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VOLUMES OF HYPERBOLIC MANIFOLDS

T. CHINBURG

1. Introduction

In this paper we answer some questions of W. Thurston and A. Borel

concerning the volumes of commensurable hyperbolic manifolds. Our main

result implies that the set of covolumes of all arithmetic irreducible discrete

subgroups Γ of PGL 2(Rα) X PGL2(C)Z>, as a and b range over all nonnegative

integers such that a + b > 1, is discrete. We will show, in fact, that the same is

true if one replaces the covolume of Γ in the above assertion by the G.C.D. of

the covolumes of all subgroups which are commensurable to Γ.

We now formulate these results in precise terms.

Let H2 denote the hyperbolic upper half-plane, and H3 the hyperbolic upper

half-space. Let a and b be nonnegative integers such that a + b > 1. The group

Gab = PGL2(R) f l X PGL2(C)* acts as a group of isometries of Hah = (H2)a

X (H3)b. We will let βab be the set of discrete subgroups Γ C Gab such that

(i) Γ is irreducible in the sense that one cannot write Ga b as the direct product

H H' of nontrivial closed connected subgroups H and H' with ( Γ Π i / ) (Γ

Π H') of finite index in Γ, and (ii) the volume /i(Γ) of Hab/T is finite. Let &τ

be the set of subgroups Γ' C Gab which are commensurable with Γ, i.e., for

which Γ Π Γ has finite index in Γ and in Γ'. It is shown by A. Borel in [1] that

for each Γ G Qab there is a largest number g(Γ) > 0 so that μ(Γ') is an integral

multiple of g(Γ) for all Γ' G &Γ. (An example given in [1, §5.6] shows that it is

possible that g(Γ) < μ(Γ) for all Γ G &τ.)

We will prove the following theorem.

Theorem 1. Let β = U (β α b: a, b G Z, a, b ^ 0 and a + b > 1}.

(i) There is a smallest element of each set (g(Γ): Γ G Ga b} and of (g(Γ):

ΓGβ}.
(ii) The set ( g ( Γ ) : Γ G β and Γ is arithmetic) is discrete.

Corollary 1. The set ( μ ( Γ ) : Γ G β and Γ is arithmetic) is discrete.
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Theorem l(i) answers affirmatively a question of W. Thurston [10, §8.8] as

to whether there is a smallest element of (g(Γ): Γ E β 0 J . Corollary 1 implies

the result proved by H. C. Wang in [11] when a + b > 2, and by A. Borel in [1]

when a + b = 1, that the set (μ(Γ): Γ E Qab and Γ is arithmetic) is discrete.

The proof of Theorem l(ii) is effective and number theoretic. This answers a

question of A. Borel in [1] as to whether one can show the discreteness of the

set of covolumes of arithmetic Γ E Qa b without the use of geometric argu-

ments. We note finally that if a + b > 2, G. Margoulis has shown (cf. [4], [9])

that every Γ E Qa b is arithmetic.

This paper is organized in the following way. In §2 we recall the definition

of arithmetic Γ, and state some results of A. Borel concerning g(Γ). In §3 we

show how results of G. Margoulis and D. Kahzdan reduce the proof of

Theorem 1 to that of Theorem l(ii). We then prove Theorem l(ii), using

formulas for hyperbolic volumes due to A. Borel, upper bounds for class

numbers due to R. Brauer, C. L. Siegel and R. Zimmert, and lower bounds for

discriminants due to A. Odlyzko.

The author would like to thank A. Borel for discussions about hyperbolic

manifolds, and H. Zassenhaus for some helpful references.

2. Arithmetic subgroups

Let a and b be nonnegative integers such that a + b> 1. Let A: be a number

field having exactly b complex places and at least a real places. Let B be a

quaternion algebra over k, which is unramified at a set of a real places, and

which is ramified at all of the other real places of k.

If A is a A>algebra, let A* be the multiplicative group of invertible elements

of A. We have an injection

v infinite

where H denotes the real quaternions. Let

π: B* - Ga%b = PGL 2 (R) α X P G L 2 ( C ) '

be the homomorphism induced by projecting onto the factors of Π^ infinite (^ ®

kΌ)* which are not quaternionic.

Let Φ be a maximal order in B, and Φ 1 the group of elements of reduced

norm 1 to k. By [1, pp. 2, 3, 13, §5, §7.2], Γ^ - T Γ ^ 1 ) is in Gab. Following [1]

we define C(k, B) to be the set of subgroups Γ C Gab which are commensur-

able with Γ^ for some maximal order ^ C i A discrete subgroup Γ" of Gab is
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definable arithmetically (cf. [1, p. 7]) if there is an isomorphism i: Gab -* Gah

mapping Γ' onto an element of 6(k, B) for some k and B as above.
We now recall some results of Borel concerning g(Γ) for Γ G Q(k, B). Let

us fix the following notation.
Rf (resp. R^) = the set of finite (resp. infinite) places of k where B is

ramified.
tyΌ = the prime ideal of k determined by the finite place v of k.
Nv — the absolute norm of 9V.
θ£ = the group of i^units of k, i.e., the multiplicative group of elements of

k which are units at all finite places of k which are not in Rf.
6% R — the group of elements of ΘR which are positive at all the places in

I(k) (resp. P(k)) — the group of fractional (resp. principal) ideals of k.
P(k, R^) = the group of principal ideals which have a generator which is

positive at all the places in R^.
Mλ — the subgroup of I(k) generated by P(/c, R^) and the ideals 9V for

v GRf.
Jλ = I(k)/Mx.
J2 — the image of P(k) in /,.

2JX — the kernel of y -»y2 in Jλ.
e — the number of places over 2 in k which are not in Rf.
rx (resp. r2) = rx(k) (resp. r2(k) = b).
dk = the absolute value of the discriminant of k.
ζk(z) — the Dedekind zeta function of k.
The following result is shown in [1, Corollary 5.4, Theorem 7.3, §§8.4-8.6].
Theorem 2.1 (Borel). If Γ G 6(k, B), then g(T) is a positive integral

multiple of

(Nv- \)
~ 2 r + 3 2 a 2 r + 2 a r J . J Ά '

We now make some preliminary simplifications.
Lemma 2.1. Let t be the number of primes over link. Let Θ* be the group of

units in k, and let 6* + be the group of units which are positive at all of the real
places of k. Then 2~e[Θχ R : Θ^2]^Π^G/? (NV — 1) is an integral multiple of
2-(/ ,4-r2 + / + α)r/Π*. /q* 1
L Wk' UA:,+J

Proof. Let &% R be the group of units of k which are positive at the places
in R^. We have an injection

UA:/U0,/?OO ^ U/?/UΛ/,Λ00
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because 0* Π 6J Λoo = δS,Λ o o. Therefore

i
for some integer fl0.

Let /y be the number of places in Rj. By the Dirichlet unit theorem, Θ£ is an

abelian group of rank r, + r2 + /y — 1 which has a finite cyclic torsion sub-

group of even order. Therefore

(2-2) [e*R/: Θ J ^ J [ 6 * / > Λ j βjg] = [ 0 - β j] = 2"+^+'/.

From (2.1) and (2.2) we have

Γ/q* . (q+2]"1 _ Γ/q* . /q*

Let r̂  be the number of v E R^ which lie over 2. If v E Z£̂  does not lie over

2, 2 divides (Nv - 1). Therefore (2.3) shows

2a0[βt: 6S,ΛJ Π
(2.4) v(ΞRf

for some integer α,, where the last equality results from the fact that t = r} + e

is the total number of places over 2 in k.

We know that R^ contains all but a of the real places of k. Therefore

(2.5) [K,Rj-®t+] diodes 2a,

and

(2.6) [βf- ©S.«J =[βϊ : βί.+] [^,Λoo: ©ί.+]"' = «22-α[δ*: δj.+]

for some integer Λ 2 . One combines (2.4) and (2.6) to finish the proof of Lemma

2.1.

Corollary 2.1. Let hk be the class number of k. IfT E 6(k, B\ then g(T) is

a positive integral multiple of
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Proof. With the notation of Theorem 2.1, the group Jx/J2 is quotient of the

ideal class group I(k)/P(k) of k. Since 2JX/J2 * s a subgroup of Jλ/J2, [2J\' J2]

divides hk. Corollary 2.1 now follows from Theorem 2.1 and Lemma 2.1.

3. Proof of Theorem 1

Suppose Γ E β is not arithmetic. By the results of G. Margoulis [4], [9], Γ is

in β 0 1 or β 1 0 . As A. Borel observes in [1, §1], a result announced by G.

Margoulis in [4] implies that &τ has a unique maximal element Γo, for which

g(Γ) = μ(Γ0). D. Kahzdan and G. Margoulis have shown (cf. [7, XI, 11.9])

that for each fixed pair (a, b), in particular for (α, b) — (0,1) or (1,0), there is

a smallest element of (μ(Γ'): Γ" E Qa b). Hence Theorem l(i) will follow from

Theorem l(ϋ).

We now find a lower bound for the number ga(k) of Corollary 2.1. With the

notation of §2, let wk be the number of roots of unity in Λ;, and let Reg(&) be

the regulator of k. The Brauer-Siegel Theorem (cf. [3, pp. 322, 300]) shows

(3.1) h

. (2-2r^-^+2r^dky
/2ξk(s) for real s > 1.

R. Zimmert [12, p. 375] has proved

(3.2) Reg(A:) > (.02)w^exp(.46r, + Λr2).

Since t is the number of primes over 2 in k, we have the trivial bounds

(3.3) / < r , + 2 r 2 and [θ*: θ*,+]f,(2) > 1.

From the Euler product of ξk(s), one has 1 < ζk(s) ^ ζQ(s)r'+lr\ Letting

s — 2 in (3.1), we deduce an upper bound on hk from (3.1) and (3.2). This

bound, Corollary 2.1, and (3.3) together show that there is an absolute constant

cQ > 0, independent of a and k, for which

(3.4) ga(k)>c^dy22"+^".

For real s > 1, define

Zk(s) = S'k(s)/ζk(s) = 2 logN9/((N9)s - 1),

where the sum is over the prime ideals 9 of k. The following lower bounds are

implied by those of A. Odlyzko in [5, Theorem 1 and Lemma 2]. There exist

absolute positive constants c^c2, c3 so

(3.5) dk > (50.6) r '(19.9)2 r 2

eχp(2Z,(ί) - 2{s - I)"1 - c.)

for 5 e (1,1 + c2),
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(3.6) ξk(s) < exp(Zk(s) + c3{s - l)(r, + r2)) for all 5 > 1.

There is an absolute constant c4 > 0 so T(s/2) < 7r1/2exp(c4(^ — 1)) and

T(s) < exp(c4(5 - 1)) for s G (1,1 + c2). Thus (3.1), (3.2) and (3.6) show

hk ^ 2-r*s(s - \){2ir)~r2ds

k

/2 50

(3.7) αφ(Z*(j) - Mrλ - Λr2 + (5 - l)(c3 + cΛ){rx + r2))

fors G (1,1 4- c 2).

We use (3.7), (3.5) and (3.3) to find a lower bound for ga(k) in Corollary 2.1.

One finds

( 3 8 ) for real 5 G (1,1 + c2),

where

(3.9) /( , ) = (50.6)<3-ί)/2exp(.46 - (c4 + c3)(s ~

(3.10) A ( J ) = (19.9)3^exp(.l - (c4 + ca)(*

(3.11) ; ( ί ) = .02exp(- (3 - s)(s - I)"1 - (3 - ^ c . ^ A ^ ί - 1)).

We have l i m ^ , / ( i ) = 1.01+, lims_,λ(.ϊ) = 4.35+ and e ( 2- j ) Z» ( ί ) 5> 1 if

ί < 2. Thus for s > 1 sufficiently close to 1, (3.8) yields a lower bound

(3.12) ga(k) > (l.01)r'(4.35)r2c52
α+Va,

where c5 > 0 is an absolute constant independent of a and k.

We conclude from (3.12) and (3.4) that \ϊm(a k)ga(k) = oo, where the limit

is over all pairs (a, k) of nonnegative integers a and number fields k for which

rλ(k) > a. This and Corollary 2.1 complete the proof of Theorem l(ii), and

hence also of Theorem 1.
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