series

representations at p\l) are independent of the choice of the invariant measure

on G o . If the Haar measure dg is multiplied by C > 0 then the heat kernel with

respect to the measure Cdg is p$l)/C.

We can now evaluate the contribution given by each term in the trace

formula to the ZΛindex of the signature operator. We shall use the expression

for the index which is given by Proposition 5.29 together with formula (5.30)

for h™. For the description of the various terms occurring in the trace formula

we refer to §4.

(i) The central contribution. By Proposition 5.29, the central contribution to

IndL2 D is given by

|Z Γ |Vol(Γ\G) Σ

It follows from Lemma 5.34 that
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Thus, by (5.30), h™(\) is independent ofwG W. Since W = { ± 1}", we get

(5.35) Σ det(w)- Σ (-!)*(;) = 0.
W€ΞW <? = 0

Hence, the central contribution to the ZΛindex of D is zero,
(ii) The elliptic contribution. The elliptic contribution is

(5.36) (E) Σ Vol(Γγ\Gγ) £ det(w)/ ^ ( g ^ γ g ) φ ,
{γ}Γ weW ^Gγ\G

where the sum runs over all elliptic conjugacy classes of Γ. There are two cases
depending on whether -1 e Γ or -1 ί Γ. First, we assume that -1 e Γ. Let
γ e Γ b e elliptic and let γ0 be a generator of Γγ. γ0 is primitive elliptic. Since
-1 e Γ, the order of γ0 is even. Namely, assume that γ e Γ i s elliptic of order
m, m odd. Then ( - γ ) w + 1 = γ and -γ G Γ is of order 2m. Therefore, each
elliptic element in Γ has even order. Thus, Γγ = Z/2/Z. We consider the
contribution of the elliptic conjugacy classes {γ^}, {~Yo }, 1 < # < /, to (5.36).
γ0 is conjugate in G to an element k e K with

(5.37)

7Γ . 7Γ

cos—η sin-r;

. ( 2 / , r , ) - l ; y - l . . .π.

If we use (4.10) and Lemma 5.34, we get

/ pt

±(g-1(kJ)''g)dg= ±-—f -Y
Jκ0\c0

 v J ' 4irsιn(πrjq/l)

tci*\ 1 Γ°° ( l + λ\exp(2πrg//)
(5.38) H 7 r / exp - / — - — --— dλ.

Let bj(t) = -1/47Γ + 2nd summand of (5.38), j = l, ,n. For w e W let
Iw = { j \ w . = id}. Then it follows from (4.9), (5.30) and (5.38) that

- ri (έ-(7

Since Pr(-g) = p^{g\ we get the same result for -(γo)^ Moreover,
Vol(Γγ\ Gy) = (2π)n/2l. Further, note that det(w) = (-1)'7*1. Thus, if we sum
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over w G W, then we get the following contribution of the elliptic conjugacy

classes {(γo)«}, H γ 0 ) * } , 1 < q < U to the index:

( 5 . 3 9 ) 2 V o l ( Γ γ \ G γ ) 2 " - ^ - £ Π c o t ( y / w ) = y Σ Π c o t ί y r ,
(4ττ) q=ιj=ι \ ι i ι

 q=ι j=\ \ ι

We turn now to the second case, where Z Γ = {1}. In this case each elliptic
element γ e Γ has odd order. Indeed, if γ e Γ is elliptic of order 2p, then
yp Φ 1 and ( γ ^ ) 2 = 1. Since Γ is irreducible, it follows that yp = - 1 . Thus
- 1 e Γ, which contradicts our assumption. Let γ E Γ b e elliptic of order /, /
odd, and let γ 0 be a generator of Γγ. γ 0 is conjugate in G to k e K with

2TT . 2T7

(5.40) * , - ' '
-sm—Γj cos—rj

If we use the same arguments as in the first case, we get the following
contribution of the elliptic conjugacy classes {(γ0)

9}, 1 < # < /:

(5.41) 7 Σ Π c

If 1 < q < /, then 2q also runs over all nonzero residue classes mod /. There-
fore, (5.41) is equal to

(5-42) T?'Π(

(5.39) and (5.42) are precisely the cotangent sums associated in [24] to the
quotient singularities of Γ \ H W via the equivariant signature theorem of
Atiyah-Bott-Singer. More precisely, let f = Γ/ZΓ and recall that Z Γ c { ±1}.
Γ acts effectively on HΛ. Let z E H" be a fixed point of γ e Γ, γ Φ 1. Then γ
is elliptic and Γz = Γγ/ZΓ. fz is a cyclic group of order /. We choose around z a.
sufficiently small geodesic ball Bz. Bz is invariant under fz. Let ξ = e2πi/ι and
let γ0 be a generator of Γz. There exist integers (rl9 ,/•„), which are prime to /,
such that the action of f z on Bz is given by

where (ul9—-9un) are geodesic coordinates at z. The integers (rl9-—,rn) are
determined by either (5.37) or (5.40). The cotangent sum associated with the
quotient singularity of Γ \ Hw, represented by z e Hw, is given by

(5.43) ίW-yΣΠ
1
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(see [24, p. 225]). If -1 e Γ, then Γγ is of order 2/ and fz has order /. Thus,

(5.43) coincides with the contribution (5.39) of the elliptic conjugacy classes

{(Yo)*}> {-(ϊo)*}> 1 < ? < /, to the ZΛindex of D. If -1 £ Γ, then Z Γ = {1}

and fz = Γ . In this case, (5.43) coincides with the contribution (5.41) of the

elliptic conjugacy classes {(yo)
q), 1 < £ < / , / the order of Γγ = fz. Let

zl9- - -,zr e H" be a complete system of Γ-inequivalent elliptic fixed points of

Γ. Then, the contribution of the elliptic conjugacy classes of Γ to the ZΛindex

of D is given by

(5.44) t 8(zj),
7 = 1

where δ(z.) is the cotangent sum (5.43) associated with zy.

(iii) The type I hyperbolic and the mixed contribution. This contribution is

given by

(HM) Σ Vol(Γγ\Gγ) Σ det(w)/ h»{g-ιyg) dg,
{γ}Γ W*=W Gy\G

where the sum runs over all type I hyperbolic and all mixed conjugacy classes.

First, consider the case where γ e Γ is hyperbolic of type I. By Lemma 5.34,

we have ®χ(pr) = exρ(-ί(l + λ2)/4). Therefore, if we use (5.30) and (4.11),

we obtain

, x r , Λ x Λ exp(-//4-(logiV(γy))
2//)

(5.45) / A? g-^g dg = Π V ' / \
JGΎ\G y-i 2]/4πt sh^^γ^))

where γ7 is theyth component of γ and yj is conjugate in Go to the diagonal

matrix with entries ^V(γy) and N(yj)~ι. In particular, (5.45) is independent of

w e W. Therefore, (5.35) implies that the contribution of the type I hyperbolic

conjugacy classes to the ZΛindex of D is zero. Now let γ e Γ be mixed. Each

component of γ is either elliptic or hyperbolic, and there is at least one

component, say γy, which is hyperbolic. The orbit integral j G \Gh™{g~ιyg) dg

splits into a product of orbit integrals on Go. Each of these integrals can be

calculated as in the case where γ is elliptic or hyperbolic of type I. The orbit

integral, which corresponds to the hyperbolic component γy is equal to

exp(-;/4-(logiV(γ y)) 2//)

2yf4Ϊt sh(N(yj))

for all w e W. This follows as above from (5.30), (4.11) and the fact θχ(pr)

= exp(- t{\ 4- λ2)/4). Let w, w' e W be such that w, = w/, if i Φj, and

Wj = -wj. Since the orbit integral which corresponds to γ̂  is independent of
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w e W9 we get

K ( ) = / hfig-'
Gy\G JGy\G

But det(w) = -det(w'). This shows that

I det(w)/ hγ(g-ιyg) dg = 0
W^W Gy\G

for any mixed element γ E Γ . Thus, the contribution of the mixed conjugacy
classes to the ZAindex of D is zero too.

(iv) The type II hyperbolic contribution. For each j , j — 1, ,π, we define oy.

W -> { ± 1} by Oj(w) = +1 if wy = Id, and σ y θ ) = -1 if Wj = -Id. It follows
from (4.14), (5.30) and Lemma 5.34, that the contribution of the type II
hyperbolic conjugacy classes to Tr Rγ^G(h^) is given by

2 (irt){ V \V<EV1

(5.46)

+ Σ |;v(u-^ι£/(/7^ (^

where

(5.47)

and the notation is the same as in §4, (v). The first sum in (5.46) is independent
of w e W. In order to determine the dependence of the second sum in (5.46)
on w e W, we have to investigate the integral (5.47). For this purpose we
prove the following

Lemma 5.48. The heat kernels pf satisfy

pΐ(u-λau) =p~(uau~1)

for u G l/0, a e Ao.
Proof. According to Lemma 5.34 we have

PΓ(8) = i
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Therefore, it is sufficient to prove that Φ^iu^au) = Φ2"_2(wβi/"1) and
Φχ2(u~ιau) = Φχ_2(uau~ι) for u e l/0, a e yl0. If we use (2.4) and the fact
that ψπ n = φw_π, then an easy computation gives the desired result, q.e.d

Let fi = (o ί) Then ao(H(wou)) = -log(l + x2). Thus

(5.49) ao(H(wou)) = ̂ ( w o w " 1 ) ) , U e Uo.

If we change variables in (5.47) by u >-+ M"1 and use (5.49) and Lemma 5.48,
then we get /(/?,+)(λ) = /(/?,~)(λ). This shows that (5.46) is independent of
w <= W. Thus, by Proposition 5.29 and (5.35), the contribution of the type II
hyperbolic conjugacy classes to the ZΛindex of D is zero.

(v) The parabolic contribution. If we use (4.22), (4.28), (5.30) and Lemma
5.34, then we get the following expression for the parabolic contribution to the
index:

Vol(Γ Γ)U\U) Σ det(w)Σ>o(e)/ /h^(m-1a'1u(e)am)e-2hιadadm/
MJA

(5.50)

Σ det(w)Σ ΓlnWA /")((J ')) ώc.

where σy(w) = 1 if Wj = Id, and σy(w) = -1 if Wj = -Id. Recall that ε E { ± l } " .
The integral in the first sum can be computed by using (4.23) and (4.26). It
follows from (4.26) and Lemma 5.34 that

(5.51)

Put b(t) = e~t/A/4yfirt and let Iw = {j\Wj = Id} for w e W. If we use (4.23),
(5.30) and (5.51) then we get

Σ dct(w)[ fh?(m-la-lu(e)am)e-2]nadadm

where iV(e) = εx • εn. Hence, the first sum in (5.50) is equal to

(5.52) £ Vol(Γ n I/\ U)ΣN(e)ao(ε).
IT
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We introduce the following L-series:

(5.53) L(M,V,,) = Σ
μe(M-0)/V

where M c F and Vcί/ M

+ are given by (3.6). If fε(M, V, 5) is the zeta function
defined by (4.18), then we have

(5.54) L(M, V, 5) = Σ>(e)£β(M, V, 5).

We can now appeal to Lemma 4.20, which tells us that L(M, V, s) has an
analytic continuation to the entire complex plane with at most one simple pole
at j = l. Moreover, the residue α_x(ε) of the pole s = 1 of £ε(M, V, s) is
independent of ε. Hence, the residue of L(M, V, s) at 5 = 1 is equal to

But

(5.55) ΣN(ε)= Σ (-!)*(;) = 0.
ε q = 0

This implies
Lemma 5.56. The L-series L(M,V, s) defined by (5.53) Λ&s an analytic

continuation to an entire function in the complex plane. If ao(ε) is the constant
term of the Laurent expansion o/fe(M, V, s) at s = 1, then

L(M,V,l)-ΣXβ)αo(β).
ε

Let (βl9 ,βn) be a basis of M and set

where JC G F H χθl G g; i s t h e jth embedding of F in R. Then
Vol(Γ Π U\U) = d(M). This gives the following expression for (5.52):

(5.57) 4^(M)L(M,V,1).

It remains to investigate the second sum occurring in (5.50). By arguments
similar to those given in the proof of Lemma 5.48, one can show that
p*(u) = pi~(u~ι), M E [ / 0 . Therefore

((J ί))*-Jθ l Λ"((i ί
This together with (5.35) implies that the second sum in (5.50) is zero and the
parabolic contribution to the ZAindex of D is precisely (5.57).
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(vi) The intertwining and the residual contribution. Recall that hw

t e

tfp(G, χ w ) , where χwe Kis given by (5.27). Moreover, &ω s is the character of
Ind£(χ ω j ) , where χω,s(uam) = τω(m)es]na and τω is defined by (3.16). Thus
by (5.30) and Lemma 5.34, we get

ω , , λ ( Γ ) Π
(5-58)

7 - 1

By (4.29) and Proposition 5.29, the contribution of the intertwining term to
the ZΛindex of the signature operator is

( 5 . 5 9 ) ^ Σ Σ det(w)/ _ βωtS(hΐ)^Cω(χw9s)Cω(χw, -s)\ds\.

Cω(χw, s) was computed in §3. Let Iw = {i\wi = Id} and Jw = ϊw. Then
Xw =

 °IW,JW> where σ,wfJw is given by (3.20). It follows from (3.21) and (3.23)
that Cω(χw, s) is independent of w e W. Thus, by (5.58), the integral oc-
curring in (5.59) is independent of w e JFand (5.35) implies that the intertwin-
ing contribution (5.59) is zero. The same argument, applied to the residual
term, shows that the contribution of the residual term to the ZΛindex of D is
zero too.

This completes our computation of the ZΛindex of the signature operator.
The calculations above have been carried out under the assumption that
Γ \ H " has a single cusp. But it is clear that everything works equally well in
the general case. Every cusp gives a contribution like (5.57). This is the only
difference to our assumption. We shall now summarize our results. Recall that
to every parabolic fixed point of Γ there corresponds a lattice M c F and a
subgroup V c Uά of finite index [24], [38]. The strict equivalence class of M
and the group V are uniquely determined by the parabolic orbit. Let L(M, V, s)
be the corresponding L-series (5.53). We have proved the following

Theorem 5.60. Let F/Q be a totally real number field of degree n and let

Γ c SL(2, F) be an arithmetic subgroup. Let z- (1 < y < r) be a complete system

of T-inequiυalent elliptic fixed points of Γ and let xt(l < i < p) be a complete

system of T-inequiυalent parabolic fixed points ofT. With each Zj we associate the

cotangent sum (5.43) which we denote by δ(Zj). For each xt let M ( c F and

Vt c ί/Jf be the lattice and the group of units which correspond to xr Then

Ind£2 D = Σ δ(Zj) + 4 Σ d(Mt)L(Mt, V,,l).
y = l 1=1
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It is well known that for a closed Riemannian manifold X, the index of the

signature operator on X coincides with the signature Sign(X). In our case it

turns out that the ZΛindex of the signature operator is indeed the signature of

the rational homology manifold Γ\H W . Recall formula (5.3). We use the

results of Harder [18], [19] to relate ^ ) ± ( Γ \ H W ) to the usual cohomology.

For this purpose we have to pass to a torsion free subgroup I\ c Γ. According

to Selberg [36] there exists a torsion free normal subgroup I\ c Γ of finite

index. It follows from reduction theory that I\ \ Hw has the homotopy type of

a compact manifold with boundary [8].

Let

be the space of harmonic cusp forms. If we identify L2Λ*(Γ\H") with

L2(T\G, Λ*Ad*), then it follows from the results concerning the spectral

decomposition of L2(Γ \ G) that the orthogonal complement of ̂ S ( Γ \ H")

i n ^ 5 ) ( Γ \ H π ) is generated by harmonic residues of Eisenstein series. We

denote this space by Jfr*s(Γ \ Hw). Thus

(5.61) ^ ( * ( Γ \ H ' ι ) = ^ s ( Γ \ H " ) Θ ^ r e * ( Γ \ H w ) .

In our case, ̂ * S ( Γ \ H W ) has an explicit description. Let ωf be the volume

form (dzi A dz^/yf on the zth factor of Hn and equal to one on the others.

For any subset / c (1, ,«} we put

(5.62) ω7 = A^/

Each <o7 is a G-invariant differential form on Hn. Thus, it defines a differential

form in Λ*(Γ\H"), which is easily seen to be harmonic and square-

integrable. Moreover, ωτ is orthogonal to ^ J S ( Γ \ H n). Hence ω7 e

jς*(Γ\H") :by(5.61).

Lemma 5.63. The set { ωr\ c {1, ,« }} is a basis ofJίf*s(T \ H").

Proof. It is clear that the forms ω7, / c {1, -,«}, are linearly indepen-

dent. We show that they generate ^ r * s ( Γ \ H M ) . According to (3.18) and

Lemma 3.14, the only possible harmonic residues of Eisenstein series can arise

from the pole s = 1 of the Eisenstein series with ω = 0. For /, / c (1, •••,«}

let E0(θj j, s, z) be the Eisenstein series associated to ω = 0 and σ77, where

σ7 j is given by (3.20). The intertwining operator C0(σ7 7 , s) is given by (3.23).

The poles of E0{θj j, z, s) coincide with the poles of C0(σ7 y , s) and C0(σIj9 s)

has at most a simple pole at s = 1 [20, IV]. Assume that I Φ J and that
CO(°I,J> s) has a pole at s = 1. Then I U J - (I D J) Φ 0 . Thus, by (3.21),

Γo j j(s) has a zero at s = 1. It follows from (3.23) that

Σ pvωr1}

Γ(ΊP\Γ/Γπί/
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has a pole of order > 2 at s = 1. On the other hand, using (3.21), we see that

Γo././ί1) φ ° τ h u s > b y (3 23)> Q(σ/,/» Ό h a s a P o l e o f o r d e r > 2 at J = 1,
which is impossible. Therefore, the only possible Eisenstein series with a pole
at s = 1 are the E0{θj 7, 5, z). But E0(oj l9 s9 z) = £(,s, z)ω7, where

E{s,z)= Σ tll
TΠP\T y=i

E(s, z) has a simple pole at s = 1. This shows that the set {co7|/ c {1, •,«}}
generates Jf*s( Γ \ H "). q.e.d.

Now, let I\ c Γ be a torsion free normal subgroup of finite index and let
H?(T1 \ Hw; C) be the image of the cohomology with compact supports in the
usual cohomology. Hf(Yι \ H M ; C) has the following description. Let A*(Hn)
be the space of G-invariant differential forms on Hw. The forms co7, / c
{1, ,n }, defined by (5.62), form a basis of A(Hn). Since each ωτ is closed, we
get a homomorphism

(5.64) i * ( H " ) - > ^ ( Γ i \ H " ; C ) .

Let H*(TX \ H"; C) be the image of Λ*(H") in H*(TX \ H"; C). If p > 0, then
H^Yλ \ H n ; C) c H?(Γx \ H"; C) and the kernel of the homomorphism (5.64)
is equal to A2n(Hn) [19, Proposition 2.3]. Moreover, the canonical homomor-
phism

is injective and, if p > 0,

iff ( Γ 1 \ H M ; C ) = ^ S ( Γ 1 \ H W ) Θ / / ^ ( Γ 1 \ H - , C )

(see [19]). If we combine these results with (5.61) and Lemma 5.63, we see that
we have proved the following

Propostion 5.65. The canonical map

j r $ ( Γ Λ H " ) - > # * ( ? ! \ H " ; C )

is injective for p < 2n. If 0 < p < 2«, then the image of this map is
i/f(ΓΛH";C).

The involution T acts on H?(TX \ H"; C) and we denote by H?JT1 \ H"; C)
the ± 1-eigenspaces. Then we get

Corollary 5.66. Jίf^JT, \ H"; C) = HrjT, \ H"; C).
Let ^ = r ! \ r . N acts on Γ X \ H " by isometries and Γ \ H " =

/ / \ ( Γ X \ H " ) . By Borel [7, Chapter III] one has H,"^ \ H"; C) =
tf^Γi \ H"; C)^. Moreover, j f^(Γ \ H") = je&{Tx \ W)N. Note that
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H?^ \ H"; C)^ is the image of the projection

P:i/ !

n (Γ 1 \H r t ;C)^i/ ! '
l (Γ

defined by

Since the cup product is preserved under P, P takes H"±(T1\Hn;C) to

^,"±(Γi \ H"; C)* Thus, we get

Sign(Γ\H") = dim^r+(r\H";IR) - dim H^(T\H";R)

= 7̂ 7 Σ

= dim^ ( 2\+(Γ\H")-dimJ^_(Γ\H/ I).

This proves
Proposition 5.67. The signature of Γ \ H n is given by

Sign(Γ\Hw) = d i m ^ ) + ( Γ \ H n ) - dim ^ (2

W

)?_(Γ\HM).

Corollary 5.68. Let the notations be the same as in Theorem 5.60. Then

Sign(Γ\H")= t « ( ^ ) + 4 Σd(^c)L(Mι9ynl).

Proof. The corollary follows from Theorem 5.60, (5.3) and Proposition
5.67.

Now, we compare our result with Hirzeburch's formula for the signature of
Γ \ H" [24, p. 228]. We recall the definition of the signature defect associated
to a cusp of Γ \ H " [24, §3]. We assume that n = 2k. Let x e (P^R))11 be a
parabolic fixed point of Γ. There exists p e SL(2, F) such that px = oo. Let Tx

be the stabilizer of x. ρTxρ~ι acts on

W(d)= Π

Let fΓ = (ρTxρ~ι)\ W(d) and y = dW. There exists a natural framing of the
stable tangent bundle TY Θ R, which is induced from a framing of TW(d).
Therefore, Y bounds a 4Λ>dimensional compact oriented manifold X. Since
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TY θ IR is framed, we can push down the tangent bundle TX to a SO-bundle

over X/Y. Let pj e HΛj(X/Y;Z) be its Pontrjagin classes. The signature

defect of the cusp x is defined as

(5.69) 8(x) = Lk(-Pι, • ,pk)[X, Y] - Sign(X),

where Lk is the Hirzebruch polynomial. In [24, p. 228] Hirzebruch proved the

following formula for the signature of Γ \ H":

(5.70) Sign(Γ\H«) = £ δ(zy) + £ «(*.),
7 - 1 ι - l

where zv ,zr is a complete system of Γ-inequivalent elliptic fixed points of Γ

and JC1? ,xp is a complete system of Γ-inequivalent parabolic fixed points of

Γ. δ(xt) is the signature defect (5.69), associated to xi9 and δ(Zj) is the

cotangent sum (5.43), associated with the elliptic fixed point Zj. If we compare

(5.70) with Corollary 5.68, we get our main result:

Theorem 5.71. Let F/Q be a totally real number field of degree n = 2k and

let Γ c SL(2, F) be an arithmetic subgroup. Let xt, 1 < i < p, be a complete

system ofΓ-inequivalent parabolic fixed points ofT and let δ(xt) be the signature

defect (5.69) of xr Moreover, let (Mt, V;), UL<z F a lattice and Vt c £/+, be

associated with xt and let L(Mt, Vt, s) be the L-series defined by (5.53). Then

If Γ \ H " has a single cusp x, then it follows that

This is part of Hirzebruch's conjecture for groups Γ with a single parabolic

orbit.

We turn now to the Dolbeault operator. Its ZΛindex can be computed by

the same method. We shall not carry out all the details, because most of the

arguments are similar to those used in the case of the signature operator. It

turns out that the ZΛindex of the Dolbeault operator is related to the

dimension of the space 3^c^
q{T\Hn) of harmonic cusp forms of bidegree

(p,q). In this way we get a formula for the dimension of the space of

harmonic cusp forms of a given type. This generalizes the results of Matsushima

and Shimura [27] who treated the case when Γ c G is cocompact and torsion

free, and it answers a question raised in [19, §3].

Let Ap>i = Ap'q(T\Hn) be the space of Γ-invariant C°°-differential forms

of bidegree (/?, ^ ) o n H " . We consider the 9-comρlex:
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and the corresponding elliptic operator

3 + 3*:

This is the Dolbeault operator Dp. Let Afrq = A^q(T \ H") be the subspace of
Kp>q consisting of forms with compact support mod Γ, and let L2Ap>q be the
closure of Ap>q in L2Λ*(Γ \ H n ). Let Dp be the closure in L2 of Dp, restricted
to Σq A

p

0>
2q. The L2-indx of Dp is by definition

= dimkerl^ — dimcokerZ^.

Let J ^ ' * ( Γ \ H w ) c ^ ( * ( Γ \ H w ) be the subspace of square integrable
harmonic forms of bidegree (p,q). By arguments similar to those which we
used in the case of the signature operator, one can show that

From (5.61) we obtain the decomposition

Let / c {1,•••,«} be such that \I\ = q. The form <o7, defined by (5.62), is of
bidegree (q, q). Thus, if we appeal to Lemma 5.63, we get

Ό , pΦq,

Π)» P ~ 4 '

This implies
n

(5.73) Ind r2 2) = V (~1) dim »P^l^'^(Γ\Hw) ~h(—1) I ).

One can extend the method of Matsushima and Shimura [27, §3, 4] to prove
the following vanishing theorem:

Theorem 5.74. Ifp + qΦ n, thenJfc

p;q(T \ Hn) = 0.
Proof. We shall use the notations introduced in §3. Each form Φ e

Λ*(Γ \ Hw) can be decomposed as

dz1 dzJ

where /, / run over ordered subsets of (1, , n } and fτ 3 satisfies

for all γ e Γ . Let

x d z d z

Φrr =fτj Λ ./ ,/ Ji,J y j y j
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If Oj j is the character defined by (3.20), then Φrj can be considered as an
element of C°°(Γ \ G, σI7). This space is invariant under R(Ώ). Therefore, by
Kuga's Lemma, it follows that Φ is harmonic iff each Φ7 7 is harmonic. Thus, it
is sufficient to consider harmonic forms of type (I, J). Let Φ e jfc^

q(T \ H")
be a harmonic form of type (I, J), i.e.

Λ Λz1 dzJ

Φ = / Λ ,
yi yj

with |/ | = p, \J\ = q. On a complete Riemannian manifold, a L2-form ω is
harmonic iff dω = 0 and δω = 0 [12]. If Γ has elements of finite order, we can
choose a torsion free normal subgroup Γ ^ Γ of finite index [36]. Thus
I \ \ H M -» Γ \ H W is a finite covering of Γ \ H n by a complete Riemannian
manifold. This shows that dΦ = 0 and δΦ = 0. Now, let p + q Φ n. First, we
assume that p + q < n. Then \I U J\ < n and there exists j , 1 < j < n, such
thaty <£ / U /. Since dΦ = 0, we get

¥•-» »°d ¥•-*•
dZj dZj

Hence, / does not depend on the variable Zj. From the definition of the
automorphy factor jrj(y, z) it follows that7 7 / (γ, z) does not depend on the
variable zy and the component γ7 of γ. Let Gf = (SL(2, IR))71"1 and let TΓ:
G -• G' be the projection defined by (g1?- , g j ^ (g1?- ,gy, ,gπ). Let
Γ' = 7r(Γ). Then / can be identified with a function / e C 0 0 ^ " " 1 ) , which
satisfies /(γ'zO = jTJ(y\ z')f(z') for z' G H " 1 and γ r G Γr. Since Γ c G i s
an irreducible lattice, Γ' = ττ(Γ) is dense in G' [35, Corollary 5.21]. Therefore,/
satisfies

(5.75) / ( g V ) = y Λ / ( g ' , z 0 / ( z 0

for all g' G G', zr G H"" 1 . Let z 0 G H " 1 be the point (/,• •,/). I f/(z 0 ) = 0,
then (5.75) implies / = 0. Assume f(zo)Φ0. It follows from (5.75) that
Ji,Λk'> zo) = 1 f o r a 1 1 k' &K' = (SO(2))W"1. Suppose that / Φ J. Let i G /,
^ ί / and let A:' G ̂ ' be such that k\ = 1 for / Φ i and

k =[4 \-sin0 cosθj

Then we get jrj(k\ z0) = e~2/<?. Thus / = / and therefore Φ = /ω7, where ω7 is
the form (5.62). Since co7 is G-invariant, we have / G C ^ Γ X H " ) . By our
assumption, Φ is a harmonic cusp form. In particular, Φ e L2Λ*(Γ \ HΛ) and
this implies / G L 2 ( Γ \ H Π ) . Moreover, Δφ = (Δ/)ω7. Hence Δ/= 0. There-
fore,/is a constant C. But Cω7is a cusp form iff C = 0. Thus^c£«(Γ \ HM) = 0
if p + q < n. Now, note that the Hodge *-operator is an isomorphism of
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Jtr$q(Γ\Hn) onto Jt^)-
p^'q(T\Hn) which carries cusp forms into cusp

forms. ThusJίT^-P^-^T \ H") = Jfc

p;q(T \ H") and this proves the theorem.
From (5.73) and Theorem 5.74 we get

(5.76) d i m ^ s ' ^ ( Γ \ H " ) = ( - l ) ^ I n d L 2 / ) / 7 + ( - l ) M + 1 ( ; ) .

Let Δp'q = d*dp + \-fi*-ι be the Laplacian on Ap-q. As above one can show
that Δp*q, restricted to A^q, has a unique selfadjoint extension to an operator
in L2Ap'q. We denote this extension again by Δp'q. Let L2

dA
p<q c L2Ap-q be the

subspace spanned by the eigenforms of Δp'q and let Δp

d'
q be the restriction of

Δp<q to L2

dA
p'q. Let exρ(-ίΔ^) be the semigroup generated by Δpjq. By

arguments similar to those used in the case of the signature operator one can
show that expί-ίΔ^) is a trace class operator for each t > 0 and

(5.77) IndL2 Dp=Σ (-l)*Tr(exp(-/Δ5 «)).
<7 = 0

Let Ap'qpc c Λ*£ c be the subspace spanned by the vectors vf Jy defined by
(3.19), with |/| = />, |/ | = q, and let

be the corresponding representation. Consider the Laplacian Δp-q on
L2Ap'q(Hn). exp(-tΔpq) is a G-invariant smoothing operator. Therefore, it has
a kernel

hp-q: G-> End(Λ^^t)c),

which is in C00 Π L2 and satisfies (1.4) with respect to the representation σp-q.

As above it turns out that hp-q e ^Γ(G, σp*q) for each r > 0 and

(5.78)

Let

Then Proposition 4.6 and (5.77) imply

(5.79) 1ndL2Dp

The representation σp-q splits into characters

σ ^ = Θ [ τ : σ p q ] τ ,
T<ΞK

[T: σp*q] being the multiplicity of T in σp-q. For T e A' let L2(G, r) =
{/e L^OI/ίgΛr 1) = τ(Λ)/(g), A: e ^} and let Δτ = -Λ(0)|L2 ( ( ? t T ). If A? is
the kernel of exp(-ίΔτ), then we get as in (5.24)

e?= Σ



SIGNATURE DEFECTS AND VALUES OF L-SERIES 113

Thus

(5.80)

Each of the characters τ occurring in σp>q is of the form σrj, where σ7 3 is

defined by (3.20). Suppose that / Π / = 0 and let L = {1, • , « } - ( / u / ) .

By using the same considerations which led to (5.30), we get

(5.81) h]{g) = Π Λ+(ft) Π PΓ(gj) Π A°(ft),

where T = <J/TJ/T, p* = Λ ( ± 1 ) and /?,° = />,(0) in the notation of Lemma 5.34.
Now, one can use Selberg's trace formula to compute \nάLiDp as above. It
follows from (4.11), Lemma 5.34 and (5.81) that the contribution of the type I
hyperbolic conjugacy classes to ΎrR^G(hT

t) is independent of T. Since

the type I hyperbolic contribution to the ZAindex of Dp is zero. By a more

subtle argument one can see that the mixed and the type II hyperbolic

contribution to the ZΛindex of Dp is zero too. The contribution of the

remaining conjugacy classes can be easily determined by passing to the limit as

/ -> oo, because the left-hand side of (5.80) is independent of /. The intertwin-

ing and the residual terms approach zero if t -* oo. To compute the central

contribution, we use Lemma 5.34. The central term of TrRf\G(hτ

t) is

izr|voi(r\σ)*;(i).

It follows from Lemma 5.34 that/v^l) = 1/2π + a(t) and/?,°(l) = a(t) with

lim^^^ a(t) = 0. Thus, if we pass to the limit as t -> oo, then the central term

of TτR^G(hτ

t) tends to zero, except when T = orj with / Π / = 0 , |/| + | / |

= n and |/| = p. In the latter case we get in the limit \Zτ\(2ττYnNo\(T\G).

Thus, by (5.80), the central contribution to the ZΛindex of Dp is

If we use on Go the measure e~2lnadudadk with dk normalized by Vol(A:o) =

1, then, under the isomorphism Go/Ko = H, this measure corresponds to

(dxdy/y2)/2 with respect to the coordinates (1.1). Thus Vol(Γ\G) =

(\Zτ\)-ι2-n Vol(Γ \ H") and the central contribution is

Vol(Γ\H")
r _ i r
1 } [P> (4τr)
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In the same way one can determine the elliptic and the parabolic contribution.
The parabolic contribution to TrRf^G(hτ

t) is given by (4.22) and (4.28), where
/ = h]. First we consider (4.28). It follows from Lemma 5.34, (2.4) and (2.5)
that

j f ( l n | * | ) A < ' > ( ( J * ) )</*, / = 0 , ± l ,

is bounded as t -> oo. By Lemma 5.34 we have

Thus, if n > 1 and if we put/ = hT

t, then it turns out that (4.28) tends to zero if
/ -> oo. Moreover, by (4.26) and Lemma 5.34, we get

f p^g-1u(eJ
JVo\Go

with l i m ^ ^ ί O = 0. Let n > 1. Then it follows from (4.22), (4.23) and (5.81)
that the parabolic term of ΊτRγ^G(hτ

t) tends to zero as t -> oo, except when
T = Oj j with I Π J = 0 and |/| + \J\ = n, \I\ = p. In the latter case the limit
is equal to

N(ε) = εx - " εn. Now, we can proceed as in the case of the signature operator.
Let xv- - -,xhbe a complete system of Γ-inequivalent parabolic fixed points of
Γ, and let (Mt, Vt) be associated with xt as above. Then the parabolic contribu-
tion to the ZΛindex of Dp is given by

The computation of the elliptic contribution is similar. One has to use (4.9) and
(4.10). Together with (5.76) this gives the following

Theorem 5.82. Let F/Q be a totally real number field of degree n > 1 and
let Γ c SL(2, F) be an arithmetic subgroup. Let zJ91 < j < r, andxt, 1 < L < h,
be complete systems of T-inequivalent elliptic and parabolic fixed points of Γ
respectively. Each γ e Γ 2 is conjugate to some k e K and we denote by 0/(γ) the
angle of the component k{ of k. Further, let Z ^ c {±l}n be the subset of those ε
which have precisely p components equal to one. Let M ( c F , Vt c U^, be
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associated with x, as above. Then

dim,

-Pln-P TΛ e x P ( ' V / ( ? ) )
l l

Note, that the parabolic contribution vanishes if n is odd. This theorem

together with Corollary 5.68 gives

Corollary 5.83.

Sign(Γ\H«)= I (-l

This is the analogue of the signature formula for compact Kahler manifolds

[23, §15.8].

6. The Hirzebruch conjecture

In this section we discuss briefly how one can prove Hirzebruch's conjecture

in general. As explained in the introduction, we will not carry out the details

since this is part of a future publication which treats spectral theory of the

Laplacian on Riemannian manifolds which are locally symmetric near infinity.

We recall Hirzebruch's conjecture [24, p. 230]. Let F/Q be a totally real

number field of degree n. Let M c F b e a lattice V c U^ a subgroup of finite

index in the group U^ of totally positive units which transform M into itself.

Suppose that G is a group of matrices (of) (with ε e V, μ e F, and μ e M i f

ε = 1) such that the sequence

(6.1) 0 ^ M - + G ^ V ^ l

is exact. The group G acts freely and properly discontinuously on H".

G \ H n = G \ H n U (oo}isa normal complex space with an isolated singular-

ity. We call this singular point a cusp of type (M, V). With the cusp oo one can

associate its signature defect δ(G), which is defined in the same way as the

signature defect (5.69). On the other hand, we have the L-series L(M, V, s)

associated with (M, V) via (5.53). Hirzebruch conjectured that

*<β>-£
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for every extension (6.1). In particular, δ(G) depends only on (M,V) and not
on the extension (6.1). There are two problems which prevent us from proving
Hirzebruch's conjecture by the methods of the previous paragraphs:

(i) The group G may not occur as pTxρ~ι, where Tx is the stabilizer of a cusp
x of some irreducible discrete subgroup Γ c G with finite covolume and p e G
is such that px = oo.

(ii) Γ \ Hn can have several cusps.
To overcome these difficulties, we replace Γ \ H n by a manifold which

consists of a single cusp, chopped off near infinity and glued together with a
compact Riemannian manifold, which has the same boundary. More precisely,
consider an extension (6.1). For d > 0 let W{d) = {z e H'ΊΠjLi Im(zy) ^ d}
and let Y(d) = G \ W{d). The stable tangent bundle of the boundary dY(d)
has a canonical parallelization. Therefore, there exists a compact oriented
manifold N with boundary dY(d). N and Y(d) can be glued together along
their common boundary. Let X be the resulting manifold. We choose a smooth
Riemannian metric on X which coincides with the given metric on Y(d). We
call X a manifold with a cusp of type (M, V). X has a decomposition X = Xo U
Xl9 where Xo is a compact Riemannian manifold with boundary and Xλ is
isometric to Y(d) for some d > 0. The point is that one can extend all results,
concerning the spectral resolution of the Laplacian on the locally symmetric
space Γ \ H W , to Riemannian manifolds with a cusp of type (M,V). This
program has been carried out by the author for manifolds which are natural
generalizations of the R-rank one locally symmetric spaces [30], [31]. In this
case the cusps are Riemannian warped products. This means that each cusp is
isometric to a product U + X X, where X is a closed Riemannian manifold with
metric tensor g and the metric ds 2 on the product is given by ds 2 = dy 2 + e ~ 2yg.
In principle, the same methods can be applied in our situation. The hard work
is to do analysis on the cusp. But in our case this reduces to harmonic analysis
on G \ H Π . Selberg's trace formula, which we used in the locally symmetric
case, has to be replaced by the asymptotic expansion of the heat kernel. Let

D = d + δ : A%(X) -» A*_(X)

be the signature operator. Then, using these methods, one can compute the
ZΛindex of D. It is given by

(6.2) IndL 2/) =

where L(p) is the Hirzebruch L-polynomial in the Pontqagin forms of X. To
prove that IndL2(Z>) is equal to Sign(Jf), we have to extend the results of
Harder [18], [19] on cohomology of Γ \ H Π to manifolds with a cusp of type
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(M,V). Harder uses the theory of Eisenstein series. In our case we have a
corresponding theory of Eisenstein forms, which satisfy the same properties as
the Eisenstein series in the locally symmetric case. In particular, they satisfy
the same system of functional equations. Using the Eisenstein forms one can
extend the results of Harder to our situation and in this way we get

(6.3) Sign(JT) = IndL2iλ

Finally, we prove a formula which is similar to Hirzebruch's formula (5.70).
For d > 0 let Xd = X - Y(d). We orient dY(d) by the orientation induced
from the canonical orientation of Y(d). Let pj,e HΛj(Xd/dXd\ Έ) be the
Pontrjagin classes of the SO-bundle over Xd/dXd obtained by pushing down
the stable tangent bundle of Xd. Suppose that dim X = 4k. It follows from the
definition of the signature defect δ(G) that

Sign(X) = Lk(pl9 ,pk)[Xd9 dXd] + δ(G).

If we apply the arguments used by Hirzebruch in the proof of formula (20), §3,
in [24] to the Pontrjagin forms, then we get

Jx
This result combined with (6.2) and (6.3) gives a proof of Hirzebruch's
conjecture.
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