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THE DIRICHLET PROBLEM AT INFINITY
FOR MANIFOLDS OF NEGATIVE CURVATURE

MICHAEL T. ANDERSON

This paper is concerned with the existence of bounded harmonic functions

on simply connected manifolds Nn of negative curvature. It has been conjec-

tured for some time with such manifolds admit a wealth of bounded harmonic

functions provided the sectional curvature KN satisfies — a1 < KN < -Z>2, for

some constants, α, b > 0, or even if KN < -b2 < 0; see [7], [18]. Justification

for this comes from the fact that the model space Hn(-\\ the space form of

curvature — 1, admits many bounded harmonic functions; in fact, there is a

Poisson integral representation 4at infinity' in Hn(— 1). (Similar results hold in

more general noncompact symmetric spaces, cf. [12].) Furthermore, in case

n = 2 the Ahlfors-Schwarz Lemma [1] shows that N2 is conformally the unit

disc provided KN < -b2 < 0, so that the model H2(-\) provides full informa-

tion in this case.

It is natural to consider a Dirichlet problem at infinity for the Laplace-

Bel trami operator Δ on Nn; there is a well-known compactification Nn = NnU

S"~\oo) of Nn giving a homeomorphism of (Nn, S"~ι(oo)) with the Euclidean

pair (Bn, Sn~~]). One can then state the

Asymptotic Dirichlet problem for Δ. Given a continuous function p on

S"-\<x>)9 find/G C°°(Nn) U C°(W) satisfying

The main result of this paper is given by the following theorem (Theorem

3.2).

Theorem. Let Nn be a complete simply connected Riemannian manifold with

sectional curvature KN satisfying -a2 < KN < -b2, where a2 > b2 are arbitrary

positive constants. Then the asymptotic Dirichlet problem for Δ is uniquely

solvable Jor any p E C°(5w" ι(oo)).

In particular, it follows that TV" has a large class of bounded harmonic

functions. Using this one may show for instance that there are smooth proper
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harmonic maps F from Nn onto the Euclidean unit ball (or any other convex

domain in R"), inducing a homeomorphism Sn~ι(oo) -> Sn~λ — dBn. For an

open neighborhood of metrics sufficiently close to the hyperbolic metric, / will

in fact be a diffeomorphism on Nn.

There have been a number of nonexistence results along the lines of the

above theorem concerning generalizations of the Liouville theorem to Rieman-

nian manifolds. Yau [17] proved that on any complete Riemannian manifold

there are no globally defined harmonic functions in Lp for any 1 <p < oo.

Greene and Wu [8] proved there are no bounded harmonic functions on

manifolds Nn « Rn for which the exponential map from some point is a

quasi-isometry. Further, Yau [16] proved that if N" has nonnegative Ricci

curvature, then there are no bounded harmonic functions on Nn. In the

opposite direction, Choi [4] has recently obtained existence results for spheri-

cally symmetric metrics and also in dimension 2, in the case of negative

curvature.

The proof of the theorem is based on the classical Perron method of solving

the Dirichlet problem. Recall the success of the method hinges upon the

existence of barrier functions, that is, subharmonic functions Bx: Nn -» R for

x G Sn~\ao), such that Bx < 0 and ]imy^xBx(y) = 0. Now manifolds Nn

with KN < 0, πx(N) = 0 admit a wealth of convex, thus subharmonic func-

tions. However, none of the familiar constructions of such functions give rise

to barrier functions, since their behavior at infinity becomes too trivial;

consider for instance Busemann functions or distance functions to complete

geodesies. Thus our major contribution is the construction of global convex

sets having nontrivial asymptotic behavior; from this we deduce the existence

of barrier functions for Δ.

An outline of the contents of the paper is as follows. After presenting

preliminary background material in §0, we discuss in §1 the Perron method,

asymptotic maximum principle for harmonic functions and a characterization

of the solvability of the Dirichlet problem in terms of convexity conditions at

infinity (Theorem 1.4); the material for this section draws heavily on the work

of Choi [4]. In §2 we construct a large family of global convex domains in N"

with controlled behavior at infinity; we refer to §2 for an outline of the

construction. This is applied to give the solution to the Dirichlet problem in §3

(Theorem 3.2). We also show that the convex hull C(S) of closed sets

S C Sn~\oo) is well behaved; in fact C(S) Π Sn~\oo) = S, as is the case for

hyperbolic space. This is useful in constructing barriers for complete minimal

submanifolds in Nn and harmonic maps into N". In §4 we introduce harmonic

measure on Sn~ι(oo) and a Poisson integral representation of harmonic

functions on Sn~λ(oo); besides allowing one to construct larger classes of
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harmonic functions, one obtains in this fashion a satisfying correspondence
between the space of bounded harmonic functions on Nn and L°°(Sn~ !(oo), μ);
see Theorem 4.3. Finally, §5 closes with various extensions and remarks.

The author would like to thank Andrejs Treibergs for many helpful con-
versations during the formative stages of the work; also Richard Schoen for his
interest in the work and H. I. Choi for writing [4]. Finally, the author is
indebted to M. Gromov for providing the idea for a simpler and better proof
of Proposition 2.2; this removed a technical hypothesis required in an earlier
version.

We note that Sullivan [15] has recently obtained a proof of the asymptotic
Dirichlet problem by quite different methods.

0. Preliminaries

Throughout this paper, Nn will denote a Cartan-Hadamard manifold, that
is, a simply connected manifold of nonpόsitive curvature. The standard model
for such spaces is the hyperbolic space form Hn(-λ2) of constant sectional
curvature -λ2. The sphere at infinity Sn~ι(oo) of Nn is defined to be the set of
asymptote classes of geodesic rays; two rays γ,, γ2: [0, oo) -> Nn define the
same asymptote'class if lim^oodist^ίγ^O* Ϊ2(0) < °° There is a natural
topology on Nn = N" U Sn~ι(oo), called the cone topology, given as follows:
for any origin ΘGiV, choose v E T0N

n and let C(v, δ) be the cone around υ
of angle δ, i.e.,

C(t>, 8)={xEίN"\J S"-ι(oo):<$6 (v, T^) < 8},

where 7 ^ denotes the tangent vector to the geodesic ray 6x through 0 and JC,
and <£ 0 indicates angle in TNn. Let Γ(t>, δ, r) be the truncated cone of radius
r, i.e., Γ(υ, δ, r) = C(υ, 8)\Be(r), Be(r) the geodesic r-ball around Θ. Eberlein
and O'Neill [5] have shown that the family T(v, δ, r) for v E TΘN, 8 > 0,
r > 0, together with the balls Bq(r\ q E Nn, forms a local basis for the cone
topology on Nn\ it turns out this topology is independent of the choice of Θ. In
this topology, N" is homeomorphic to a closed ball B in RΛ, S^^oo) being
homeomorphic to the boundary sphere Sn~x C R". In fact, if η: [0,1] -> [0, oo]
is any homeomorphism, the map Eη: Dx C TeN

n -> Nn given by Eη(υ) —
expη(|t>|) t> is a homeomorphism of the unit disc Dx C TeN

n onto Nn,
inducing a homeomorphism of the sphere Sλ = dDx onto Sn~ι(oo). We note
that in general there is no natural (independent of 0) differentiable structure on
Sn~\oo). Especially in §4, we use the above homeomorphism to identify
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We introduce some notation which will be used throughout the paper. Let xy
denote the geodesic ray determined by x and y in Nn. For a given v E TeN

n,
xv E Sn~\oo) will denote the asymptote class determined by the ray expίυ,
/ > 0. Geodesic spheres of radius r will be denoted by S(r) or Sp(r) if p is the
center of S(r); similarly geodesic balls are denoted by B(r) or Bp{r). The
notation above for cones and truncated cones will be kept throughout the
paper. In addition, we adhere to the usual notation in Riemannian geometry
and partial differential equations; our main references are [2] and [6] on these
matters.

1. Dirichlet problem at infinity

In this section, we discuss the Perron method and barrier functions for the
solution of the following Dirichlet problem. Much of the material in this
section is contained in the work of Choi [4].

1.0. Dirichlet problem at infinity for Δ. Let Nn be a simply connected
manifold of nonpositive curvature. Given a continuous function p E
C°(Sn~\oo)l find/ E C°°(Nn) U C 0 ^ ) such that

/ = 0 i n * " , /|s.-.(β0) = P-

We recall that the topology on N" is given by the cone topology, and note
that convergence in this topology is much stronger than radial convergence
(convergence along rays). For example, the function/(x, y) = x y is harmonic
in the upper half plane (with hyperbolic metric); along all geodesic rays
emanating from i — (0,1),/converges to 0 on ̂ (oo). Nevertheless, / does not
have continuous boundary values on S\oo) in the cone topology. The classical
Phragmen-Lindelόf principle illustrates more precisely the difference between
the two topologies.

Using the natural identifications S$~\\) « SQ~\t)9 for any t, given by the
exponential map, it is easy to see that/E C°(Nn) has asymptotic boundary
values p if and only if the restrictions/ = f\s*-ιw pulled back to functions on
Sg-\l)9 converge to p E C°(Sg-χQ)).

The following maximum principle is a simple consequence of the definitions.
Proposition 1.1. (a) Letf: Nn -+Rbe a subharmonicfunction such that

Um/(.x)<0, foranyx^ G ^"'(oo).

Thenf<0onNn.
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(b) If f is a subharmonic function on Nn, g is a superharmonic function on Nn,
and

U m / ( x ) < K m g ( 4 for any Xoo ^ Sn~\oo),

thenf^gonN".
Proof. We leave this to the reader, or see Choi [4].
Let Sp be the set of subfunctions on Nn relative to p: that is, given

p E C°(5π~1(oo)), Sp is the set of C° subharmonic functions v: Nn -> R such
that l i m ^ ^ v(x) < pix^)- Clearly, Sp is nonempty. Let u(x) = supϋ(Ξ5 v(x);
it is well known that u is a globally defined harmonic function on Nn. The
function w defined in this manner is a candidate for the solution of the
Dirichlet problem; to show that u achieves the required boundary values, one
needs to construct appropriate barrier functions.

Definition 1.2. Let ϋ E ΓoiV be a unit vector, and suppose 8 > 0. Then
β = β(v,8): Nn ->Ris called a barrier function at υ with angle 8 if

(1) β is subharmonic,
(2) β < 0 and l i m ^ ^ j8(x) = 0,

(3) 3μ > 0 such that hmx^Xwβ(x) < -μ for any H> G TON" with <£ 0 (ϋ, w)
> « .

This is a natural analogue of the classical barrier concept for domains in Rn;
see [11, 2.6.2] or [4, 2.6]. One then has

Theorem 1.3. Suppose there exist barrier functions β — β(υ, 8) with arbi-
trarily small angle 8 at any v E T0N

n. Then the Dirichlet problem 1.0 at infinity
is uniquely solvable for any p E C°(Sn~ \oo)).

Proof Let u(x) be the Perron solution relative to p E C°(Sn~ \oo)) defined
above. We show that hmx^Xgou(x) = pC-x̂ ) for any JC^ E Sn~ι(ao), which
implies the theorem. Fix any v E TQNn and choose ε > 0. Let 8 > 0 be such
that \ρ(xv) - ρ(xw)\< ε if <£ 0 ( υ , w) < δ, and let /? = β(v, 8) be a barrier
function at υ, angle δ. If /x is given by (3) above, choose k so that μk>2M,
where M = sup | p | on Sn~ι(oo).

It is easy to see that ψx(x) = p(xv) — ε + kβ(ix) is a subfunction, and
ψ2(x) = pίx^) 4- ε — kβ(x) is a superfunction relative to p; since the proofs
are almost identical, we verify this claim for ψ2. It is clear that ψ2(*) i s

superharmonic on N". To show that hmχ^Xw ψ 2 θ ) > p(xw) for any w E ΓOΛ̂
W,

suppose first that ^ 0 (xc, Λ:^) < 8. Then | pίx^) — p(xw) |< ε and since /? < 0,
ψ2(jc) > ρ(xw), whenever x E C(v, 8). If <̂  0 (*„, xw) > δ, we have

lim φ2(χ) = p(xv) + ε - k ϊϊm j8(x) > p ( x j + ε + kμ > p(jcw),
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as required. From the definition of u as the Perron solution and by Proposition
l.l(b), we find ψx(x) < u(x) < ψ2(x), or \u(x) - ρ(xv)\< ε - kβ(x). Since
β(x) -> 0 as x -> xv and ε is arbitrary, it follows that l i m ^ ^ u(x) = ρ(xv) as
desired. This proves the solvability of the Dirichlet problem for arbitrary
p G C°(Sn~\oo)). Uniqueness follows from the maximum principle (Proposi-
tion 1.1 (a)) in the usual fashion, q.e.d.

It is well known that Cartan-Hadamard manifolds N" possess a wealth of
convex functions; typical examples are distance functions to a point or to a
geodesic, or the mean square distance to a compact submanifold. In case
KN < -c2 < 0, such convex functions may be reparametrized to give bounded
subharmonic functions; see e.g. [4]. Thus one may hope to obtain the existence
of barrier functions from suitable convex functions or sets, as is the case for
bounded domains in Rπ.

Theorem 1.4 (Choi). Suppose for any distinct x, y G Sn~\oo) there exist
disjoint open neighborhoods Vx, Vyofx,y in Nn such that VXΠ Nn and Vy Π Nn

are strictly convex. Then if KN < -1, the Dirichlet problem at infinity for Δ is
uniquely solvable for any p G C°(5"~1(oo)).

Proof. By Theorem 1.3 we need to construct a barrier β = β(v,δ) for
v G T0N

n and any small 8 > 0. Given xv G Sn~\oo)9 let S(v9 δ) = {xw G
Sn~\oo): <£ 0(xυ, XW) = δ). Since S(t>, δ) is compact, we may cover it by a
finite number of convex open sets {Vw}™=x such that

VWjn VXυ= 0 , for all/,

where Vx is an open neighborhood of xv in Nn\ this much follows from the
hypothesis of the theorem. Let Ω = Nn - UJ" VWf9 and let ,sz: Ω -> R+ be the
distance function from Vw. By an approximation theorem of Greene and Wu
[9, Proposition 2.2], we may assume each dVw, and thus each st is a smooth
function. Using the second variational formula one may show that

where Ho = ds2 — ds{ ® dsh ds2 is the metric on Nn; [4]. From this it follows
easily that

Δtanhy > 0,

on Ω. Now let β = Σ'lLι tanh(.y//2) — m; clearly β is subharmonic, nonpositive
and \imx^Xχβ(x) - 0 for any x^ G VXv Π ^""^oo). Choose R > 0 so large
that Ω disconnects as the disjoint union Ω, UΩ 2 outside Be(R). Let Ω, be the
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set of q G Ω such that d i s t ^ θ , q)> R and <£ e (βq, v) < 8. Let Ω = {x G Ω,:

β(x) > c), where -m < c < 0 is a fixed constant, sufficiently close to 0. Define

β on N" by

Then /? is a barrier at t>, of angle δ (μ = -c). Since t» and δ are arbitrary, the
result follows, q.e.d.

It appears that none of the standard constructions of convex functions on
manifolds Nn of negative curvature give rise to convex sets satisfying the
conditions of Theorem 1.4. In fact, there are no examples of convex sets C in
general Nn such that C Π Sn~1(oo) Φ Sn~\co) is a set with nonempty interior
in the cone topology. Thus our aim in the next section is to construct convex
sets with nontrivial behavior at infinity.

2. Construction of convex sets

In this section we will construct unbounded convex domains in manifolds of
negative curvature, having prescribed asymptotic behavior. Recall that horo-
balls Hx in W are strictly convex sets intersecting 5w - 1(oo) at a single point JC;
the construction is based on the idea that locally one may produce larger
convex sets containing Hx (due to the strict convexity): this is done in Step I
below. In Step II we use an iteration procedure to construct global convex
domains β. In Step III by using comparison with negative space forms we
show convergence and are able to control the behavior of β at infinity.

Throughout this section Nn will denote a simply connected Cartan-Hada-
mard manifold of sectional curvature KN satisfying -a2 < KN < -b2; using a
homothety of the metric, we may assume 6 = 1 .

Step I. An important feature of the spaces Nn is the convexity of large
geodesic spheres. In fact, if IIR denotes the second fundamental form (with
respect to inward normal) of a geodesic ^-sphere in Nn, then standard
arguments involving Jacobi fields show that

(2.1) / < coth R < IIΛ < acoth aR /,

where / denotes the identity matrix.

In order to find local convex expansions of spheres we use the following

lemma.
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Lemma 2.1. Given any p GN", there is an fp G C°°(JV",R) such that

0 <fp < IJpip) = 0 , / Ξ 1 outside Bp(\) and

(2-2) WP\<CU \Dfjfp\<C2,

where C]9 C2 are constants depending only on a2.
Proof. Let p be the distance function from /?, and consider functions

fp = φ(p) where φ: R+ - R satisfies φ(0) = 0, φ(t) = 1, for ί > 1. Then
dfp — φ' - dp, so that |dfp| = | φ ' | . A simple computation shows that D2φ(ρ) =
φ"</p ® dp + φ'D2ρ; thus

yφ(p)| * Φ " I + IΦI α c o t h aP

Choosing φ appropriately, e.g., as a fixed approximation to the characteristic
function χ[1/2,00]» o n ^ easily obtains the estimates (2.2). q.e.d.

Now given a fixed origin 0, consider the functions pe + εfp where pe is the
distance function from Θ; these may be considered as local perturbations of pβ,
provided p^{p)^ 10 say.

Proposition 2.2. There is an ε > 0 depending only on a2 such that the sublevel
sets of ρe + ε ,̂ are totally convex subsets ofNn.

Proof. Note that the level sets of pe + εfp are smooth submanifolds of N";
since TV" has negative curvature, it is sufficient to show they have positive
definite second fundamental form II εf. For a given tangent vector X we have

Πβ /( Jf, X) =

We have D2(pe) > I by (2.1) and ^(ε/^) < εC2 by (2.2); choosing ε suffi-
ciently small then gives the result.

Remark 2.3. It is clear that Proposition 2.2 remains valid when^ = φ ° p is
replaced by φR © p where φR(t) — φ(R - t)\ then ε depends on R as well as a2.
In order to simplify the computations in Step III, we will choose R to satisfy
the following requirement. Let Se(p) be the sphere around Θ containing/?, and
S^ε) the concentric spheres with radius dist(6, p) + ε. Then the level set of
Pe + εfp through p should equal S^ε) outside the intrinsic ball of radius 1 in
5e(ε) centered at op Π Se(ε) (instead of the extrinsic ball of radius 1 centered at
p). It is not difficult to see that for dist(0, p) ^ C, e.g., dist(θ, p) ^ 10, such
an R may be found independent of 0, p.

Step II. We now construct global convex domains, using iteration of the
local result contained in Proposition 2.2. Thus let S = Se(R) be a fixed
geodesic Λ-sphere and let S(t) — Se(R + t). Choose/? G S and define Cx to be
the sublevel set of ρe 4- εfp with/? E dCx; here and in what follows, ε and^ are
defined by Proposition 2.2 and Remark 2.3. One may view Cλ as the ball
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B(ε) = Be(R -f ε) with a 'scallop' cut out around p\ C, is a totally convex
domain.

One may proceed to cut out successively larger 'scallops' from successively
larger spheres as follows. Let Tx be the 'seam' of C,: Tλ = d(Cx Π S{e)). Let
Uτ be the collection of points on Sι — S(ε) whose outward intrinsic distance
to Γ, is < 1; note this includes all points of Sx in the interior of Tx (the
component containing op). For any q E Uτ, define the convex set C2(q) to be
the sublevel set of p0 4- εfq such that q E dC2(q), and set

Cί= Π C2(q).

It is clear that C2 is totally convex. Let C2 = C2\(B(ε)\Cx).
Note that C, C Bλ = £(ε), and 5(ε)\C1 is the 'scallop' bored out of B(ε). It

is easy to see that C2 is also totally convex. In fact let x, y E 9C2 and suppose
not both x and >> are in dCx. Then γ =jty is obviously contained in C2; suppose
γ entered the scallop B(ε)\Cv By convexity of C,, at least one end z of
y Γ\ B(ε) does not lie in dCγ. However, then one of the two geodesic arcs zx or
zy must intersect the complement of C2(q) for some q, contradicting the
convexity of C2(q).

It is now clear how we proceed inductively; the 'seam' Tt of Cz, 7] — 3(Cf Π
S(iε)), serves to construct C'i+X as

σ = Π c

where C/+,(<?), [/Γ. are defined as before. Then Ci+X is given by Ci+X — C/+1 —
(2?, — C,-). We thus have a nested sequence of totally convex sets

cxcc2c -cςcς.c. . .

Let β = UJljC,-; this is the desired global totally convex set. Note that we
construct such β for any p E S and any S (of radius > 10).

Step III. Having constructed global convex domains β in Nn, we need to
show that β has 'nontriviaΓ asymptotic behavior. In particular, we need to
control the size of S Π S^^oo). The study of β Π Sn~\co) uses comparison
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of Q with models in the spaces Hn(-\) and Hn(-a2). It turns out it is actually
sufficient to compare β with models in H2(-\) and H2(-a2). Thus choose an
origin o in H2(-Y) and H2(-a2) together with Zί-spheres S(R) centered at o,
and let p E S(R). We construct the models β C H2(-\) exactly according to
the prescription given for 6 in Steps I and II above (using the same or any
equivalent / ) . Similarly, construct models 6cH2(-a2), but replacing the
intrinsic distances 1 by ^ everywhere.

We measure the asymptotic behavior of 6 (and β, β) by means of the angle
at o from the ray op; in other words, for any x E β C S"~\oo)9 consider
<$e(op,ox). Let

ae = sup{<£G (~op, ~ox ): x E β Π S^^oo)},

Similarly we define αg, /?g and αβ, /?e; it is easy to see that in fact αg = ββ and

Lemma 2.4. /« /Λe αfeot e notation, we have

(2.5) «e<«e> βe^ βe-

Proof, (i) α e ^ αg. Referring to Step II in the construction of β, let
xN E 7^ be a sequence such that xN -> xM and ^(0*00, o/?) = «e For each
fixed N, let x^ G Tt be chosen inductively so that x% = x^ and
distS(/)(jcjy,(jCflM)/) < 2 where ( x ^ 1 ) ' is the normal geodesic projection of
JC^ 1 onto S(i) = S(R + iβ). Consider the geodesic hinge x^ox^1; set αjv =

^^ox^ox'jf1) and note that l(ρxι) — R + ε for any iV. Now consider analo-
gous hinges in β C H2{-\). In this case, each 7) consists of two points (χ/? ξ j ;
we let χf. E 7) be chosen so that (Γ—, Γ—} is an oriented basis for To(H2(-\)).
Let a! = ^ ^ ^ o χ , ) ; we have /(oχ,-) = Λ + iβ and dist5(/)(χ/9 χ; + 1 ) = 2. It
now follows from the Rauch comparison theorem (see [2, 1.28, 1.30]), that

a!N < α1', for all 1, any iV.

Thus we have shown

w 00

<xe < lim 2 α Γ < Σ α ' - αe»
ΛΓ-cx) = 1 = 1

where the last equality follows from the fact that H2{-\) is 2-dimensional.
(ϋ) ββ < /3e. Again we choose x^EGΠ Sn+^oo) realizing ^Se. Let P C T0N

n

be the 2-plane spanned by the vectors {T—, Γ—}, and let 9 = exp0 P. Choose
Xi E 7]̂  Π 9 so that distS(j )(jcJ.,(jcJ.+ 1y) > 1 where (xx+)' is as in (i); it is clear
that such choices of xt always exist and xt -> xx. We let βt — ^oiox^ox^^
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and recall l(ox^) = R + iε. Now compare this data with the model β C

i/2(-ύf2)^_choose χ, C 7; C β as in (i) and set /?, = <$0(op9oχι) in H2(-a2).

Since /(oχ,) = R + iε and dist^Xχy, (χf-+1)0 = 1 (recall 1 is replaced by { in

β) , it follows by Rauch comparison as above that

βi<βi9 for all i.

Since all angles βi are measured in P, we have βe — 2°^/?,, which gives
00 00

βe~ Σ A ^ Σ A = βe q e d

We are now ready to obtain estimates for αg and βe in terms of ε, a, R. For

the calculations we use the Poincare model for i/ 2 (-λ 2 ); recall the hyperbolic

metric on the Euclidean ball i?2(l) is given by

4

ώ l " λ2(l-r2/4 '

where έfc| is the Euclidean metric. One easily computes that at Euclidean

distance r E (0,1), the hyperbolic distance dλ is given by

_ 1 1 + r

Also, the intrinsic hyperbolic distance Sλ on S(R) is Sλ = 2SE/[λ(l — r 2 )] , for

SE the intrinsic Euclidean distance.

Now given Tx <Z β or Q in H2(-λ2) for λ2 = 1, α 2 , we measure the position of

Tt with respect to 0 and the ray op by means of 'polar coordinates': Tt = (/,-, 0f ),

where /z is the radius of the Euclidean sphere with Tt G £(/,), and θι is the

hyperbolic angle at o between op and oTt. We have Γo = (/0,0) where l0 —

(eλR— \)/(eλR H-1), since To= p is on the geodesic ^-sphere centered at o.

By construction, lk is given by the formula

1 -t2

Writing lk — I + μk, one finds that

( l + / 0 ) [ e * λ ε - l ]

To compute θk, recall that
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by construction we require Sλ = d i s t^^χ, , ( χ z + 1 ) ' ) = 2σ, where σ — 1 in

H2(-l) and σ = \ in H2(-a2). This gives #! = 5 £ / / 0 = λσ(l - l%)/l0 and

generally

For the coordinates of Tk, we then have

k-\ i _ j2

( + μk, λσ 2̂  I
/ = 0 *

Set Ωλ(Λ, ε) = lim^^oo^. Then μk -> 1 — /0 as k -» oo and a lengthy but

straightforward computation shows that

(2.6) Ωλ(Λ,ε) = 4(l-/0

2)λσ f - λ

,_Ό (i + /0)V
λ -(i-/0)V ί λ«

Σ l

It is clear that this series converges uniformly on compact sets in both

variables R > 0 and ε > 0; thus Ωλ is a continuous function of R and ε. In

particular, setting λ = 1 and λ = a, and substituting in the value for σ above,

we obtain bounds on ore and ββ.

, =o eικeιε — e ιε

Of course, we are only interested in the case when βe < αg; this occurs for

example for R satisfying (a — \)R> ln(α/2); so R > 1 is sufficient.

Recall that ε is determined solely in terms of the constant a from Proposition

2.2. The estimates (2.7) in conjunction with Lemma 2.4 provide estimates for

the behavior of β at infinity. In the next section, these will be used to discuss

the convexity of S"~\oo) and the solution of the Dirichlet problem.

3. Convexity of Sn ι(oo): Solution of the Dirichlet problem

We use the results of §2 to discuss the convexity of Nn at infinity. First, we

prove the existence of arbitrarily 'small' convex neighborhoods for x E

Sn~\oo) in the cone topology; this leads to the solution of the Dirichlet
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problem at infinity for Δ. We also prove an important property of the convex
hull of closed sets S C Sn~\ao), namely, β(S) Π Sn~\oo) = S\ this property
is well known in hyperbolic space Hn(-Y).

We continue to assume that Nn satisfies -a2 < KN < — 1.
Theorem 3.1. Given any v E T0(Nn) and δ > 0, there are convex domains

Kvδ(l) in Nn satisfying
(i) Kv 8(l) C T(v, δ, /), for I > /, where I depends continuously on δ and a,

(ii) C(v, δ') Π Sn~\oo) C Kvδ(l) Π Sn~\oo\ where δ' > 0 depends con-
tinuously on a and I.

Proof. Let xv E S^^oo) be the asymptote class determined by v, and 0xy

the ray from o to x, and let 0, = So(l) Γιoxυ for / > 0. Consider the spheres
SO(R) of radius R < I around oι and set pR = 5^(1?) Π 0* .̂ Define Q(pR,θι)
to be the convex domain constructed in §2 determined by the center o{ and
point /?Λ; we will show that for appropriate choices of R and /, Kv δ(l) =
&(PR>°I) satisfies (i) and (ii).

(i) Given any δ > 0, we claim there is an /such that / ̂  /implies β(/?Λ, 0/)
C T(v, δ, /) for any R0(a) < i£ < ^i(tf)> where Λo, /^ are fixed constants
depending only on a. To show this, recall that βe = inΐ{^ O/(oιpR, Ojx):
x ELQC\ 5"ί~1(oo)}, and βe > βe by Lemma 2.4. Consider the geodesic triangle
00ixσo where xM E S"1"^^) realizes j8e, and let Ω = <£o (00^0^^). Let 00/X^
be a similar triangle in H2(-\) where dist(0, o{) = /, χM 6 S^oo) and
<£ O/(̂ /O,0/Xoo) = )Se- Setting Ω = < ô (00,, 0X00) in // 2(-l), the Rauch com-

parison theorem applied to the two triangles implies that

ύl ^ ii.

Now βe depends on a and R according to (2.7); in particular, there are
constants R0(a) and R}(a) so that R0(a) < R < i^^α) implies that 77/2 < 8̂e

< 3ττ/4, independent of /. It follows by elementary hyperbolic geometry that Ω
can be made arbitrarily small by choosing / sufficiently large; thus there exists /
so that Ω < Ω < δ for / > /.

We have proved that G(pR, o,) Π Sn~\oo) C Co(v9 δ) Π Sn~\oo) for / > /,
R0(a) < R< R{(a). By examining the construction of 6(pR, o{) in §2, this is
easily seen to imply that

(ii) To see that KΌ δ(l) intersects Sn~\oo) in a set of nonempty interior,
choose y^ E ^""'(oo) realizing ae = sup{ ^O/(θ/PΛ, o7x): x e C ί l 5Λ"1(oo)},
where 6 = β(/7Λ,6>7) as in (i). Consider the geodesic triangle 00/Joo a n ^ let
ω = ^0(00^^00). We form the comparison triangle 00^ in H2(-a2) where

dist(o, ot) = /and ^ ( 0 , 0 , 0 ^ ) = o^in H2{-a2). Let ω = <$o(ooh <>£„), since
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ae < CLQ by Lemma 2.4, Rauch comparison applied to the pair of triangles

gives
ω < co.

This shows that Co(v, ω) Π Sn~\oo) C β(pR, 0,) = Kυδ(l). It is clear that

5' = ω > 0 depends continuously on α, / and R. Since R is bounded by

R0(a) < R < R^a), δ' depends only on a and /. q.e.d.

As a consequence of Theorem 3.1, we deduce our main theorem on the

solvability of the Dirichlet problem.

Theorem 3.2 (Dirichlet problem at infinity). Let Nn be a complete simply

connected Riemannian manifold of sectional curvature KN satisfying -a2 < KN <

- 1 , where a2 > 1 wan arbitrary constant. Then the Dirichlet problem at infinity

for Δ, (1.0), ί s uniquely solvable for any p G C°(S"~ι(oo)).

Proof. By Theorem 1.4 we need to prove that for pairs x, y G 5w - 1(oo),

x Φy, there exist disjoint open sets F^, J^ in Nn relative to the cone topology

so that Vx Π N and Vy Π iV are convex. Let t>, w G Γo JV" be chosen so that x, y

are the asymptote classes of the rays determined by v, w. Choose 8 > 0 so that

C0(υ, 8) Π C0(w, δ) = 0 . By Theorem 3.1 we may choose convex domains Kx

and Ky so that ^ C C 0 ( t ) , 8 ) , ^ C C 0 ( w , δ ) and ^ Π S " " 1 ^ ) , Ky Π

Sn~\oo) contain the intersection of δ'-cones around t>, w with ^""^oo). In

particular, the domains Kx, Ky satisfy the above conditions, q.e.d.

Given a set S CiV", we define the convex hull &(S) of S to be the smallest

geodesically closed set in Nn containing S. The manifold Nn is said to satisfy

the Visibility property if given any distinct x, j> G S" 1 " 1 ^) , there is a complete

geodesic γ in Nn asymptotic to x and j ; see [5]. As a simple special case, Nn is

Visibility if KN < -b2 < 0. The Visibility manifolds are the natural class of

manifolds in which to study the convexity of Sn~ι(oo). A characteristic

property of the convexity of the model space //"(-I) at infinity is the fact

G(S) Π Sn~\oo) = S for any closed set S C Sn~ι(oo). We generalize this to

other Riemannian manifolds as follows.

Theorem 3.3. Let Nn be a complete simply connected manifold satisfying the

conditions of Theorem 3.2. If S is a closed set in Sn~\oo), then

(3.3) β(S) nSn-\oo) = S.

Proof. We note that it is sufficient to prove the existence of 'large' convex

sets 6v8 for any δ > 0, v G T0N" such that

S"-ι(ao)/ (C(t>, δ) Π S"~\oo)) C ev,s Π S"-ι(ao),

but xv £ &υ8 Π Sn~\ao). For given such, let x G Sπ" 1(oo)\S; then there

exists δ and v with x = xv G C0(v9 8) Π Sn~\oo) satisfying C0(v,8)(Ί

Sn~\oo) C 5n"1(oo)\5 t. Choose Gv δ as above; it follows that x £ β, δ yet

5 C βϋ f β. Since 6(S) C βo δ, we have x £ 6(5) as required.
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The existence of Qvδ follows from the results of §2; we choose 0 and

p E Se(R) so that v is the unit tangent vector to Θp. Choose R so large that

ae < δ; this is possible for any 8 > 0 by combining Lemma 2.4 with the

estimate (2.7). On the other hand, we have the estimate βe > βe > 8\a, 8, R)

> 0 again by (2.7) and Lemma 2.4. Thus xv & βOfβ, and so Qv s satisfies the

required properties.

Remark. The property (3.3) is useful in providing barriers for systems of

partial differential equations satisfying certain maximum principles; in particu-

lar, it can be applied to the study of complete minimal submanifolds inNn and

harmonic maps of complete manifolds into Nn. Gromov [10, 3.2] has also

called attention to property (3.3), partly in regard to generalizing the theory of

Kleinian groups.

4. Harmonic measure and general boundary values

In this section we generalize our results on solvability of the Dirichlet

problem to more general boundary values; we begin by introducing a Poisson

integral representation for globally defined harmonic functions via the harmonic

measure on Sn~\oo). Theorem 4.3 then gives a satisfying relation between the

class of bounded harmonic functions on Nn and the class of L°° functions on

S"-\oo).

Given/ E C°(Sn~ι(oo)), let P[f] denote the unique harmonic extension of/

into Nn; thus P[f] is the harmonic function on Nn with asymptotic boundary

values / on Sn~ι(oo). For each x E N"9 define a linear functional Lx on

C°(S"-\oo))by

(4.1) Lx(f) = P[f](x).

Note that since \P[f](x)\^maxSn-\(oo)\f\ by the maximum principle

(Proposition 1.1 (a)), Lx is a bounded linear functional of norm 1. Again the

maximum principle shows that f> 0 => Lx(f) > 0 so that Lx is a positive

functional. Applying the Riesz representation theorem gives the existence of a

regular positive Borel measure μxonSn~\oo) such that

P[f](x)=f , fdμχ9

for any x E Nn,fE. C°(S"~\oo)). We note that the above remarks show that

5Λ~1(oo) is the Silov boundary of N" in the sense of harmonic analysis. The

measure μx is called the harmonic measure of ^""^oo) at x; clearly

μx(Sn~\ao))= 1 for all x.

The following result gives a means of constructing harmonic functions with

more general behavior at infinity.
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Theorem 4.1. Letf G Sn~\oo) ^Rbe μxintegrable for some x G N". Then
fis μ x-integrable for all x G Nn, and the function P[f] given by

(4.2) P[f](x)=ί , f dμx

is a smooth harmonic function on N".

The function P[f] defined by (4.2) is called the harmonic extension of/. In
particular, if E C Sn~ ι(oo) is a Borel set, then μx(E) is harmonic in x.

Proof. The proof is a straightforward adaptation of the same result for
bounded regular domains in R"; see [11, §3.6]. We sketch the argument for/
upper-semicontinuous and bounded. Choose a sequence of continuous func-
tions {/„} decreasing montonically to/as n -> oo. The corresponding sequence
of harmonic extensions P[fn] given by (4.2) decrease to a limit u(x\ and u is
harmonic in Nn; this follows easily from the Harnack-type convergence of
harmonic functions in Nn. It is not difficult to see that u is independent of
{/„}. By monotone convergence, fs»-\oo)fndμx -> fs»-\oo)fdμx for any x, so
that u — P[f] is harmonic. To prove (4.2) for Borel measurable/, one uses the
fact that/is the monotone limit of upper-and lower-semicontinuous functions;
see [11] for details, q.e.d.

We now show that the harmonic extension P[f] of / has the correct
boundary values, at least in certain cases.

Given a continuous function u: Nn -» R, let ut denote the restriction to
S"~~ι(t), and w' the pullback of ut to S"1"^) via the exponential map. If v:
Sn~λ(co) ^>R9 we also view v: Sn~\\) ^>R via the homeomorphism η:
Sn~\\) -> Sn~\oo) (see §0). Finally, if λ denotes the measure induced by the
volume form on S"1"^!), we view λ as a measure on Sn~\t) for t G [1, oo] via
the above homeomorphisms.

Theorem4.2. Letf(ΞLp(S"-\oo\ μx) Π U(Sn~\oo)9 λ), 1 < r < oo, and

let P[f] denote the harmonic extension off. Then \\f - P[fY\\r -> 0 as t -> oo in

U(Sn~ι(l), λ). In particular\ P[f]t -> / almost everywhere in the cone topology

onNn.

Proof. Since 1 < r < oo, C° is dense in U. Let/π G C°(S"~ \oo)) be chosen
so that fn ->f in L\Sn-\oo\ λ) Π L^Sn~\oo)9 μ)9 and set un = P[/J. By
the solution to the Dirichlet problem, Theorem 3.2, (un)t converges to fn

uniformly in the cone topology so that u*n -* fn uniformly on S" 1"^). Let
u — P[f]. Then un-+ u uniformly in Nn since

\u{x)-un{x)\^jsn_ioo \f-fn\dμx

< ( / \f-fnfdμ\ " =\\f-fn\\p,μ.
\JS" '(oo) /
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We have

I/- «t.x <ll/-/x.λ+11/- - <Lχ+\\< - " l , λ ;

the above remarks show that each term is arbitrarily small for ί, n sufficiently

large, q.e.d.

We are interested in the converse of the above theorems, i.e., given harmonic

functions u on Nn

9 when does u have boundary values in LPΊ For the case of

bounded harmonic functions, we have the following theorem.

Theorem 4.3. Let β denote the Banach space of bounded harmonic functions

on Nn under the sup norm. Then the linear mapping

is a norm-nonincreasing isomorphism onto β. Further \\P[fY — f\\p-+0 as

t -> oo for any 1 < p < oo provided f E L°°(Sn~ '(oo), λ).

Proof. It is clear that P is linear and 1-1. JP is norm-nonincreasing since

\P[f](x)\=l , fdμx<M. f , dμx=\\f\\x.

Thus the major task lies in showing P is surjective; the proof of this is a

variation of the proof by Ullrich in the case of the Bergmann ball; see [13,

§4.3].

There is a natural action of SO(n) on Sn~\t) induced by the linear action

of SO(n) on the Euclidean /-spheres in TNn; of course, the action on Sn~\t)

is not by isometries. Let dg denote Haar measure on SO(n) and choose a

continuous nonnegative function h: SO(n)-^R such that fso(n)hdg— l

Given F(z): Nn -> R harmonic, define

(4.3) G(z)=ί F(gz) h(g)dg.
JSO(n)

We claim there is a fixed constant k, depending only on the geometry of N

such that

(4.4) / \F'(gξ)fdg<k [ \F'(x)\"dλ,
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for any ξ G Sn~ ι(l). To see this we have

[/ \F'(gη)fdg]d\=f [/ \F'(gη)\Pdλ]dg
S"-\\)[JSO(n) J JSO(n)[JS"-\\) J

= f [/ \F'(η)\P d((g->)*λ)
JSO(n) I/S' -'O)

kf [/ \F(η)\Pdλ]dg
JSO(n) lJS"-\\) J

where A: = supg{sup[Λg(;c): x G S""^)]} , Λg = Radon-Nikodym derivative

of (g"1)*λ with respect to λ. On the other hand, since SO(n) acts transitively

on Sn-\t),

f [/ \ \ ] χ) \
JS"-\\)[JSO(n) J JSO(n)

for any ξ G S^-^l); this proves (4.4). By the Holder inequality applied to

(4.3), using (4.4) we have

(4.5) \G(z)\<k Mp\\h\\q9

where/?, q are conjugate indices, and Mp — supJIF'H^; in particular,

(4.6) \G(z)\<k Mx.

These estimates show that {G'}, t G (1, oo), is an equicontinuous family on

Sn~λ{\). In fact, given ε > 0, choose a neighborhood Uoi I C SO(n) such that

Hg)-h(ggό])\<e

for go<ΞU, gG SO(n). Choose δ > 0 so that if £, η G S ^ O ) and dist(£, η)

< δ, then ξ = goη for g0 G ί/. Since G(goz) = /^(^^(gz^ίggo 1 ) rfg, one

finds

|G'(O - G'(η)| < / \F'(gη)\ \h(ggSι) - A(g)|ί/g < M,ε,

provided dist(ξ, η) < 8. By (4.6), {(/'} is uniformly bounded, so it follows that

there is a sequence {/J -> oo such that {(?''} converges uniformly to g G

C^S^' ίoo)) .

Now replace Λ by hj in the definition of G, and let supp{Λy} shrink to

/ G SO(n). Then G7 converges pointwise to F. Consider the sequence {gj)\ by

(4.6) and the uniform convergence of Gj to gJ9 \\gj\\pμ< k M^ for all
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1 <p ^ oo. Thus there is an/ G Loo(5n~1(oo), μ) such that {gj} has a subse-
quence, call it {gj}, converging to/in the weak *-topology of L°°. The function

P[f](x)=ί fdμx
JSn~\oo)

is well defined and harmonic in N"; we will show that F = P[/] . To do this we
first prove that

(4.7) F'-P[f]' - 0 weakly in L ^ S " " 1 ^ ) , λ)* Π L0 0(Sπ"1(oo),μ) .

Clearly,

(4.8) F< - />[/]' = ( F ' - σ;) + (σ; - p[ g y]') + (p[gjγ - p[/γ),

and we will analyze each of these terms separately. Let σ denote either of the
measures λ or μ.

(i) (F' - Gj): We compute, for / e ^ ( ^ " ' ( l ) , σ),

f/ ,JSO{n) I

Note that since F is bounded on TV, there are a sequence {/,} -> oo and
φ G L*(Sn~\\\ σ) such that {F*'} -> φ in the weak *-topology on L00. Thus

lim

= ί \ί (φ(z)~φ(gz))ldo\ hJdg.
JSO(n)[JS"-\\) J

This shows that, given any ε > 0 and / G Lι(σ), there is a / such that fory > J,
the last term is bounded, in absolute value, by ε. The same statement holds for
any sequence {tj} -» oo.

In the next case, we can estimate in the strong L^-norm.

(ii). Hm \\GJ - P[gjV\\l = Hm da
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Since GJ -* gy and P[gjY -> gy uniformly on S ^ ^ l ) , the last two terms
vanish.

(iii) To estimate lim^^ (P[gj]' -» P[fY) in the weak *-topology, we just
note that P[gjY -* gj uniformly for fixed j , and P[fY -*f in L^-norm,
1 < p < oo furthergy -»/weakly in L°°(Sn~\\l σ).

Combining the estimates in (i), (ϋ) and (iii) with (4.8) gives the desired (4.7).
Finally, since F — P[f] is harmonic, bounded and (F - P[f])' -> 0 weakly as
t -> oo we claim that JF = />[/]. Thus let ψ = i 7 - />[/] and let />* dλ denote
harmonic measure on Sn~ \t) at x. Then we have

By assumption the first term converges to 0 as t -* oo, and by general
principles the second term also converges to o since HΨHoo is finite.

This shows F=P[f]as desired. Finally, the fact that \\P[fY - f\\p -» 0 as
t -> oo follows immediately from Theorem 4.2.

5. Concluding remarks

1. It is not difficult to see that Theorem 3.2 remains valid provided the
conditions on the curvature hold outside some compact set B of N n\ in other
words a1 < Λ^ ^ -1 on iV" - 5, where B is any compact set in TV", and
Nn — B is diffeomorphic to Rn — B, B being a closed ball. This is in line with
the philosophy of Greene-Wu that much of the function theory on Cartan-
Hadamard manifolds should be determined by asymptotic conditions only.

2. Let OGiV" and let d/dxt be global normal coordinates for Nn around 0.
Settinggf.. = (d/dxi9 d/dxj), the Laplace-Beltrami operator takes the form

i Ί d u

ij °Xi \

where g = det(g/y ), and gij = (g^ )"1. Then Theorem 3.2 may be interpreted as
showing that this operator admits many bounded solutions in R", provided
aιj = y[ggιj satisfies certain curvature conditions—certain bounds on 2nd and
3rd derivatives of aij.
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