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ON THE CLASSIFICATION OF
THREE-DIMENSIONAL

COMPACT KAEHLER MANIFOLDS
OF NONNEGATIVE BISECTIONAL CURVATURE

SHIGETOSHI BANDO

0. Introduction

After the solution of Frankel conjecture by Mori [5] and Siu & Yau [8], it is
natural to consider the classification of compact Kaehler manifolds of non-
negative bisectional curvature. In this direction there are some previous works,
for example, the characterization of hyperquadrics by Siu [7], and the splitting
theorem of Kaehler manifolds of nonnegative bisectional curvature by How-
ard, Smyth, and Wu [3], [9]. Besides these general dimensional studies there is a
low dimensional result by Howard & Smyth [2] that is the complete classifica-
tion of two-dimensional compact Kaehler manifolds of nonnegative curvature.
In this paper, proceeding in this direction, we consider the case of three-dimen-
sion and obtain some results which, combined together with the above results
of Howard, Smyth and Wu, [2], [3] and [9], enable us to settle the classification
of three-dimensional compact Kaehler manifolds of nonnegative bisectional
curvature. Namely our goal is the following theorem.

Theorem 3. Let M be a three-dimensional compact Kaehler manifold of
nonnegatiυe bisectional curvature. If M has quasipositiυe Ricci curvature, then M
is biholomorphic to one of the following: P 3 , Q\ P 1 X P 2 , Pι X Pι X P 1 .

The author would like to thank Professor S.-T. Yau, under whose advice this
work was done.

1. Notations

Let M be an ^-dimensional Kaehler manifold with a Kaehler metric g. We

can define the holomorphic tangent bundle TM and the antiholomorphic
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tangent bundle TM. The complexified tangent bundle is the direct sum of TM
and TM. We can extend the metric g, the Riemannian curvature tensor R and
the Ricci curvature tensor Ric to be forms on the complexified tangent bundle.
Then using a local coordinate system z1, z2, ,zn, we have that

O = OΓ— = 0 p _ = p - = Or -

£/y 6/y V5 t>ij Bij Bji9

Rif= Ric7 /= Λ ^ = -

where we used the summation convention. Note that our sign convention of
the curvature is different from the usual one.

For unit vectors X, Y e TpM9 R(X, X9Y9 Ϋ) is called the bisectional curva-
ture in the direction (X, Y).

M is said to be of nonnegative (positive) bisectional curvature if for all pairs
of unit vectors I J e TpM, the bisectional curvature in the direction is
nonnegative (positive, respectively) everywhere.

We say that Ricci curvature is quasipositive if Ricci tensor is positive
semidefinite everywhere and positive definite somewhere.

We define N(X% N(X) for nonzero X e TpM as follows:

N(X)= { YeTpM\R(X9X,Y9Ϋ) = Q}9

N(X) = { 7 G TpM\R(X9 X9Y9Ϋ) = 0, Y ±

Note that N(X)9 N(X) are complex linear subspaces of TpM if M is of
nonnegative bisectional curvature.

For M of nonnegative bisectional curvature we define the condition (C) at p
as follows:

Condition (C) at p. If TpM = Hλ Θ H2 is an orthogonal decomposition and
0 φ Xι e ^ (i = 1,2), then either Hλ <£ N(X2) or H2 <£ N(Xλ).

Remark that in the definition of the condition (C) we can use N(X) instead
of N(X).

2. Summary of previous results

In their paper [2], Alan Howard and Brian Smyth gave the complete
classification of compact Kaehler surfaces of nonnegative bisectional curva-
ture.
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Theorem A. Let M be a compact Kaehler surface of nonnegative bisectional

curvature. Then one of the following holds.

(1) M is biholomorphic to theprojectiυe space P2.

(2) M is biholomorphic to Pι X Pι and the metric is a product of metrics of

nonnegative curvature.

(3) Mis flat.

(4) M is a ruled surface {i.e. Pι-bundle) over an elliptic curve. In this case the

universal covering space of M is C 1 X Pι endowed with the product of the flat

metric on C 1 and a metric of nonnegative curvature on Pι.

And if the Ricci tensor is positive at some point, then (1) or (2) holds.

Siu proved in his paper [7] that we can characterize the complex projective

space and the complex hyperquadric by the properties of curvature.

Theorem B. Let M be an n-dimensional (n > 3) compact complex Kaehler

manifold of nonnegative bisectional curvature. Suppose that M satisfies the

condition (C) everywhere and has the following property (*) at some point p e M:

(*) d i m c N( X) < 1 for all nonzero X e TpM.

Then M is biholomorphic to either the projective space P" or the hyperquadric Qn.

There are other words of more general nature on the classification problem

by Alan Howard, Brian Smyth, and H. Wu [3], [9].

Theorem C. Let M be an n-dimensional compact Kaehler manifold of non-

negative bisectional curvature and let the maximum rank of Ric on M be n — k

(0 < k < n). Then:

(A) The universal covering of M is holomorphically isometric to a direct product

M' X C \ where M' is an (n — k)-dimensional compact Kaehler manifold with

quasipositive Ricci curvature and Ck is equipped with the flat metric.

(B) M' is algebraic, possesses no nonzero holomorphic q-forms for q > 1, and is

holomorphically isometric to a direct product of compact Kaehler manifolds

MλX X Ms, where each Mt has quasipositive Ricci curvature and satisfies

(C) There is a flat, compact manifold B and a holomorphic, locally isometric

trivial fibrationp: M -» B whose fibre is M'.

(D) There exist a compact Kaehler manifold M*, a flat complex torus T and a

commutative diagram

M* >T

i i
M >B

where the horizontal maps are holomorphic, locally isometrically trivial fibrations

with fibre M', and the vertical maps are finite coverings. Furthermore, M* is

globally diffeomorphic to Λf X T.
In particular, πx(M) is either trivial or an infinite crystallographic group.
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By the above theorems, to settle the classification of three-dimensional

compact Kaehler manifolds of nonnegative bisectional curvature, it is suffi-

cient to prove it in the case of quasipositive Ricci curvature. We will prove that

such manifolds are biholomorphic to one of the following: P3, Q3, Pι X P2,

P1 X P1 X P1.

3. Generalization of Siu's theorem

In this section we slightly generalize Siu's theorem stated in the previous

section.

Theorem 1. Let M be an n-dimensional (n > 3) compact Kaehler manifold of

nonnegative bisectional curvature which satisfies the condition (C) at every point.

If there exists some point p e M such that

(**) d i m c N( X) < 1 for all nonzero X e TpM,

then M is biholomorphic to either Pn or Qn.

Corollary. Let M be an n-dimensional (n > 3) compact Kaehler manifold of

nonnegative bisectional curvature with the property (**) satisfied everywhere.

Then, M is biholomorphic to either Pn or Qn.

Proof. It is easy to see that the property (**) at p implies the condition (C)

at/?.

Since the proof of the theorem is the same as that of Siu's, except at the

points where the property (*) is used, we only point out the places where

changes must be done and write the altered argument. Siu used the property

(*) twice. First, he used it to prove the following fact.

Fact. Let/: P1 -» M be a nonconstant holomorphic map such that/(0) = /?,

where p e M is the point that satisfies (*). One can decompose the induced

holomorphic vector bundle f*TM into n holomorphic line bundles,

/*ΓM = Lx® L2® ••• Θ Ln.

Then we conclude that the first Chern class Cι(Li)> 0 except at most one Lt.

We prove this fact using the property (**) instead of the property (*). Let us

denote the induced metric and the connection on the dual bundle (f*TM)* by

( , ) and V'. Then the connection V" of the dual bundle Lf * of Lz can be

written as

V'xu = V'χu + a(X,u),
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where u is a section of L* and a is the second fundamental form, which is
orthogonal to L*. We compute the curvature R" of L* with respect to the
induced metric in terms of the curvature R' of (/*ΓΛf )*. For X e TP1,

R'{X, X)u = - V'xVχU

, K) + Vfr,jηK + α([Jf, Z ] , w),

= ^ r (w, w, X, Z ) + (β( Jf, u), a(X,u)).

Let the section Y of f*TM be the metric dual of w such that

v(Y) =(v9ΰ) for all sections υ of (f*TM)*.

Then we have that

where R is the curvature tensor of M. Thus we get that the curvature of L* is
nonpositive, especially Cx{Lt) > 0. Moreover we know that if C^L^ = 0, L*
is a trivial line bundle and the bisectional curvature in the direction of
(f*TPι,Y) is zero. If L* is a trivial bundle there exists a nonvanishing
holomorphic section u of L*. Let Z be any holomorphic tangent vector field
on P1. Then u{f*X) makes a holomorphic function on P1, and X vanishes
somewhere. We get that u(f*X) = 0, which means that f*X and the metric
dual Y of u are perpendicular to each other. Therefore if we have two L; with
the vanishing first Chern class we get a contradiction near p. (Note that the
points which satisfy (**) make an open set.)

Another case in which Siu used the property (*) is very similar: Let / be a
nonconstant holomorphic map as above, and E be the divisor of df. Then
TP1 Θ [E] c f*TM, and we get a decomposition

f*TM/TPι x[E] = Qx θ <2 2 Θ • • • θ β B _ 1 .

Siu claimed that C^βy) > 0 with at most one exception. We can prove this

similarly. Thus we get the theorem.



288 SHIGETASHIBANDO

4. Hamilton's equation

In his paper [1], Richard S. Hamilton introduced an evolution equation in
metric tensors and proved the short time solvability. He considered it in the
real three-dimensional case and proved that the equation preserves nonnegativ-
ity of Ricci curvature. In this section we consider the equation in the case of
complex dimension three, and show that it preserves nonnegativity of bisec-
tional curvature.

First we remark that, as he stated, the equation preserves Kaehlerity of the
initial metric. An easy way to see this is to reduce the equation to a parabolic
equation on functions in the following way. Let g be a given Kaehler metric
and Rj-be its Ricci tensor. We solve the following parabolic equation on a
function w:

du/dt = log{det(g / / -^ / / + W / / )/det(g / / )}, κ|,-o = 0,

where w/7-means d2u/dzιdzj. Then the Kaehler metric {g^-tR^ + u^ gives a
solution metric of Hamilton's equation,

dgif/dt = -Rιf.

Moreover because of the parabolicity it is easy to see that the equation has the
solvability for a short time.

Theorem 2. Let M be a three-dimensional compact Kaehler manifold. Then

Hamilton 9s equation preserves nonnegativity of bisectional curvature. Moreover if

the bisectional curvature of the initial metric is positive at some point, the solution

metric has positive bisectional curvature everywhere for t > 0.

In the proof we use a proposition which is almost the same as Hamilton's,
but since there was a slight gap in his proof, we give a proof of the proposition
for the sake of completeness. First we define some notations on a Kaehler
manifold M.

Definition. Let w, v be tensors which have the same type and the same
symmetric properties as curvature tensor. We say that up ̂  vp (up > vp) for
p e M, if, for all nonzero I J E TpM,

up(X,X,Y,Ϋ)>υp(X,X,Y,7),

(up(X, X9 7, 7) >vp{X, X, 7, 7 ) , respectively),

and that u ^ v (u > v) if up ̂  vp (up > vp respectively) for all/? e M.
Definition. Define a real operator D on tensor fields with respect to a given

Kaehler metric in the following way:

• = -iv*v = \{yiyEi + v̂ .Vf;) = Hv,.vJ5
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where {£,} is an orthonormal basis of the holomorphic tangent space T M,

and { e(} is an orthonormal basis of the real tangent space.

Proposition 1. Let M be an n-dimensional compact Kaehler manifold. Con-

sider the following equation on tensor fields u which have the same type and

symmetric properties as curvature tensor:

du/dt = Ώu + F ( M ) ,

where the Kaehler metric g depends on t, and the smooth function F has the

following property ( # ) :

// u > 0 and there exist two nonzero vectors Xo, Yo e TpM such
( # ) that up(X09T» Y0,T0) = 0, then F(u)p(X0,Y0, Y0,Ύ0) > 0.

// the initial u is nonnegative, then it remains so. Moreover if the initial u is

positive somewhere, then the solution u is positive everywhere for t > 0.

Proof. It is sufficient to prove the proposition for a short time, thus we

consider it in a short interval without specification.

First we define a smooth parallel tensor field w0 as

which is positive everywhere. Then, there exists a positive constant C E R such

that Cu0 > duo/dt > - Cu0. Since F is smooth and u0 > 0, there exists a

positive constant D G R such that

F(u) > F(u + fu0) - D\f\u0 for/e R, |/| < 1.

Let / be a real valued function and ε > 0 a sufficiently small real number.
Then,

jt(u + εfu0) = D(iι + efu0) + F(u) + ε/^w0 4- e ( ^ / - D

> Π(u + εfu0) + F(u + efu0) + ε ( ^ / - D/-(C

We choose/to be the solution of the equation

Then/ > 0 and we get

^ ( w + efu0) > D(M + ε/w0) + F(κ + ε/w0).

Here we can prove that u + εfu0 > 0. If it is not true, there is the first time

t0 > 0 so that it fails to hold because u\t=0 ^ 0 and f\ί=0 > 0. By the

definition it follows that, at t0, (u + ε/w0) > 0, and there exist a point/? e M

and nonzero vectors Xo, Yo G T^M such that
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Thus we get, at/0,

We extend XQ, Yo to be vector fields such that dXJdt, v * 0 , dYQ/dt9 V7O = °
at (/0, p\ where V is the covariant derivative with respect to the Kaehler
metric at t0. Then, at (ί0, /?),

> [Π(u + ejuo)]{XO9TO9YO9To)

= D[(U + ε/ W o )(^ o , ^o , 70, ^ ) ] > 0.

This is a contradiction. Thus we get that u + ε/w0 > 0 for all sufficiently small
ε > 0, which means u > 0.

The proof of the last statement of the proposition is similar:

j((u -fu0) > Ώ(u-fu0) + F(u-fuo)+(-jtf+Πf-(C

We choose the function /so that

Then we get that u - fu0 > 0 by the above argument, and it is well known that
under the above condition,/is positive for / > 0 (cf. [6]).

Proof of Theorem 2. Calculating directly we get

ijkϊ = ^β^βR ijkΐ + R iaR ajkϊ ~~ R ajR iakϊ + RkocR ij'al ~ R afR ijka'
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For short, we write the above equation in the following way:

-~R = ΠR + F(R) - I Ric* R.

It is obvious that if R > 0 and Rp(X9 X, Y9Y) = 0 for some X, Y e TpM,
then (Ric* R)(X, X, 7, F) = 0. Thus to prove the theorem it is sufficient to
see that F has the property (#) .

Let R > 0 and X, Y e TpM be unit vectors such that R(X, X, 7, Y) = 0.
Then considering the second variation we get

R(X, X, Y', Ύ) + 2Re[^(ΛΓ, Ψ9Y, ~T) + R{X, Ίc , Y\ Ϋ)\

for all X\Y' e Γ^M.Thus

(##)
[\R{X,X',Y, Y')\+\R{X, X' ,Y',Y

,X,T, Y')R{X',X',Y,Y),

for all A", Y' e

f, J, Ei9 Tj)R(Ej9Έi9Y9 F)],

where {£f.} is an orthonormal basis of TpM.
We divide into two cases.
First case. X\\Y. In this case we can assume X = Y. Then,

F{R)(X, X,Y,Y)>Σ[-
ij
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By the symmetry we can choose {Ei} so that

K y A, LJ1 , A , tli I — U II I Ψ J.

Then,by(##),

F(R)(X, X, Y, F) > Σ [ - | Λ ( J f , E~n X, %)>[ +\R(X, X, Eit Έt)\
i

Second case. X tt Y. Because TpMis three dimensional, there is a unique unit
vector E (of cause unique up to constant multiplication) which is orthogonal to
* a n d 7. Then,

F(R)(X9X9Y,Ϋ)

> - \R(X9 E9 7, E)\2 + ΣR(*> *> Ei9 Tj)R(EpΈi9Y9 ?)9

where we used the fact that if one of the vectors in the expression R(X9 X9Y9Y)
is replaced by an arbitrary vector, it gives zero. We have two cases.

Case 1. R(X9 X, X, X) = 0 or R(Y9 7, 7, 7) = 0.
Case 2. R(X9 X, X, X) Φ 0 and Λ(7, 7, 7, 7) Φ 0.
Case 1 is easy, for example in the case R(X, X, X, X) = 0, we choose {£,.}

tobe{X\ 7, £:}.Then,

ΣR(*> *> Ei9 Έj)R(Ej9~Ei9Y9 Y) = R(Jf, Γ, JE, £")«(£, E9 7, 7),

F(Λ)( Jf, X, Y,Ϋ)> - \R(X9 E9 7, £ ) | 2 + R(X9 X9 E9 E)R(E9 E9 7, 7)

b y ( # # ) .
In Case 2 we argue as follows. By ( # # ) we get that for any complex

numbers s, t e C,

\R(X9 E9 7, E)\2 =\R{X9 £ ^ 7 7 , 7, £ ^ X ) | 2

< ^ ( ^ , Z, £ - 5X, JE- ,sΛr)^(£;- ίy, E- tY,Y,Ϋ).

Choosing s, t suitably, we get that

f, E9 7, ^ ) | 2 < [ϋ(Jf, X9 E9 E)-\R(X9 X9 E, X)\2/R(X, X, X, X)\

X[R(E9 E9 7, 7) -\R(Y, E9 7, Y)\2/R(Y9 Y9 7, 7 ) ] .
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We choose {Ei} to be {X, Y, E}, X = aX + bY.

ΣR{X, X, E,, ~EJ)R(EJ,
rEi,Y, Ϋ)

ij

= R(X, X, E, E)R(E, E, Y, Ϋ) + R(X, X, X', ~X)R(X\ ~X , Y, Ϋ)

+ R(X, X, E, Ίf)R(X, E, Y, Ϋ) + R(X, X, X, E)R(E,X7,Y, Ϋ)

= R(X, X, E, E)R(E, E, Y, Ϋ) + \ab\2R(X, X, X, X)R(Y, Ϋ, Y, Ϋ)

+ 2Re[abR(X, X, E, X)R(Y, E, Y, Ϋ)],

F(R){ X, X, T.T)>- [*(X. X, E, g) -

x [R(E, E9 y, F) - \R(E, F, y, Ϋ)\2/R(Y, F, Y, Y)\

+ R(X, X9 E, E)R(E, E, 7, F)

R(X9X,X9X) R(Y9Ϋ9Y9Ϋ)

X9 X9 E9 E)\R(E9 F, y, Y)\2/R(

R(X9 X9 E9 X)\2/R(X, X9 X, X)] R(E9 E9 Y9 Ϋ)

= R(X9 X9 E9 E)\R(E9 F, y, Y)\2/R(Y, F, Y9 F)

\R(X9 X± E9 X)\2 \R(E9 ^ Y9 Ϋ)\2

R(X9X9X9X) R(Y9Y9Y9Y)

We state several properties on the solutions of Hamilton's equation which
can be proved similarly. We always assume that the manifold M is a three-
dimensional compact Kaehler manifold and the initial metric has nonnegative
bisectional curvature, thus the solution metric remains so.

Proposition 2. For the solution metric at t > 0, if R(X, X, 7, F) = 0 with
some O ^ I J e TpM9 then R(X,τ, , F) = 0.

Proof. Extend X, Y to be vector fields as in the proof of Proposition 1.
Then, from the proof,

o = jt[R(x, x, Y,F)] = Π[R{X9 x9y,F)] + F(R)(X9 X97,F)

— — \ | 2
Σ\R{X,E,,EJ,Y)\.

Proposition 3. // the initial metric has quasipositiυe Ricci curvature then for
t > 0 the solution metric has positive Ricci curvature.
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Proposition 4. // the initial metric has the property (**) at some point then

for t > 0 the solution metric has the property (**) everywhere. In particular M

must be biholomorphic to either P3 or Q3.

Corollary. // M is biholomorphic to neither P3 nor Q3, then for every point

p e M there exists a nonzero vector X e TpM such that

(&) R(X, X, Y9 F ) = 0 forallY ±X,Y(ΞTpM.

Proposition 5. // the initial metric has a point p e M such that

R(X, X, Y9 F) + R(Y, F, Z, Z) + JR(Z, Z, X, X) > 0

for any orthonormal basis {X,Y, Z] of TpM, then the solution metric for t > 0

has the above property everywhere.

5. The classification

This section is devoted to the proof of the following classification theorem.

Theorem 3. Let M be a three-dimensional compact Kaehler manifold of

nonnegative bisectional curvature. If M has quasipositive Ricci curvature, then M

is biholomorphic to one of the following: P3, Q3, P1 X i>2, P1 X Pι X Pι.

Remark. It is known by [3] that in the above case the assumption of

quasipositive Ricci curvature is equivalent to positivity of the first Chern class.

Proof of Theorem 3. We assume, besides the assumption of the theorem,

that M is biholomorphic to neither P3 nor Q3. We understand that when we

mention metric, curvature and so on, we always mean those of a solution

metric of Hamilton's equation. Especially we have positive Ricci curvature and

property (&) is satisfied by some unit vector I G TpM for every/? e M.

We have two cases at each point p e M.

Case 1. The unit vector X e TpM satisfying (&) is unique up to constant

multiplication.

Case 2. The unit vector X e TpM satisfying (&) is not unique up to constant

multiplication.

First we look at Case 2. By Proposition 2, for such a unit vector X e TpM

we have that

,-, , F ) = 0 for all 7 _L*, 7 E TpM.

Let X' be another unit vector satisfying (&) which is linearly independent of X.

Then since d i m c TpM = 3, there is a unit vector Y such that

R(X9-9 , F) = R(X\-9 , F) = 0, Y ± X, X'.
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This means that Y also satisfies (&). Replacing X' by Y in the above argument,
we obtain an orthonormal basis {X,Y, Z} which consists of the vectors
satisfying (&). Moreover the orthonormal basis of such a property is unique up
to constant multiplication and every vector satisfying (&) is a constant multi-
plication of some element of the orthonormal basis. To see this it is sufficient
to prove the following fact.

Fact. Let {£,} be a fixed orthonormal basis which consists of the vectors
satisfying (&), and let X be an arbitrary vector satisfying (&). Then X is either
parallel or orthogonal to each Et.

In the above argument we have already seen that for each Ei there exists an
orthonormal basis {E^Y, Z} which consists of the vectors satisfying (&), and
X = aEt + bZ with some complex numbers a, b. Because bEt — aZ is orthogo-
nal to X, we get that

R(aEi + 6Z,T, , bEt - aZ) = 0, abR(Ei,~, , Et) = abR(Z,~, , Z).

Thus

ab*ic(Ei9 ~Et) = abR{Ei,~Ei,Ei, %) + abR(Ei9~Ei9Y9 Ϋ)

= abR{Z9Έi9Ei9Z) = 0.

Since Ricci curvature is positive, ab = 0, which is what we wanted to prove.
Thus by Proposition 5 we know that either Case 1 holds everywhere or Case

2 holds everywhere, and in both cases vectors with the property (&) are unique
in the appropriate sense. Here we can prove that in both cases such vectors
make differentiable distributions. To see this by the implicit function theorem
it is sufficient to prove that if X is a unit vector with the property (&), the
derivative of R( X,τ, , Y - ( 7, X )X) in the direction X' ± X is zero for all 7,
then X' is zero, where ( , ) is the inner product. Setting the derivative to be
zero we get that

^ , - , -(Y9X)X') = O.

Taking Y = X\ and substituting X, we have that

Using the positivity of Ricci curvature again we get that X' is zero.
Next we show that these distributions are parallel. If once we know this, we

can prove the theorem easily. Since M has positive Ricci curvature, M is simply
connected (cf. [9]), we can apply the de Rham decomposition theorem and we
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get that in Case 1, M is holomorphically isometric to Pι X N2 where P1, N are
equipped with the metrics of nonnegative bisectional curvature with positive
Ricci curvature, and in Case 2, M is biholomorphic to P1 X P1 X P1. Then we
apply Theorem A and get that iV is biholomorphic to either ? 2 or P 1 X P1.
This is the desired result.

The proof of parallelism of the distributions is actually the same in both
cases; we consider only Case 1. Since parallelism is a local property, we work
locally from now on. Let X e TpM be a unit vector with the property (&) and
7 e Tp M be an arbitrary vector orthogonal to X. We extend them to be vector
fields. Then we have at p that

0 = jt[R(X, X, Y, Y)] = [jt

R}(X> *> y> Y)

= [ΠR](X9 X, 7, Ϋ) + F(R)(X9 X9 7, 7) - | [Ric* R](X9 X, 7, 7)

>[ΠR](X9X9Y9Y)9

Q<Π[R(X9X9Y9Y)]

= [ΠR](X9X9Y9Y)+[vR](vX9X9Y9Y)HvR]{X,~VX9Y,Ϋ)

+ [VR](X9 X9VY9 7) +[VR](X9 X9 7, ~V7) + R(πX9 X9 7, 7)

+ R(X9 ΏX9Y9 7) + R(X9 X9ΠY9 7) + R(X9 X, 7, ΠY)

VX9 ~VX, 7, 7) + Λ( V*, J , V7, 7) + R(vX9 X9 7,

+ Λ(X, ~VX9VY9 7) + u(jr, ~VX9 7, VT) + Λ(^, X9VY9

[vΛ](VI, ΐ , 7, 7) +[vR\{X9 ~VX9 7, F) +[vR](X9 X9VY9 F)

, 7, vT) + Λ(vX, ~VX9 7, F) + ^ ( l , X9VY9 V T ) ,

where the repeated V means the summation over real orthonormal basis, and
we used the fact that R(X,~, 7 , τ ) = 0 which is implied by ( # # ) and (&).
The above inequality holds for any extensions X, 7; thus if one of the vectors
in the expression [vR]{X, X9 7, 7) is replaced by an arbitrary vector, we get
zero.

Next we choose X as a vector field satisfying (&) at each point and 7 as any
vector field which is orthogonal to X at each point. Then we get that for any
vector field Z,

0= v[R{Z9X9Y9Ϋ)\

= [VR](Z9 X9 7, 7) + R(VZ, X9 7, 7) + R(Z9 ~VX9 7, Ϋ)

, X9VY9 7) + R(Z9 X9 7, ~Ϋ7).
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We know that, except R(Z, vX, Y, Y), all other terms vanish; thus
R(Z,~vX, y, Ϋ) = 0 for any vector Z, and any vector Y ± X.

Let Wbe the orthogonal projection of vX to the orthogonal complement of
the space generated by X, and {X, Y, Z} be the orthonormal basis. Then

, W ) = R{W, W, X, X) + R{W, W, 7, F) + R(W, W, Z, Z)

= 0.

We get that W = 0. This means that X gives rise to a parallel distribution.
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