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0. Introduction

There are a number of interesting problems and results which involve being
able to compute Koszul cohomology groups; for example, the local Torelli
problem, understanding the canonical ring of a variety of general type, Petri's
work on the ideal of a special curve, Mumford's projective normality theorem,
and Donagi's work on the global Torelli theorem for projective hypersurfaces.

Received by the editors June 6, 1983. The research was partially supported by N.S.F. Grant

MCS 82-00924.



126 MARK L. GREEN

Unfortunately, there seem to be fewer ways to compute Koszul cohomology
groups than reasons to compute them. It seemed fruitful to try to find a few
techniques which would make it easier to approach these problems.

For V a finite dimensional complex vector space, S(V) the symmetric
algebra over F, and B = ®qEZ Bq a graded S(F)-module, we have the Koszul
complex

(0.1) /\p~xV®B
q+x

The Koszul cohomology groups are defined by

If we have a minimal free resolution

(0.3) - 0 MUq ® S(V)(-q) S(V)(-q) - B - 0,

then a well-known result is the Syzygy Theorem (l.b.4)

(0.4) %Ptq(BiV)^MPfP+q(BiV).

The situation we will study in this paper is

X a compact complex manifold,

L -> X an analytic line bundle,

-> Λ' a coherent analytic sheaf,

Γ c /f °(*, L) a linear subspace.

(0.5)

We then take

(0.6) B= (&Hi(X,$®qL), V=W

and denote

(0.7) p,q pj

with the conventions
(1) If 9= Θx(El we write %^q{X, Ey L, W\
(2) If §"= 6^, we suppress it and write 9Ĉ  q(X, L, ίT).
(3) If W = H°(X, L\ we suppress it and write %ι

p,q(X, Φ9 L).
(4) If / = 0, we may suppress it and write %Ptq(X9 &, L, W).
By Serre Duality, we have

(o.8) %lq{x, E, L, wy - %n^w^.q{x, κx ® E; L, W),
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where dim X—n. There is the spectral sequence for Koszul cohomology which
abuts to zero and has

(0.9) E{« = %lp%k+p(X999L9W)9

where k is a constant. A consequence of this is the Duality Theorem (2.C.6)

(0.10) %p^X, E9 L9 W)* - %r_n^n+λ_q{X, Kx ® E*9 L,

where dim A" = « and dim W— r + 1, provided that

(0.11) W c # ° ( * , L) is base-point free

and

Hi{XE^{i l)L) = 0, for/= 1,2,

Note that the hypothesis (0.12) is vacuous when ^ is a curve. When X is
Kahler, W is base-point free, and dim<pmL(X) — n for some m > 0, then we
have(2.c.lθ)

(0.13) 9C, t,(*, ̂ , L, W)* - 3 C r _ n ^ t l l + 1 . ^ Jf, L, ΪF)

for q > n + 1, and, if either AZ = 1 or h^n~\X) = 0, for ήr = Λ, as the
hypothesis (0.12) of the Duality Theorem holds by Mumford's variant of the
Kodaira Vanishing Theorem. In particular, when the hypotheses of (0.13) hold,

(0.14) %r^^x(X9KX9L9W)^C.

The Theorem of the Gaussian class (2.b.9) shows that the geometrically defined
Koszul class, the Gaussian class or extrinsic fundamental class

yE%r^^ι(X9KX9L9W)

defined using the tangent planes to φL(X)9 is a generator provided dimφL(ΛΓ)
= n.

In §3, there are three computational results. The Vanishing Theorem (3.a.l)
says

(0.15) %Ptq(X9E9L9W) = 0 if H°(X9E®qL)<p.

Although this is an elementary result, it has turned out to be quite useful,
especially in tandem with the Duality Theorem. The "Lefschetz Theorems"
relate the Koszul cohomology of a variety X and a smooth hyperplane section
X Π H\ the main result (3.b.7) is that

(0.16) %p%q(X9L)*%p%q(XΓ<H9L)

if X Π H is connected and

(0.17) Hl(X,qL) = 0 for all q>0.
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The hypothesis (0.17) is true for ample bundles on varieties X of dimension > 2
with Kx ^ 0, so (0.16) holds for K — 3 surfaces, Fano 3-folds, etc.

In many ways, the most delicate result we prove here is the %pλ Theorem
(3.C.1), which says that if m = dimφ^A') and h°(X, L) = r + 1, then

(0.18) %pΛ(X9L) = 0 for/? > r - m ,

(0.19) %r_mΛ(X, L) = 0 unless φL( A") is an m-fold of minimal degree,

(0 20) % (X L) = oί
\ ) r-m-\Λ > ) jlies on an (m + l)-fold of minimal degree.

In order to prove (0.20), we need the Strong Castelnuovo Lemma (3.C.6) that if
Pl9 9Pd are points in general position in Pn, then

(0.21) Λ,; Λ l i e o n a ^ % • , . . . , P J # 0 .
rational normal curve

When r + 4 < d f ^ 2 r + 2, this is stronger than Castelnuovo's Lemma.
One application of the Vanishing Theorem and the Duality Theorem is

(4.a.l), which says that for a smooth curve C of genus g and an analytic line
bundle L -> C of degree d9

(0.22) <PL(C)
 i s projectively normal if d > 2g + 1,

(0.23) I*{<PL(C))
 i s generated by quadrics if d ^ 2g + 2,

the syzygies in /*(φL(C)) are

(0.24) generated by those of the form

24-β,. = 0, degL,. = 1 if d> 2g + 3,
i

etc. Here (0.22) is Mumford's projective normality theorem, (0.23) was proved
by Saint-Donat and Fujita, and the statements about syzygies are new.
Actually, (4.a.l) says more, and in conjunction with an existence result (4.a.2)
of F. Schreyer gives a fairly good picture of what a minimal free resolution of
the ideal sheaf of φL(C) looks like for d large relative to g. For varieties of
higher dimension and sufficiently ample line bundles, there is a similar result,
the Theorem of the Top Row (4.a.4).

The Arbarello-Sernesi module of X, L is the S(H°(X9 L))-module
®qez H°( x> κx ® ? L ) I f I L I i s base-point free and dim φL( X) = dim X = n9

we show in Theorem (4.b.2) that, with certain exceptional cases, the Arbarello-
Sernesi module is generated in degree < n — 1 and its relations are generated
in degrees < n. Petri obtained this result for curves in the case when L is
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special; however, this hypothesis is unnecessary. If L — Kx, we obtain Theo-
rem (4.C.1) about generators and relations of the canonical ring of a variety of
general type.

The Hx Lemma (4.d.l) and its improvement (4.d.7) deal with the question of
when the map

(0.25) Hι(X9 E) -> Hom(W, H\X, E <S> L))

induced by cup product is iηjective, where E -> X is an analytic vector bundle
and W C H°(X9 L) is a linear subspace. One version is that if L ^ Lx ® L2

<8> '--®Lk9 W=H°(X,Ll and

(0.26) the base locus of each | Li | has codimension > 2,

(0.27) h°(W9 E ® L ® Lt) < λ°(*, L, ) - 2,

then (0.25) is injective. From this, one obtains a Local Torelli Theorem of Kii
(4.d.9) and splitting lemmas (4.d.l 1), (4.d.l2).

For L -* C and M -* C analytic line bundles over a smooth curve and
W C H°(C, L) a base-point free linear system, the i/° Lemma (4.e.l) states
that the multiplication map

(0.28) WΘ //°(C, M) -> ̂ °(C, L β M)

is surjective if

(0.29) / / ι ( C , M < S ) L - 1 ) ^ d i m ^ - 2 .

When dim W = 2, this is the base-point free pencil trick. The Explicit H°
Lemma (4.e.4) states that

H°(C9 L) 0 H°(C9 M) - H°(C9 L®M)

is surjective if \L\ is base-point free, deg L < deg M, and either deg L +
deg M > 4g + 2 or deg M = 2g + 1, deg L = 2g, extending a result of Mum-
ford.

For L -* X a. sufficiently positive line bundle, we obtain from the spectral
sequence for Koszul cohomology the interesting representation (4.f.l)

(0.30)

for the Hodge groups of a projective variety, involving only holomorphic
sections of analytic line bundles.

Finally, there is a section on open problems and an Appendix. In the
Appendix, which is joint work with R. Lazarsfeld, it is shown that on a
compact complex manifold X with analytic line bundles M, -> X, i = 1,2, and
h\X9Mi) = ri+ l,η> 1, then

(0.31) X Γ i + Γ 2 _ u ( * , L ) ^ 0
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In particular, this proves one direction of the Noether-Enriques-Petri conjec-
ture.

The results of §§1 and 2, with the possible exception of the Theorem of the
Gaussian Class, are classical-so classical, indeed, that I could not find out to
whom they should be attributed.

The author is grateful to Ron Donagi, David Eisenbud, Phillip Griffiths,
and Robert Lazarsfeld for some extremely helpful discussions. Especially
useful was a small seminar in which this work was presented for the first time,
which was of tremendous help to me; I wish to thank all the participants, Koji
Cho, Ron Donagi, Phillip Griffiths, Stefanos Pantazis, Igor Reider, and Wu
Xian.

1. Algebraic preliminaries

(a) The Koszul cohomology groups. We will consider

k afield,
V a finite-dimensional vector space over k,
S(V) the symmetric algebra on V,

B= φBq a graded S(F)-module.

In this situation, there is a Koszul complex
Vi,Π dP,q

. . . _> /\ p + 1]/(g) β _ 1 • Λ PV <8> B ->

(l.a.2)

constructed as follows. Let i E V* ® V be the identity element. There is a
natural contraction map

dual to the exterior product map Λ p V* ® F* -> Λ PV*. Given the multipli-

cation V ® Bq^>Bq+U we define dpq by the commutative diagram:
(JO® Id

(l.a.4)

Since

APV L ° L>/\P~2V® S2V
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is the zero map,

0 a.5) </,- u + 1 orf M = 0.

So (l.a.2) is a complex. We note that in defining dpqy we are using the
convention

(l.a.6) Λ ' F = 0 if/><0or/>>dimF

and that (l.a.5) continues to be true.
Definition. The Koszul cohomology groups of B are

ker dD a

By the convention (l.a.6), we have automatically

(l.a.8) 3Cp^(Jϊ, K) = 0 if/?<0or/>>dimF.

A standard fact about the cohomology of complexes implies that for any m,

(l.a.9) 2 (-DPdimk{%pjB>V))= 2 (-l
p + q=m p-\-q—m

Consider

V\V2 finite dimensional vector spaces over k,

B\B2 graded S{ V{)-, S( V2)-modules respectively,

Vx -+V2 a linear transformation,
(l.a.10)

S( Vλ) -* S( V2) the map induced by L on symmetric algebras,

L
B -*B a linear transformation preserving the gradings.

We will say (L, L) is a morphism of graded modules if

(l.a.ll) L(Λ) L(b) = h b for allΛ 6 ^ ( F 1 ) , b

For such a morphism of graded modules, the map

/\pL®Lq

Λ ^ F 1 0 5^ > Λ PV2 0 5^2

descends to Koszul cohomology to give a map
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which is the^induced map on Koszul cohomology and has the functorial
property (ίΓ°Λ?\ = L* o M r If F 1 = V2 = Fand L = Id we have

(l.a.13) 3C M (Λ ' ,K)-3C M ( i ϊ 2 ,K)

and this notation will always assume L — Id unless it is indicated otherwise. In
this case, the condition (La. 11) is just that L is a grading-preserving graded
S^KJ-module morphism.

(b) Syzygies. Returning to the general situation (l.a.l), assume that B has a
minimal free resolution of the form

(l.b.l) - 0 S(V)(-q) β M u - φ S(F)(-^) ® MOj? - 5 - 0 ,

where the Mp g(B9 V) are finite dimensional vector spaces over k. Such a
resolution exists provided:

(1) dimk(Bq) < oo for all q.
(2)qGZ\Bq^0) is bounded from below.
Definition (l.b.2). The syzygies of order p and weight q for the 5(F)-module

B a r e M ^ ^ K ) .
Alternatively, these are defined inductively as follows:

MOq(B,V) = generators of degree q for B as an

S(F)-module,

Mλ q{ B, V) — primitive relations of weight q

0 b 3 ) for B as an S(F)-module

M2 q(B,V) — primitive syzygies of weight q among

the relations for B,

These are to be interpreted as follows. If JCJ, x2,. . are generators for B with
deg xt = eh then a relation of weight # among the generators is one of the form

A primitive relation of weight q is one that is not an S(F)-linear combination
of relations of lower weight. If Σ, MJX, = 0 are a basis for the primitive
relations of weights ev respectively, a syzygy of weight q is a relation of the
form

2 wX = 0 for all /, with wv E S9~e'(V)
V

and so on inductively.
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Theorem (l.b.4). As vector spaces over k, %p%q(B, V) - Mpp+q(B, V).
Prnnf. We needProof. We need

or equivalently that the complex

is exact unless / = 0 when the complex reduces to 0 -> S°V -» 0. This is well
known (see [3]); it follows from the same proof as the usual Poincare Lemma
when one dualizes the complex.

Consider the bigraded complex

Λ PV ® 0 (skV ® Mqj-p-k)9 q>0,

0,

where d E Z is fixed. As maps, we take

d

where for q^O, d comes from the complex (l.b.6) and for q — - 1 , d is the
map from (l.a.2), while δ is Λ ~PV tensored with (-l)p times the degree
(d — p) terms of the minimal free resolution (l.b.l). Note d2 — 0, δ 2 = 0, and
dδ + δd= 0. There are thus (see [8]) two spectral sequences Έ , "E abutting to
the cohomology of the total complex with

-) = 0 for aΆp9q9

= ]M_qtd(B9V)9 q^09p = 0,

0, otherwise.

We have

dr?P*1 J> "£P-(r-\''£p-(r-\)>q+r

The maps

M_qjB9V)tM_q+ud(B9V)
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are zero by minimality of the resolution (l.b.l), and thus the only nonzero dr's
are

dq+χ

Since "E™ = 0 for all/;, q as Έx = 0 and Έ9 E" have the same abutment, we
conclude dq+} is an isomorphism, so

(l.b.10) MqjB9V)^l%qd_q(B9V) for all <7^0

which completes the proof.
Remark. It is possible to make the isomorphism of Theorem (l.b.4) more

explicit by expressing the intrinsic part of the maps in the minimal resolution
(l.b.l) in terms of the %pq(B,V). One small fact along these lines we will
want later is that the multiplication map

(l.b.ll) %pJ<B,V)®SkV^%pq+k{B,V), k>0,

is zero. Since it is clear from the definition of the Mp q's that the multiplication
map

MPtd(B,V)®SkV-+MPιd+k(B,V), k>0,

is zero, we notice from the proof that if we tensor the bigraded complex (l.b.7)
by SkV, we get a commutative diagram

MPtd(B, V) ® SkV ^ ^ %p,d-p(B, V) ® SkV

Mp,d+k(B,V) —^—> %Ptd+k-p(B,V)

and so conclude (l.b.l 1).
(c) Cohomology operations. If B, C are graded 5(F)-modules, there is a

natural map

(l.c.l) {/\PΎ® Bq) ® (Apψ® Cqi) ^

by wedging on the first factors and tensoring on the second. This descends to
Koszul cohomology to give the cup product map

(lx.2) %pιjB, V) 9 %P2JC, V) ^%Pι+P2,qι+q2(B 9 C, V).

If B is a graded S(F)-algebra, we have S(F)-module map B ® B -> B from
multiplication. By (l.a.13), this induces a map on Koszul cohomology
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which composed with (l.c.2) yields the cup product map for a graded S(V)-
algebra

If B is a commutative algebra, we have

where aie%PιJB,V).
It is also possible to define Massey products. If α, G %p (B, V\ i— 1,2,3,

and

then we can write

( I c 6 ) β ' Λ ^ =

and

(l.c.7) rf/1+,i+/,+i.,I+ft+ft-i(«i Λ T + (-1Γ + IP Λ «,) = 0,

so we get an element

(l.c.8) «, Λ T + ( - l ) " + 1p Λ «3 e 9C/,1+,2+,3+,.,I+ί2+,3-I(tf, F ) .

Choosing different p and T changes this element by something in

so we obtain a well-defined element

(l.c.9) M(aλta2,a3)E%

where

,V) = ({%PIJB,V) U

(d). The spectral sequence relating Koszul cohomology groups of an exact
complex. Let B' be a complex of graded 5'(F)-modules with maps preserving

the gradings

(l .d. l) 0 -> Bx -* B2 -* ΰ 3 -> > Jβ
/ ι~ 1 ^ ^ w -* 0.
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Consider the bigraded complex of

CP>«= Λ ' - * F ® 3 f , /fixed,

with maps

where d comes from the complex B' tensored with Λ ι qV and δ comes from

{-\)p times the map for the complex (l.d.l) for each fixed p. Thus d2 — 0,

δ 2 = 0 and dδ + δd — 0. So we obtain two spectral sequences Έ, "E abutting

to the cohomology of the total complex with

r ft) = %ι-q,q(B<>9 V),
ffEf^ HS(A ' « ) = /\ι~qV®Hp(B'q).

If the complex B' is exact, then "E{« = 0 and thus Έ™ = 0. Thus we have

Proposition (l.d.3). Le/ B' be an exact complex of graded S(V)-modules

where the maps preserve the gradings. Then there is a spectral sequence with

that abuts to zero.

Corollary (l.d.4) (Long Exact Sequence for Koszul Cohomology). If 0 -> A

-> B -> C -> 0 w a short exact sequence of graded S(V)-modules with maps

preserving the gradings, there is a long exact sequence

• - 9CU-I(Λ, v) - %Uq.x(B9 v) - gc.^.ίc, F)
( • " j - 9Co.,(i4, K) - 9Cot,(Bf F ) - gCot,(C, K) - 0.

Proof. The only nonzero c/r's are the

^,,(^1, V) d±%p,q{B, V), %ptq{Bt V) t%pq(C, V),

from which the long exact sequence follows.
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2. The Duality Theorem

(a) Transition to the setting of complex manifolds. The constructions of §1
will be of interest to us primarily in the case

X a compact complex manifold,
L -> X an analytic line bundle,

^ a* ' I ̂  a coherent analytic sheaf of Θ ̂ -modules,

WCH°(X,L) a linear subspace,

where we take

(2.a.2) V=W9 B= (&H°(X,<$®6x(qL)).
q<ΞZ

Our basic notation will be

(2.a.3) %^q(X999L9W) = %p%q(B9V)

with the further notational conventions:
(1) UW= H°(X, L), we will drop the JΓand write %^q(X, Φ, L).
(2) If f = Gx(E)y where E -> X is an analytic vector bundle, we will write

%'Ptq(X9E9L9W).
(3) If f = Gx, we will drop the ̂ and write %ι

pq{ X, L, W).
(4) If i = 0, we will drop the i and write %D ΪX, f, L, H )̂.

If X -> y is an analytic map, and

we have the pullback maps

H°(Y9LY)CH°(X9LX)9

If Wx — f*Wγ then by (l.a.12) there is an induced pullback map on KoszGl
cohomology

yΔ.d.'f) j\,pqyi, jy, x^y, wγ) -* JυpqyΛ, jχ, ±^x, wx)

and also

%lq{Y,%,LY)^%lq{X,%,Lx),
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where in all cases

(2.a.5) (g°/)*=/*°g*.

We can apply Theorem (l.b.4) to the situation (l.b.l) provided that

(2.a.6) H*(X9 %® 6x(qL)) = 0 for q sufficiently negative.

Condition (2.a.6) holds if L is ample, and we will assume henceforth that
(2.a.6) holds. If so, then

= generators of the S(W)-module 0 H\X9<g® <Sx(qL))
qEZ

of degree d9

- primitive relations of weight d + 1 among the generators
Λ'Ί) oftheS(W)-module 0 H^X^® Qx(qL))9

qEZ

Hid{X,$,L,W)

= primitive syzygies of weight d + 2 of the S(W)-module

®H'{X,9®ex(qL)),
qEZ

or in general

%p (X, φ, L, W) - primitive pΊh syzygies of weight d H- p

( 2 a 8 ) oftheS(W)-module 0 H^X^® Qx(qL)).

qEZ

Φ w

We denote by X ->V(W*) the rational map defined by the linear system W

when the base locus of JΓ has codimension > 2, and

XΨSP(HO(X9 L)*)

the map ψw when W — H°(X, L). In view of the equivalence

[is onto for all q > 2 /**[-» # ° ( * . ί L ) i s o n t o f o Γ a 1 1

we see that

(2.a.9) \L\ isprojectively normal ++%Oq(X, L) = 0 \fys* 1.
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We denote

(2.a.lO)

the ideal of φL(X) in P(//°( X, L)*). If | L | is projectively normal, we have the
short exact sequence of graded modules

(2.a.ll) 0 - / ( φ L ( * ) ) - S(H°(X, L)) - 0 H°(X, qL) -> 0

and thus by comparing minimal free resolutions of I(φL(X)) and
Θ^0//°(X,?L),wehave

Mp_Uq(l(ψL(X)),H°(X,L))

( 2 ' a ' 1 2 ) - MpJ 0 7/°(ΛΓ, ίL), // 0(*, L)\
X q^O J

for ILI projectiυely normal Thus

C2 ( X, L) = primitive relations of weight q + 2

, v . among the generators of the S( H°(X, L ))-
^z.a.13^ •*

module I(φL(X)),

for ILI projectively normal.

In general, if ^ is a coherent analytic sheaf of Θp-modules on a projective
space P = P(F*) and B = ®qGZ H°(P, Φ(q)) then

• - 0 Mλq{B, V) 0 ep(-q) - 0 MOf^(B, V) β 6pU)
(2.a.l4)

is called a minimal resolution of W by free 6,,-modules; the fact it is a
resolution is a consequence of Theorems A and B. Thus in particular

Theorem (2.a.l5). Let X be a compact complex manifold, L -> X an analytic
line bundle, andiψL{X) the ideal sheaf of φL(X) in P = P(H°(X, L)*). If\L\ is
projectiυely normal, then

(2.a.l6) q>0

is a minimal resolution ofίφ^X) by free Qp-modules.
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A few elementary properties of the Koszul cohomology groups in this setting
are

(2.a.l7) % ρ < q ( ρ q

(2.a.l8) %pq{X,L,W) = 0 if q< 0 for L not the trivial bundle,

(2.a.l9) %pQ{X,L,W)=[C ύP = °'
p' 10 otherwise,

(2.a.20) %p\q(X, E, L, W)* - %^w^_q(X, Kx ® E\ L, W),

where dim X = n.
Property (2.a.l7) is clear from the definition. Property (2.a.l8) follows

because we cannot have both H°(X, L) ψ 0 and H°(X, qL) = 0 for some
q<0 unless L is the trivial bundle. Property (2.a.l9) follows because by
definition

%pfi(X9 L,W) = keτ(ΛpW-*Λ*>-ιW® H°(X9 L))

which is 0 if p Φ 0 and C if p = 0. Finally, (2.a.20) follows from Serre duality
and the fact that

f(sa)Λβ= (aΛ(sβ)
Jv Jv
JX JX

for s £ H°(X, L), a G &°'\X, E ® qL) and

for then under Serre duality the Koszul complex

*AP+λW®W{X, E®{q- \)L) ̂  AW® H'(X, E ® qL)

->A"-χW®Hi{X,E®{q+ \)L)

goes to

H"-'(X, Kx® E* ® (-1 ~q)L)

^'iX, KX®E*® {-q)L)

H"-'(X, Kx® E* ® (1 ~ q)L)

which, tensored with Λ d i m w W and contracting, gives the Koszul complex

> /\
dimiV-i'+iW® H"-'(X, Kx® E* ® (-1 - q)L)

-* A dimW-PW®H"-i(X, KX®E*® (-q)L)

-» AdimW~P- 1W®H"-'(X,KX®E*®{1 - q)L) ->•••.



KOSZUL COHOMOLOGY 141

(b) The Gaussian class. Let s0, sl9- -,sr be a basis for W c H°(X, L) and
e0," -9er the dual basis for W*. There is a natural element

yp(X9L9W) e Λ '+V*<8>//

defined by
dim Λ' r

Ίp{X,L,W)= 2 Σ
Jι' jp=l ' ι . . '

zf- 3z,
71 72

Λ . . . Λ 4
7^

where z,, 9zn are local coordinates on X. If we regard

s =

as a section of W* ® L, then

dim X Λ ^

(2.b.2) yp(X,L,W) = 2 ί Λ Γ " Λ " § Λ Γ " ί f e ; ι Λ l

A more intrinsic representation of yp(X, L, W) is to let

dsE W*®L®tiι

x mods,

where ds is defined mod s because, if in local coordinates, sa = £ α β ^ then

βs

a = ^9 | Λ)J^ H" ζ dsβ

and thus 9»y transforms as a W*-valued section of Ω^ ® L modulo s. Then

(2.b.3)

/? times

Under the (noncanonical) identification

(2.b.4) Λ r +

there is an isomorphism

(2.b.5) ΛkW*^Λr , Vk
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so that we may consider

(2.b.6) yp(X9 L) E Λ r~pW® H°{X, Ώp ® (p

Under (2.b.5), the map

Ap~ιW* -* ΛPW* ® L

is dual to

' t Λp~λW®L

so that

ιΔyp(X9L9W) = 0

and thus we obtain an element

(2.b.7) yp(X9 L9 ΪF) E 9C r-P f^+ 1( Jf, OJ, L, ΪF)

called the Gaussian class of order p of X, LΛίp — n, we obtain

(2.b.8) y = yne%,_Htn+ι(X9KX9L,W)

which we call simply the Gaussian class of X, L, or the extrinsic fundamental

class.

Theorem (2.b.9) (Theorem of the Gaussian Class). If W is base-point free, X

is Kάhler and

(2.b.lO) dimψmL(X)>p forsomem>0,

then

(2.b.ll) yp(X9L9W)*O

as an element of%r_p p+ι(X, Ω£, L, W).

Proof. ltyp(X9 L,V) = 0, then

s Λ ds Λ Ads = s Λ a

for some a G Λ PW* ® H°(X, Ω^ ® /?L). If we choose a lifting

(2.b.l2) g E F ^ β°(x, Qι

x ® L)

so g = 3j mod j , then

(2.b.l3) dg = As9

where

(2.b.l4) AE&0Λ(X9Q
ι

x)
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is a representative of the extension class of the first prolongation bundle of L,
and hence of the first Chern class cx(L). We have 5 Λ g Λ Λg = ί Λ α so

g Λ g Λ Λ g - o = ί Λ £ , , £ , 6 Λ p~ ιW* ® &°(X, Ω£ ®pL).

Then taking θ of both sides,

or

pAs Λ g Λ Λg = s Λ dEx.

Thus

/?Λg Λ Λg - 3£, = s Λ £ 2 ,

E2E ΛP~2W* ® &0Λ(X9Q$® (p -

Taking θ of both sides and rearranging as before, we get

p(p- l)sΛA ΛA ΛgΛ ••• Λg = .y

Continuing inductively, we obtain

(2.b.l5) ^

p times

from which we conclude

(2.b.l6) ^

However, as a (1, l)-form on X, cλ{L) is proportional to the class represented
by φ*L of the Fubini-Study form on P(H°(X, mL)*) for any m > 0, and thus
/\pcx(L) is > 0 point wise and positive somewhere if dimφL(Λr) >/?. This
contradicts the assumption γ̂ ( X, L, ϊΓ) = 0. q.e.d.

Corollary (2.b.l7). / / f C H°(X, L) is base-point free, and X is Kάhler
then dimφ^CΛ") = dim φmL(X) for any m > 0.

Proof. If/? = dimφ^ί^), then

Thus

by the proof of (2.b.9). Hence

dim φmL( X) < p for all m > 0.

/? + 1 times

yp+x(X9 L9W)=s Λ/θ77Γ^. Λ3i = 0.
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So

dim ψmL( X) < dim ψw( X) for all m > 0

while the opposite inequality is automatic.

(c) The Duality Theorem. There are two main results:

Theorem (2.C.1). Let X be a compact complex manifold of dimension n and

L -> X an analytic line bundle. Assume

(2.C.2) W c H°( X, L) is base-point free

with dim W = r + 1 and

(2 c 3)
H i { X { i ) L ) 0 ί = l , 2 , , π - 1.

Then

(2.C.4) ^ _ ^ + 1 ( X , ^ ,

and furthermore, if

(2.C.5) dim ψmL( X) — n for some m > 0,

then the Gaussian class is a generator.

Remark. By a generalization of Mumford's variant of the Kodaira Vanish-

ing Theorem (see [5]), the hypothesis (2.C.3) is implied by (2.C.2) and (2.C.5) if X

is Kahler.

Theorem (2.C.6) (Duality Theorem). Let X be a compact complex manifold

of dimension w, L -» X an analytic line bundle and E -» X an analytic vector

bundle. Assume

WCH°{X,L) is base-point free

with dim W = r + 1 and

c # ' " ( * , £ ® ( g - ί)L) - 0, i = 1,2, ,π - 1,

j y ( J f , £ ® ( ϊ - ι - l ) L ) = O, I = 1 , 2 , , / I - 1 .

Then

(2.C.8) 9CPt,( Jf, £ , L, W)* - ί J C , . ^ ^ , . ^ Jf, ^ 0 E\ L, W).

Under the further assumptions (2.C.3), the duality is given by the cup product map

%Pfq(X, E, L, W) ® %r_n_p n+λ-q{X, Kx 0 E\ L9 W)

(2.C.9) u

which is then a perfect pairing.
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Corollary (2.C.10). Let X be a compact Kάhler manifold of dimension n and

L -* X an analytic line bundle. Assume

(1) W c H°(X9 L) is base-point free and let dim W = r + 1,

(2) dim φmL( X) = n for some m>0.

Then

(2x.ll) %p9q(X, KX9 L, W)* - %r_n_Pfn+ι_q(X, L, W)

ifq>n+\.If either n = 1 or Hn~\X, βx) = 0, then (2.C.11) also holds for

q = n.

Remark. If (1) and (2) hold, we thus conclude the cup product (2.C.9) is a

perfect pairing.

Proof of Corollary (2.C.10). Under our hypotheses, by Mumford's variant of

the Kodaira Vanishing Theorem (see [5]),

Hi(X,kL) = 0 f o r f c < 0 a n d / < r t - 1,

and thus by Serre duality

Hi(X9Kx<SιkL) = 0 for A: > 0 and / > 0 .

Thus if q ̂  n + 1 or, if Hn"\X9 Qx) = 0ϊoτq = n, the cohomology hypothe-

ses (2.C.7) hold, so the Duality Theorem applies, q.e.d.

The main element of the proof of the two theorems is the following result.

Theorem (2.C.12) (The Spectral Sequence for Koszul Cohomology). Let X be

a compact complex manifold of dimension n, L -> X an analytic line bundle and

E -> X an analytic vector bundle. Assume

WQH°(X,L) is base-point free.

Then for any k E Z, there is a spectral sequence E^q abutting to zero with

(2.C.13) Ei-" = %^k+p(X,E,L,W)

and with maps

(2.C.14) E^q^EP+r^-r+x.

Proof of Theorem (2.c. 12). Consider the bigraded complex:

(2.C.15) Cp>q= ΛpW®&°>q(X9 E®(k-p)L).

The rows of (2.C.15) are obtained by taking global β°°(0, q) forms of the

sheaf Koszul complex

>Λp+]W®E®(k- 1 - p ) L -* ί\pW ® E ® (k - p ) L
(2.C.16) /\P
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which is exact if W is a base-point free linear system. Since β 0 0 forms are fine
sheaves, the rows of (2.C.15) are exact.

The columns of (2.C.15) are f\pW tensored with the Dolbeault complex.
Associated to this bigraded complex (see [8]) are two spectral sequences with
the same abutment. One of these spectral sequences has as Eλ term the
cohomology of the rows, hence is zero. The other spectral sequence has Ex term
the cohomology of the columns, hence has

Ep,q= A-pW^H^(X, E®(k+p)L).

The d{'s are just the maps of the Koszul complex, so

and the d/s go as indicated. This spectral sequence abuts to zero because the
first one does.

Proof of Theorems (2.C.1) and (2.C.6). As a corollary of the theorem just
proved, we see that

(2.C.17) %;+n+Uq_n_i(X, E, L, W)d-^%lq(X, E, L, W)

is defined and an isomorphism provided that

g c ; + / + u _ , _ 1 ( * , E , L , » 0 = 0, ι = l , 2 , , ι i - l ,
(2.C.18)

%^itq^(X9E9L9W) = 09 ι = l,2,- . , / i - 1.

In the situation of Theorems (2.C.1) or (2.C.6), the hypotheses (2.c.3) or
respectively (2.C.7) imply (2.C.18). Now by (2.a.l7) and (2.C.17), we have

%lq{X, E, L, W)* - %?_H_p<n+ι_q(X, Kx ® E*, L, W)

for Theorem (2.C.6) and, specializing,

χfi(χ9 L,wy - %r-n,H+x(x> κχ> L^w)
for Theorem (2.C.1), and by (2.a.l6),

To see that the cup product map (2.C.9) gives the duality in case both (2.C.3)
and (2.C.9) are true, let

and let

ά e ί\r~"~pW®H°(X,Kx® E*®(n+ 1 - q)L,W)

represent a. Because ά is holomorphic and ί J ά = 0, we have da = 0, δά = 0
and thus tracing through the spectral sequence

for β E%pq{X, E, L,W).
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Thus we have the commutative diagram

(2.C.9)

%,-H-p%κ+ί-,(X, Kx ® E\ I, W) ® %ϊ-n-p,n+]-g(X, Kx ® E , L, W)^^H"(Xi Kx)

X-Λ-p.Λ+ι-q(x, κx ® £*, L, w) ® %p%q(x, E, i , H O ^ - , , - , , , , + , ( * , **, L, w)

which shows the cup product gives the duality.
Finally, the statement that the Gaussian class is a generator of

%r_n-p n+\(X, Kχ> L, W) is a consequence of (2.b.9).

3. Computational techniques for Koszul cohomology

(a) A vanishing theorem. We want to prove
Theorem (3.a.l) {Vanishing Theorem). Let X be a compact complex mani-

fold, L -> X an analtyic line bundle, W C H°(X, L) a linear subspace, and
E -* Xan analytic vector bundle. Then

(3.a.2) %Ptq(X9E9L9W) = 0 ifh°{E®qL)<p.

Proof. Let Pλ, P2, , Pr +, be generic points of X, and choose s 1, 52, , sr+ x

a basis for W so that

(3 a.3) si(PJ) = δiJ.

If α e Λ ^ ^ ® H°(E <8> ̂ L) we may consider, if dim W = r + 1, that

and then the condition t Jα = 0 becomes

(3.a.4) j,αy , +^y«, , , H- + s f α, , = 0 .
V ' l\ ' 2 ' * ' ' >h+2-p ι2 f 3 ' *lr+2-pl\ ιr+2-p Ί . " " ' >'r+1 -p

Evaluating at Pir+2_ , we obtain

( 3 a 5) «,,,..,,,+,./Λ) = 0 if; Φ /„ ι2, ••,!,+ ,-,.

If P,,- ,/>

r+1 are generic, and if h°(X, E ® qL) <p, then any α E
H°{X, E ® qL) vanishing at p of the points Px, ,Pr+x is zero. Thus, by
(3.a.5),

«,„...Λ+,-, = 0 foral l/, ,---,^,-^

and thus α = 0. q.e.d.
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An application of the Vanishing Theorem which we will need in §3c is
Corollary (3.a.6). Let H -> P, be the hyperplane bundle. Then for a, d E Z,

</>0,

(3.a.7) %pJ[>(Pl9aH9dH) = 09

unless 0 < a < 2d — 2 αwd α — d + l < / ? < α .
Proo/. Λ°(P1, a # ) = β + 1 so (3.a.2) becomes

%pfi(PuaH9dH) = 0 iϊa+Kp.

By the Duahty Theorem

(3.a.8) %pβ(Pι, oH, dH)* - ^ ^ ( P , , ^ - a)H, dH)

and by (3.a.2),

%-\-P,2(V\Λ-2 ~ a)H, dH) = 0 if2d- 1 -a<d- 1 - / >

so

%pfl(Vl9aH9dH) = 0 iip<a-d.

Combining these,

(3.a.9) %PtO(Pl9aH9dH) = 0 unless a - d + 1 *Zp < a

From (3.a.8) and the definition, we have

%Pt0(Pl9 aH, dH) = 0 unless a > 0 and Id - 2 - a > 0

so

(3.a.lO) ^ , o ( p i ' oH9 dH) = 0 unless 0 < α < 2d - 2.

Now (3.a.9) and (3.a.lO) together are (3.a.7).
Remark. Corollary (3.a.6) can be rephrased as %p0(Px, aH, dH) = 0 out-

side the closed parallelogram:

p * a - d + 1

a = 0



KOSZUL COHOMOLOGY 149

(b) The "Lefschetz Theorem". We wish to consider several variants of the
situation where Y C X has codimension 1, and relate the Koszul cohomology
groups of X and Y.

Theorem (3.b.l). Let X be a compact complex manifold. L -> X an analytic
line bundle, Y C X a smooth hypersurface with [Y] = M the analytic line bundle
associated to Y and Lγ the restriction of L to Y. Assume

(3.b.2) H°(X,L-M) = 0.

Hι(X,qL~M) = 0 foralίq>0.

Then there is a long exact sequence

(3 b.3) ' " ' " %i i-άX> L ) •* %u<,-ι(Y< LY) ~* Ko^X, M*, L)

Proof. Consider the graded S(H°(X, L))-modules

Bι = φ H°(X, M* ® qL), B2 = 0 H°(X,qL), B3 = 0 H°(Y,qLγ).

The hypotheses (3.b.2) insure that we have a short exact sequence of graded
modules 0 -» Bλ ^ B2 -* B3 -> 0 and an isomorphism H°(X, L) = H°(Y, Lγ)
from the short exact sequence

0 - ex((q -p)L ® M*) - ex((q - p)L) - 6Y((q - p)Lγ) - 0

using the hypotheses (3.b.2). By the long exact sequence for Koszul cohomol-
ogy (l.d.4), we obtain the long exact sequence (3.b.3).

Corollary (3.b.4). If Y = div u9 where uEim SkH°(X, L ) C H°(X, kL)
for some k > 2, and

(3.b.5) Hι(X,qL) = 0 forallq>-k9

then

(3.b.6) %Ptq(Y9 Lγ) - 3CM(*, L) θ 3C ; _ u + 1 . t (Jί , L).

Proof. We need only see that the map

is the zero map, which follows from (l.b.l 1). q.e.d.
For a hyperplane section, we have
Theorem (3.b.7). Let X be a compact complex manifold, L -* X an analytic

line bundle, Y C X a connected hypersurface in the linear system | L \ and let Lγ

denote the restriction ofL to Y. Assume

(3.b.8) H\X,qL) = 0 forallq^O.

Then %Pfq(X, L) - %p^Y9 Lγ)forallp, q.
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Proof. We have an exact sequence

0 -» H°(X, ©) -> H°(X9 L) -> H°(y, L y ) -> 0

and thus

)^ΪAPH\Y,Lγ)ΦA"-'Hϋ(Y,Lγ), p>\,

We thus have a short exact sequence of graded S(H°(X, L))-modules

0 _» β 1 _» 52 .* β 3 _» o,

where

We thus obtain a long exact sequence

1 ; - 3C,.,_,(r, Lr) Φ ^ .

by (l.d.4). Now by (l.b.l 1), the maps

%p,9_p_ι(X,L

are zero, so we obtain

for aΆp, q. For/? = 0, we obtain

and forjr? = 1,

3Cu(r, L y) Θ gco^(y, L y) -

and thus

and, continuing inductively, obtain the theorem.
(c) The 5)Cp Λ Theorem. This result has the most delicate proof of any in this

paper. Once it is established, a variety of interesting geometric results-e.g. the
Enriques-Petri-Babbage Theorem on the ideal of a canonical curve-follow
from it and the Duality Theorem.
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Theorem (3.C.1) (The %pl Theorem). Let X be a compact complex manifold,
L -> X an analytic line bundle with h°(X, L) — r + 1 and let m — dimφ^X).
Then

(1)%pΛ(X, L) = Oforp >r-m.
(2) %r_mλ(X, L) — 0 unless φL(X) is an m-fold of minimal degree.
(3) %r_m_XΛ(Xy L) = 0 wn/exy e/ί/ier dQgφL(X) < r + 2 - m or φL(X) lies

on an(m + \)-fold of minimal degree.
Remark. In [5], we proved a preliminary version of this result, obtaining (1)

and (2) as above, but getting (3) with a much worse bound for deg φL( X). A
del Pezzo surface Z c P 9 has degree 9, does not lie on a threefold of minimal
degree, and %6l(X, L) Φ 0 by the theorem in the appendix. Note that
degφL(Ar) = r + 2 — m in this case. Thus the bound in (2) cannot be im-
proved.

Proof. Let

αG ApH°(X9L)9H°(X9L)

represent a nonzero class in %pl(X9 L). Then

iJα E Λ p-ιH°(X, L) 0 /2(

Regarding

(3.C.2) )

it is proved in [5] that

(3.C.3) d i m ( i m ( 4 J α ) ) > ί / l + 1 ) .

From this and Castelnuovo's Lemma, one can prove (1), (2), and also (3) with
a weaker conclusion about deg <pL( X). Our strategy here is to use a strengthened
version of the Castelnuovo's Lemma. We need some further notation to state
it.

Let V be a vector space of dimension r + 1 and

We set

(3.C.4) Bq - imf H°(P(F*), ?ff) - 0 ^°(/»j> qH)

where // -> P(F*) is the hyperplane bundle. Then 5 = Θ ^ Q ^ i s an
module, since V =* i/°(P( F*), 7/). We will then denote

(3.C.5) %pJPι, - ,Pd) = %p,q(B,V)
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using the definition of §la. We then have
Theorem (3.C.6) (Strong Castelnuoυo Lemma). Let Pλ9 P2r -9Pd E P r be

points in general position. Then

^ ( P i ( V . . Λ ) ^ 0 .

Remark. By (3.C.3), one has that

lie on at least (£) linearly independent quadrics. Thus when d > 2r + 3, the
Strong Castelnuovo Lemma does not say any more than the usual Castelnuovo
Lemma. If d < r + 3, any rf points in general position lie on a rational normal
curve. However, when d lies in the range r + 4 < d < 2 r + 2, then (3.C.6) does
say something new, and this is what allows us to obtain the bound on
deg φL(X) in (3) of the %pX Theorem.

Proof of (3.c.6). The ideal ί c of a rational normal curve C in Pr has minimal
resolution by an Eagon-Northcott complex

(3.C.7) 0 - 0 Θ P j [^ )^ - Θ β p j [ - 3 ) - Θ Θ p j [ - 2 ) ^ ί c - 0 .
(r-\)O 2(5) (5)

By Theorem (2.a.l5), we conclude

If Pl9--9Pd lie on C, then / 2 (C) C /2(Λ>*" >Pd) a n d s o a 1 1 syzygies, syzygies
among syzygies, etc. of C map to syzygies, syzygies among syzygies, etc. of
P}9— 9Pd. By degree, any syzygy of depth/? and weight/? + 1 is primitive, so
the map

is injective. Thus

if Pl9 -9Pd lie on a rational normal curve C, which proves one direction of
(3.C.6).

Conversely, assume we are given Pλ,- ,Pd with %τ-ιΛ(P\,- -,Pd) Φ 0. If
rf < r -V 3, we are done, as any r + 3 points in general position lie on a rational
normal curve. If d > r + 3, let C be the unique rational normal curve contain-
ing Px, ,Pr+3. As before, let

Bq = im(H°(Vr9qH) -> H°(Pλ + ... +Pr+39qH))
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and set

B= ®Bq9 A= ®H°(C9qH)9

qGZ qEZ

R = 0 ( k e r ( / ί o ( C , qH) - H°{Pλ + ••• +Pr+J,qH))).

Note

R - 0 //°(c, ec(<?// - Λ P Γ + 3 )) .

Since rational normal curves are projectively normal, the restriction map
A -> B is surjective, and thus we have a short exact sequence of graded
5(F)-modules 0-*R-+A^B-^0. Thus by (l.d.4) there is a long exact
sequence

(3.C.8) • - %,_ιΛ(A, V) - %r^(B, V) -* %^iΛ(R, V) - • .

Now

If Pj is the underlying projective line of the rational curve C, and L -» P1 the
hyperplane bundle for P,, theni/ ^ rL and Θc(-i), - - ^ + 3 ) - -(/* + 3)L.
Thus

9Cr-2,2(Λ, F) - %r-2a(Pl9-(r + 3)L, rL) - 9Cr_2,0(Pi,(>* ~ 3)L, rL).

We can now invoke (3.a.7) to conclude that 9Cr-2,2(^> V) = ° Thus

Now if a E 9Cr_,fl(P,, ,/^) then it is the image of α E 5Cr_ul(C, H). By
(3.C.3), dimim(Uά) ̂  (2) and thus im(t Jά) = /2(C). However, the quadrics
in im(t Jά) all contain Pλ9- —9Pd,so

I2(C)Ql2(Pl9 9Pd).

Since a rational normal curve is cut out by quadrics, we conclude Pu-,PdEC
which proves the lemma, q.e.d.

We now return to the proof of Theorem (3.C.1). If %pΛ(X, L) φ 0 let 77 be a
generic (p + l)-plane in P r Then

%pΛ(πΠφL(X),H)φ0
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since a syzygy restricted to a generic linear space does not vanish. Now by the

Strong Castelnuovo Lemma,

π Π φL( X) C a rational normal curve.

In particular,

dim(ττ Π φ L ( X)) = tfi-r + / ? + l < l

so/? ^ r - m proving (1). If p — r — m, then

deg(τrΠ φ L ( * ) ) < r + 1 - m

and thus

deg φ L ( X) < r + 1 — m

which proves (2).

If

α e Λ r-m-χH°(X9 L) 0 7/°(ΛΓ, L)

represents a nonzero class in 5C r_m_1 ^Λ", L), let 7 = Var(im(Uα)). If π is a

(r — m)-plane in PΓ corresponding to an (r — m + l)-dimensional subspace

»F C ίf o ( Jf, L)*, then we define

to be the image of a under the maps dual to W -> H°(X, L)*. Then

im(cJα) ^ = 1111(4 J α v )

and thus

TΓΠ 7 =

By the proof of the Strong Castelnuovo Lemma, for π generic, and d> r — m

+ 3,

Var(im(ιJα)) = ς r ,

where Q is the rational normal curve whose existence is guaranteed by the

lemma. Thus either deg φL( I ) < r - m + 2 or 7 Π 7 r i s a rational normal

curve for a generic π. In the second case, Y is a variety of minimal degree. This

proves the %pX Theorem, q.e.d.

4. Applications

(a). The Theorem of the Top Row. In [11], Mumford proved that for a

smooth curve of genus g and a holomorphic line bundle L -» C of degree d,

that φL(C) is projectively normal iϊ d>2g + 1. He also proved the ideal of
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φL(C) is generated by quadrics iϊ d> 3g + 1; Saint-Donat and Fujita showed
φL(C) is cut out by quadrics if d > 2g + 2.

Theorem (4.a.l). Lei C be a smooth curve of genus g and L ^> C an analytic
line bundle of degree d. Then:

(1) %p ,(C, L) - 0/or 9 ^ 3 ifh\L) = 0.
(2) gC^ίC, L) = 0 i/rf ^ 2g + 1 + p.

Thus:
(1) φL(C) isprojectiυely normal ifd>2g+ 1.
(2) ΓΛe /έfeέi/ ofφL(C) is generated by quadrics ifd**2g + 2.
(3) The syzygies among the quadrics in the ideal of φL(C) are generated in

weight 3ifd>2g + 3, etc.
Proof. By the Duality Theorem,

Now

' ° ( ( = 0 for ? 5*3

which proves (1). If q = 2, by the Vanishing Theorem,

X r_,_/,,0(C,Jί:>L) = 0 ifh°(K)<r-l-p.

By Riemann-Roch, r = d — g. So

gC^ίC, L) = 0 ifg<d-g-\-p

or

The remaining results are just reinterpretations of the first two. q.e.d.
Theorem (4.a.l) is precise, due to the following result of F. Schreyer [12].

( v For each genus g, there exists a number do(g) so that if
( 4 a 2 ) d

Thus, when d is large, we have the following picture of a minimal free
resolution for the ideal sheaf of φL(C):

0 0 %r_X2 ••• %r_ga 0 0 ••• 0

0 0 ί)Cr i j -^/—2 1 ' ' ' ^ 2 1 ^ l i

where the entries marked by dots in the top row are nonzero.
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Theorem (4.a.4) {Theorem of the Top Row). Let X be a compact Kdhler
manifold of dimension n and L -» X an analytic line bundle with h°(X, L) =
r + 1. Then for L sufficiently positive,

(l)%p q(X9 L) = Ofor q> n + 2, and

(2)9C,> I I + 1(* L) = Oforp < r - n - * * " ( * ) .
Note. By L sufficiently positive, we mean that there exists a bundle LQ- so

that the theorem is true if L <S> L£ > 0.
Remark. Once again, Schreyer's result gives that

(4.a.5) %pn+l{X,L)^0 forr-n>p>r+\-n-h°n(X)

if L is sufficiently positive. Thus the resolution of the module Θ ^0H°(X, qL)
has the picture

0 0 %r^n %^n

( 4 a 6 ) . . .

o o %rinΛ x 0 J

where by Schreyer's result the indicated hnS){X) entries in the top row are
nonzero.

Proof of (4.a.4). By taking L sufficiently positive, we can arrange that | L \ is
base-point free and

For q > n + 1, the cohomology hypotheses of the Duality Theorem are satis-
fied, so

%p^(X, L)* - %r_n_PtH+λ_q{X, Kx, L).

For q ̂  n + 2, we get zero since

For q — n + 1, we get

X ^ ^ o C * , ^ x , L) = 0 if A ° ( ^ ) ^ r - n - p

by the Vanishing Theorem.
(b) The Arbarello-Sernesi module and Petri's analysis of the ideal of a special

curve. Petri and later Arbarello and Sernesi [2] studied the ideal of a special
curve by looking at generators and relations of
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as an S(H°(C, L))-module. We will generalize their results both by dropping
the requirement that L be special and by extending their results to higher
dimensions.

Definition (4.b.l). For X a compact complex manifold and L -> X an
analytic line bundle, the Arbarello-Sernesi module of X9 L is

(BH°(X,Kx®qL)

viewed as an S(H°(X, L))-module.
Theorem (4.b.2). Let X be a compact Kάhler manifold of dimension n and

L -> Xan analytic line bundle with h°(X, L) — r + 1. Assume \L\is base-point
free and that dim ψkL(X) = nfor some k > 0. Then

(1) The Arbarello-Sernesi module of X, L is generated in degree < q if
(z)q>n + 1;
(b)q = n andr φ n\
(c) q — n — 1; either d i m φ ^ ^ ) = n — 1 and deg φL( X) > r + 4 — n or

dimφL(Λr) = n\ and φL(X) does not lie on an n-fold of minimal degree; and
either n = 1 orhn~\X, βx) = 0.

(2) The relations among generators of the Arbarello-Sernesi module are gener-
ated in weight < qif

(<i)q>n + 2;
(b)q = n+ 1 andrΦnΛ- 1;
(c) q = n\ d i m φ ^ * ) = n\ either n = 1 or hn~\X, &x) = 0; deg φL(X) > r

+ 3 - « ; andφL(X) does not lie on an (n + \)-fold of minimal degree.
Proof. By the Duality Theorem's Corollary (2.C.10),

if q>n+ 1, and also foτq = n if either « = 1 or hn~ \X, 6X) = 0. Since

and

3Cr_π_p>II+1_^(Λr, L) = 0 for^r = « -h 1 unlessp = r-n9

we obtain (la), (lb), (2a), and (2b). Since

we obtain (lc) and (2c) from the %pX Theorem (3.C.1).



158 MARK L. GREEN

Remark. We also obtain results about all the syzygies of the Arbarello-
Sernesi module from the fact that, under the hypotheses of the theorem,

(4.b.3) %Ptq(X9KX9L) = 0 for 9 >Λ + 2,any/>,

(4.b.4) %p9n+x{X9KX9L) = 0 ioτpφr-n

as stated above.
(c) The canonical ring of a variety of general type. Since writing [5], our

point of view has evolved somewhat. It is now easier to obtain those results,
and they may be extended to syzygies.

Theorem (4.C.1). Let X be a smooth n-fold of general type. Assume that \ Kx\
is base-point free. Then

(1) %PtJiX9 Kx)- - TCΛo(^jr)_(ll+1+,)ill+2_,(*, Kx) ifq>n + 2or if q =

(3)

[θ otherwise.

(4)

Ch\x,κx)-n-ι ifψκ(χ) is an n-fold of minimal degree,

0 ifφκ(X) is not on an n-fold of minimal

degree

provided in both cases that Hn~ι(X, Θx) = 0 and dim ψκ(X) > n — 1.
(5) 3ClfΛ+1( Jf, Kx) = 0 if dimφ^(^) = n9 Hn~\X, βx) = 0, and φκ(X)

does not lie on an (n + l)-fold of minimal degree and deg φκ(X) Φ h°(X, Kx)
-norh°(X9Kx)-n+ 1.

Proof. (1) is a consequence of (2.C.11), and (1) implies (2). Since

0 otherwise,

we obtain (3). The %p x theorem implies (4) and (5). q.e.d.
Note. In case n — 1, the cohomological hypotheses of the Duality Theorem

are vacuous, so in that case the hypothesis Hn~ι(X,6x) can be eliminated
wherever it occurs; thus, one recovers the Enriques-Babbage-Petri theorem.
Our theorem is an extension of a theorem of Arbarello and Sernesi (see [2]).
We also note that if φ^ is birational to its image, then in (5) the possibilities
deg ψκ(X) = h°(X9 Kx) -nor h°(X, Kx) - n + 1 can be eliminated, as for
n > 1 these are rational varieties, and for n — 1 they are rational or elliptic.



KOSZUL COHOMOLOGY 159

(d) The Hλ Lemma, a theorem of Kii, and a splitting lemma.

Theorem (4.d.l) (The Hι Lemma). Let X be a compact complex manifold,

L -> X an analytic line bundle, W C H°(X, L) a linear subspace and E -* X an

analytic vector bundle. Assume:

(1) The base locus of Whas codimension > 2.

(2) h°(X9 E®2L)< dimW- 2.

Then the map

(4.d.2) H\X, E)^W*® H\X, E ® L)

induced by the cup product map is infective.

Proof. The kernel of the map (4.d.2) is just %λ

dim Wt0(X, E, L, W). Let %

be a sufficiently fine open cover of X and let

β*(<?l, E ® kL) = f̂th Cech cochains of % for E ® kL.

If we take the bigraded complex

Tδ Tδ

Tδ Tδ

e°
T
0

then we obtain two spectral sequences Έ^q, "E**q with the same abutment

(see [8]). The rows are exact at the first term automatically and at the second

term because the base locus of W has codimension > 2. Thus

"Ex

Hence

Thus, since '£, "E have

Έ{« =

We conclude that

Έ°
l\

'•* = () and "E{>q =

;q = 0 and ' Έ ^ = •

the same abutment, Έ^

%g (X, E, L, fi

,1 d2

0 for all q.

0 for all <?.

ofl = 0. On the other hand,

V) for al lp 9 q.

w

is injective. Now
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by the Vanishing Theorem (3.a.l) and the hypothesis h°(X, E ® 2L) ^ dim W
- 2. So

and (4.d.2) is injective. q.e.d.
Remark. In Theorem (4.d.l), it is clear from the proof that we may replace

hypothesis (2) by

Furthermore, if Wis base-point free, (4.d.2) is injective if and only if (2)' holds.
Corollary (4.d.3). Let X be a compact Kάhler manifold of dimension n. If

I Kx I is base-point free, then the derivative of the period map in
Hom(Hn0(X), Hn~x\X)),

(4.d.4) Hι(X,Θx)
P-ΪH°(X, Kx)* ® Hι(X,Qn

x~
])

is injective if and only if

(4.d.s) κho{X9Kχ)_2Λ{x9Qr\κx) = o.

Proof. This follows from the remark.
Corollary (4.d.6). Let X be a compact Kάhler manifold of dimension n. If the

base locus of\Kx\ has codimension > 2, then (4.d.4) is injective, and hence the
Local Torelli Theorem holds for X, provided

, l( A Γ ' Ω Λ Γ l ' Kx) = °

Proof. This follows from the remark following the proof of Theorem
(4.d.l). q.e.d.

Theorem (4.d.7) (Improvement of the Hι Lemma). Let X be a compact
complex manifold, Li -> X analytic line bundles, i — 1, -,k, L — LX®L2

<S> ® Lk and E -> Xan analytic vector bundle. Assume that for alii — 1, , k,
(1) the base locus of\ Lz | has codimension > 2, and
(2) h°(X, E®LX®-' ®L /_1 ® 2Lf ) < h°(X, L7) - l.Then the map

(4.d.8) H\X, E) -* H°(X, L)* ® H\X, E ® L)

induced by cup product is injective.
Proof. By the Hλ Lemma, the maps

H\X, E ® L X ® - ® L ^ X ) -> H°(X, L t ) * ® Hι(X, E ® L X ® '

are injective. Thus, if η e H\X, E) there exists sλ G H°(X, Lx) so

ηsλΦ0 inHl(X,E®Lx)

mds2GH°(X,L2)so

0 mH\X,E®Lx®L2)
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and so on inductively, until

"SkΦ0 inH\X, E®L).

Since

sxs2 - sk E H°(X, Lx ® ®LΛ) =* tf °( Jf, L)

we are done.
Remark. We can replace (2) by the hypothesis
(2)' h°(X9 E ® L ® L,.) < A°(Jf, L,.) - 2, / = 1, Λ

since if ^ E H°( Xy Ly), $y T^ 0, for each/ > /, then multiplication bysi+}9-—,sk

gives an injection

H°(X9 E ® L, ® ®Lf._! ® 2Lf ) «* tf°( * , E®L® Ly)

so

A°( Z, £ 0 Lx ® - - β i ^ j <δ> 2Lf ) < A°( Jf, E®L® Ly).

Corollary (4.d.9). Le/ X be a compact Kάhler manifold of dimension n, and

assume Kx — Lx 0 ®LΛ, where Lt -» X w β« analytic line bundle. Assume

for alii = l,29--,k that:

(1) ΓAe base locus of\ L, | has codimension > 2.

(2) h°(X, ΘX®LX® ' ®Li_ι ® 2Lf ) < A°( Jf, Lf ) - 2.

Then the map

H\X, θx)
F-XH°(X,Kx)*®Hι{X, Q«χ-')

is injective and thus the local Torelli Theorem is true for X.
Note. By the remark above, hypothesis (2) can be replaced by
(2)' h°(X9 Ω^Γ1 ® L, ) ^ h°(X9 Ls) - 2.
In this form, the result is due to Kii [10], who derives from it the Local

Torelli Theorem in a number of cases. This approach to Local Torelli was also
used by Lieberman, Peters, and Wilsker.

Definition. An exact sequence 0 - ^ - ^ F ^ G - ^ O o f analytic vector bun-
dles on Xsplits on sections if the map H°(X, F) -> H°(X, G) is surjective.

Corollary (4.d.lO). Let X be a compact complex manifold, E -» X an analytic
vector bundle and L -> X an analytic vector bundle. Assume:

(1) The base locus of\L\ has codimension > 2.
(2) h°(X, E®L)< h°(X, L) - 2.
Then any analytic extension 0-*E-*F-^L->QofEbyL splits on sections if

and only if it splits analytically, i.e. F — E θ L.
Proof. If F splits, then automatically it splits on sections. Let us show the

converse. Let e E Hι(X9 E ® L*) be the extension class of F. If F splits on



162 MARK L. GREEN

sections, then

e E kerif \X9 E®L*)-> H°(X, L) ® H\X, E)

so

By the/ί1 Lemma,

e = 0 if h°(X,E®L)^h°(X,L)-2.

But

e = 0 ^ F ^ £ Θ L analytically.

Remark. Corollary (4.d.lO) remains true if we replace the hypothesis (2) by

There are two refinements of (4.d.lO).
Corollary (4.d.ll). Let Xbe a compact complex manifold,

0 -> E ^ F^ L ^ O

an exact sequence of analytic vector bundles on X with L -» X a line bundle and
let

If
(1) the base locus of Whas codimension > 2,
(2) h°(X9 E®L)^dimW-2,

then F - E θ L analytically.
Corollary (4.d.l2). Let Xbe a compact complex manifold, and

(4.d.l3) 0-*E^F-+mL^0, m > 0 ,

an exact sequence of analytic vector bundles, with L a line bundle. Assume:
(1) The base locus of\L\ has codimension ^ 2.
(2) h°(X, E®L)< h°(X, L) - 2.
Then the sequence (4.d.l3) splits analytically if and only if it is split on sections.
(e) The H ° Lemma.
Theorem (4.e.l) (The H° Lemma). Let C be a smooth curve with L -> C,

M -> C analytic line bundles. Let W C /f °(C, L) be a base-point free linear
subsystem. Then the multiplication map

(4.e.2) W ® H°(C9 M) -> H°(C9 L®M)

is onto if

(4.e.3) h\C, M ® L'x) ^ άimW- 2.
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Remark. For dim W = 2, this is just the base-point free pencil trick.
Corollary (4.e.4) (The Explicit H° Lemma). Let C be a smooth curve of

genus g, and L -> C and M -* C analytic line bundles. Assume that deg L <
deg M and that \L\is base-point free. If either

(4.e.5) deg L + deg M > 4g + 2

or

(4.e.6) d e g M = 2 g + l , degL = 2g

then the multiplication map

(4.e.7) i/°(C, L) <8> #°(C, M) -> #°(C, L ® M)

w surjectiυe.
Remark. This improves a result of Mumford [11] that deg M > 2g -\- 1 and

deg L>2g imply (4.e.7) is surjective.
Proof of (4.e.l). We want to show %0Λ(C, Λf, L, f^) = 0. By the Duality

Theorem,

gcOJ(c, M, L, ̂ )* ^ %r-u{c9 κc ^ M-1, L, w),

where dim W — r Λ- 1. Now by the Vanishing Theorem, we are done if

or, equivalently,

Λι(C, M ^ L " 1 ) ^ dimW- 2. q.e.d.

Proo/ of (4.e.4). If ΛJ(C, M ® L"1) = 0 we are done by (4.e.l), so assume
M <S> L"1 is special. Now

Λ](C, M 0 L~x) = g - 1 + deg L - deg M + Λ°(C, M ® L"1).

So we are done if

g - 1 + d c g L - d c g M + A 0(C,Λ/®L- 1)<A°(C,L) - 2

or, equivalently, if

g - 1 + d e g L - d e g M + Λ°(C, M Φ Z Γ 1 ) ^ -1 - g + degL + Λ](C, L)

which simplifies to

(4.e.8) 2g + Λ°(C, M ® L"1) < deg M + A^C, L).

If A°(C, M 0 L"1) = 0 we are done, as in this case we need only show
2g < deg M + h\C9 L) and we are given

2 deg M > deg M H- deg L > 4g + 2
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so deg M ^ 2g + 1. Thus, we are reduced to considering the situation

h°(C9M®L-χ)¥>0 and h\C, M ® L"1) φ 0.

Now, by Clifford's Theorem,

Λ°(C, M ® L"1) - 1 < i(deg Λf - deg L).

Now (4.e.8) would follow if we knew

2 g + 1 + i ( d e g M - d e g L ) ^ d e g M + Λ1(C,L)

which is equivalent to

2g + 1 < i(deg M + deg L) + Λ^C, L)

which follows from (4.e.5). In the case of (4.e.6), deg(M ® L"1) = 1 so
Λ°(C, M ® L"1) < 1 and so (4.e.8) becomes

2 g + 1 <degAf H-A^CL).

This follows from (4.e.6) and completes the proof of (4.e.4). q.e.d.
(f) A holomorphic representation of the Hpq groups of a smooth variety.

Theorem (4.f.l). Let X be a smooth projectiυe variety and L -> X an analytic
line bundle. If L is sufficiently positive, then

)_q_Uq+i(X,Wx, L).

Remark. This expression for the Hp'q groups has some affinity with the
Poincare Residue. We say the representation is "holomorphic" because it is
entirely in terms of /f°'s of analytic bundles. The term "L sufficiently
positive" has the same meaning as in the note to Theorem (4.a.4).

Proof. For L sufficiently positive, | L \ is base-point free and

# ' ( * , Ω£ ® qL) = 0 for 1 < i < dim X, q > 0.

Thus

We argue inductively that for 2 < r < q,

dr = 0 onHi(X,Ώx),

imdr = 0 i n % i o ( X t L ) . ι . U q + ι ( X , Q J , L)

because H"-r+\X, ίip

x ® rL) = 0 and Hr~\X, Qx®(q+l- r)L) = 0.
Further,

must be an isomorphism, as the spectral sequence abuts to zero and all further
dr's are zero because they run out of room.
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5. Open problems and conjectures

The first conjecture we would like to formulate is
Conjecture (5.1) (Noether-Enriques-Petri Conjecture). Let C be a smooth

curve of genus g. Then

has a gr

d with d < g — 1, /* >• 1, 0«</ d— 2r<g — 2— p.
Remarks. (1) The direction <- of the conjecture is proved in a joint appen-

dix with R. Lazarsfeld that follows this paper.
(2) When/? = g — 2, this conjecture is Noether's Theorem; when/? = g - 3,

it is the Enriques-Petri-Babbage Theorem.
(3) By the Duality Theorem, a minimal free resolution of # φ j r ( C ) for C

nonhyperelliptic has the picture

%g_23 o o ••• o o o o ->

(5.2) err cv

where

Note

The conjecture states that/?max = g — 2 — vπώn9 where

(4) From (5.2), it is clear that we must have pmax > g — 3 — /?max so

/'max > (g - 3)/2. SO

( g - 3 ) / 2 , godd,

% — 2)/2, g even.

Since every curve of genus g has a *1

Then

e — 3
— 2 ~ if g is odd,

σ- 2
^ - r — if g is even.
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This is consistent with the Noether-Enriques-Petri Conjecture. It is natural to
conjecture:

Conjecture (5.6). For a generic curve of genus g,

(5.7) Pmax =
_ f ( g - 3 ) / 2 , godd,

(g-2)/2, geven.

A problem related to the Noether-Enriques-Petri Conjecture is the following
question, which is a slight modification of a conjecture of J. Harris and D.
Mumford.

Conjecture (5.8) (Hαrris-Mumford Conjecture). Let S be α smooth K — 3
surface, L -> S an ample line bundle. Then ^m^CC) is constant for all smooth

ce\L\.
Remarks. (1) Donagi has constructed an example S, L where there exist

Cλ9 C2 E\ LI so Cx has a g\, but C2 does not. However, all C E\ L | have either a
g\ or a gl. Donagi has some partial results on this conjecture.

(2) The Harris-Mumford Conjecture would be a corollary of the Noether-
Enriques-Petri Conjecture. For if C E\L\ is smooth, then by the Lefschetz
Theorem (3.b.7) and the adjunction formula

&c ~ &s ® ̂  \c ~ L\c

we have

Thus

(5.9) pmax( C) is constant for smooth C E | L \ .

If the Noether-Enriques-Petri Conjecture is true, then

so this is also constant.
A problem intimately related to the Noether-Enriques-Petri Conjecture is
Problem (5.10). Generalize the %pλ Theorem.
Remarks. We would like to be able to say

%pΛ(X9 L) Φ 0 <-> φL(X) lies on a member of some class

of varieties of low degree.

For/? > h°(X, L) - dimφL(Λr) - 2, this is covered by the %p , Theorem. For

%{l(X, L) Φ 0 <•» φL(X) lies on a quadric.
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A natural starting place might be to try to generalize the Strong Castelnuovo
Lemma (3.C.6). For example:

Problem (5.12). For Pλ, P2,- ,Pd E Pr points in general position, is it true

that

%r-2 i (Λ j ' ' ' 9^d) ^ 0 <-* P\ 9' * * >Pd lie on a surface of minimal degree.

The direction «- is known, and the case r — 4 would appear to be the first
unknown case for the direction -> .

The Theorem of the Top Row (4.a.4) gives a description of the top row of
the %pq{X, L) for L sufficiently ample. This might generalize

Problem (5.13). On a smooth n-fold X, if L -> X is a sufficiently ample
analytic line bundle, which %pq(X, L) must be zero!

A variant of Problem (5.13) would be to take L -» X an ample bundle and
ask which %pq{X, kL) must be zero when k is sufficiently large.

A potentially rich area of study is
Problem (5.14). What is the υariational theory of the %Ptq(X> L)Ί What do

they look like for X generic or for X and L generic!
Here is a special case of (5.14). If a general curve C of genus g has a gr

d which
is special, then if L is the gr

d,

(5.15) H°(C, Kc - 2L) = 0 (see [1]),

(5.16) teτ[H%C,L)®H\C,Kc-L)^H\C,Kc))=O (see [9]),

where (5.15) follows from the study of the Gaussian system of C, L and (5.16)
is Petri's Conjecture. By the Duality Theorem,

so (5.15) and (5.16) are equivalent to

(5-17) %pq(C,L) = 0 foτq>4,

(5.18) 3Cr_2f3(C, L) = 0.

A consequence of these is that

(5.19) %p3(C,L) = 0 ΐorp^r-2.

Combining this with the Duality Theorem, we obtain

(5.20) ^ 3 (C,L)- | o i ί p ^ r - L

This gives a complete description of the top row of the ^Ptqs in this case. It
would be interesting to know what the other % qs look like in this situation.
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Problem (5.21). When X, L is projectively normal, how do the Koszul
cohomology groups %pq(X, L) relate to the stability of X, Ui Can one apply
them to moduli question*)

An example of what might happen in the second half of (5.21) is Sernesi's
work on moduli of curves of genus [13].

The Gaussian class or extrinsic fundamental class of §2b and the representa-
tion of the Hodge groups in §4b seem quite hopeful.

Problem (5.22) (suggested by P. Griffiths). Work out the relative theory of
the extrinsic fundamental class for a pair of varieties X C Y.

Problem (5.23). Can the representation of the Hodge groups in §4d be used to
compute the derivatives of normal functions (see [7])?

A final question is
Problem (5.24). Can Koszul cohomology be used to make further progress on

the Local and Degree One Torelli Problems'}
There are some hopeful signs in this direction-the work of Kii described in

§4c, Donagi's work on Degree One Torelli for smooth hypersurfaces in P^ (see
[4]), and a recent paper of the author's [6].

Appendix: The nonvanishing of certain Koszul cohomology groups

MARK GREEN & ROBERT LAZARSFELD

Theorem. Let X be a compact complex manifold, and L, Ml9 M2 analytic
line bundles on X with L ^ Mx ® M2. Assume

h°(X9Mi) = ri+l9 η>\9 ι = l , 2 .

ι 2 Λ

Corollary. If a smooth curve C of genus g has a gr

d with r^\ and d < g — 1,
then

\-(rf-2r+2),l(C> Kc) ^ °

Remark. In terms of the language of §5, the corollary is equivalent to

/>max > g ~ 2 ~ "min

Equality would be the Noether-Enriques-Petri Conjecture.
The Corollary follows from the Theorem by letting Mx be the gr

d, M2 be the

residual g^-d \ and L = Kc.
Proof of Theorem. Let

M,!, D2E\L-M2\
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so Dx + D2 E | L | . Letting Dx denote the linear span of Dx pulled up to C + 1 ,
etc., we have the following picture in C + 1 ^ H°(X, L)*:

c'-V'/ ί~.
C 2

Choose a basis j o , , j r + 1 for H°(X, L) with dual basis eo, , e Γ + 1 for
/f°(*, L)* so that

^!, ,e r _ r i is a basis for D,,

r2 + 1 ' » r 2 >

e Γ 2 +!, , er-r, is a basis for Z^ Π Z>2 •

Note

Now let

= Σ ̂ Λ. .

i=\ /=0

Consider

α = t Λ e r + 1 Λ Λe r _ Γ = t Λ Λ r " Γ l ~ Γ 2 ( β 1 Π Λ ) .
r2 i i ^ Γj \ l z /

While t E />! ® H°(X, L) we see that α involves only jj,- -9sr2 and these are
all zero on D2. Thus

Furthermore, i = 5 on Z), because Jr_Γl + 1 = = sr = s0 = 0 on Z)1# Thus

ί Λ α e Λ Γ " r r Γ 2 + 2 i ί o ( ί , L ) * 0 f f o ( l , L ^ ( L - [ D j - [D2])).

Since L ^ [ί>J ® [D2] we have
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Further, a s j Λ ( ί Λ α ) = 0we have

jΛαe3C Γ i + Γ 2 _ l f l (J f ,L)

using the isomorphism

Ar~^-r2+2H°(X9 L)* ^A^+r^ιH°(X9 L).

It remains to show that ί Λ α i s nontrivial in Koszul cohomology. Assume
on the contrary that

sΛa = sΛβ, βe Λ r~Γl-Γ2+1i/°(ΛΓ, L)*.

Then

β — a = ί Λ er2+ι Λ Λe r_Γ ] mod s.

Thus

s ΛejΛβ = 0 for r2 + 1 <y < r - rλ.

So
r

2 ê,- ΛejΛβ = 0 for r2 + 1 <y < r - η

ι = 0

and thus

e, Λej/\β = 0 for all 0 < ί < r, r2 + 1 < j < r - η .

If r — rλ — r2 + 2 < r + 1, that is, if r, + r2 > 2 which is true by hypothesis,
we may conclude

ej Λ β = 0 for r 2 + K , / > < r - r 1 .

Thus

β = cΛ er2+ϊ Λ Λer_ri for some c G tf0^, L)*.

Now returning to the equation .y Λ α = s Λ /? we get

sΛ(ι-c)Λer2+ιΛ.. Λer_r]=0.

Since

(t - c) Λ e r 2 + 1 Λ Aer_rι E Λ " ' ^ ' ( D . U c )

we conclude ί G D j U c. Thus Σ [ = o

 siei ^Dx U c and hence e, E D 1 U c for all
/. So D , U c = ff °(Jf, L)* = C Γ + 1 . However,

dim DXU c < dim Dλ + 1 = r - rλ + 1 < r + 1

which is a contradiction. So
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