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THE FUNDAMENTAL SOLUTION OF THE
HEAT EQUATION ON A COMPACT LIE GROUP

H. D. FEGAN

1. Introduction

The purpose of this paper is to study the fundamental solution of the heat
equation on a compact Lie group. Our main result is to express this function in
terms of a product over the roots of the Lie group. The terms in this product
are then identified as classical functions. The result is the following.

Theorem 1.1. Let G be a compact semisimple, simply connected Lie group.
Then the fundamental solution of the heat equation is

χ ^ θj(πa(x)/29it/iπ)

«>o sinττα(x)

The notation in this theorem is the following. Firstly,

(l.i) 0(0 = Σe- 2 '

with the sum over all integers and θ\t) is the usual derivative of θ. Then

(1.2) Φ,*) = jϊ(z,t)

where 03 is the classical theta function of [5]. Notice that we are using / for the
second variable rather than q = eιmt which is used in [5]. The constant μ is the
number of positive roots and / is the rank of the Lie group.

The trace of the heat kernel is K(\, t% where 1 is the identity element of the
group. It follows immediately from Theorem 1.1 that we can express K(l,t)in
terms of classical functions.

Corollary 1.2. The trace of the heat kernel is
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It is interesting to compare this with the Macdonald's identities. The

fundamental solution solves the problem

(1.3) Δw + 9w/3ί = O and limu(x, t) = δ^x),

where 8X is the Dirac delta distribution which is concentrated at the identity

element of G. On the other hand let Ka(x, t) solve the problem

(1.4) Δw + 3w/3ί = O and limu(x, t) = 8a(x),
tO

where 8a is the delta distribution concentrated on the orbit under conjugation

of a, a special element called "principal of type p". The Macdonald's identities

correspond to the formula

This is explained in [1]. The point is that Ka(\, t) is expressed in terms of a

modular form: the Dedekind η-function.

The function θ(t) is also a modular form, see [4], Now since K(\9t) has a

nontrivial asymptotic expansion it cannot be a modular form. However,

Corollary 1.2 expresses K{\9 t) in terms of derivatives of modular forms. It

happens that a product of modular forms is again a modular form. Derivatives

of modular forms do not have this property. This means that K{\91) is a much

more complicated function than Ka(\91).

This complication is even more pronounced when one compares K(x, t)

with Ka(x, t). The formula for Ka which is analogous to that given in Theorem

1.1 is

(1.6) Ka(x9t)= Π det(l-e-nΆdx).
n=\

The reader is referred to [1] for details on the results concerning Ka.

This paper pursues the argument of [1] but in the more complicated case of

the fundamental solution. In the next section we consider the case of SU(2)

and describe some of the classical functions. The third section describes the

product over the positive roots and the final section explores the relationship

with the asymptotic expansions.

Added in proof. In the special case of G = SU(2) « S3, this result is given

in the paper by J. Cheeger and M. Taylor, On the diffraction of waves by conical

singularities. I, Comm. Pure Appl. Math. 35 (1982) 295.

2. The heat equation and classical functions

In this section we shall calculate the fundamental solution of the heat

equation on the group SU(2). The main point of this is to relate this solution to
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the classical theta functions. We shall also describe the asymptotic expansion

of the trace of the heat kernel.

To begin we describe the representation theory of SU(2). The space of

dominant weights is taken as

(2.1) D = { λ : 2 λ £ Z , λ ^ 0 } .

Then for λ G D there is a character χ λ which is given by the Weyl character

formula as

(2.2) Xx(x) — sin(2λ + l)77\x;/sin7r.x.

This is the trace of the representation πλ on the space Vλ, which has dimension

(2.3) d i m F λ = 2 λ + l .

In these formulae x is an element of the circle S] which is taken as the maximal

torus of SU(2).

We need the eigenvalues of the Laplacian. These are given by

(2.4) Δ X λ = c ( λ ) X λ

with

(2.5) c(λ) = i λ ( λ + l ) .

Now we can write down the fundamental solution of the heat equation. By

using the Peter-Weyl theorem this can be written as a series in characters:

(2.6) K3(x, 0 = Σ (2λ + 0 S

λez)
Setting n — 2λ + 1 allows this to be written as

( 2 . 7 ) * 3 ( * , 0 = 1 n ^ ^ .

Our aim is to identify this solution in terms of the classical functions. The

appropriate function is Θ3(z91% see [5], and is defined as
00

(2.8) 03(z, 0 = 1 + 2 2 coslnze'™2'.

Hence differentiating with respect to z gives

(2.9) -£{z, t) = θ;(z, ί) = -4 Σ «sin2nze"r"2'.

It is now easy to identify K3 in terms of θ3. We state the result as follows.

Proposition 2.1. The fundamental solution of the heat equation on SU(2) is
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The next result we shall need is to identify K3(\, t). Here 1 denotes the

identity element of the group SU(2). In the notation we have chosen for the

maximal torus the identity element corresponds to taking x — 0.

Proposition 2.2. At the identity element 1 E SU(2) the fundamental solution

is

where θ(t) = Ί%=_κe-2t andθ' = 30/3/.

Proof. From equation (2.7) and LΉopitaΓs rule we see that

(2.10)

Now

(2.11)

K3(\,t)

θ'(t)

00

= 2 n2e-(AI2-1)//8

and the result of the proposition follows immediately.

It happens that θ(t) is, up to a change of notation, a modular form of weight

one half. The transformation equation is (see [4])

(2.12) θ(t) = (t/πyV2θ(π2/ή.

If we differentiate (2.12) we obtain

(2.13) β'{t) = - {t/πy5/2θ'{π2/ή - W2Γ3/2θ(π2/t).

We can use these transformation laws to give the asymptotic expansion of

K3(\, t). If we neglect exponentially small terms we see

(2.14) θ(t)~\ a s r ^ o o

and

(2.15) θ'(t)~O a s ί ^ o o .

Thus from (2.12) we see

(2.16) θ(t) ~ (t/π)-χ/2 asί^O,

and from (2.13)

(2.17) tf'(0~-i*1/2'"3/2 as/-*0.

Combining these results with the previous proposition gives the asymptotic

expansion for the trace of the heat kernel.

Proposition 2.3. The asymptotic expansion of the trace of the heat kernel is

K3(l91) - 32j2π2(4ττty3/2et/s ast->0.

Here et/% represents the series 1 + //8 + (ί/8) 2/2! .
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Corollary 2.4. The volume of the group SU(2) with respect to the Killing form

metric is lljlv1.

Proof. The usual asymptotic expansion (see [2]) is

^ ( 1 , 0 ~ vol G(4πt)~3/2et/s as t -* 0.

Now equating the two expansions gives the result in the corollary.

3. The fundamental solution as a product

In this section we shall establish a product formula for the fundamental

solution of the heat equation. This is analogous to the product formula of [1]

and the reader is referred to [1] for some of the details. We begin by recalling

the definition of the fundamental solution and its reduction to the maximal

torus.

The fundamental solution of the heat equation K(x91), is the solution of the

following problem:

(3.1) ΔK+dK/dt = Q9 KmK(x,t) = δλ(x).

Here δλ(x) is the Dirac delta distribution concentrated at the identity element

of G. Notice that the Laplacian, Δ, has had its sign chosen so that it has an

increasing sequence of positive eigenvalues.

The reduction of K to the maximal torus is Kτ(x, t). This is given by

(3.2) Kτ(x91) = e x p ( - | | p | | 2 φ ( * ) * ( * , t)9

where p is half the sum of the positive roots, || | | 2 is the square of the Killing

form norm andy(x) is the denominator function

(3.3) j(x)= Π 2ίanra( jc) .
α>0

The reason for considering this reduction, rather than the more obvious

restriction, is that Kτ is a solution of the flat heat equation on the maximal

torus T.

Proposition 3.1. The function Kτ solves the heat problem ΔTKT + -$f = 0,

lim,_0 Kτ(x, t) — v{x) on the torus T where
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Proof. That Kτ satisfies the heat equation is a simple consequence of a

result of Harish-Chandra. This is

(3.4) A 2

and may be found in [3].

The main interest of this proposition is the identification of the distribution

v. Let

(3.5) ()
α>0

Then by the Peter-Weyl theorem

(3.6) K(x9t) =Σd(λ + p)χ λ (x)exp(- | | λ + p f / + | |p | | 2 1).

Here the sum is over the weights λ in the dominant Weyl chamber. Now, using

the Weyl character formula, we obtain

(3.7) Kτ{x,t)

= Σ Π % t ^ Σ ( - l ) W 2 ™ ( λ + p)*)exp(-||λ + p||2ί).
λ α > 0 \ P ' α / w

The sum over λ is the same as in (3.6) while the second sum is over w in the

Weyl group. Thus the distribution v is

(3.8) v(x)=
λ α>0

This is the equivalent to the result of the proposition.

We shall make some comments to explain why (3.8) is equivalent to the

result of the proposition. The difference between {λ + p) and {λ} for λ a

dominant weight is just the set of weights in the walls of the Weyl chamber.

Since Π(λ, a)— 0 for such weights we can remove " p " from (3.7). To change

the sum, from over the dominant weights and Weyl group to over all the

weights, we use the invariance of the Killing form under the Weyl group.

Again we introduce repetitions for weights in the walls of the Weyl chambers

but these do not contribute to the sum.

For convenience we call Kτ the associated fundamental solution and v the

associated delta distribution. The purpose of these associated objects is to pass

from the Lie group to the torus where it is easier to carry out the analysis. We

shall, therefore, transfer our results to the maximal torus, prove them and then

lift the answers back to the group.

Theorem 3.2. Let K3 denote the fundamental solution of the heat equation on

SU(2). Then there is a function F(t) such that K(x, t) = F ( 0 Π α > 0 ^ 3(α(jc), t).
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Proof. This follows the same argument that was used in [1]. To start with

we restate the result in terms of the associated functions. Then we see that it is

sufficient to show

(3.9) Kτ{x, t) = e^-'^F(t) Π K3T(a(x), t).

Here μ is the number of positive roots, / is the rank of G and K3T is the

associated fundamental solution on SU(2).

To prove (3.9) we pick an ordering α1? , aμ of the positive roots and embed

T in the μ-dimensional torus Tμ by

(3.10) A:T->T", A{x) = (ax(x), ' ,aμ(x)).

Let Γ"1 be the subspace of Tμ which is orthogonal to T. Then the fundamental

solution on Tμ is the product of the fundamental solutions on T and T1-.

Denoting by H, H± and Hμ respectively the fundamental solutions on T, T±

and Tμ we have

(3.11) Hμ(z,t) = H(x,t)H±(y,t)

where z — x + y.

To pass from the fundamental solution, if, to the associated fundamental

solution, Kτ, requires convolution with the associated delta distribution. In

Proposition 3.1 we identified the Fourier transform of v as

(3.12) P(λ)= Π (λ,a)/(p,a).
α>0

Thus, up to a constant ^(JC) is the convolution of the distributions v3(a(x)):

(3.13) v(x) = O3(α,(x)) * * v3(aμ(x)).

We can identify C as

(3.14) C= Π 1/(4<P,«»
α>0

with the factor 1/4 occurring since Π α > 0 ( p , «>= 1/4 for the group SU(2).

We extend v to the whole of Tμ by

(3.15) φ \ s ,zμ) = Cv£zλ) * ••• *v3(zμ).

Now taking convolutions with the left-hand side of (3.11) gives the function

(3.16) C Π K3T(zj).

On the other hand we can identify vμ as a delta distribution. This is

μ

(3.17) vμ= C Π 2isinπzjδx.
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So taking convolutions with the right-hand side of (3.11) gives the function

(3.18) KT(x,t)K\(y9t).

Now setting z — xso Zj — otj(x) and j> = 0 gives the result in the theorem with

(3.19) e^-l)t/24F(t) = C/K\(0, t).

4. The fundamental solution and its asymptotic expansion

The purpose of this section is to collect together the results of the previous

sections, and so give the expression for the fundamental solution of the heat

equation in terms of the classical theta functions. After we have done this we

shall investigate the asymptotic expansion of the trace of the heat kernel.

Theorem 4.1. Let G be a compact semisimple, simply connected Lie group.

Then the fundamental solution of the heat equation is

vol

* ( X ' 0 ~

«>o sϊnπa(x)

Proof. By Theorem 3.2 we have

(4.i) *•(*, o = n o π *.(«(*). o
α>0

Now we need to identify F(t). By (3.19)

(4.2) e^-V24F(t) - C/AMO, 0

for a constant C = Π f t > 0 l/(4<p, α » . Thus F(t) is given in terms of the

solution to the heat equation. If we pass from the associated solutions to

fundamental solutions on G we obtain

(4.3) F(t) = k(K3(l,t)y(μ-')/3.

Notice that μ — / is the dimension of Tx and K3 is the fundamental solution

on the three dimensional manifold SU(2). Recall the formulae for K3(\, t) and

K3(x, t):

(4.4) K3(l,t) = -±e«Ψ

and

(4.5) K3(x, t) = -e'^θ;(πx/2, it/Sir)/4 sin πx.
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Upon substituting these into (4.3) and (4.1) we obtain

(4.6) K{x,t)^he^^\-nt/%))^-l)/'^ _θ3(M*)/2;it/Sπ)^

«>o smπa{x)

for some constant h. To determine h we use the asymptotic expansion for

K(l,t). From [2] this is

(4.7) K(l, t) ~ (4τrO"d i m G / 2 vol

Now we have already shown that

(4.8) θ'(t) ~ -W/2r3/2.

Using this formula gives a value for the constant h as

(4.9) h = VOl G/π2(2μ+l)/322(2μ+I)/3+μ

which completes the proof of the theorem.

Some comments are required on this method of determining the constant h.

It is clear that

(4.10) h = fc(l/2)-(μ"/)/3(l/4)μ

so determining h is essentially the same as determining k. From (4.3) it is clear

that k is related to C. On -the other hand (4.9) gives an expression for h in

terms of the volume of G. Thus if we could determine k directly we would

obtain a value for the volume of G.

The difficulty here is in comparing the measures on the different spaces

involved. The measure on T is related to that on G by the Weyl integration

formula. On the other hand T is embedded isometrically in Tμ and Tμ has the

standard flat measure inherited from the Euclidean measure on Rμ. However,

in (4.3) the constant k has absorbed a factor which relates the measure on Γ x

to that on the product space Vμ~ι, where V is a line in the Lie algebra of

SU(2). It is this factor which prevents us from equating k with C.

In [2] we obtained the asymiptotic expansion for the trace of the heat kernel

by considering its expansion as a series in characters. This did indeed lead to a

formula for the volume of G. This is

(4.11) vol G =(2π)l+μ vol Q(RV)/ Π < P , « > .
α>0

Now if we set h — me then we find

(4.12) m = 2<2"+/>/V/-">/3 vol Q(RV).

In both (4.11) and (4.12) the term vol Q(RV) is the volume of the fundamental

parallelepiped of the lattice generated by the co-roots.
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