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VARIATIONAL PROBLEMS AND
ELLIPTIC MONGE — AMPERE EQUATIONS

ILYA J. BAKELMAN

In the present paper we study the ^-dimensional variational problems
connected with the Dirichlet problem for ^-dimensional Monge-Ampere equa-
tion

with zero boundary condition and prove the existence and uniqueness of an
absolute minimum for this problem. This minimum is a generalized solution of
the equation (*) belonging to the class of all general convex functions.

The technique of convex hypersurfaces and bodies used in the geometric
theory of elliptic Monge-Ampere equations turns out to be also essential for
the investigations of the variational problems considered below. Therefore we
also included the brief exposition of some necessary concepts and results of
this theory.
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1. Introduction
1.1. Statement of problems. This paper is devoted to proving an existence

and uniqueness of the absolute minimum for the functional whose Euler
equation is given by the Monge-Ampere equation

(1.1)
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Such a functional is given by Courant and Hubert [14] for the case of functions

of two variables:

(1.2) E(U) = -jf{»2

χUyy ~ 2»X"y»Xy + U2

yUjfG yUχχ

where G is an open convex bounded domain in the cy-plane. Unfortunately the

functional (1.2) does not give any idea concerning the functional spaces in

which this variational problem belongs, also it does not suggest the generaliza-

tion for functions of n-variables.

We found in [4], [6] another functional

(1.3) /(„) = -ff^(u(uxxuyy - u2

xy) - 3fu) dxdy,

whose Euler equation is

(1.4) uxχUyy-u2

xy=f(x,y).

If dG is a C2-curve and if w(x, y) G C2(G) and satisfies the condition

u \dG = 0, then E(u) = 2I(u).

The functional (1.3) is closely connected with the Monge-Ampere operator
uxxuyy ~~ u\y

 a n c * admits a simple geometric interpretation by means of the

tangential mapping constructed by the function u. This functional also admits

a simple natural generalization to functions of n variables:

(1.5) /„(«) = -/c[«det| |ιg|- (n + I)f{x)u] dx,

where G is an open convex bounded domain in Euclidean space En. Let

x]9 x29" -,xn be Cartesian coordinates in En and dx = dxxdx2,- -,dxn. The

formal Euler equation for In(u) is the equation

(1.6) det\\uiJ\\ = f(xl9x29 -9xn).

In the papers [4], [6] we studied the two-dimensional variational problem for

the functional (1.3) and proved that the absolute minimum for this problem is

a generalized solution of the equation (1.4) with the boundary condition

(1.7) «laC = 0.

But some points used in [4], [6] do not generalize to the ̂ -dimensional case

and new ideas and techniques are therefore required. In the present paper we

study the n-dimensional variational problem for the functional (1.5) and prove

the existence and uniqueness of an absolute minimum of this problem. This

minimum is a generalized solution of the equation (1.1). The proof of this

result is based on deeper ideas and geometric constructions than those used in
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[4], [6]; these ideas and constructions are based on new estimates for the main
functional, and on the concepts and properties of dual convex hypersurfaces in
the special space. They uncover the fundamental geometric contents of this
variational problem.

If the function / is sufficiently smooth and strictly positive and if the
boundary of G is also sufficiently smooth and strictly convex (all principal
normal curvatures of dG are positive), then from Pogorelov [17], Cheng and
Yau [12], [13] and our results it follows that the generalized solution of the
considered variational problem is also smooth.

1.2. Preliminary considerations. Since the Euler equation (1.6) for the
functional /„(«) has the second order instead of the fourth one, then the
variational problems for this functional are degenerate. Therefore there is only
one boundary condition in variational problems for In(u). (Note that there are
two boundary conditions in nondegenerate variational problems of the second
order.) This fact influences the semiboundedness, continuity and asymptotic
behavior of In(u) if ||u|| -> oo. Here \\u\\ is the norm of the function u in the
corresponding function set. We can see for example that In(u) is nonbounded
from any side if we consider it for all functions u G C2(G) Π C(G) and if
u | 3 C = 0. Therefore it is natural to construct the domain of definition for In(u)
by taking into account the properties of elliptic solutions of the corresponding
boundary value problem for the Monge-Ampere equation (1.6). In this paper
we consider elliptic solutions of the Dirichlet problem for the equation (1.6)
with the zero boundary condition.

Evidently all C 2 elliptic solutions u(xv- ,JCM) have the fixed sign second
differential everywhere in G. Hence they are either nonpositive convex or
nonnegative concave functions in G. Therefore the variational problem corre-
sponding to the absolute minimum (maximum) of In(u) should be considered
in the class of nonpositive convex (nonnegative concave) functions. It is clear
that it is sufficient to consider only the problem of finding the absolute
minimum of In(u). The functional In(u) can be extended to the class of all
nonnegative convex functions, vanishing on 9G, by means of the technique of
generalized elliptic solutions for Monge-Ampere equations (see §§2 and 6 of
this paper). Thus the main variational problem for the functional In(u) is
reduced to the establishment of the absolute minimum of the extension of
In(u) to the class of all convex functions vanishing on dG.

But the extension of In(u) turns out to be discontinuous. This fact appears
because the second boundary condition for the comparison functions is
excluded. Moreover the problem of finding the first variation of In(u) is
connected with the extension of In(u) to the class of all nonpositive continuous
functions vanishing on dG. There required more deep and refined ideas and
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techniques for the corresponding extension of the functional In(u) and the

proofs of the existence of the absolute minimum and the expression of the first

variation for the extended functional In(u) than we had briefly considered

above. We present all these problems in §§2, 3 and 4. In §5 we consider a

development and generalizations of the main results from §§2, 3 and 4. §6 is

devoted to the presentation of the necessary information about the geometric

theory of the Monge-Ampere equations.

2. The functional IH(u) and its properties.

In this section we construct the extension IH(u) of the functional In(u) to

the set of all nonpositive continuous functions vanishing on ΘG and establish

the continuity of IH(u). Here H is any convex subdomain of G distant from 9G

on some positive number and G is a given convex bounded domain in En.

2.1. Normal mapping and /^-curvature of convex functions. For a detailed

exposition see [2], [6, §§16, 17, 20], [7] and [9].

(A) Normal mapping of convex functions. Let xλ, x2, ,xn9 xn+ x be Carte-

sian coordinates in (n + l)-dimensional Euclidean space En+X. Let En be the

hyperplane xn+λ = 0 in En+\ and let G be an open convex bounded domain

in En. We introduce the notations xn+ι — z\ x — (xx, x 2, ,xn) is a point of

En and ( c, z) = (xλ, * 2 , ,xn; z) is a point of En+ι; z(x) is a function z:

G -> R with graph Sz; W+ (G) is the set of all convex functions on G; W~(G)

is the set of all concave functions on G. If z(x) G W~ (G), then Sz is called a

convex (concave) hypersurface.

Pick some arbitrary convex function z(x) G W+ (G),1 and let a be a

supporting hyperplane to S2, with equation

where (xjV ,Λ:£; Z ° ) £ Sz Π a9 and (A", Z) is an arbitrary point of a.

The point χz(a) = /?0 = (/^, /?2, • ,/>n

0)GR'1 is called the normal image of

the supporting hyperplane a.

We construct the set χz(x0) = U α χ z ( α ) , where α runs through all support-

ing hyperplanes to Sz at the point (JC0, z(x0)) G Sz. The set χz(x0) is called the

normal image of the point x0 (relative to the function Z(JC)). It is clearly a closed

1 Analogous for concave functions.
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convex subset of Rn. Finally we put for any subset e C G,

Xz{e) = U Xz(x0)

and call it the normal image of the subset e C G (with respect to the function

The main properties of the normal mapping. These are as follows.

(a) The set χz(e) is a closed subset of R" for each closed subset e of the

domain G; the set χz(e) is a Lebesgue measurable subset of R" for each Borel

subset e C G.

(b) Let z,(x) and z2(x) be convex functions, coinciding on 3G, and zλ{x) <

z2(x) for all x G G. Then

(2.1) χ Z 2 ( G ) c X z i ( G ) .

(c) If Z(JC) G W4" (G) Π C2(G), then the normal mapping can be considered

as a mapping of points, namely, the tangential mapping χz(x) = grad z(x).

(B) R-curυature. Let Λ ( / ? ) > 0 b e a locally summable function on Rn. The

function of sets

(2.2) ω(R9z,e) = [ R(p)dp9 e C G,

is nonnegative and completely additive on the ring of Borel subsets of the

convex domain G for all convex functions z(x) G W+ (G). This function is

called ί/ze R-curυature of the convex function z(x).

If R(p) = 1, then the 1-curvature of z{x) G Jf + (G) is called the measure

(or area) of the normal mapping and simply denoted by ω(z, e). If R(p) —

(1 + \p\2)~(n+2)/n then the corresponding Λ-curvature coincides with the area

of the Gauss mapping of the hypersurface Sz. We set

(2.3) A(R)=f R(p)dp.
JRn

The properties of R-curυature.

(a) It is clear that A(R) > 0; note the case A(R) = + oo is not excluded.

(b) The inequality ω(R, z, G) < A(R) holds for all convex functions z(x) G

W+ (G).

(c) If z(x) G W+(G) Π C\G\ then

(2.4) ω(R9z,e) = j"det||zl7||Λ(gradz)Λc.

(d) Weαλ: convergence of R-curυatures. If the sequence of convex functions

zn(x) G W+ (G) converges to the convex function z(x) G JΓ+ (G) in all points
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x G G, then

(2.5) Urn [φ(x)ω(R,z9de) = (φ(x)ω(R9 z, de),

where ψ(x) is any continuous function in G vanishing outside of some compact

subset M distant from ΘG on a positive number.

(e) Estimates of convex functions. Let the following conditions be fulfilled:

If V(ω0) = {z(x)} is the set of all functions z(x) G W+(G) satisfying the

conditions

(2.6) (e.l) -oo < m = const < z \dG < M = const < + oo,

(2.7) (e.2) ω(R9 z, G)<ωo = const < A(R),

then the inequalities

(2.8) m - TR(ω0)d(G) < z(x) < M

hold for all points x G G.

Here TR: [0, A(R)) -> R denotes the inverse for the function

gR(r)=ί R(p)dp9

and d(G) is the diameter of G.

Example. If R(p) = 1, then gR(r) = μnr
n, where μn is the volume of the

unit π-ball. Therefore TR(g) = Γ,(g) = ( g / μ j 1 / w .

2.2. The operator i^ and its properties. Let G be an open convex bounded

domain in En and H be a convex subdomain of G distant from G on the

positive distance hH. Let H and G be the closures of H and G. Denote by

CQ(G) the closed subset of the space C(G) consisting of all nonpositive

continuous functions vanishing on dG. The operator FH considered in this

subsection maps the set CQ(G) in the special class of convex functions which

will be introduced below. This operator will be used for the extension of the

functional In(u) to the set Q(G) (see §2.3).

Now consider the construction of FH and its properties. Let

, x , Λ \u(x) if JC

(2.9) v(x) = \

for any function M(JC) G CQ(G% i.e. υ(x) = u(x)φ^x\ where φ^(x) is the

characteristic function of the set H. If Sυ is the graph of v(x),2 then the

boundary of Co{S0} consists of two parts G and the graph of Sw of some

2 All the graphs of functions are considered in the space E"+ι (see §2.1).
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convex function w(x); clearly

w(x)GW+(G)ΠC0-(G).

We say in this case the function w(x) spans u(x) on the set H from below, and

denote by FH the operator mapping any function u(x) G CQ(G) in the

corresponding convex function w(x).

The properties of FH.

(1) Every supporting hyperplane β to Sw passing through the point

(JC0, W(JC0)), where x0 G G\if, contains at least some line segment AB such

that AB C β Π Sw, A G dG and B' G H, where 5 ' is the projection of the

point ^ E ^ Π j δ o n the hyperplane En.

The proof follows directly from the definition of Sw and the well-known

properties of a convex hull.

(2) The equality

(2.10) mesχw(w,G\H) =0

holds for every function w(x) = FH(u(x)).

Let β be any supporting hyperplane of Sw contracting with Sw in the point

(x0, w(x0)), where JC0 G G\H. Then from property (1) it follows that β is a

singular supporting hyperplane of Sw. Since the spherical image of all support-

ing hyperplanes of every convex hypersurface has the zero measure (see [11,

§4]), then

(2.11)

Now we denote by W^ (G) the set FH(Q(G)). It is evident that

and the set W+ (G) C C0"(G) Π W^ (G) is not empty.

(3) The equality

holds for all functions w(x) G W+ (G).

The proof follows directly from property (1).

(4) The equality

(2.13) w(x) = FH(w(x))

holds if and only if w(x) G W^ (G).

Proof. If the function w(x) G C0"(G) satisfies equation (2.13), then from

the definition of the operator FH it follows that w(x) G W^ (G). The converse

assertion follows from the properties of the convex hull.
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(5) The set W^ (G) is a closed subset of the space C(G).

Proof. Let w(x) be the limit of functions vv^x), W2(JC), ,ww(x), •

belonging to W^ (G) in the space C(G). Evidently w(x) is a convex function

belonging to CQ(G). The considered property will be proved if we establish the

equality

(2.14) w(x) = FH(w(x))

(see property (4)). Let

(2.15) υ(x) = w(x)q>ΰ(x), vm(x) = wm(x)φff(x).

The restrictions t>m(x) and υ(x) on the convex compact set H are convex

functions and limm_>0O υm(x) = u( c) for all x E 7/ and t)m(.x) = t>(x) = 0 for

all x GG\H. Therefore

CofS,,} = Urn C^{5W } = lim Co {SΌ } = Co{So}
m—oo m m->σo m

because the equality

(2.16) CΪ{SWJ = C8{SVJ

follows from the condition that ww(x) E W£ (G) for all positive integers m.

Property (5) is proved since (2.16) is equivalent to equality (2.14).

(6) The set χw(G) is contained in the ^-dimensional ball \p \< \\w(x)\\/hH for

all functions w(x) E W^ (G).

Proof. Let a be the supporting hyperplane of the graph Sw of any function

w(x) E W£ (G). Then there exists the point x0 E H such that the point

(x09w(x0)) belongs to α. Note that dist(x0,3G) is not less than hH —

Let KXQ be the convex cone with the vertex (xo,w(xo)) and the base

U(xo,hH)9 where U(x0, hH) is the closed «-ball with the center x0 and the

radius hH. Let kXo be the convex function defining KXQ. Then

Xw(a)Cχkχo(U(x0,hH)).

The set χk (U(x0, hH)) is the ^-dimensional ball with the center 0(0,0, ,0)

and the radius p — w(x)/hH. Therefore χw(G) is contained in the «-dimen-

sional ball \p |< \\w(x)\\/hH in R" for all functions w(x) E W}j (G).

(7) From (6) it follows directly that any function w(x) belonging to Wjj (G)

satisfies the Lipschitz condition with the constant ||w(x)||/AH, i.e.

where x and JC + q are any points of G.
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(8) The operator FH: Q(G) -> W}j (G) is continuous.

Proof. Let the functions un(x) E C0"(G) converge uniformly to the func-

tion u(x) E CQ(G). Take any number ε > 0 and consider two functions

ίo ifx E G\Hoτiίu(x) ^ -ε,
( v- 1 =z

and

Let ϋ(x) = w(x)φ^(^) and vn(x) = WW(X)9^(A:) be the functions considered

by definition of the operator FH (note that φf^x) is the characteristic function

of the set Ή). Then υf\x) - v(x) - ε for allx E //and

Ό(x) = \
ϋ [0 if JC E^andw(jc) > -ε

also for all x E //.

Since ϋM(x) uniformly converge to U(JC) in G, then there exists the natural

number N such that

o<2>(*) <»,,(*) <»<•>(*)

for all /i > iV and x E G. From the definition of the operator FH it follows that

FH(v?\x)) < wπ(x) = FH(un(x)) < /^(cί'X*))

for all n > N and x E G. Since

lirnF^ί*)) = \imFH(v^(x)) = w(x),

then

FH(u(x)) = w(x) = Urn wπ(x) = Urn F(M#i(jc)).
AI-»OO n->oo

Property 8 is proved.

2.3. The functional IH(u). Let H be a convex subdomain of a given convex

bounded domain G in £ " such that dist(//, 3G) = hH > 0. Let W(JC) E C0"(G)

and w(x) be the convex function constructed above by means of u(x) (see

§2.2).

Now we define the functional

(2.17) ΦH(U) = " ί uω(w, de)
Jr.
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on the set C0"(G), where ω(w, e) is the measure of the normal mapping of the

convex function w(x) — FH(u(x)). From property (2) (see §2.1) it follows that

(2.18) ω(w,G\H) = 0

for all functions w(x) = FH(u(x)) (see §2.2, equality (2.10)).

Letting ψ(e) be a nonnegative completely additive set function on the

subsets of G and ψ(G) < + oo, we define the new function of sets

(2.19) φH(e)=t(eΠH).

Clearly, ψH(e) is a nonnegative completely additive set function on the subsets

of G and

(2.20) 4>H(G\H) = 0.

We now introduce the functional

(2.21) τH(u)

and

(2.22) /„(«) = φH(u) + (n + l )τ w (u)

on the set C0"(G).

The properties of the functionals φH, τH and IH.

Theorem 1. The inequalities and equalities

(2.23) φH(w) = φH(u),

(2.24) rH(w)<τH(u),

(2.25) IH(»)<IH(u)

hold for all functions u(x) E C0"(G) and convex functions w(x) — FH(u(x)).

Remark. Let φ(e) > Comes(e) for every Borel subset e C G, where Co =

const > 0. Then the equality can hold in (2.24) and (2.25) if and only if the

restriction of u(x) on the n-dimensional convex body H is some convex

function, i.e.,

(2.26) «(*)|>7=w(*)lw,

where w(x) — FH(u(x)).

Proof. From the equalities (2.18) and (2.20) it follows that

(2.27) φH(u) = - fu(x)ω(w(x)9 de),
JH

(2.28) τH(u)=f_u(x)ψH(de).
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Since u(x) > w( c) for all x G //, then from (2.28) we obtain

TH(U) ^ f

It is clear that

(2.29) τH(u(x)) =τH(w(x))

if u(x) and VV(JC) coincide on the set H. The condition ψ(e) > Comes(e) (see

Remark) and equality (2.29) yield converselyw(x) = w(x) for all x G ^ .

We denote by Hu the set of points x G H, where w(x) = w(x) and by SHu

the part of the graph of u{x) for x G Hu. Every supporting hyperplane α of the

graph of the function w(x) has at least one common point with the set SHu.

Therefore χw(w, G\HU) consists only of the images of singular supporting

hyperplanes to the graph of w(x). Thus from property (2) (see §2.2) it follows

that ω(w, G\HU) = 0. Hence

ΦH(u) = / wω(vv, de) — I uω(w, de) = / wω(w, de)
JG JHU

 JHU

= f wω(w, de) = ΦH(w).
JG

The inequality (2.25) now follows directly from (2.23) and (2.24). Theorem 1 is

proved.

Theorem 2. The functionals φH(e), rH(e) and IH(e) are continuous on the set

C0~(G).

Let the functions w,(x), u2(x), -,un(x), belong to Q"(G) and uni-

formly converge to the function u(x) G C0"(G). Then the set functions ω(wn, e)

converge weakly to the set function ω(w, e) (see §2.1), where wn — FH{un) and

w — FH(u) are convex functions belonging to W^ (G). Now using the facts

mentioned above and property (2) (see §2.2) we obtain the proof of Theorem 2

by the standard considerations.

Thus we can seek the functions realizing the absolute minimum of the

continuous functional IH(u) only in the set of convex functions W^j (G).

3. Variational problem for the functional IH(u)

From §2 it follows that the absolute minimum of the functional IH(u) can

be reached only for the convex functions w(x) G W^ (G). In this section we

establish the existence of absolute minimum w(x) for the functional IH(u),

where w(x) G W^ (G) (see Theorem 5). This is the first main result of the
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present paper. The proof is based on the nontrivial bilateral estimates for the

values of IH considered only on all convex functions w(x) E W£ (G) (see

Theorems 3 and 4).

3.1. Bilateral estimates for IH(u).

Lemma 1. The inequality

holds for every convex function w(x) E W^ (G).

Proof. The inequality (1.3) holds trivially for the function w(x) — 0 in G.

Therefore we assume that ||W(JC)|| > 0. Let w(x) be any function from W^ (G).

From property (1) (see §2.2) it follows that there exists the point x0 E H such

that

(3.2) \Wx)\\=Mxo)\
Now we consider the convex cone K with the vertex (x0, w(x0)) and the base

dG. Let K be the graph of the convex function k(x). Then

(3.3) w(x)<k(x)<0

for all JC E G and

(3.4) w(x) | 9 C = k(x) | 3 C = 0,

The equality

(3.5) \k(χ)\ = £Q\k(χo)\
\xox i

holds for any point x E H, where x' is the point of intersection of the ray xox

(with origin x0) and 9G, and \xx' | = dist(x, x'\\xox' | = dist(x0, x'). Since

(3.6) \xx'\^hH

and

(3.7) IjCoJc'l

then from (3.6), (3.7) and (3.8) we obtain

< 3 8 ) l * W I S
But

(3-9) |Λ(*o)|=K*o)l = IMI,

since the cone K has the vertex in the point (JC0, W(JC0)) and
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Now from (3.3), (3.8) and (3.9) we obtain the inequality (3.1). Lemma 1 is
proved.

Lemma 2. The inequality

(3.11) Hx)||

holds for every convex function w(x) E W+(G) Π C0(G), where μn is the
volume of the n-unit ball.

This lemma is the special case of Lemma 2 of the paper [8] (see also [6], [9]).
Theorem 3. The inequality

(3.12) IH(w)> μ"h"\Mx)ΐ+l ~ *H(G)(n + 1)|M*)||
(diam(j)

holds for any w(x) G W% (G).
Proof. From Lemma 1 we obtain

(3.13) f [-w(x)]ω(w, de) ̂ -J^ \\w(x)\\ω(w, H).
\ / I L \ / J \ 7 / /-liotn fZ '• ^ ' " ^ '

But from property (3) (§2.2) it follows that ω(w, H) = ω(w, G). Now from
Lemma 2 we obtain

(3-14) ω ( w , G ) ^ μ" \\w(x)\\.
(diamG)

Thus the inequalities (3.13) and (3.14) lead to the inequality

(3.15) / [-w(*)]ω(w,A)> ^ H \\w(x)\\m+l.
JG (diamG)

From (3.15) we obtain finally the inequality (3.12) for

ΉM = -[w(x)ω(w9de) + (n + I) f w(x)φH(de).
JG JG

Theorem 3 is proved.
Theorem 4. The inequality

(3.16)

holds for every convex function w(x) E W£ (G).
Proof. First we estimate from above the integral JG{-w(x)}ω(w, de). We

have

0 < ί {-w(x)}ω(w, de) <||w||ω(w, G)
Jr.
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and from property (6) (§2.2) we obtain

(3.17) / { } ( ) ^ | M f

Now we estimate from below JG\ w(x) \ψH(de). Since \pH(G\H) = 0 then

Now from Lemma 1 it follows that

(3.18)

Thus from (3.17) and (3.18) we finally obtain

IHW = -/HXO(W, de) + (n + l )/w^

^ T ^ H I H I —————ψ//((7)IIHI>
h jj Qiam \j

because w(x) < 0 in G. Theorem 4 is proved.

3.2. Main theorem about the functional IH(u).

Let U(H9 m9 M) denote the subset of functions w(x) G W£ (G) satisfying

the condition

(3.19) m<\\w(x)\\<M,

where 0 < m < M < + o o a r e constants. If m = 0, the ί/(if, 0, M) consists of

functions w(x) G W^ (G) satisfying the inequality

(3.20) | |w(x) | |<M.

Lemma 3. Every set U(H, m, M) is compact in C(G).

Proof. The set U(H, m, M) is bounded and closed in C(G) and any

function vv(jc) G U(H, m, M) satisfies the Lipschitz condition of the degree

one and constant Mμ}/n(hHyx. Thus U(H, m, M) is compact in C(G). Lemma

3 is proved.

Theorem 5. (Main theorem about the absolute minimum of the functional

IH(u)). The function IH(u) has at least one absolute minimum and the function

wo(x) belonging to W^ (G) and realizing this minimum satisfies the inequalities,
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K(x)|| < Mo, where

t* = μπ(diamG)

(»

\/n

M o = m a x j h

the functions φ(t) and φ(ί)will be defined below.
Proof. From Theorem 3 it follows that hmk^0OIH(wk) = +00 if wk{x) E

J * £ ( G ) a n d | | ^ ( x ) | | - +00.
Therefore we can find a positive number Mo such that IH(w) > 1 if

||H>(JC)|| > Mo. For example we can take Mo to be the number Mo mentioned in
Theorem 5. Now from the expression of IH(u) and Theorem 4 we can see that
J//(0) = 0 and IH(w) < 0 if w G W+ (G), ||w|| > 0 and ||w|| is sufficiently
small.

Therefore the functional IH{u) is bounded from below and IH(u) takes
negative values.

Now we consider the function

φ ( r ) - ^ r diamG *

for / G [ 0, 4- 00). This function has only two roots 0 and some positive number
t0 and takes negative values only inside the interval (0, ί0). Let ί* be the point
such that

φ(ί ) = inf φ(r).
[o,/o]

Then φ'(/*) = 0 and /* = [hn

H

+ιψH(G)/μn(diamG)γ/n.
Now the function

(diamG)

has only one negative minimum at the point

{** —
•ψff(G)[diamG] n+\ \/n

(evidently /** is the unique root of Φ'(t) and Φ(ί**) = inf[0ϊOθ)φ(/)). Since

[ diam G J
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andΦ'(/) < 0 on [0, /**), we can set

Recall that Inf ^+(<J) = IH(W) *s a finite negative number. It is clear that

Inf. IH(w) = Inf Iff(w),
£G U(H,mo,Mo)

where m0 and Mo were defined above.

From Lemma 3 it follows that there exists at least one function wo(x)
U(H, w0, Mo) such that

£/(//, mo,Λ/o)

Theorem 5 is proved.

4. Dual convex hypersurfaces and Euler's equation

From Theorem 5 (see §3.2) it follows that the absolute minimum of the
functional IH(u) is achieved on some convex function wo(x) E W£ (G). In the
present section we establish that wo(jc) is the general solution of the Dirichlet
problem

ω(w,e) = ψtf(έ?), H G = 0

(see Theorem 10). This is the second main result of this paper and its proof is
based on the special formula for the first variation of the functional IH(u). The
fundamental technique used by establishment of this formula is the dual
convex hypersurfaces PH{u) constructed by means of the function v(x) —
u(x)φ^(x) where u(x) is any nonpositive continuous function in G and φ^(x)
is the characteristic function of the closed subdomain H of domain G such that

dist(H9dG) = hH>0.

The dual hypersurfaces PH(u) generate some solid cones and the values of the
functional ΦH(u) = fG uω(w, de) are exactly the volumes of these bodies. The
mentioned relationship permits us to use methods and results of the Minkow-
ski mixed volumes theory by the investigation of the first variation for the
functional IH{u).

4.1. Special map on the hemisphere. Let G be an open convex domain in
En. Let Rn+ι' — (/?,, p2,- - -,pn+λ) be an (n + l)-dimensional Euclidean space
and S" be the unit H-hemisphere:
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in Rn+]. We consider the map γ: S" -> En defined by

(4 2) x = pι x = P* ... x = Pn

l/'w+ll \Pn+\\ \Pn+\\

where x = (*,,•• ,xπ) GEn,p = (P\,--,pn+\) £ S?,x = γ(/?). We can also

consider γ as a diffeomorphism between the smooth manifolds S" and £ " with

natural differential structures. Then the diffeomorphism γ"1: En -> S" maps

any point x = (x,, x2, ,^π) ^ ^ π to the point

where r̂ = (1 4- jcf + x\ + +x2

n)
λ/1. We denote γ" 1 by γ l β

The set G* = yλ(G) is a closed convex domain in S", where G is the closure

of G and

(4.4) dist(3S_",G*) = δ o > 0

in the intrinsic spherical meaning.

4.2. Dual convex hypersurfaces. Let u(x) be any continuous nonpositive

function in G satisfying the condition u \dG = 0.

The function u(x) defines the new function u*(p) in G* by the formula

(4.5) «*(/») = ( i-p?- -PΛ

2)1/2«(r(/'))

for/? = (/*,,- -,/>„,/>„+,) E G* C S " , where x = y(p) (see (4.2)). Conversely

if we define

(4.6) a*(x) = «*(γ,(χ)),

wherep = y{(x), then

(4.7) a*(x) = — -T7I«(^)

We denote by H and H an open convex subdomain of G and its closure and

assume that dist(/J, dG) = hH>0. Then H* = γ j ( ^ ) and its closure /7* =

y{(H) are respectively open and closed spherical convex domains and the

intrinsic distance hH* between H* and dG* is positive. Clearly hH* depends

only on hH.

The inequality

(4.8) (P,z)<u*(p)

defines the closed half-space Up C Rn+X for each fixed vector/? EG* and any

vector z E R"+\ satisfying the inequality (4.8). The set

(4.9) QH{u) = Π Up

p(ΞH*
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is a closed infinite convex body in Rn+]. The sets

(4.10) K{dG*)= Π Vq, K{G*)= Π Vq

are one and the same solid convex cone in Rn+] with vertex 0(0,0, ,0),

where Vq is the closed half-space

(4.11) (q,*)<0

for any fixed q G dG* (or G*) and any vector z G Rn+ι.

Now the sets

(4.12) pH(u) = aρ^ίw)

and

(4.13) L(9G*) = a/^(3G*)

are complete infinite convex hyper surf aces in Rn+ι and the latter is a convex

w-dimensional cone with the vertex 0(0,0, ,0).

Theorem 6. Let w(x) be the convex function spanning u(x) G C0"(G) from

below on the set H. Then

(4.14) QH(U) ~ QH(W) a n d PH(U) ~ PH(W)

Moreover the convex body QH{u) and the convex hypersurface PH(u) have one

and the same supporting function w*(p) defined on H*.

Proof. From definition of the function w(x) it follows that w(x) < u(x) < 0

for any x G ΪL Therefore w*(p) < u*(p) < 0 for any/? G H*. Thus Wp C Up

for any p G H*, where Wp and Up correspondingly are the closed half-spaces

(/?, z) < w*{p) and (/?, z) < «*(/?) for every fixed vector /? G H* and any

vector z G ί " + 1 . Therefore

.(4.15) QHM= Π_WpC Π_Up = Qff(u).
p(ΞH* p<EH*

From the theory of convex bodies it is well known that if M is an infinite

closed convex body and v*(p) < 0, p G H* C S" the supporting function of

M, then the function

1/2

is a negative convex function for c G H, where

<*>=i7 τ - 7 i i e "
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and q = (1 + Σΐ=ι xf)ι/2. Now we apply this fact to the case M = QH(u). Let
v*(p) be the supporting function of the convex body QH(u). Then clearly
0 ^ u*(p) > v*(p) for any/? G H*. Therefore we obtain for negative convex
function υ(x) the inequality 0 > u(x) > υ(x) for any x G H. From the
definition of the convex function w(x) spanning by u(x) from below on H it
follows that u(x) > w(x) > υ(x) for any x G //. Repeating our reasoning for
the functions w(x) and v(x) we obtain

(4.16) QH(w) D QH(v) = QH(u).

From (4.15) and (4.16) it follows that QH(u) = β^(ϋ), and hence PH(u) =
Pff(v). Theorem 6 is proved.

Now we consider the new convex body

(4.17) QG{w) = Π Wp

p<ΞG*

for every function w(x) G WjJ (G), where the closed half-space W was
defined above in this section.

Theorem 7.

(4.18) QG(w) = β ^ w ) Π K(dG*).

Proof. It follows from definitions of the sets QG(w) and QH(w) that

(4.19) ρc(w) = QH(W) n

where

)= Π

First of all we note that the asymptotic solid cone Kh(w) to QH(w) has the
set H* as a spherical image. If the vertex of KH(w) lies inside QH(w\ then the
whole cone KH(w) lies inside QH(w). Let L^(w) be the boundary of KH(w).
We suppose that the vertex of KH(w) coincides with the nearest point of
PH(w) to the origin 0 of Rn+X.

Then the set

λ(w) = LH(w) ΠL(dG*)

is the (n — l)-dimensional hypersurface homeomoφhic to (n — l)-sphere.
Recall that L(dG*) = dK(G*)9 where K(dG*) is the convex solid cone.

Evidently supZ€Ξλ(M;) {dist{0, Z}} can_be estimated above by means of ||w(x)||,
hH = dist{^, dG} and δ0 = dist(35_π, G*).

If

(4.20) v(w) = PH(w) Π L(dG*)
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then v(w) is also homeomorphic to (n — l)-sphere and v(w) lies between λ(w)
and the origin of Rn+ \ Thus

(4.21) sup (dist{0, Z}}
ZGP(W)

can also be estimated by means of || w(x)||, hH and δ0.
Now all supporting hyperplanes to the graph Sw of the convex function

w(x) of the points (x,w(x)) will be singular if x belongs to G\H (see the
proof of Theorem 1, §2). Let a be such a supporting hyperplane: then a Π Sw

is some closed bounded convex ^-dimensional body, where 1 ̂  k < n — 1. We
denote by ττα C G the closed A:-dimensional convex body which is the projec-
tion of the set a Π Sw. Then πa determines the singular point Y on PH(w) with
A -dimensional set of supporting hyperplanes to PH(w), because τrα Π H φ 0.
The spherical image of this set of supporting hyperplanes coincides with
γ1(77α) C S". (The definition of the mapping γ1 is in §4.1.) Since a passes
through some point (xo,O), where x0 G 3G, then Ya belongs to the cone
L(dG*) or more precisely Ya G v(w) (see (4.20)).

Clearly v(w) — UαYΛ, where a runs through the set of all supporting
hyperplanes to Sw having contact points (JC, w(x)) with Sw, where x G G\H.

Therefore from (4.17), (4.18), (4.19) and the last considerations it follows
that QG(w) = Qff(w) Π K(dG*). Theorem 7 is proved.

Thus the convex hypersurface

(4.22) PG(w) = dQc{w)

consists of two parts: the first one SH(w) lies inside the solid cone k(dG*) and
the second one TdG(w) lies on the boundary L(9G*) of the cone K(dG*). Both
hypersurfaces have one and the same boundary v(w) C PG(w). Let us agree to
include v(w) as a. part of SH(w) and TdG(w) and consider both hypersurfaces
as closed hypersurfaces with boundary.

We will call SH(w) the dual convex hypersurface (with respect to H C G) of
the convex function w(x) E. W^ (G). The function

(4.23) w*{p) = (1 - p\- • • • -p2

n)
i/2Ay(p))

is the supporting function for SH(w) for any/? G G*.
4.3. Expression of the functional IH(u) by means of dual convex hyper-

surfaces. Let vv(jc) be any convex function belonging to W^ (G) and SH(w)
be its dual convex hypersurface. We denote by σ(SH(w\ e') the surface
function of SH(w) (see [10], [11]). The surface function σ(SH(w), e') is defined
as the completely additive nonnegative function on the ring of BorePs subsets
er of the domain G* C S" and the values of this function equal to the area of
the sets e C SH(w) such that e consist of all points of SH(w) having supporting
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hyperplanes with unit outside normals belonging to e'. From our considera-

tions it follows that

(4.24) σ(SH(w)9G*\H*)=0.

It is well known (see [11]) that {σ(SH(wk)9 e')} converges weakly to

°(SH(wol e') i f ϋm^oo I K - wo|| = 0.
Let VH(w) be the volume of the part of the convex cone K(dG*) situated

under the dual convex hypersurface SH(w).

Theorem 8. The equality

(4.25) VH(w) = - - ^ f_W(x)ω(w, de)

holds for every convex function w(x) G W£ (G).

Proof. If w(x) e W£ (G), then for the volume VH(w) there is the formula

(4.26) VH(w) = " ( 7 Π

(see [10], [11]).

But the surface function σ(SH(w), e') has the representation

(4.27) j

in the map γ (see §4.1). Formula (4.27) can first be proved for convex

polyhedrons and extend for all class W}j (G) of convex functions by approxi-

mation of polyhedrons.3 From (4.26) and (4.27) it follows that

1 / 2

4 ( x ) ω ( w ' d e ) = " (^T= ' (7TΊ)
because ω(w, G\H) — 0. Theorem 8 is proved.

Remark. Since any convex polyhedron can be approximated by C2 convex

hypersurfaces (function) with everywhere strictly principal normal curvatures,

then it is sufficient to establish (4.27) only of such a class of hypersurfaces

(functions).

From the Gauss theorem it follows that

(4.28)

3 Of course we use the weak convergence of the surface functions.
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where dsp is the element of area on S" and K(p) is the Gauss curvature of
Sff(w) in the point of SH(w) with the outside unit normal/?. We find

ds 1 / 2

(4 29) fό
where e' = y~\e) (see §4.1 and also [11]). From (4.28) and (4.29) we obtain
(4.27) for the C2-convex functions (hypersurfaces) with strictly positive prin-
cipal normal curvatures.

Theorem 9. The functional IH(u) in the C0(G) has the representation

IH(u) = (n + l)\vH(FH(u)) +f u*(p)rH(de')
(4.30) Γ

= \-[ u*(p)σ(SH(w),de')+(n+\)[ u*(p)Ψ*(de')\,
[ JH* JH* J

where w(x) — FH(u(x)) is the convex function spanning u(x) from below on
H C G; ̂ fj(e') is the nonnegative completely additive function of Borel subsets e'
ofG* determined by the formula

(4.31) f

//* = Ύι(Hu) and Hu is the closed subset of H where u(x) — w(x).
Proof. It follows from the definition of IH(u) that

(4.32) IH(u) = -[ uω(w9 de) 4- (n + 1) f uΨH(de).
JG JG

Now

/ " \1/2

fu(x)4,H(de)=fu*{x)[\+Σxή *π(de)
JG JH \ , =i /

since \pH(G\H) = 0. Therefore

(4.33) f u(x)ΨH(de) = f u*(p)n(de>)
JG JH*

if we use (2.39) and (4.31).
From Theorems 1 and 8 we obtain

(n + l)VH(FH(u)) = - /Lw(jc)ω(w, de) = - f w(x)ω(w, de)

(4.34)

= - ( u(x)ω(w9de) = -[ u*(p)o(SH(w),de').
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From Theorem 1 we obtain

(4.35) -fu(x)ω(w,de) = -ί u(x)ω(de).
JG JHU

Now it follows from (4.34) and (4.35) that

(4.36) - / u(x)ω(w, de) = (n + l)VH(FH(u)) = / u*(p)σ(SH(w), de').
JG JH*

Thus from (4.32), (4.33) and (4.36) we obtain (4.30). Theorem 9 is proved.

4.4. Expression of the variation of IH(u). First of all we study the variation

of the functional

(4.37) ΦH(u) = -( u(x)ω(w, de),
JG

where u(x) E CQ(G) and w(x) is the convex function spanning u(x) from

below on the convex closed domain H C G. From Theorem 9 it follows that

ΦH(u) = (n + l)VH(w) = -ί w*(p)σ(SH(w), de')

(4.38)

where H* is a closed subset of H* — Ύι(H), w*(p) = u*(p) and Vff(w) is the

volume of the part of the convex cone K(dG*) situated under the dual convex

hypersurface SH(w).

Now we want to complement SH(w) to the whole closed convex hyper-

surface. The boundary v(w) of SH(w) lies on the conic convex hypersurface

L(dG*) = d{K(dG*)} and homeomorphic to the (n - l)-sphere. We can evi-

dently find two numbers m, and m2 depending on ||w||, dist{//, 3G) = hH> 0

and dist{G*, dSϋ) such that

(4.39) 0 < mλ <dist{0, v(w)} <m2< -f oo.

We denote by 5" (r) the hemisphere

(4.40) p] + pi + • • • +p2

n+, = r\ Pn+i>0,

and by ί/£(r) the set

(4.41) p]+pl+---+P2

n+x<r2, pn+i>0.

We will only consider the functions u(x) E C0"(G) such that for the convex

functions w(x) — FH(u(x)) spanned by u(x) from below on H the inequalities

(4.42) m o <|Hx) | | «M o
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hold (see Theorem 8). Then there exist the common numbers 0 < m, < m2 <

+ oo such that for all functions u(x) G CQ(G) the inequalities

(4.43) 0 < mλ < dist{0, v(w)} < m2 < + oo

hold, if (4.42) are fulfilled vv(jc) = FH(u(x)). Thus we will be able to construct

all the bounded convex bodies YlH(w).

Now consider the supporting function of Π^(JC). We denote this function by

hH(p) where p runs through the whole unit sphere Sn: p\ + p\ + +p* 4-

The closed convex hypersurfaces AH(w) has at least two ribs, v(w) and

v(mλ + 2w2), which are the boundaries for three domains SH(w), Z(mx +

2m2) and Γ(w, £/^ (m, + 2m2)) C L(3G*).

Therefore

if/? G G*,

if p G ΘG*,

if/? G

if p G

0

takes positive

values
mx +

-Z(mι + 2m 2)

w, w, 4- 2m2

Z(/w, + 2m 2) C

Note that

w 2m 2

= 0 .

Therefore the volume of UH(w) can be found by the formula

V(UH(w)) = -^f^ipHA^w), de')

where σ(K(dG*)) is the solid angle of the convex cone K(dG*). Thus

(4.45) K ( Π f f ( W ) ) = « + ^ Φ ( « ) .

If we change the point of the reference of distances with the sign to

supporting hyperplanes to any convex body, then the supporting function of
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this body changes its values. If such a point p0 coincides with the inner point of

Π//(H>), then the supporting function takes only positive values and is some

strictly positive function on Sn.

Minkowski, Alexandrov, Fenchel and Jessen investigated the variation of the

volume in the class of bounded convex bodies and established the formulas for

the weak differential (the first variation) by different conditions (see [1], [10],

[11], [15], [16]). The main methods and techniques of these investigations were

the theory of Minkowski mixed volumes and the Brunn-Minkowski inequality.

Alexandrov proved that if ho(p) is any strictly positive continuous function

on the unit sphere Sn: \p\— 1 and Ho is the closed convex body defined by

intersection of all the half spaces (/?, z) < ho(p\p G S", then

(4.47) lim ΣWzHJ!l=j η(p)σ(H0, de'),
Ϊ^O t JSn

where η(p) is any continuous function on S", t is a real parameter converging

to zero, σ(i/0, e
f) is the surface function of Ho and Ht is the closed bounded

convex body defined by intersections of all the half spaces (p, z) < ho(p) +

ty(p).

Remark. Since ho(p) and η(p) are continuous on Sn and ho(p) is strictly

positive, then ho(ί) + tη(p) is also positive for sufficiently small t and the

bodies Ht will be constructable.

Since 1) all terms of (4.46) are independent on the point of reference to the

supporting hyperplanes and 2) it is possible to take any function η ^ O only on

any closed set //, C //, then from (4.46), (4.45) and Theorem 9 it follows that

(4.48) lim Ήi«+*)-!*{«) = {n + i ) | j^ η [^( w , de) + ψ | f ( * )

where w = FH(u). From (4.48) and Theorem 8 it follows that the function

wo(x) G U(H, m09 Mo) C Wϊ (G),

realizing the absolute minimum of IH(u) in CQ(G\ is a generalized solution of

the Dirichlet problem

(4.49) ω(w9e) = tH(e)9 w| θ c = 0.

Since the Dirichlet problem (4.49) has only one generalized solution and this

solution belongs to W^ (G) (see Theorem 14, §6), then there exists only one

function realizing the absolute minimum of the functional IH(u) in the set

C0(G) and this function belongs to W^ (G). Thus the following main result is

proved.
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Theorem 10. There is only one function realizing the absolute minimum of the

functional IH(u) in the set C0"(G). This function wH(x) belongs to W^ (G) and is

the generalized solution of the Dirichlet problem (4.49).

5. Generalizations

The functionals IH(u) considered above were concentrated on some fixed

compact subdomains H of a given bounded open domain G. In this section we

want to become free from this restriction by means of suitable passage to the

limit. It requires some additional assumptions with respect to 9G and the

behavior of the set function ψ(e) near 3G. These assumptions are the follow-

ing: _ _

A.I. There exists the «-ball Ux of the radius rx such that L G 3 £ / X , G C UX

and

(5.1) rXQ < r0 = const < +oo,

where x0 is any point of 8G.

A.2. Let \p(e) be a nonnegative, completely additive set function of the Borel

subsets of G satisfying the two conditions

(5.2) Ψ(G)< + <*>

and

(5.3) Ψ(e) ^ amese

for all Borel subsets e C Vδ Π G, where Vδ is a sufficient small neighborhood

of 9G in En, a — const > 0 and mes e in the Lebesque measure of e (Vδ can be

considered as the union of all open w-balls of the sufficient small radius δ with

centres in the set ΘG).

We denote by Ξ = {Ha} the set of all convex open subdomains Ha of G such

that

(5.4) dist(/7α,aG) =hH>0.

Evidently Ξ can be considered as a semi-ordered set with respect to the

inclusion of convex subdomains Ha. Let

(5.5) ψH(e) = ψ{enH)

be the set function which was used in the definition of the functional IH(u)

(see §2.3). The Dirichlet problem

(5.6) ω(w,e)

(5.7) H G
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has only one generalized solution, wH(x), in the class of convex functions and

this solution belongs to W^ (G) (see §6.2). From Theorem 10 (see §4) it

follows that

(5.8) inί_IH(u) = IH(Wfί).
C

If Ha C Hβ then there are two important inequalities

(5.9) *>„„(*) > > % ( * )

for all x E G and

(5-10) ^KJ^^K'
The first one follows directly from Theorem 15 (see §6.2) and the second one is

the corollary of the equality (5.8). Since

(5.11) ψ ^ G ) = ψ(G Π Ha) ^ ψ(G) < + oo

then from (2.8) (see §2.1) it follows that

(5.12) - I r ^ l λ diamG<Hfo(*)<0

for all sets Ha G Ξ.

Theorem 11. There exists

(5.13) limvv^x) = w{x)

where vv(jc) is the solution of the Dirichlet problem

(5.14) ω(w9e) = 4,(e), w|8G = 0.

Moreover wH(x) uniformly converge to w(x) in G.

Proof. Since the convex functions wH£x) are uniformly bounded and

satisfy the monotonicity property (5.9), then there exists the limit (5.13) where

w(x) is some convex function in G. Now we can apply Theorem 13 (see §6.1),

because G and the set functions ψH(e) and ψ(e) satisfy conditions A.I and

A.2. Hence w(x) is the solution of the Dirichlet problem (5.14). Moreover

wH(x) uniformly converge to w(x). The theorem is proved.

Theorem 12. There exists

(5.15) inf/w.KJ = hm/^KJ = nf

Proof. Since wh (x) is the solution of the Dirichlet problem (5.7)—(5.8), then

(5.16) lHM =
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Since wH£x) uniformly converge to w(x), then using the uniform estimate

(5.12) and condition A.2 we obtain

by means of standard considerations. The equality

of the monotonicity property (5.10) and of the uniform estimates

0>IHa(wHa) > -ny&£i L(G)diamG.
L " J

The last estimate is the consequence of (5.12) and (5.16). The theorem is

proved.

The contents of Theorems 11 and 12 is the third main result of this paper.

6. Some main concepts and facts of the theory of elliptic solutions

of the Monge-Ampere equations

In this section we briefly present a few main facts for elliptic generalized

solutions of Monge-Ampere equations

(6.1) Λ(gradiι)det||«g| = /(*)

constructed by general convex functions. The detailed presentation of these

and significantly more general classes of Monge-Ampere equations can be

found in [6, §§18, 20], [13], [7], [9].

The equation (6.1) can be extended to the class of all convex functions by

the set function equation

(6.2) ω(R,z,e) = t(e)9

where ω(R, z, e) is the /^-curvature of convex solutions z(x) (see §2) and ψ(e)

is a given completely additive nonnegative set function.

We add a few new assumptions to A.I and A.2 (see §5) with respect to

coefficients of the equation (6.1).

A.3. The function R(p) is locally summable in R" = [p = (pv- *,/>„)}

the inequality

(6.3) R(p) > C0(l + \p\2)~k, Co = const > 0, k = const > 0,

holds for all p G R".
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A.4. There exists the neighborhood Sx C En for any point JC0 E dG such

that

\p(e) < al sup (dist(jc,3G)} 1 mese

holds for any Borel subset e C Sx Π G, where λ > 0 and α > 0 are the

common constants for all x0 E 3G.

The assumption A.4 is the natural generalization of A.2. Really A.2 follows

from A.4 if λ = 0.

A.5. Let zn(x) E W+ (G) Π C(G) be a sequence of convex functions point-

wise convergent to some convex function z(x) E W+ (G) Π C(G) only in the

open domain G. We suppose also that all functions zn(x) and z(x) vanish on

dG.

6.1. Uniform convergence of convex functions. (For the detailed presenta-

tion see [6, §§17, 20], [7], [9].)

Theorem 13. Suppose assumptions A.I, A.3 and A.5 are fulfilled. If there

exists the neighborhood SXQfor any point x0 E dG such that the inequality

(6.4) lim ω(R, zw, e) < a\ sup dist(jc, dG) \ mese
n->ao e

holds for all Borel subsets e C SXQ Π G and if

(6.5) * < i ± ^

then the sequence of convex functions zn(x) uniformly converges in G. (Here

λ ^ 0 and a > 0 are the common constants for all x0 E dG.)

Remark. If R(p) = 1, then k = 0 and (6.5) takes the form n = 1 + λ > 0.

Hence we can take λ = 0, so that (6.4) takes the quite simple form

lim ω(z π , e) < αmese.

6.2. Existence, uniqueness and comparison theorems for the Monge-Ampere

equations. (For the detailed presentation see [6, §§18, 20], [7], [9].)

Theorem 14. The Dirichlet problem

(6.6) ω(Λ,w,e)=ψ(e), w|aG = 0

has only one generalized convex solution, u(x) E W+ (G), // the assumptions

A.I, A.3, A.4 are fulfilled and if the inequalities

(6.7) fc< =
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and

(6.8) 4>(G)<A(R)=f R(p)dp

hold.

Remarks. (A) The condition (6.7) is sharp; the condition (6.8) is sufficient

and interlocks with the necessary condition ψ(G) = ω(R, z, G) < A(R) (see

§2.1).

(B) If R(p) = 1, then it is possible to take λ = 0 and not consider the

inequality (6.7). The assumption A.4 is reduced to A.2, i.e. ψ(G) < +oo and

ψ(e) < αines e for e C Vδ Π G, where a = const > 0 and Vδ is a sufficient

small neighborhood of dG in En (see §5).

Theorem 15 (Comparison theorem). Let G be a bounded convex domain in

En and let W,(JC), U2(X) belong to W+ (G) and be generalized convex solutions of

the Dirichlet problems

ω(R9ui9e)=^(e)9 ux\G = 0 (f = 1,2)

and ψ,(e) < Ψ2(O for all Borel subsets e of the domain G. Then uλ(x) > u2(x)

for all x E G.
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