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THE TOTAL SQUARED CURVATURE
OF CLOSED CURVES

JOEL LANGER & DAVID A. SINGER

According to well-known arguments [1], a closed geodesic γ in a positively
curved sphere M appears as a "minimax" critical point of the length functional
β and owes its existence to the higher homotopy of M. Alternatively, one could
regard γ as a curve which yields a minimum, hence a stable equilibrium, for the
total squared geodesic curvature functional g. Indeed, a (nongeodesic) circle
on a round sphere is carried to a point under the flow of " - v S ", yet is carried
to a nontrivial geodesic under the flow of " - v g " . One motivation for the
present investigation is to gain insight into the question of what should happen
under the latter flow to an arbitrary closed curve on the sphere or on another
manifold M.

Thus, we undertake here to describe the set of critical points of g defined on
the regular closed curves in some concrete manifolds M, to examine the
stability of these critical points, and to seek relationships among the various
critical points.

Of course, the study of the total squared curvature of curves is not new. A
classical elastica, following Daniel Bernoulli's model of an elastic rod in
equilibrium, is a curve in R2 or R3 which is critical for g defined on regular
curves of a fixed length satisfying given first order boundary data (for
historical references concerning the classical elastica, we refer the reader to the
recent survey by Truesdell [11]).

Here we introduce the term free elastica to describe the critical points which
result when the constraint on arclength is removed; these are among the
Euclidean curves studied by Radon (whose work is described in Blaschke's
Vorlesungen ύber Differentialgeometrie. I). Much more recently, Bryant and
Griffiths [2], [5] considered the natural generalizations of the elastica and the
free elastica to space forms, and showed how the general theory of exterior
differential systems leads naturally to the integration of the equations for these
curves.
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The present paper also deals with the case M a space form; however, the
emphasis here is more on understanding in detail the nature of the solution
curves themselves and drawing conclusions about the global behavior of
5—particularly behavior which ought to persist as the curvature of M is
perturbed from constant.

Consequently, the focus of attention here depends on the sign of the
curvature of M. If M2 has curvature G > 0, our main conclusion is that any
nongeodesic closed free elastica is unstable (Theorem 3.1), and that these
"wavelike" elasticae can be viewed as "minimax" solutions arising from
certain pairs of distinct multiple covers of a prime geodesic. Thus, in answer to
the earlier question, one expects almost any initial curve on the sphere to be
carried to a geodesic under the g-decreasing flow.

In the case G < 0, the greater complexity of the group of symmetries leads
to a correspondingly richer qualitative description of free elasticae. Here, in
addition to the closed geodesies and wavelike elasticae (which occur only when
M2 has nontrivial fundamental group), there arise free elasticae which lie
entirely within annuli, and, as a limiting case, a circular free elastica ε which
achieves a global minimum for g in the class of null-homotopic curves. Thus,
we obtain the inequality Jγk

2 ds ^ 4ττ]/-G, our main result (Theorem 4.1) for
the case G < 0.

There are several surprising facts relating to this result, one of which is that
for m > 3, the m-fold cover of ε fails to minimize g among curves regularly
homotopic to it (Theorem 4.2). It is also worth noting here that the above
inequality can be used to prove a special case of the Willmore conjecture on
the mean curvature of tori in R3 (see [6]). Finally, we mention that the authors
have learned of a recent proof by Ulrich Pinkall establishing the inequality in
hyperbolic space of arbitrary dimension.

The authors wish to thank Beryl Langer for the drawings in this paper.

1. Variation formulas

All manifolds, maps, etc., will be assumed C°°. For a Riemannian manifold
M, the metric will be denoted by ( , ), and the Riemannian connection by V.
For vectorfields X, 7, Z on M, we write the structural equations VXY - VγX
= [X, Y] and VXVYZ - VYVXZ - V[X,γ]Z = R(X, Y)Z, where [,] is the

Lie bracket, R the Riemann curvature tensor.
We consider immersed curves γ = y(t): I -> M. V= V(t) will denote the

tangent vector to γ, T = T(t) the unit tangent, and υ the speed v(t) = \\V(t)\\ =
( F ( 0 , ^ ( 0 ) 1 / 2 T h e s q u a r e d c u Γ v a t u r e A : 2 ( O o f γ is given by &2 = | |V r7Ί|2.
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The letter γ will also denote a variation γ = γ w (0 = γ(w, t): (-ε, ε) X / -» M

with γ(0, t) = γ(ί) Associated with such a variation is the variation vector

field W = W(t) = (3γ/3w)(O, 0 along the curve y(t). We will also write

V = V(w9 /), JF = W(w, t), T = T(w, t\ v = υ(w91\ etc., with the obvious

ljieanings.

We let s denote arclength, and write y(s), k2(w, s), V(s), etc., for the

corresponding reparametrizations. Here ί G [ 0 , L ] , where L = S(γ) = the

arclength of γ.

The following lemma collects some elementary facts which facilitate the

derivations of the variational formulas (the first identity is standard and the

others follow consecutively).

Lemma 1.1. Using the above notation, the following assertions are true:

(1) [V, W] = 0.

(2) dv/dw = ( VTW, T)υ = -gv, where g = - ( VTW, T).

(3) [W, T] = gT.

(4)[[W,T],T]= -T(g)T= -gsT.

(5) dk2/dw = 2(vτVτW,VτT) + 4gk2 + 2(R(W9 T)T,VTT).

We now consider the one-parameter family of functional

( ) f [( )
(We include the Lagrange multiplier λ in our formulas partly because the case

of constrained arclength will be useful for the proof of Theorem 4.1.) Using

Lemma 1.1 one obtains the derivative

vτ(3k2 - λ)T + 2R(vτT,T)ήds

(W,-2(VT)
2T + (λ - 3k2)T)]L

o.

If one considers g λ on a manifold consisting only of regular closed curves or

curves which satisfy given first order boundary data, then the above boundary

terms drop out. In this case it follows that a critical point γ of g λ will satisfy

(1.1) 0 = E = 2(Vτfτ + Vτ(3k2 - λ)T + 2R(vτT, T)T.

From now on, we call a unit-speed curve γ an elastica if it satisfies equation

(1.1) for some value of λ, and &free elastica if it satisfies (1.1) with λ = 0.

Application of the Frenet equations for γ to equation (1.1) leads to the

equations and formulas we will find most useful. For instance, if γ is a regular

curve in an oriented 2-manifold M, k is the signed curvature of γ, and G(p)

the Gaussian curvature of M at/?, then VTT = kN reduces (1.1) to

(1.2) 0 = 2kss + k3 + 2kG-λk.
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Or suppose γ is a regular curve in an //-manifold M of constant sectional
curvature G, γ has curvatures {kλ = k > 0, k2 = τ > 0, k3, k49- ,kn_λ} and
Frenet frame {No = T,NX = N, N2 = B9 N3, JV4, ,Λr

n_1}. Then (1.1) and the
Frenet equations vτNέ, = -kiNi_ι + ki+ιNi+1, i = 0,1, ,« - 1 (defining
*o^o = * , A = 0), yield

2fcί5 + k3 - 2kτ2 -λk + 2kG = 0,

v̂  ^) k2τ = constant,
^ = 0, i # 1 , 2 .

We note that (1.3) is also derived in [5] (by a different approach). A
consequence of (1.3) is that we need only consider 2 and 3-dimensional M in
the constant curvature case.

Finally, we obtain a second variation formula which we will need for the
case of an elastica γ in a 2-manifold M of constant curvature G. Here we
consider a normal variation γ^ with variation vector field W = φN, and we
denote the derivative with respect to arclength by either a dot above or
subscript s:

rδ(τJ j{W,VwE)ds
w = 0

2ds

dw2

(1.4) = ί 2(φ)2 ~(5k2 + 4G- λ)(φ)2 + Aφ2

Ύ

= j φ[ϊφ +(5λ:2 + 4G - λ)φ 4- 10A:A:φ 4- Aφ] ds,

where A = 6Jt2 - k4 - 3(G - λ)A:2 + G(2G - λ).
Proof of (1.4). With JΓ = φN, Lemma 1.1 gives VΓW^ = φN - φkT, g = φk,

and [H ,̂ Γ] = φA:Γ. Differentiating, one obtains W(k) = φ + φ/c2 + φG and
p^(^) s j = φ + φA:2 + 4φA:A: + 2φA:2 + 2φA:Jk + φG. Thus one easily computes

W(l) = fFΓΓA: = TTWk + Γ[JF, Γ]A: +[JF, Γ]71

= φ + φλ;2 + 5φkk + 3φA:2 + 4φ&A; 4- φG.

Using the substitution k = -P/2 - Gk 4- λλ:/2 and the above formulas for

W(k) and W(k\ one obtains

fF(^ N) = 2ίF(fc) 4-(3A:2 + 2G - λ)W(k)

= 2φ + φ(5A:2 -h 4G - λ) 4- lOφfcA:

+ φ(6A:2 - k4 - 3Gk2 4- 3λA:2 4- 2G2 - λG).

Integrating by parts, the other formula follows.
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2. Integration of the equations

Let M be a manifold having constant sectional curvature G. In this section
we discuss the integration of the equations (1.3) as well as the Frenet equations
for an elastica γ in M. As noted above, there is no essential loss of generality in
assuming M has dimension 2 or 3 (in the 2-dimensional case we will want to
consider the signed curvature, but we will not run into trouble by deriving all
our formulas from (1.3) and simply regarding (1.2) as a special case).

We begin by combining the first two equations of (1.3): 0 = kss + \k2 +
(G — λ/2)k — c2/k3, where c is the constant c = k2τ. Multiplication by 2ks

and integration yields

(2.1) {ksf + \kA +(G - λ/2)k2 + c2/k2 = A = undetermined constant.

Making the change of variable u = fc2, we arrive at

(2.2) {usf + M3 + 4(G - λ/2)w2 - 4Au + Ac2 = 0.

Since this equation is of the form (us)
2 = P(w), P a third degree poly-

nomial, it can be solved by standard techniques in terms of elliptic functions.
In order to write down and analyze the solution to this equation, we first fix

notation regarding elliptic functions. We begin with the elliptic integral of the
first kind

* ( φ ) = Γ / ^ 2

 Γ» 0 < /> < 1.
ô /l -p2sin2θ

Denoting the inverse of x(φ) by am(x, p) = φ, the Jacobi elliptic functions are

given by

snx = sn(x, p) = sinφ, cnx = cn(x, p) = cosφ,

and

dn x = dn(x, p) = yl - /?2sin2 φ .

We have periodicity relations sn(x -I- 2K) = -snx, cn(jc 4- 2K) = -en x,
dn(;c 4- 2A )̂ = dn x, where # = x(π/2)—the complete elliptic integral of the
first kind. To list a few of the other basic identities,

sn2(x, p) + cn2(x,/?) = 1 = p2sn2(x, p) 4- dn2(x,/?),

<* -i rf
 A

-r- sn Λ; = en x dn x, — c n x = -sn xαnx,

— snx = 2 ^ 2 s n 3 x - ( l + / 7 2 ) s n x ,
dx2 \ * >

etc.
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Let us return now to equation (2.2). The cubic polynomial P(u) satisfies

P(0) = -4c 2 < 0, and \imu_ ±O0P(u) = +00. Furthermore, if u = k2 is a

nonconstant solution to (2.2), it must obviously take on values at which

P(u) > 0. It follows that we may assume P(u) has three real roots -al9 a2, «3

satisfying -aλ < 0 < a2 < α3 (and treat the case k = constant separately).

We can now write equation (2.2) in the form

(2.3) {usf + (« + aλ){u - a2)(u - α3) = 0,

and its solution is given by

(2.4) u = u(s) = α 3 ( l - q2sn2(rs, /?)),

where

(2.5)

(for background on the solution of such equations, see [4]). Of course, α l 5 α2>

α3 are related to the coefficients of P(u) by

AG — 2λ = aγ — a2 — α 3 ,

(2.6) 4c2 =

4A = (*iOL3 + OL\&2 ~ α 2 α 3 *

Thus, it is clear that (treating λ as a known fixed constant) al9 a2 can be

determined if the maximum squared curvature a = α3 = w(0) and minimum

torsion β = τ(0) = ^ α 1 α 2 / α of the elastica γ are given. The set of solutions

(w(s), τ(s)) can therefore be considered as a two-parameter space (one param-

eter in case dim M = 2). However, the parameters α, β > 0 cannot be chosen

arbitrarily; for they must yield real numbers satisfying -α x < 0 < a2 < α3.

The situation is summarized by the following two tables, which are derived

from (1.3), (2.4), (2.5), (2.6) and the above inequality. For simplicity of

interpretation, only the free elastic curves are represented in the tables (for

λ Φ 0, one needs only replace 2G with 2G — λ to recover the general case).

From Table (2.7) one sees, for example, that if γ is a nongeodesic free

elastica in the plane or the standard two-sphere, then γ must be waυelike (k

= yfa cn(rs, /?), which behaves qualitatively like ordinary cosine). On the other
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TABLE (2.7): Free elastica γ for r = 0.

(a) G > 0

(b) G = 0

α = 0

α > 0

γ is a geodesic

k2 = u = acn2(rs, p) 0 <p < y/ϊ/2

α = 0

a > 0

γ is a geodesic

k2 = u = acn2(rs, p)

(c) G < 0

a =

0 <

α =

-2G

a =

a >

0

a < -2G

-2G

< a < -4G

-4G

-4G

γ is a geodesic

γ does not exist

k2 — constant = -2G

k2 = u = adn2(rs, p)

k2 = u= -4Gsech2(™)

k2 = u = acn2(rs, p)

p = q

0 <p

p = q

= 0

= q<

= 1

<P<

1

1

TABLE (2.8): Free elastica γ for T > 0.

a

a

a

-2β

-2/8

-2β

2<

2 _

2 >

-2G

-2G

-2G

y

k

k

does not exist
2 = constant =
2 = u = «(1 -

= -2G

q2sn2

+ 2β2

(«» P)) 0 <P <q< 1

hand, in the hyperbolic plane, a free elastica may also be orbit like (k
— va dn(rs, p) > 0), circular (k = v-2G), or asymptotically geodesic (k =
2]/-G sech(rs)). Note also that with G < 0 there is a gap separating geodesies
from the main continuum of elasticae. Finally, we observe that when k is not
zero (the case covered by Table (2.8)) neither k nor T ever vanish.

The appropriateness of the terms waυelike and orbitlike is only hinted at by
the curvature functions, but becomes more apparent as further integration
reveals the shapes of the elastic curves themselves, the subject we now take up.
Our approach to this integration will be somewhat ad hoc, but will take us
quickly to our main goals in this section—to describe the global geometry of
elastic curves and to prepare for derivations of some formulas (in the appen-
dix) needed for the following sections. A more systematic approach to the
integration, making use of the theory of exterior differential systems, is
described in [2] and [5] (although these references do not include most of the
specific information we require).
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As regards the problem of integrating the Frenet equations for an elastica,
the gist of our solution is contained already in

Proposition 2.1. Let M be a simply connected manifold having constant

sectional curvature G, and let γ be an elastica in M. Then the υectorfields

j y = (k2 - λ)T + 2ksN + 2kτB and Hy = kB extend to Killing fields Jy and

Hy on M.

Proof. If γ is a curve in a manifold M let us call a vectorfield W along γ
Killing along γ if it annihilates v and all kt\ to be specific, in the 3-dimensional
case, the condition is that for any variation yw in the W "direction" (i.e.,
dyw/dw = W) one has 0 = dυ/dw = dk/dw = dr/dw. Using parts (2) and (5)
of Lemma 1.1 and the formula

η- + k)vτW
 S-GW, TB)

κ I k I

one sees that the above condition constitutes a linear system in W whose
solution space is 6-dimensional in case dim M = 3, and 3-dimensional in case
dim M = 2.

Now when M is a simply connected manifold of constant curvature, these
dimensions agree with the dimensions of the respective isometry groups. Thus,
a Killing field along a curve γ in M is evidently the restriction to γ of a Killing
field on M. To finish the proof one need only check that if γ happens to be an
elastica and W = Jy or W = Hy, the formulas for 3y/3w, dk/dw, and dr/dw
yield 0. q.e.d.

Now suppose, for example, γ is a nongeodesic free elastica on the 2-sphere.
Since we are in the two-dimensional case γ induces only the one Killing field Jy

and we can think of the unique integral geodesic of Jy—i.e., the set of points at
which |7 γ | has a maximum—as the equator of S2. Obviously, Jy = k2T 4- 2ksN
is perpendicular to γ (and nonvanishing) at inflection points of γ (points at
which k changes sign) and is tangent to γ at vertices of γ (points at which k has
an extremum). Moreover, one easily computes d\Jy(s)\2/ds = -SGkks, hence
γ crosses the equator precisely at its inflection points and looks qualitatively as
shown in Figure l(a).

To obtain quantitative information, observe that if x and y are coordinates
of longitude and latitude on S2, then the coordinate field d/dx is simply AJy9

where the normalization factor A is chosen so that AJy has unit length on the
equator (in fact A = 1/ yjaλa). So to obtain JC(^) one needs only integrate the
known function dx/ds = (Γ d/dx)/\d/dx\2; and since |3/3JC| = cos 7, one
can also obtain y(s) in terms of elliptic functions. The elliptic integral x(s) is
analyzed in the appendix for the purpose of determining the possible "wave-
lengths" of γ, hence determining all closed γ.
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α) b) c)

FIG. 1

Wavelike free elastica γ and axial geodesic Γ on (a) the sphere, (b) the plane, (c) the Poincare disc

As suggested by Figure 1, a wavelike free elastica for G <; 0 has a very

similar description. Specifically, it oscillates along an axial geodesic, Γγ, which

it crosses perpendicularly at each inflection point, and with respect to which it

has the obvious symmetries.

Determining the shape of an elastica in the hyperbolic plane is just slightly

more complicated than in the spherical case, owing to the greater variety of

Killing fields and the fact that computing the normalization constant A is not

quite as trivial. The following two propositions suffice for dealing with these

points (and will be needed also for the proof of Theorem 4.1).

Proposition 2.2. Let γ be an elastica in M2, and let p = γ(/ 0 ) be a vertex of

γ. Then Jγ is tangent to γ at p, and the integral curve Σ in M ofJy through p has

curvature kΣ = -2Gk{to)/{k2{to) - λ).

(We omit the proof, which is an easy computation.)

Proposition 2.3. Let γ, σ, ε, η be wavelike, orbitlike, circular, and asymptoti-

cally geodesic {respectively) free elasticae in M2. Then Jy is translational {has an

integral geodesic), Jσ is rotational {has a zero) and Jη is horocyclical {has an

integral horocycle).

Proof. Apply Proposition 2.2 and Table (2.7), using the fact that in the

hyperbolic case, / is translational, horocyclical, or rotational according to

whether Σ is an equidistant curve, a horocycle, or a circle, in turn depending

on whether |& Σ | 2 is less than, equal to, or greater than -G. q.e.d.

With the help of the above proposition one easily sees, e.g., that an orbitlike

free elastica σ behaves qualitatively as shown in Figure 2(b), and one obtains

the elliptic integral for the angular progress Δθ which σ makes in each period

(see the appendix), hence determining all closed orbitlike elasticae.
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α) b)

F I G . 2

c)

Poincare disc model of hyperbolic plane containing (a) circular free elastica ε, (b) orbitlike free

elastica σ oscillating between the pair of integral circles Σ+, Σ~ of 7σ, (c) asymptotically geodesic

free elastica η with integral horocycle Σ of Jη.

Above, we have applied Proposition 2.1 to understand the behavior of elastic
curves in simply connected 2-manifolds of constant curvature. Of course, if M
is not simply connected one need only carry out the analysis on a lift of γ to
the universal cover of M and then project back down. If M is three-dimen-
sional the analysis is somewhat more complicated, as one must work with two
Killing fields, Jγ, Hy, and compare them with a wider variety of Killing fields
on M. However, it is essentially clear how to proceed in order to obtain the
corresponding information in the three-dimensional case. Such an analysis is
carried out in [7] for the case M = R3, yielding a classification of all closed
(nonfree) elastic curves in Euclidean space and a determination of their knot
types.

3. Minimax elasticae in the 2-sphere

For determining the closed free elasticae in the 2-sphere all that was missing
in the discussion of the previous section was an analysis of the possible values
of the wavelength Λ—the amount of progress the elastica makes along its axial
geodesic (the equator in this case) in one period of k, as measured by arclength
along the geodesic. In the appendix it is shown that in the case of the sphere Λ
ranges between 0 and 2π, and that for each Λ, 0 < Λ < 2π, a wavelike free
elastica (not necessarily closed) is uniquely determined (modulo isometries of
S2). Two cases near the upper and lower extremes are illustrated in Figure 3.

Of course, γ closes up precisely when Λ is rationally related to π. We
conclude that the set of closed free elasticae on S2 (excluding geodesies) is
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α)
b)

F I G . 3

Wavelike free elastica on the sphere for (a) small wavelength Λ, and (b) wavelength near upper
limit Λ m a x = 2IT.

α) b)

F I G . 4

c)

Closed free elastica on the sphere: (a) yι2, (b) γ 2 3 , (c) y34,

indexed one-to-one by pairs of integers, 0 < m < n, where ymn closes up after
n periods and m trips around the equator. Three of the simplest ym n are shown
in Figure 4.

There is a satisfying heuristic for the existence of the γm n as critical points

of g = g° (defined on a space of immersed circles in S2). Denote by © the
group of symmetries of ym n. (Abstractly, © has presentation © = {α, b: a2n =
b2 = baba = id}.) Let Γm and Γ ( 2 π " m ) be, respectively, the m-fold and the
{In - m)-fold coverings of the equator Γ. Then Γ w and Γ(2w~m) are ©-
equivariantly regularly homotopic. Figure 5 shows the homotopy of one nth of
the curve.
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FIG. 5

Wavelike free elastica on the Poincare disc for (a) largest possible wavelength Λ = b, (b), (c) small
wavelength—two solutions for the same value of Λ.

Now Γm and T(2n~m) are both minima for g, so one would expect a
minimax argument, together with the "principle of symmetric criticality", to
yield a third critical point having exactly the symmetry of γm „. In fact, by the
above description, it is clear that ymn is the only elastica which could arise in
this way. Thus, the wavelike elasticae are precisely the critical points one would
expect, other than the geodesies.

The above minimax argument is a strong hint in the direction of our main
instability result:

Theorem 3.1. Let M2 have constant curvature G > 0 and let γ be a closed

free elastica in M. Then γ is stable if and only ify is a geodesic.

Proof. The main idea of the proof is to take as our variation vectorfield the
"ZAarclength gradient" W = kN. This essentially isolates the simpler of the
two possible sources of instability of an elastica, the other one being that γ
may have "too many" inflection points and thus be unstable even for the
constrained arclength problem. As will be apparent from the proof, if γ is
wavelike, the length gradient renders even a single arch of γ unstable, provided
γ is allowed to pivot at the inflection points (see Figure 5).

With φ = k and the second of the two formulas in (1.4), straightforward
computation gives

{VWE,W) = -9/2k6 - l6Gk4 + 10£2(α2/4 + Ga).
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For wavelike γ we have k2 = a en2(rs, p). Using this, and also using

]/a 4Gp2

r= - r — α = —— C2 = / Qtfudu, C4 = / crΓudu,
Jo Jo

r r , α
LP 1 — 2p

C6 = fcrΐudu = -^(2/> 2 - 1)C4 + - ^ ( l -/> 2 )C 2 ,
Jo 5/r 5p2

one obtains a negative quantity for the second variation in the direction

W = kN over one arch (i.e., one half-period) of γ:

δ 2 = - f / ? α 3 / 2 [ ( α + 4 G ) C 2 + 8 G C 4 ] . q.e.d.

One may ask if the minimax argument itself might be made into a rigorous

(and more satisfying) proof of Theorem 3.1. The main obstacle is to establish

some version of the Palais-Smale Condition C, which justifies such an argu-

ment in the infinite-dimensional manifold setting (see [9]). For the case of

curves in Λ3 under the constraint of fixed length, Condition C has been

established and a very similar" symmetrical minimax" argument implied insta-

bility for all nonplanar closed elastic curves in Euclidean space [8].

In the present situation, however, it appears to be an interesting challenge to

rule out the possibility that arclength tends to infinity on a trajectory of

" - V 3 " in fact, this can obviously happen in the case G < 0 (M compact or

not). Nevertheless, we expect that on any manifold M of positive sectional

curvature (not necessarily constant), trajectories of " -V S " converge, and that

the limits are almost always closed geodesies.

4. The hyperbolic case

We begin this section with a brief description of the closed free elastic curves

in an orientable 2-manifold M of constant negative curvature G. This will lead

us to the main topic of this section, the inequality stated in the introduction,

which gives the circular elastica a special status among closed curves in M.

Suppose first γ is a wavelike free elastica. Since γ oscillates along its axial

geodesic Γ, it is clear that γ cannot be closed unless Γ is closed. In particular, γ

can never be closed if M is the hyperbolic plane H2, and more generally, it

follows that if γ is closed in M, then γ cannot be null-homotopic.

Of course, the condition for closedness of γ is that the wavelength Λ is

rationally related to the length of Γ. The behavior of Λ as a function of the

parameter a (maximum squared curvature of γ) is analyzed in the appendix,

and in this case leads to a bit of a surprise: as a increases from its lower limit

of -4G to oo, the wavelength Λ increases from 0 to some maximum value b

(approximately 2/ ]/-G) and then decreases back down to 0. Figure 6 il-

lustrates this behavior in the Poincare disc.
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b)

F I G . 6

c)

The two simplest closed orbitlike free elastica in the Poincare disc: (a) σ 2 3 , (b) σ3 5 .

In the orbitlike case one again obtains a countably infinite family of closed
solutions σmn. Here m > 1 is an integer and n is an integer satisfying
\ < m/n < yjϊ/2. This condition follows from another elliptic integral in the
appendix, which shows that as α increases from its lower limit -2G to its upper
limit -4G, the rotation, Δ0, of σ decreases monotonically from Jϊπ to π.

In contrast with the wavelike case, a closed free orbitlike elastica σ is always
null-homotopic. For suppose σ is a lift of σ to the universal cover M of M.
Then σ lies inside a compact subset of M—namely that bounded by the
invariant circle Σ + (see Figure 2). So σ cannot represent an element of infinite
order in πλ(M)\ but π^M) is torsion free; hence σ is null-homotopic. Thus, we
might as well always think of the omn as lying in H2, as illustrated in Figure 7.

Finally, since the asymptotically geodesic elastica η is obviously not closed,
it remains only to discuss the circular free elastica ε. We refer to ε as "the
equator of the hyperbolic plane" because in some sense it plays the same role
in H2 as the equator does on the sphere. For just as a circle on S2 of arbitrary
initial radius will expand to become an equator under the flow of " - V 3 ", so
will a circle in H2 expand or contract to achieve the preferred radius of ε (in
this connection, we note that the equator on the sphere is a geodesic circle of
radius (sin"11)/ {G, while ε is a geodesic circle of radius (sinrΓ11)/ yf^G).

More generally, one interpretation of the following result is that any "initial"
curve γ which is regularly homotopic to ε ought to flow to ε:

Theorem 4.1. Let M2 be a manifold with constant curvature G < 0. Then any

null-homotopic regular closed curve γ in M satisfies jyk
2 ds > 4π]/-G, and

equality holds if and only if y is congruent to ε.
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α) b)

FIG. 7

Conjecture. Let Mn be a Riemannian manifold with sectional curvature
bounded above by G < 0. If there exists a regular closed curve y in Mn

satisfying jyk
2 ds < 4π]/-G, then Mn is not simply connected.

We defer the proof of Theorem 4.1 until the end of this section so that we
may first point out some interesting facts surrounding this result. To begin
with, it is natural to suppose that εm—the m-fold cover of ε—minimizes g in
its regular homotopy class. Such a view is shattered by

Theorem 4.2. The m-covered equator εm in H is stable for \m\ = 1,2 and

unstable for \m\ > 3.

Proof. For γ = εm, k = /-2G, so the second variation formula gives
δ 2 S = 2/γ(φ - 2Gφ)(φ - Gφ)ds. Since εm has length 2vm/}/^G, φ must
have Fourier series of the form

ao/2 + Σan c o s ( W-
1

Computing φ and substituting φ, φ into the above formula yields

δ2g = 2™(-G)3/2L2 + £ (n2/™2 - l)(«2/m2 - 2)(α2 + # ) ] .

Now consider first the case |m| = 1,2. Then one easily sees that δ 2 g > 0,
with equality occurring precisely when an = bn = 0, n Φ m, and φ =
am cos]/-Gs + £m sin/-G 5. Such φ make up the two-dimensional space of
normal Killing fields along γ. Thus we have stability for ε2 as well as for ε (the
latter being already known).
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Now suppose \m\ > 3. In this case, we can make δ 2 g negative by setting
φ = cos(]/-G(m + \)s/m\ so εm is unstable, q.e.d.

This leads one to ask if, instead g is minimized (among curves regularly
homotopic to εm) by an orbitlike elastica (the only other kind of closed free
elastica in the same class). However, a computation involving elliptic integrals
(see the appendix) proves g(σm n) > S(εm). Thus we have the

Corollary, g restricted to the regular homotopy class of εm,\m\> 3, does not

achieve its infimum. Moreover, ifyi is a minimizing sequence for $ so restricted,

then the lengths ofyi must approach infinity.

(The last sentence depends on a compactness result which is stated in the
proof of Theorem 4.1.)

Figure 8 shows, for the case m = 3, how S(γ, ) can be arbitrarily large while
g(γ ;) remains bounded. The curve consists of four geodesic segments of length
/, capped off by four arcs of equators ε. The proof of Theorem 4.2 suggests
why this four-fold symmetry is appropriate here.

FIG. 8

Another phenomenon to be noted in connection with Theorem 4.1 is that if
one considers the problem of minimizing g subject to the constraint of fixed
length /, one obtains a circle Cι for some values of /, yet clearly not for large
values of /. In fact, the proof of Theorem 4.1 implies the following "restricted
isoperimetric inequality":

Corollary. There exists a constant L > β(ε) = 2π/]f^G such that any
regular simple closed curve y in H of length I < L satisfies fγk

2 ds > 4π2/l - Gl.
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Proof of Theorem 4.1. Let γ0 be a regular closed curve in H, and let Ω be

the set of regular closed curves of length at most £(γ 0 ) . Then to verify the

inequality for γ0, it suffices to show:

(1) there exists a closed elastica γ (not necessarily free) minimizing g over Ω,

(2) γ must be simple, and

(3) all simple closed elasticae satisfy the inequality, with equality only for

γ = ε.

We discuss these in reverse order, the crucial one being (3). Observe first that

of the five types of elasticae, it suffices to consider circles and orbitlike

elasticae, since the others are either not closed or not simple (a closed wavelike

elastica has rotation index 0).

If γ is a circle of radius r, then

β ( γ ) = - ^ s i n h V ^ G r , s/(y) = -^(cosh f^Gr - 1),
f-G ~G

cosh y-Crr
sinh yJ-Gr

Thus, δ ( ϊ ) is smallest when sinh /-Gr = 1, i.e., γ = ε, and S(γ) =

Now suppose γ is orbitlike, hence k2 = adn2(rs, p) and r = {OL /2, a =

(2λ — 4G)/(2 — p2). If γ closes us in n periods, one can easily obtain the

estimate (see first paragraph of the appendix)

g ( γ ) = ll ίKadn2{u) du
r Jo

- 4G.

Thus, we need to estimate λ and n from below.

If A is the area bounded by γ, the Gauss-Bonnet formula gives

0 < -GA = f kds - 2π = — f yfa dn(w, p) du - 2π = 2π(n - 1),
Jy r Jo

so for one thing n ^ 2. Note that this implies Jγ is a rotation field; for if Jy

were a translation or horocycle field, γ would have to close up in one period or

not at all. Thus, by Proposition 2.2, there exists a circle C~ inscribed in γ and

having curvature kc = -2G{ά1/{a2 - λ). Since area (C~) < A, a comparison

of Gauss-Bonnet Formulas for γ and C~ leads to k2

c < n2k2

c + n2G, and hence

-n2G <k2_ 4G2«2 _ 4 G 2

n - 1 ( α 2 - λ)

It follows that
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Substitution into the original estimate for g(γ) now gives
4yf^G]/2n2 + 2 > 4f^Gy/ϊδ > 4τπ/^G.

For the proof of (2), we restrict our attention to wavelike γ, since the
orbitlike case is much the same (a more careful version of (3) would also take
care of nonsimple orbit-like γ). For γ to close up, its wavelength must be 0, so
γ(0) = y(2K/r)9 and γ closes up smoothly in one period to form a figure eight.

Let Γ" be the geodesic through p = γ(0) crossing the axial geodesic Γ
perpendicularly. By symmetry of γ (k(s) is even about K/r)9 Γ' divides γ into
two congruent halves (see Figure 9). Let q be one of the points on γ of
maximum distance from Γ', and q its reflection through Γ". Then the geodesic
Γ" passing through q and q must cross γ perpendicularly at both q and q. The
reflection of the upper part of γ through Γ" yields a C1-closed curve γ whose
length and total squared curvature are clearly less than that of γ.

FIG. 9

The proof of (1) is an easy application of the classical direct method in the
calculus of variations. We omit the details of this argument, but note that the
constraint on arclength is essential for norm-boundedness of g-bounded
sequences { γ,} (recall Figure 8).

5. Appendix

In order to obtain quantitative information about the total squared curva-
ture g of a closed elastica, the wavelength of a wavelike elastica, and the
rotation Δ0 of an orbitlike elastica, we appeal to standard formulas expressing
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these elliptic integrals in terms of the known functions K, E, Z, Λo—the
complete elliptic integrals of the first and second kinds, the Jacobi zeta
function, and the Heuman lambda function, respectively (see [3]). Further-
more, we repeatedly make use of the fact that the derivatives of K, E, Z, Λo

with respect to the modulus p can be conveniently expressed in terms of these
same functions. For instance, in the proof of Theorem 4.1, we needed the
following estimate: the facts

(\ π dE E~ K
 A

 d κ E~(1 -P2)κ

and — = /
d

= and = 7 , /
2 dp p dp p(ι -p2)

easily imply E(p) > yjl - p2, hence the total squared curvature of an orbitlike
elastica σ of n periods satisfies

Γ dn2(«) du
2- p Jo

^ ~ 4

2

G E(p)

We now take up the computation of wavelength.
Proposition 5.1. Let γ be a wavelike free elastica. If G = 0, then

andifGΦ 0,

I — ,

en2 udu_ 4yi -pz \\-2p2 rκ(p)

l-{(2P

2-l)/p2)sn2u'

where p2 = a/(2 a + 4G).

Proof. Referring to the discussion in §2 and using equations (2.1), (2.5),
(2.6), and the fact that k = a cn(rs, p) has period 4K(p)/r, we obtain

Λ = 8x = fK/r -^Ύ-±ds = ̂ L /*_E^/0 * _

8 ίa~p

x | / | 2 /α + «! ô αx - 4Gcn2(w, />)
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For G = 0, the result is now obvious, and for G Φ 0, the stated formula

follows easily from the substitutions

_ 4Gp2 _ 4G(l-p2)

1-2/7 2 ' 1-2/,*

Proposition 5.2. (i) // G > 0,

Λ = 4

φ = sin x(yl — 2/?2/(l — p2)). As a increases from 0 to oo

increases from 0 to v^/2), Λ decreases monotonically from 2m/ {G to 0.

Λ decreases monotonically from oo to 0 as a increases from 0 to oo.

"where β = sin~1(γ/2/? — 1 //?2). /« ίA« ca^e, Λ w ΛO* monotonic, as a increases

from -4G to oo (so p decreases from 1 to \/^/2), Λ increases from 0 to ite

maximum value b = Λ(/?o), wAere /?0 w the unique solution to 0 = 2E(p) —

K(p), and then Λ decreases back down to 0. The maximum wavelength b is

Proof. The above formulas for Λ follow easily from the previous proposi-

tion, and formulas 312.02, 410.03, 414.03 of [3]. The behavior of Λ as a

approaches its upper and lower limits can then be read off from the limiting

behavior of K, E, Z, Λo. In the case G = 0, one could argue instead

The monotonicity of Λ for G > 0 can be established by a straightforward

but tedious computation which yields

dλ

dp

4/y/G
-[K(p)-2E(p)];

since/?2 < | , this quantity is negative.
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A similar computation for the case G < 0 gives

For \ < p2 < 1, the equation 0 = 2E(p) — K(p) has a unique solution, hence
Λ behaves as indicated above, q.e.d.

Using Propositions 2.2 and 2.3 and computations similar to those above, we
obtain the corresponding information about the rotation of an orbitlike
elastica:

Proposition 5.3. The rotation of an orbitlike free elastica is

2(1 - i2 p I ^ ^ d u
Jo 1 — p [2 - pz)snz u

-p2^2-p2K(p) + ττ[l - Λ0(sin-Vl - />2 , p)].

4̂.5 α increases from its lower limit -2G to its upper limit -4G, Δ0 decreases

monotonically from yϊπ to π.

Finally, a comparison of the formulas given here for the total squared
curvature 3ί(σ) and rotation Δ0σ of an orbitlike elastica yields the inequality
3K<VM) > 3(ε m ) needed for obtaining the corollary to Theorem 4.2.
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