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SPECTRAL GEOMETRY OF SINGULAR
RIEMANNIAN SPACES

JEFF CHEEGER

0. Introduction

In [6], [8], [9] we announed an extension of the theory of the Laplace
operator on smooth manifolds to certain riemannian spaces with singularities..
The details for parts of our program were given in [9], [10], [15], [16]. The
purpose of the present paper is to give further details, especially those
concerning the trace of the heat kernel and the application of the heat equation
method to the index theorem for the Euler characteristic and signature
complexes.

Recall that the simplest geometric singularity is that of a metric cone. If Nm

is a riemannian manifold, then the metric cone C(Nm) on Nm is the space
R+ XNm with the metric dr2 + r2g. The completed cone is denoted by
C*(Nm) = C(Nm) Up.

M'm+\

FIG. 0.1

χ +\ j s c a ji e ( j a S p a c e w j th an isolated metrically conical singularity if Xm+X

= CQtU(Nm) U Mm+\ Here C0%u(Nm) = {(r, x) E C(Nm) | 0 < r < w},
3M m + 1 = Nm, and the union is along the boundary. As in [8] we can also
consider the case in which <dNm Φ 0.1 By definition, analysis on Xm+λ means
analysis on the incomplete riemannnian manifold Xm+\p.

Received August 5, 1982.
1 Some times we will assume for simplicity that 3A/" = 0 , but all our results generalize to the

case 3Λ/"^ 0 .
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In [9] we proved the Hodge theorem in the more general context of
pseudomanifolds with metrics which are inductively of the above type (see also
the work of Teleman [52] for Hodge theory on Lipschitz manifolds). Recall
that a (closed) ^-dimensional pseudomanifold Xn is a simplicial complex such
that every point is contained in a closed ^-simplex, and every (n — l)-simplex
is contained in precisely two «-simplicies. The metrics we considered were
(somewhat more general than) quasi-isometrically piecewise flat, i.e., Xn\Σn~2

is a flat riemannian manifold and an open dense subset, and each closed
simplex σ" is isometric to a linear simplex in R". Here Σ' denotes the /-skeleton
of X. Analysis on Xn means, by definition, analysis on Xn\Σ"~2 (one shows
that this definition is independent of triangulation). Insofar as ZΛcohomology
and Hodge theory are concerned, in fact, it is only the quasi-isometry class of
the metric which plays a role. Analysis on pseudomanifolds of the above type
reduces inductively to the conical case because each point x E σ' C Σ' has a
neighborhood which is isometrically of the form Uι X COe(L(σ')) where
Uι C σ' is flat (L(σ') denotes the link of σ' and the neighborhood has the
product metric).

An important feature of the discussion of [8], [9], was the fact that (if a
certain local topological condition is satisfied) the space of L2 forms which are
closed and coclosed forms is isomorphic to the ZΛcohomology, which is in
turn isomorphic to the dual of the "middle intersection homology" introduced
by Goresky and MacPherson [29], [30]. The connection between our work and
that of Goresky-MacPherson was pointed out by Dennis Sullivan in 1976 (see
[12] for some "historical remarks" on the evolution of these ideas). For spaces
with isolated conical singularities the local topological condition in question is:
m = dim N = 2k + 1, or if m = 2k, then Hk(N2k, R) = 0. If this condition is
not satisfied, then dk and δ^+ 1 are not adjoint operators, and "ideal boundary
conditions" must be introduced.

We want to emphasize that our discovery that Poincare duality can be
restored in the context of pseudomanifolds was completely independent of that
of Goresky-MacPherson; from our analytic viewpoint, this was reflected by the
action of *-operator on harmonic forms.2 In [7], [8], [9], we indicated how a
local formula for the resulting signature can be treated by the heat equation
method; see §9 for details.

As further background we recall that the interplay between ZΛcohomology
and intersection homology theory led to certain natural conjectures concerning

2 In the most general case one chooses ideal boundary conditions which are invariant under the
•-operator. This is closely related to the extension of the Goresky-MacPherson theory to more
general spaces, due to Morgan [40]; see also [48].
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the topology of complex algebraic varieties; see [9], [10], [12] (recently most of
these have been proved by other methods). Also in joint work with M. Taylor
[15], [16] we gave a description of the phenomenon diffraction of waves by
cones of arbitrary cross section, for which the starting point is the fundamental
solution of the wave equation on a cone constructed in [7]. Finally in his thesis,
State University of New York, 1982, Arthur Chou studied the Dirac operator
on spaces with isolated conical-singularities.

The paper has nine remaining sections:
1. Parametrices for the heat kernel
2. Conformal homogeneity of C(Nm) and the trace of the heat kernel
3. Functional calculus on cones
4. The asymptotics of the trace of the heat kernel
5. The Euler characteristic
6. The η-invariant and signature
7. Pseudomanifolds
8. The Chern Gauss Bonnet formula for pseudomanifolds
9. The η-invariant and combinatorial formulas for Pontrjagin classes
§§2-6 deal with the case of isolated conical singularities, while §§7-9 are

concerned with the inductive generalization to polyhedra. The main result of
the first six sections is the explicit calculation of the asymptotic expansion of
the trace of the heat kernel. This is carried out in §§1-4. In §5 we find a
formula for the Euler characteristic by the heat equation method. In so doing,
we obtain new expressions for the Lipschitz-Killing curvatures as spectral
invariants on a smooth manifold. In §6, the η-invariant formula of Atiyah-
Patodi-Singer [2] is derived by applying the heat equation method to the
signature complex of a space with isolated conical singularities. The main
result of §7 is the derivation of the asymptotic expansion for a piecewise flat
pseudomanifold, Xn. We justify the simple heuristic arguments which suggest
that for all /, the expansion for /-forms contains only nonpositive (half) powers
of t, and that the coefficient of tI~n/2+J/2 is locally computable on the
(n — y)-skeleton of Xn. As an application, in §8 we derive a formula for the
Euler characteristic in which spectral invariants drop out, and what remains
are interior dihedral angles between simplices of Xn (in [14], it is shown that
the limit of this expression under fat subdivision is the Chern-Gauss-Bonnet
formula in the smooth case). In §9 the analogous procedure is applied to derive
a local formula for the signature of a certain class of pseudomanifolds in terms
of η-invariants of links. This yields a canonical local combinatorial formula for
the generalization of L-classes to such spaces, and in particular for the
L-classes of piecewise linear manifolds. Unfortunately the η-invariants are
difficult to compute explicitly and may well not be rational numbers in
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general. However, it seems possible that approximate calculations might be
done on a computer in simple cases. Finally, we consider the invariant ρE(Y),
σ{(Ϋ) where E is a flat vector bundle and Ϋ is a finite covering which was
introduced in [2] for smooth closed manifolds. We show that these have
analogs pE(Y), ό\(Y) for a general class of pseudomanifolds. The pE(Y) are
piecewise linear invariants, but the pE(Y) are only known to be diffeomor-
phism invariants in general. We conjecture that for Y smooth, ρE(Y) = PE(Y)>

We point out that in recent work, Werner Mϋller [41] has shown that most
of our results for isolated conical singularities, have close analogs, for "metric
cups." Moreover, in this work, Mϋller investigates further highly interesting
aspects of the spectral geometry of cusps, and gives important applications.

We also wish to mention some earlier works of Fedosov [19], [20]. Although
these works do not employ the Hankel transform, nor do they pursue matters
in detail in dimensions other than 2, they do espouse a point of view which has
much in common with that of the present paper (see also [21] for further
references to the 2-dimensional case).

We are grateful to Arthur Chou and Michael Taylor for several very helpful
conversations concerning this work.

Most of the results of this paper were obtained in 1977-78 during which
time the author was a visiting member of the Institute for Advanced Study. He
wishes to thank the Institute for its hospitality.

1. Parametrices for the heat kernel

Let Y be a riemannian manifold (possibly incomplete) with empty boundary.
Let Δo denote the Laplacian restricted to the space Λ'o of /-forms of compact
support. If we fix a particular self adjoint extension Δ of Δo, then the heat
kernel e~Δr can be defined as a bounded self adjoint operator, via the spectral
theorem. As in [17] for example, it can then be shown that for t > 0, the action
of e~At on L2 is given by the action of a smooth symmetric kernel E(x, y91). If
P(dx, δx, dy, δv) is any polynomial, then P(dχ9 δχi dv, δv)E(x, y9 t) is in the
domain of all powers of the Laplacian when considered as a function of either
space variable. Moreover, given open sets £/, V with compact closure such that
j £ F , F C ( / , w e have for allN > 0,

(1.1) \\P(dx, δx, dy9 δy)E(x, y9 OllΛ/yy < KNt\ as r - 0,

where the norm on the left-hand side is the L 2 norm of E(x9 y9t)\ M, regarded

as a function of x.

Now let Af,, M2 be arbitrary riemannian manifolds. For simplicity assume

3M, = dM2 = 0 . Assume there are open manifolds Zy C Mj with compact
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FIG. 1.1

smooth boundary 3Zy C Mj and an isometry / : Zx ^ Z 2. From now on we just
write Z C Mj9j — 1,2. Let Δ7 be selfadjoint extensions of the Laplacians on
N0(Mj), j — 1,2. Assume that the restrictions of the Δy to Z agree in the
following sense. If Wj E Λ'o( A/,-)* then

(1.2) ί Δxwx Λ * w2 - ( wx Λ *Δ 2w 2 = f δwx Λ * w2 +Jz Jz hz

where the dots denote the standard boundary terms. If we let Ej denote the
heat kernel on M} and apply DuhameΓs principle, we obtain

E2(x,y,t) -Ex(x9y,t)

= f I
J0Jd

JdZ

(1.3)

s)Λ *dE2(z, y,s)

*dEλ(x9z9t-s)/\E2(z9y9s)

(

+

hhz

, z, ί - j ) Λ

where all operations are applied to the variable z. Let W C Z. Then in view of
(1.1), equation (1.3) exhibits Ex - E2\ WX W as an integral over [0, t] X ΘZ
of a family of finite rank (rank 1) operators whose trace norm is uniformly
bounded. Thus Ex — E2 is trace class, and moreover, by (1.1), as t -» 0, for all

N9

(1.4) \[ Ex(x9x9t)-[ E2(x9x9t)
\JW JW

<κNtN.
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At this point we specialize the discussion to the case of spaces with isolated
conical singularities. Let Nm be compact, dNm — 0 and suppose

x — CyΓi ), M2 — A ~ M ) 1 \ ^ ) U M ,
( L 5 ) Z=CoΛ(Nm)9 W=C0Λ/2(Nm).

In case m = 2k - I or m = 2k and Hk(N2k, R) = 0, let Δy be the selfadjoint
extensions dδ + δJ(see [7]). More generally, if Hk(N2k, R) φ 0, choose ideal
boundary conditions as in [7], Recall (see [7]-[9]) that this means the follow-
ing: Let a be a smooth fc-form such that α, da E L2. Let %k denote the space
of harmonic λ>forms on N2k, and choose an orthogonal direct sum decomposi-
tion

(1.6) %k= VaΘ Vr.

On C0Λ(N2k)9 write a = φ + dr Λ ω and

where

Let {Λ7} be an orthonormal basis for %k such that {hj},j= 1 •••/?, and {Λ7},
y = p + 1 * * * q, are orthonormal bases for Va, Vr respectively. If

(1.9) Φκ= Σfj(r)hJ9 φκ= Σgj(r)hJ9

j=\ p+\

then we say that a is in dom d if fJ9 gj satisfy Neumann and Dirichlet
conditions respectively at r = 0. Similarly, β E domδ2A:+i for the decomposi-
tion Va θ Vr, if *β E dom d for the decomposition *Vr θ *Fα (Neumann
conditions on *Vn Dirichlet on *Va). Then it is not difficult to check that
d*k = $2k+\- A s above we define Δy = δj+xdj -f dj_x8j. Then in general, if we
wish to guarantee that Poincare duality

(1.10) *kerΔ2 A : = kerΔ 2 i t + ι

holds, we must assume that

( i n ) *va=vr9 *vr=va,
i.e., that the boundary conditions are *-invariant. Since also F α

L = Vn this
implies that Va, Vr are maximal self-annihilating subspaces for the cup product
pairing on N2k.

We now apply (1.4) with Mx, M2, Z,W as in (1.5). A standard argument
shows that

(1.12) f E2(x,x,t)<π9
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and that the integral in (1.12) has the usual asymptotic expansion. Moreover in
§4 we show that for t > 0,

(1.13) f E}(x,x,t)<oo.

Thus as t -> 0, for all N9

(1.14) ί E2(x, x 9 t ) = [ Ex(x9 x , t ) + [ E2(x, χ 9 1 ) + 0{tN).
Jχ*+\ JC0Λ(Nm) JMm+λ

If we use the semigroup property

(1.15) E2(t) = E2(t/2) E2(t/2)9

then (1.12)—(1.14) imply that E2(t/2) is Hilbert-Schmidt. Hence E2(t) is a
product of Hilbert-Schmidt operators and thus is trace class with trace given
by (1.14). We will use similar arguments ((1.14), (1.15) imply trace class)
elsewhere in the paper without further comment.

In case Nm is the interior of a compact manifold with boundary, the
discussion is entirely similar. One can choose either Dirichlet or Neumann
boundary conditions for Nm and the corresponding Laplacians for generalized
Dirichlet or Neumann conditions ΔD = 8d0 + Joδ, Δ^ = δ 0 J + d0 on Xm+ι.
If Hk(N2k, dNk, R)Φ0 (respectively Hk(N2k, R) φ 0) one can also intro-
duce ideal boundary conditions. Away from the singularity, the generalized
boundary conditions reduce to ordinary boundary conditions, and (1.1)—(1.4)
and (1.12), (1.13) still hold.

We close this section by mentioning that the techniques of this section can
be used to give a simple proof of a quite general Relative index theorem of the
type recently formulated by Gromov and Lawson in [31]. They consider a pair
of generalized Dirac operators βi>v

Θύ1on complete manifolds M l5 M2 such that
6ϋv

6ϋ2, M,, M2 are identified outside a compact set. They assume that the
scalar curvatures of M l9 M2 are positive at oo; this implies in particular that all
kernels and cokernels are finite. They then prove that the appropriate char-
acteristic class (giving the topological index) in M , \ C U M 2 \ C gives the
difference of the indices. In the generalization referred to above, the kernels
and cokernels could be infinite dimensional. The individual indices, index Φ ,̂
need not be defined, but we show index D̂j -index ^ is well defined and equal
to the appropriate characteristic class. For this we need an assumption on the
behavior of the Green's operators for tyf^j, fyfl*. That some such assump-
tion is necessary even in the complete case, is clear from considering the
example of half line with Dirichlet and Neumann boundary conditions, and
the operator d:A°^>A\ Here index D — index N = 1, but all kernels and
cokernels are zero dimensional; see [11] for further details.
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2. Conformal homogeneity of C( Nm) and

the trace of the heat kernel

In the previous section we saw that the study of the trace \xEt{t) of the heat
kernel on /-forms of a manifold X — C0Λ(Nm) U Mm+\ with conical singulari-
ties, reduces to studying

(2.1) / trS,(O,

where Sf.(ί) is the heat kernel on C(Nm). In the present section, by using the
conformal homogeneity of C(Nm) we exhibit the form of the asymptotic
expansion of (2.1) as t -> 0. Further, we reduce the explicit calculation of the
coefficients to calculation of the pointwise coefficients of tr(S;(7)) at r = 1,
and to the calculation of what turns out to be a certain global spectral
invariant of Nm, giving the contribution to the constant term coming from the
singularity at p. These calculations are carried out in §§3 and 4.

Let &i{ru x,, r2, x2> 0 denote the heat kernel on C(Nm). Let ω(r, x) denote
the volume form, and let Tk : C(Nm) -> C{Nm) be the homothetic transforma-
tion defined by Tk((r, x)) = (kry x). Set

( 2 2 ) tr(Sf.(r, x, r, x, 0 ) =f(r, x, t)ω,

where ω is the volume form. Then, as a consequence of the conformal
homogeneity of C(Nm\

(2.3) Γr (ω(r , Λ ) ) = r m + 1 ω(l,x),

(2.4) /(r,jc,O = r- ( m + 1 )/(l,JC,//r 2).

Let dr Λ βbe the volume form onR+ XNm with respect to the product metric,
and S: R+ XNm -> C(Nm) be the polar coordinate map. Then

(2.5) S*(ω) = rm</rΛ)β.

If the pointwise asymptotic expansion of tr S,(/% x, r) is given by3

(2.6) 2 « y / 2 ( r ^ ) ω

then (2.3) and (2.4) imply

(2.7) aj/2(r9 x) = r-jaj/2{\, x).

3 If we assume that dNm = 0 , we actually could writey" instead of y/2. The bar in aj/2 indicates
that aJ/2 is a function. We will usually write aj/2ω — aj/2.
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In particular, if Xu = X\COtU(N) then

um+ι~J

r

( 2 . 8 ) j a J / 2 ( r , x ) ω = c + \ N

-fa(m+λ)/2(l,x)β lσgu, j =

for some constant cJ/2. Thus, although the integral on the right-hand side of
(2.8) diverges as u -* 0 if j > m + 1, its finite part may be defined in all cases
as

(2.9) p

lij <m+ 1, then

(2.10) p.f. f aJ/2ω = f aj/2ω.

The above calculation makes it apparent that for j '> m + 1, the coefficient in
tr(Sf (O) cannot possibly be obtained by integrating the pointwise coefficient
over X, since the integral does not converge. It also suggests that the correct
answer might be obtained by taking the finite part of the integral. This turns
out to be the essentially correct. However, there is an additional contribution
to the constant term coming from the singular point, and a logarithmic term
also enters. Set

(2.11) jUJ/2{\,x)β = aj/2{\).

Define μk(u) by

(2.12) μκ(u)=(f{\,x,u)β- I α7/2(l)
N 7 = 0

Theorem 2.1.

(i)

(ii) For all K > m + 1,

/—-0

Γ(2.13) +\ Γ f «-'/(l, x, u)βdu + 1 Γu-χuκ(u)
J\ JN J0

du
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Proof.

(2.14)

Set t/r1

It

= u

follows

. Then

from (2.2),

tr&(r,X,

JEFF CHEEGER

(2.3),

t)=

iu = 1

(2.4)

α
0 N'

\rdr,

that

71

so that - \u xdu — r xdr. Thus the right-hand side of (2.14) becomes

(2.15)

which gives (i).
To prove (ii), first write

f tr£(O= f tr£(/)+ f tτE(t).
JX JC0Λ(N) JX\C0Λ(N)

(2.16) [tiE(t)~[ trS(O+/" tr£(/),
JX JC0Λ(N) JX\CoΛ(N)

and it clearly suffices to prove the formula for JCQ](N) tr &(t). Take K > m + 1.
Add and subtract /J u~ιμκ(u) du. Then (2.15) can be rewritten as

(2-17) JC

+ i Σ / β
7=0 ^'

Since

ϊ Σ
' jΦm+\ L ~ (m

(2.18) _
(m + \)/2+j/2
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the second term on the right-hand side of (2.18) is just

(2.19) Σ (p f/ a
j=Q \ JCQΛ(Nm)j

The last term of (2.17) is o(t{K+l)/2~(m+l)/2). Thus by inserting (2.18) into
(2.19), (ii) follows, q.e.d.

The last three terms in (2.13) constitute the contribution to the constant term
coming from the singular point p. If we think of the connection between the
heat kernel and the zeta function which holds in the compact case, then we see
that formally this contribution is the constant term in the Laurent expansion at
5 = Oof

(2.20) T(S)ζ(s) = T(s)f ύΓ'(\9x).

The explicit calculations of §4 will exploit such a relationship. For the case of
the pointwise coefficients of trE^t), some small modifications are necessary,
because in fact, C(Nm) is not compact. In §3 we will derive the formulas for
S,.(0 and T(s)Δrs on C(Nm).

3. Functional calculus on cones

In [8] we described a functional calculus for the Laplacian Δ on the cone,
which, by employing the evaluation of various classical integrals, allowed the
explicit calculation of the kernels representing the most important functions
/(Δ). We now recall this calculus and give further details on the functions e~At

and Γ(s)Δ~5 which are of particular interest for the present paper.
As in [8] we introduce the following notation. Operations on the cross

section are indicated by a tilda. The coclosed eigenforms of Δ in dimension 1
are denoted by φj9 and the corresponding eigenvalues by /xy. We set

(3.1) α(/) = i ( l + 2 ι - # n ) ,

(3.2) vj{i) =

(3.3) af{i)--

(3.4) p(i) = A + i 4 + a2(i) - \a(i)\P% = P^Ki + a2(i)
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Thus v(i) is a pseudodifferential operator; Pcc, Pce, Pc, Pe, P% denote orthogo-
nal projection on the subspaces of coclosed, coexact, closed, exact and harmonic
forms respectively.

(3.5) ev(i'l) = PjKt + <x2(i - 1) .

If 0(r, x) = β(r, x) + dr Λ ω(r, x) is a form on C(Nm), and θω/3r = ω',
etc., then

(3.6) * 0 = r m " 2 ί + 2 ϊ ω + (-l)7m~2Wr Λ jB,

(3.7) δ0 = r~2δ>S - r " 2 ^ Λ δω - («' + (m - 2/ + 2)r-!(o),

Δ(? = - β " - (m - l/Or'1^' + r"2A)8 - 2r~3dr Λ δ^

(3.8) + dr Λ[-ω" - (w - 2/ + 2)r-V + (m - 2/ + 2)r"2ω + r2Δω]

— 2r~ιdω.

See [10] for details. Formula (3.8) corrects some misprints which appeared in
the corresponding formulas of [6], [8].

Let φ'(r, x) be an /-form such that for each r, φ\r, x)\(r,N)is coexact. We
can then introduce /-forms of the following types, to be called 1, 2, 3, 4
respectively.

(3.9) r^ty ,

(3.10) ra(i-l)dψ-] +drΛ ( r ^ " ^ " 1 ) ' .

(3.11) r^-V+^r-^-Vdφ'-1)' + r^-^-'dr Λδdφ\

(3.12) r ^ - ^ + W Λ j φ ' - 2 .

The rational behind our convention concerning the powers of r will become
apparent below. Note that types 1 and 3 are coexact, while types 2 and 4 are
exact. The operator d carries types 1 and 3 to types 2 and 4, while δ carries
types 2 and 4 to types 1 and 3. In addition to the above forms, we also
introduce types E and O:

(3.13) r β ( W,

(3.14) έfrΛ(r β ( l"-'W-7.

Here for each r, h(r, x) \ (r, N) is harmonic.
Note that the forms in (3.13) and (3.14) would appear as special cases of the

forms in (3.9) and (3.10) respectively if we allowed φ\ <f>/-1 to be coclosed with
the convention which we have adopted, the *-operator interchanges types 1
and 3, 2 and 4, E and O.
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The eigenforms of Δ with eigenvalue λ2 φ 0 can be decomposed into the
types above. Let Jv be the Bessel function of order v. If φj ~2, φj~\ <tή are
coexact eigenforms of A in dimensions / — 2, / — 1, /, respectively, then we
have the eigenforms

( 3 1 5 ) r«»J±,λn(λr)4ίj,

(3.16) r-<'-I)y±r//_1)(λr)dψJ- + (r^'-Vj^.^Xr))'* A ψ~\

/.2«(,-,+ I ( / . - a ( , - I ) i / ± _ i ) ( λ r ) ) ,

(3.17)
+ra(i-^J±vAi-X){Xr)dr A \

If Vj is half integer, the ( + ) and (-) solutions above are not independent,
and logarithmic (-) solutions must be introduced (see [7]). Since (apart from
the case of ideal boundary conditions) we are interested only in the ()
solutions, this will not concern us further here. In addition to (3.15)—(3.18), we
have E and O solutions

(3.19) r*Mj±wύλr)h*j9

(3.20) (A α ( / - 1 ) / ± K / -, ) ,(λr))^ΛΛj- 1

corresponding to the kernel of Δ. Using the identities

(3-21) (*-V,(z))' = -z-V,+ I(z),

(3-22) (*-V_,(z))'' = *-'/_,_,(*),

(see [53, p. 66]), one sees that

(323)

from which it follows that the family of forms in (3.19), (3.20) is invariant
under d, 8 * (up to the appropriate factor of λ).

To obtain the harmonic forms (λ2 = 0), we may proceed directly or examine
the limiting behavior of (3.15)-(3.18) as λ -> 0. If μ7 Φ 0, dφj = ψ,, then the
limits of (3.16), (3.17) give rise to forms of the same type (2 + 3) given in (3.25)
below. These forms are closed and coclosed. However, by considering the
difference of the forms in (3.16), (3.17), we obtain a type of harmonic form
(2 — 3) which does not fit into the above scheme and which was overlooked in
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[8]. Thus the statements of [8] concerning harmonic forms must be taken as
applying only to (3.24), (3.25), (3.27) below (the appropriate modifications for
type (2 — 3) were given in [7] and [10]). The four types of harmonic forms are

(3.24) A ^ ( / ) φ j ,

(3.25) r'f^dψr1 +af(i- l)ra*v~l)-ιdr Aty'1,

(3.26) r°J dφj + a'jT\i ~ \)raj dr Λ φj ,

(3.27) rfl*(/"2)+IΛ Λ£/ψj-2,

where (for economy of notation) φ, is a coclosed eigenform of Δ.
If Δφ7 = 0, some of the forms corresponding to the above coalesce while

others vanish; see [7] for a precise description. It follows by inspection from
(3.24)-(3.27) (and [7] for μy = 0) that there are no square integrable harmonic
forms on C{Nm). Thus the Hodge decomposition takes the form

(3.28) i + l

see [9]. It then follows from the above that δΛ'J"1 is the orthogonal direct sum
of the closures of the type 1, 3 and E subspaces of δΛ'o"1, and that dN$x is the
orthogonal direct sum of the closures of the type 2, 4 and O subspaces of
ί/Λ'o"1. That the corresponding statements do not hold for harmonic forms is
explained by the fact that these forms are not square integrable (of course, the
eigenforms with λ2 φ 0 are also not square integrable but the decomposition
does happen to apply in that case).

Suppose m = 2k-\oϊ Hk(N2k, R) = 0. If the ( + ) solutions in (3.15)-
(3.18) are multiplied by a cutoff function Λ(r), with h(r) = I near r — 0 and
A ( Γ ) Ξ O for say r> %9 forms which are in the domain of the Laplacian
Δ = d8 + δd are obtained. Multiplying (-) solutions by h(r) gives rise to
forms which are not in the domain of Δ. For the case of ideal boundary
conditions corresponding to %k = Va + Vr as in [8], we use the corresponding
( + ) and (-) solutions; see [7] for a more complete description of the properties
of ( + ) and (-) solutions. The facts that h(r) times a ( + ) solution is in dom Δ,
and that d and δ are adjoints, lead immediately to a functional calulus for Δ on
C(Nm), based on the Hankel inversion formula. Let

(3.29) H9j(gj) = f~J9j(\r)g(r)rdr
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denote the Hankel transform. Then as explained in [15] for functions, the map

(3.30) θ = ΣgjΦj -{Hwo{r-«0g0), ffjr-^g,), • )
j

provides an isometry of the space of L2 type 1 forms onto the Hubert space
L2(R+ , I2, λdλ) of square integrable functions on R+ with values in I2, with
respect to the measure λ dλ. This isometry carries Δ into multiplication by λ2,
for θ G dom Δ, and thus provides the spectral representation of Δ on type 1
forms. However, to obtain a closer analog of the Fourier transform on

i ^ w e c a n r e p i a c e (3.30) by

(3.31) β = Σgj(r)φ) I Σλ«»H9j(r-«%)φj(y)9

j j

which is an isometry of L2 of the (r, x) cone onto L2 of the (λ, y) cone, such
that

(3.32) <$(ΔΘ) = λ2$(θ),

for θ G dom Δ (if Hk(N2k, R) φ 0, use H in (3.31) for those vj correspond-
ing to Va). Note that ̂ is given by the action of the kernel

(3.33) (λr)a0)Jp(λr) = ^
j

and corresponds to

(2»>

on Rm+ ] — C(S™), where/ = fe+fo is the decomposition of/into its even and
odd parts, ̂ extends to forms of types 2,3,4 by specifying that

(3.35)

(3.36) $(*θ) = *$(θ)

(if Nm is not orientable, we identify forms on C(Nm) with those forms of
C(Nm) which are invariant under the natural involution). So defined, ^
provides an isometry of L2(C(Nm)) to L2(C{Nm)\ such that #(Δ0) = \2(${θ)
for θ E dom Δ. It preserves types 1 and 4 and also the direct sum of the spaces
of types 2 and 3, but does not preserve types 2 and 3 individually.
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In view of the discussion of types E and O surrounding (3.19)—(3.23) it
follows that we can take account of these forms (without counting them twice),
by allowing coclosed eigenforms <fy in the formulas for types 1 and 2, but not in
types 3 and 4. This will be done below. With this convention, * of a form of
type 1 or 3 is no longer necessarily of type 2 or 4, but this will cause no
problem.

By combining the above discussion with the spectral theorem and the
Hankel inversion formula, [53], we find that the following formal relation holds
for type 1 forms:

/(Δ) = {rxr2)
a(i)

(3.37) Σ/"/(λ 'K/oίλ ' iK/o^λdλφΛ*.) ® ΦjM-
j 0

In general, the Hankel transform in (3.37) may have to be understood in the
distribution sense, but for our present purpose this is not necessary.

The formula for /-forms of type 2 corresponding to (3.37) is

• i

y _ _ \ —»— f ~*V * / # ' I A »• I Λ I / 1 H / \ y+k*

It is sometimes convenient to rewrite (3.38) using the identity

(3.39) / L Λ - i - Λ + ,
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The expression for forms of type 3 is

/(Δ) = Σ/°7(λ2)
j °

(3.40)

rfλ.

For forms of type 4, we have

/(Δ) = (ηr2r
(<-2)

Λ - ^ ®dr2Λ

As was emphasized in [7], [8] and exploited in [15], it is crucial to recognize
that the right-hand sides of (3.37), (3.38), (3.40), (3.41) define families of
functions of the Laplacian Δon Nm, parameterized by r,, A*2, where the sum of
the series may have to be understood in the distribution sense. This observa-
tion allows one to bring in the functional calculus on Nm, and thereby "sum
the series".

Of course, to pass from (3.31) to the above representations, in effect one is
required to reverse the order of integration in a double integral and then to
interchange an integration and summation. The discussion of [15, §3] provides
a rigorous justification for these operations in a context which is sufficiently
general for our present purposes.
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Example 3.1. (The heat kernel e~Δ') For ί-forms of type 1, this reduces to
Weber's second exponential integral [53, p. 395]:

/ (λr 2)λ dλφj ® φ,

where lv is the modified Bessel function.
In the case of a wedge, this formula is due to Sommerfeld [50]. For solid

3-dimensional cones of circular cross section, it was considered by Carslaw [5];
both derived it by other means. The elliptic estimate for Δ, together with the
elementary estimate

(3.43) Iv{z) ~ e-* /2exp{v + *log(i«) - (v + i)logp)[c0 + °-j +

shows that the series converges uniformly on compact subsets of R^ XC(Nm)
X C(Nm). The rigorous justification for identifying the kernel in (3.42) with
the heat kernel on forms of type 1 now follows immediately from [11, Lemma
3.5], and the discussion following that lemma.

Example 3.2 (Γ(.s)Δ~J). For /-forms of type 1 we use the Weber-Schaftheit-
lin integral [53, p. 401]:

(3.44)
r}

^ . r,<r2,

where F is the hypergeometric function and v> s— \> -\. In particular, for
{ <s< 1, (3.44) holds for all vΓ On the basis of [15, §3] and analytic
continuation arguments it is possible to give a rigorous interpretation of the
expression for Γ(^)Δ"5 corresponding to (3.44) for all s. However, in this paper
we are primarily interested only in the trace of the corresponding kernel. Thus
in §4 we will carry out an analogous argument in that context. For the moment
we think of v (= Vj) as fixed in (3.44) and in the relations which follow. In case
rx -> r2, the hypergeometric function reduces via Gauss' formula; see [34, p.
243] and also [53, p. 403]. This gives the following expression for the pointwise
trace of they'th component of the kernel at rλ = r2 = 1:

(3.45) • ^ ' I - ' + ' V
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We now calculate the corresponding expressions for types 2,3,4. For /-forms
of type 2, we get

(3.46) Γ(5)jf°°λ-'-2'{[α2(i - l)Λ/#-i) + 2α(i - l ) / , ^ - ^ - ^

+ (J:λi.x))
2λ2]dr Λ φ. Λ *φy + J?Λi-X)dr Λ </φy Λ 5 ^ _ , Jrfλ.

For economy of notation we will write a, v for o(/ — 1), t>j(i — 1) below. Using
(3.44) and the Weber-Schaftheitlin formula [53, p. 403], (3.46) becomes

α2Γ(2ί + l ) Γ ( r - j )

2 2 ί + 1Γ(i+ l)Γ(* + j + l)Γ(ί

.aΓ(2s)\ T(v-s) Γ ( y -

(3.47) + - 2 :
22s+i [T(s)Γ(v + s- l)T(s)

T(v-s + 2)
dr Λ φ1 ' Λ

Γ(2i

p + s+l)T{s)

- ^ drΛdφ*'1

By using Legendre's duplication formula [34, p. 3], this reduces to

T(s)L,2_L J M

a

\T(v-s) \
s+l)\T(s+l)

( 3 4 8 ) + _ Γ ( S + \ ) K' ]

T(w - s + 2) T(s - \\

T(s)
\dr Λ φ' ' Λ *φ'~
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For /-forms of type 3, a similar analysis leads to an expression which can be

obtained form (3.48) by making the following changes: (1) replace φ'"1 by

dψ'1/ JμΓj and rfφ'"1 by JW]Φ~\ (2) replace a(i - 1) by -a(i - 1). Call the

resulting expression (3.48)'. We can then combine the last term of (3.48) with

the first term of (3.48)', and the last term of (3.48)' with the first term of (3.48).

In order to write the resulting expression concisely, it is convenient to

introduce the notation

After some routine simplifications, the sum of (3.48) and (3.48)' then becomes

{ Ψ ( ^ ( I - 1 ) , J )

+ 2[s + <*(/ - l)]φj(i - 1), * + \)}dr Λ φ*"1 Λ *$''

(3.50) +{ψ(e'/'-'>,j)

ί/φ'"1 dάί~λ

+ 2[s-a(i- l)]ψ(ewJ(i~ι\s + \)}dr A —4=- Λ * L

In this notation, (3.45), the contribution from type 1 forms, is

(3.51) ^{pj(i)9s)drΛ4/jAiψJ.

Similarly, the contribution from forms of type 4 is

dti'2 dti'2

(3.52) t(pj(i - 2), s)dr Λ - ^ - Λ 5 ^

p

4. The asymptotic expansion of the trace of the heat kernel

Let \&j(t) denote the fundamental solution of the heat equation on the cone
C(Nm), given in (3.42). Recall that Iv(s) - sv as s -> 0, and Iv(s) - s~]/2es as
s -> oo (see [53]). For i forms of type 2, the corresponding kernel is given by

(4.1) βi(ί)=Γd,d2]&i_ι(t)ds.

The elliptic estimate for Δ, together with the asymptotic behavior of /„, easily
implies that the integral in (4.1) converges. For types 3,4 the corresponding
expressions are obtained by applying * * to the expressions for m + 1 — /
forms of types 1 and 2. In this section we will calculate the asymptotic
expansion of tr/J^f), where Et{t) is the heat kernel of the space with conical



SINGULAR RIEMANNIAN SPACES 595

singularities, Xm+ι = C0](Nm) U M m + 1 . In view of the result of §§1 and 2, it
will suffice to calculate the expansion for

trS,(f).
(Nm)

In our calculation we would like to exploit the usual relationship between
the heat kernel and the zeta function. That is, we would like to write

(4.2) T(s)ξ(s)=Γt'-ιtx(S(t)Λ9

for some range of values of s, and to identify the coefficients in the asymptotic
expansion with the residues at the poles of the analytic continuation of
ΓO)f(j). If, however, there exist vj < (n — l)/2, then it turns out that there
are no values of s for which the integral in (4.2) converges. So in order to carry
out the procedure we must first split off the terms corresponding to the small
eigenvalues. Write

(4.3) & = &*b + S>b,

where &^b denotes the sum of those finitely many terms in (4.2) for which
Vj < b, and &>b the sum of the infinitely many remaining terms.

Let bt denote the dimension of kerΔ,, and let hj be an orthonormal basis for
the corresponding space of harmonic forms. In (4.4) below, φy denotes a
coexact eigenform of Δ. Let ψ(x, s) be as in (3.49), and for convenience of
notation, introduce the convention \p(v(i), s) = 0 if i & 0 m — 1. In view
of (3.50)-(3.52) we are led to define Γ(s)f(.y) by

df bi bi~x

iW(s)= ΣΨ(I«(OM)^ΛA<Λ*Λ<+ 2 {Ψ(|α(i-i)M)
7=1 j=\

+ 2[s + a(i- l)]ψ(|α(ι - 1)| ,s+ \)}dr Λti'1 A *ti~x

+ I (Ψ,(O, s)dr Λ ψj Λ H) + Σ {*{"j(i ~ 1), s)

j J

(4.4) + 2[ί + «(/ - l)]ψ(r/ι - 1), s + \)}dr Λ f ' Λ 5^"'

+ Σ )

-2[s-a(i- l)]ψ( 15,(1- l),ί + ljJώ Λ ^ Λ

ί/φ'"2 *d'~2

ί ' '">\ 1 J Λ J A J
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(compare the discussion surrounding (3.19)—(3.23) for the explanation of the

harmonic terms). For fixed s, the individual terms in the summation are finite

provided that for noy is Vj(-) — s a nonpositive integer. For s bounded away

from such values, with Res > \{m + 1), it follows from the elliptic estimate

for Δ that the series converges uniformly to a holomorphic function of s. The

functions T{s)ζi ^b{s\ T(s)ζi ^b(s) are defined as in (4.3). Clearly ξit<b(s) is

meromorphic in the whole complex plane.

The connection between Γ(s)f(,s) and tr(S(/)) is established in the following

theorem.

Theorem 4.1. In the following (i)-(v) assume that μ = 0, and that a — \ does

not occur.

(i) The pointwise relation

(4-5) /°V'trS.

holds in the strip { < Re s < v0 + 1.

(ii) The pointwise relation

(4.6)

holds in the strip (m + l)/2 < Re s < b + 1.

(iii) Γ(.s)f(s) has an analytic continuation to a meromorphic function in all ofC

with possible poles at

(c) s such that Vj•, — s = 0, — 1, for some Vj.

(iv) For (m + l)/2 -j/2 Φ\,-\,-\,

(v) For(m + l)/2 -j/2 = -±, - | , ,

y / j = (m+l)/2-y/2

// (w + l)/2 —7/2 = ̂ , /λe rasw/ί w /Λe s^me except that those terms of

ψ(r(/ — 1), s + 1) and ̂ (s + 1),/0A* wλ/cλ ί' = ί wws/ fte omitted from Γ(s)ξ(s)

before the residue is taken; see (3.4), (3.5).

(vi) // there exist μ = 0, α = •£, let na be the dimension of Va in (1.5). 77ιe

results are as above except that in dimension (m — l)/2, (m + l)/2, α contribu-

tion of \na/ yfπ must be added to the coefficient oft~x/1.

Proof. Consider first the case of 0-forms (functions). Since

(4-7) IXZ) = 2 - { / )
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it follows that as t -> oo,

(4.9)

Moreover, the asymptotic expansion for Iv(z) as z ̂  oo (see [53, p. 203])
implies that for r — 1, as t -» 0

(4..0) « * . * ) - ^ Σ H ) ' Σ *
/ - Λ + 1/2) y '

Since

we have for r = 1,

trS> f t(0~

(4-11) _ 1

2f k Vj^h k\T(vj-k+ 1/2) J

It follows from (4.8)-(4.11) that for \ < Re s ^ v0 + 1 and (m + l)/2 < Re 5
< 6 + 1 respectively, the integrals

Ό
(4.12)

(4.13) Γt'-λ\xS>b(t)Λ
Jo

converge. Moreover, the expression in (4.12) is equal to

(4.14) ΓV"1 2 Γe'λ\2^dλdt.
•Ό rj<b

Jo

We can reverse the order of integration to get

This establishes (i). (ii) follows similarly, (i) makes the analytic continuation of
T(s)ζ^b(s) apparent. But the standard argument (see [6, p. 273]) based on the
asymptotic expansions (4.8) and (4.10) also gives the analytic continuation.
Further it shows that the poles in Re s ̂  occur at s = { — k, and that residues
are just the coefficients in (4.8). For Res > v0 + 1, the poles are those in
(iii)(c), and the residues are the negatives of the coefficients in (4.10). These
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assertions can also be verified directly by comparing (3.51) to (4.8), (4.10). The
same argument shows that T(s)ξ>b(s) has an analytic continuation to all of
Re s < b + 1 for which the residues are the coefficients in (4.11). Since (4.11) is
just the difference of the asymptotic expansions for tv&(t) and tr&<b(t) it
follows that the appropriate residues of

T(s)ζ(s) = T(s)ξ<b(s) + T(s)ξ>b(s)

are just the coefficients for tr &(t). This gives (in), (iv), (v).
The proof in the general case is essentially the same, once one has the

expressions corresponding to (4.8)-(4.10). For type 1 forms, the formulas are
again just (4.8)-(4.10). To express 2&{t) in terms of /„ one can write out (4.1)
explicitly. The expressions for types 3, 4 are obtained by applying * * to
(3.42), (4.1). We omit further details, since they are similar to the above,
q.e.d.

We are now going to obtain the analytic continuation of T(s)ξi(s) directly
from the expression in (4.4). This will allow us to compute the residues at the
poles explicitly, and thus, in view of (4.5) and Theorem 4.1, to calculate the
pointwise coefficients of Sf ( 0 By Theorem 2.1, this will suffice to calculate the
coefficients of the integrated trace of Et{t), apart from the contribution coming
from the singular point p. We then calculate this last contribution by a similar
argument.

According to (4.4) it suffices to consider ψ(K*)> s) — Σ7 ^ ( ^ ( ) , s), where
for the next few pages, for ecnomy of notation, we will omit writing dr Λ φj Λ
*φj or dr Λ dφj/ JW] Λ *dφj/JPj. We will begin by considering the simpler
function v~ls — Σ^v]ls, and relate it to μ~s = ΣμJs. We then reduce the
calculation of the residues of Σ ψ(^ ( )> s)t0 those of Σ7 Vj(-)~2s. Since T(s)μ~s

is the zeta function on coexact /-forms, we have

(4.15) Res Γ(i)μ-' = a>/2 - ά'^ + ••• + (-l)'a° / 2,
m/2 —j/2

where άi

j/2 is the coefficient of t~m/2+J/2 on /-forms. Thus we will, in effect,
have calculated the pointwise coefficients for e~Δ' in terms of those for e~Δ'. In
[36], P. C. Lue gives a generalization of this result to arbitrary warped
products, for the case of 0-forms. His expression for the coefficients is not
quite as explicit as the one given here.

Write

r; 2 ' = μ ; ' ( l + α 7 j
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Summing over Vj (=£ 0) gives

599

/ = 0

The first term is meromoφhic in all of C. By the elliptic estimate, the series in
the second term converges uniformly for Re 5 > m/2 — (π + 1), and thus
represents a holomorphic function in that half plane. Clearly, the residues can
only occur at s = m/2 — j/2 and are given by

(4.18) Res v-2s= Σ (-1)'«2' Res Is.
hm/2-7/2 = 0 s=m/2-j/2 V '

Now let / be a function having an asymptotic expansion about 00, of the
form

f(x) - 2 ***"** + O(
A : = l

where b0 < bλ < . Then we can define f(μ) by

(4.19) f(μ) = nf(0)+ 2 ^

where « is the number of zero eigenvalues. Equivalently, for Re j large, the
series

(4.20)

converges to an analytic function of s. f(μ) is the analytic continuation of this
function to s = 0. Thus

(4.21)
def

f(μ) =

def

Similarly, we set

(4.22) Res/(μ)ΞΞRes/(/ι)μ-'.
s = 0

Notice that although for example v° = 1, in general of course

(4.23) v-2%=o Ψ I(μ) =μ~s\s=o = ί(0).
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In fact, from (4.19) it is clear that

(4.24)
y' 5 = 0

We are now ready to treat the function IX s ) ^ ^ ) . Recall the asymptotic

expansion as v -* oo,

which holds uniformly for s in any compact set; see [42]. Here the Gj(s) are
certain polynomials. In view of (4.25), an argument entirely similar to the one
we gave for v~2s establishes the analytic continuation of T(s)ξ>b(s). To
compute the residues we need some explicit knowledge of the Gj(s). This will
be recalled in the following lemma.

Let Bj denote they th Bernoulli number.
Lemma 4.2.

(4-26)

Proof. According to [53, p. 252] we have

logΓ(ί' — s)~(v — s- ϊ ) l o g ( r - i ) - (v - s) + 5log2ir

(4-27) y ( - 1 ) 0 " 0 Bj
Δ2j(2j-\) (,-sγJ-i'

logT(v + s) ~ (v + s - ΐ)log(j' + s) -(v + s)

(4.28) « ( - I ) 0 " " Bj

jtx2j{2j-\) (v + S)
2j-χ'



SINGULAR RIEMANNIAN SPACES 601

Write

(4.29)

Insert (4.29) in (4.27), (4.28) and subtract (4.28) from (4.27). This gives

— s) — log v + log(l - s/r),

+ 5) = log v + log(l

(4.30)
(y-s)J (v + s)2j-\

{v - (v - s)2J~l

(,, 2 _ +

-2ilogr + - + s Σ (-l)U~1}4v-2j + O(s2).

Thus

(4.31) \+-+s2'9 A
O(s2)

,Λ-2s

We now have the following result which, in view of Theorem 4.1, suffices to
compute the pointwise asymptotic expansion.

Theorem 4.3. Let(m+ l)/2 - j/2 = a.
(ί)lfaφ{,-{t-\,we have the pointwise relation

. S) = —P R e S

(v + a)

with obvious notation.
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(ii) If a— ϊ , - i , - 2 > " " » w e have the pointwise relation

+ Res-
T(v + a)

" 21og(l + a/v)

v+a ~ v 7 y

(iii) /H particular

Resψ(ϊ>, ,s) = -Res^.

Before giving the proof of Theorem 4.3 we make some remarks. When we
write log(l + «2/μ), log(l + a/v), we understand

In these sums, as in the sum involving Bernoulli numbers, only finitely many
terms actually contribute to the residue. The expression Γ(*> — a + 1)/Γ(> + a)
is a polynomial in v since 0 = i, - i, - §, .

Proof of Theorem 4.3. Note that T(a - i) is finite for α =?*= i, - •£, . Thus
it suffices to compute

(\ Γ(" ~ * + 1) _ Π f , Γ(r - a + 1 - jQ Γ(» + α - 5')
) Γ( + ' ) T( + + ' ) '*=a T(v + s

where 5' = j — a. By (4.31) with v replaced by v + α,

Now as in (4.16)

(4.34) (^ + «)"2 i ' = /A-5' + O(^0

Since μ~s' has at most simple poles, terms involving s' can be dropped since
they cannot contribute to the residue at s' = 0. The first factor on the
right-hand side of (4.32) is just a rational function of(v — s')9 and again terms
which are O(sf) can be ignored. Thus in view of (4.32) and (4.34), (i) follows.
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For (ii) we note that for a - £, - \, , T(s - j) has a simple pole at s = α
with

On the other hand, since T(i> — a + l)/T(v + a)is just a polynomial in μ for
the values under consideration, it follows that T(v — a + \)/T(v + a) (in the
sense of (4.21)) is finite. However, as explained in (4.23), this time we must also
take into account those terms which are O(s'). The first factor on the
right-hand side of (4.32) is

(4.35)
T(v-a+ 1) fd\T(v-a+l-s')

T(v + a) " ds[ T(v + a-s')

By (4.31),

(4.36)

(4.37)

T(v + a - s')
+ a + s')

+ ay
2s' = v-2s'(l + f Γ2 s'

= F-2ί'(l - 2ί'log(l + f) + 0(i' 2))

= μ-s'(l + i)'s(l ~ 2j'log(l + f)) + 0(i ' 2)

= μs\\ - 5'log(l + ΐ ) - 2ί'log(l + ?)] + 0(ί ' 2 ).

(ii) follows by inserting (4.36), (4.37) into (4.32).
Since Γ(- {) = -2JW, (iii) follows from (i).
We now evaluate the explicity of the contribution to the constant term in

the asymptotic expansion of tr£,(r) due to the singular point. Note that if
g(s) is a holomorphic function having at most a simple pole at s = 0, then
(d/ds)(s g(s))l=0 is just a way of writing the constant term in the Laurent
expansion of g(s) at s = 0. In Theorem 4.4 below we continue to follow the
notation of Theorem 2.1.
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Theorem 4.4. On i-forms, the constant term in the asymptotic expansion of
tr Ei(t) due to the singular point p is given by

1 / o° r * ~
U u-'f(\,x,u)βdu +
l J\ JN

{u) du

(4'38) -\ίs
- 1 Res j 1 (-l)J~λ^

-\i- 1),

the expression a(i — 1)/| a(i — 1) | w interpreted aslifa(i—\) = O.
Proof. If C(N) were a compact manifold, the first equality above would

follow immediately from the standard argument which gives the analytic
continuation of the zeta function. In our situation if suffices to modify the
argument in a manner similar to the arguments of Theorem 4.1. The second
equality now follows easily from (4.4) and Lemma 4.2.

EXAMPLE 4.1. Let Nm be the interval of length β with Dirichlet or
Neumann boundary conditions. Then C(Nm) is an angular sector with angle

β.

The zeta function of Nm for Δ = -d2/dθ2 on functions is just given by

(4-39) ξβ(s)
where ξ(s) is the ordinary riemann zeta function. Using

ζ(-l) = -1/12,

(4.40) ( ( 2 ) _ 1 + .

Bλ = 1/6,

(see [54]), Theorem 4.4 yields the value

(44i)
K }

s - 1/2

[ f - ) +
2[β{ 12 j + π
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FIG. 4.1

This formula is due to Kac [33] (see also [3], [19]). Ray also gave a simple
unpublished derivation based on the Kanterovitsch Lebedev transform. If we
let TV1 = Sβ, the circle of radius β, a similar analysis gives

Note that the appearance of \/β in (4.41), (4.42) implies that neither these
expressions nor their derivatives under change of metric are locally computable
geometric invariants. Every such invariant which is not constant is clearly
proportional to β. Of course, in this very special case, (4.41) and (4.42) are
rational functions of locally computable invariants.

If we take Nm = S™ or more generally a lens space, the above results recover
known values of the Hurwitz zeta function.

We point out that everything we have done up to this point extends
immediately to the case of the Laplacian with coefficients in a vector bundle
with connection over X\p, provided the connection is locally flat in a
neighborhood of/?. This remark also applies to the results of §§5 and 6.

5. The Euler characteristic

Recall that in the case of a smooth compact manifold Y2k without boundary
the Chern-Gauss-Bonnet formula can be proved by the heat equation method,
[27], [38], [43]. For this, one starts with the identity,

Since (5.1) holds for all /, we can replace the integrated trace by the integrated
asymptotic expansion to obtain

(5.2) ( Σ ( - ! ) ' < ( * ) = 0, j<2k,
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(5-3)

The results of [1], [27], [43] show that in fact one has the pointwise identities

(5.4) Σ(-l)'4(*) = 0,

(5.5) '

where ^X(Ω) denotes the Chern-Gauss-Bonnet form, and Ω is the curvature

form. In view of Theorem 4.4, if dX2k = 0 , we can apply the same argument

to X2k, a manifold with conical singularities, to calculate the L2-Euler char-

acteristic χ{2)(X2k) When we take the alternating sum, the nonlocal spectral

invariants in (4.38) cancel, and we obtain the formula.

Theorem 5.1.

(5.6) χm(X) = [ Pχ{Q) + f f (-l)'

Proof. One checks that fCoι(N)Pχ(Ώ) = 0. Inspection of (4.38) shows that it

suffices to vertify that

(5-7) V("
2k-\

{ς> Q\ V / IVu -
p.oj — 2a v U "i• -

i=k

This follows from the Poincare Lemma of [9, §2]:

\J'y) /7(2)V^0,lVi

and the corresponding relative Poincare Lemma:

(5.10) ^ ) ( C 0 , 1 ( ^ ) , α , l ) x ^ ) = . X

[// yJ\ ) , i ^ m -r i — [m/z\9

which is proved in similar fashion.

Although (5.6), as it stands, is a formula for χ ( 2 )(^ r 2 A : ) ) it can easily be recast

as a formula for ̂ (χ(M) + χ(Λf, N))\ for the case dN — 0 , we have χ(M2k)

— χ(M2k, N2k~ι). In fact, by [9], the usual exact cohomology sequences hold
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for the Hf2) theory; they imply

(5.11) χ(2)(X) = χ(2)(C0Λ(N)) + χ ( 2 ) ( M , a , l) X N),

(5.12) X{2)(X) = χ(2)(C0,,(iV), Q, l)XN) + X ( 2 ) ( M ) .

Since χ(2)(M,^,l)XN) = χ(M,N) and χ ( 2 )(M) = χ(M), by averaging
(5.11), (5.12) and substituting in (5.6) we obtain

\{χ{M)+χ{M,N))\

For the case dN = 0 , the essential content of (5.13) is to express the
boundary integral fNSPχ(θ, Ω) in the usual Chern-Gauss-Bonnet formula as a
spectral invariant. Let Ω/y denote the curvature form of M2k relative to some
orthonormal basis {e,}, chosen so that em+λ is the inward normal to the
boundary. Then if wtj is the connection form, w/>m+I is the second fundamen-
tal form of the boundary. The standard formula for the boundary term
expresses SPχ(θ,ίi) in terms of Ω/y, w i m + 1 , see [28, p. 338]. In our case
dM — (1, N) and one easily calculates that wt m + 1 — wi9 where {wj is dual to
{ez}. Thus we can use the Gauss equation

toy — Ωjj + Wj Λ Wj

to rewrite this formula in terms of the intrinsic curvature forms Ω/y of Nm. If
we employ the identity

(m-2y-l)/2 , Ίy

( 5 1 4 ) ί o l 3 - - - ( m - 2 j - 2 ι ) 2 ' i !

(m - 2j)2^-2J-^2{{m - 2j -

we find that

(5.15) SPY(Θ,Q)= Σ 7
* j=o (m - U)[[m - ii - D/2)\πι

where

Awa(2j+\)Λ
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Thus Ro is a multiple of the volume form, Rx is a multiple of the scalar
curvature, and in general the Rj are multiples of the so-called Lipschitz Killing
curvatures. Note that Rj is multiplied by lm~2j when the metric tensor on N is
multiplied by /2; i.e., when lengths are multiplied by /. On the other hand,

Since the equality (5.15) holds for all metrics, it follows that terms of the same
homogeneity must be equal. Thus

(5.18)

Let idj be the coefficient of t~m/2+j in the expansion for /-forms. If we make
the substitution

(5.19)

in (5.18), then we can show that the resulting equation holds locally. In fact,
Gilkey's theorem [28] implies that it suffices to check this for metrics of the
form M2j X Rm~2J. This is carried out in §8 (in the piecewise flat context) by
means of the identity (8.28). Thus (5.14) and (8.28) are in a sense equivalent
identities. We also point out that the individual terms under the summations in
(5.18) contain higher covariant derivatives of curvature. Thus (5.18) exhibits a
cancellation phenomenon.

We can obtain supplements to (5.18) by substituting our explicit formulas
for the pointwise coefficients and Theorem 4.1(i) into (5.4), (5.5), and multiply-
ing the metric by I2 as above. This yields

(5.20) Σ(-l) '« 2 ( *~ 7 ) (0 Res ^ ' - ' = 0, k = 09 -Λ(m-l)j<k.
s=\/2 + k I

For the even dimensional analogs of (5.18), (5.20), we simply apply these
formulas to the odd dimensional manifold N2k X Sι. The fact that the Rj are
spectral invariants was observed by Donnelly [18]. Relations (5.18), (5.20)
should also be compared to similar formulas of Gunther and Schimming [32].

The discussion given up to this point has an immediate generalization to
the case in which the boundary of Nm is not empty. A boundary integral
appears on the right-hand side of (5.6), (5.13) and the spectral invariant
Σ(-l)' Res v~\i — 1) can be split into a contribution coming from int(TV) and
one attached to dN. The latter corresponds to the contribution due to the
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nonsmoothness of the boundary of M at (1, N). Rather than given further
details we will illustrate this discussion with the following down to earth
example.

Example 5.1. Let X2 be the interior of a polygon with angles γ,, ,γπ. Fix
Dirichlet boundary conditions. Then at each vertex b0 = 0, bx = 1. Thus the
topological term equals \. Also Pχ(&) = 0 since X is flat, and the boundary
integrand is easily seen to vanish as well. As in Example 4.1 the zeta function
on coexact zero forms is (π/y)~2sξ(2s) where ξ(s) is the Riemann zeta
function. At each vertex we get a contribution

(5.21) -Res^ 1 - 2 ί (0) = ^ .

Combining this with the topological term \ above and summing over the
vertices give

(5.22)

(5-23) 1=Σ^( -Ϊ,).

which of course is a well-known elementary formula.

6. The η-invariant and signature

If m + 1 = 4/, N4l~ι is oriented, and dN4ί~ι = 0, then we can consider the
index problem for the signature operator on X41 = C0λ(N4I~ι) U M41. Since
according to [8], the middle dimensional ZΛcohomology of X41 is canonically
identified with

(6.1) im(//

the ZΛsignature of X41 is easily seen to coincide with the Novikov signature of
M4 / as a manifold with boundary.

When we apply the heat equation method to the calculation of the signature,
a contribution to the constant term naturally enters, which is analogous to the
term in (4.38). This term, as it stands, is equal to the ry-invariant of Atiyah-
Patodi-Singer, plus a sum of residues of the η function at points in the half
plane Re s > -\. By examining the effect of multiplying the metric on N4l~x

by a constant factor, one sees that the integrated residues are all zero. This
gives the Atiyah-Patodi-Singer formula, together with the result that η(s) is
holomorphic in the half plane Res > -\. In fact, it is known by Gilkey's
theorem [28] that this latter result is true locally on N4l~λ.

Our main purpose here is not only to give a new proof of the η-invariant
formula, but also to exhibit this formula as the natural signature formula for
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spaces with conical singularities. In §9, we extend our argument to the case of
pseudomanifolds with piecewise smooth metrics of constant positive curvature.

Since e"*2'' is trace class and * : A2l(X41) -> A2l(X41) is a bounded operator,
it follows that *e~Δ2/' is trace class. Applying the standard formalism, we see
that the ZΛsignature of X41 is given by

(6.2) sig(*4 /) = α2 /,

where a2l is the constant term in the asymptotic expansion of tr(*e~Δ2/')
By an argument analogous to those of §§1-3, the calculation of a2l can be

split into 2 terms. By the Abramov-Gilkey-Patodi Theorem, the first of these is
the integral of the L-form ^(Ω) over M4/. The second term, which we write as
a2ι(C0\(N4I"ιy)f includes any possible contribution from the integral of PL(tt)
over C0Λ(N4l~ι)9 together with a contribution to the constant term at/?.

We begin the calculation of a2ι(C0\(N4l~1)) by recalling that a metric of the
form

(6-3) dr2+f2(r)g(x)

on (a, b) X N4l~x is conformally equivalent to a product. To see this, multiply
(6.3) by f~2(r) and set s = f[f~\u)du. Since the Pontrjagin forms are
conformally invariant, it follows that

(6.4) PL(Ω)|C 0, 1(iV 4 /- 1)Ξθ.

More generally, choose/> 0 such that/(r) = r near r — 1, and/(r) = cr near
r = {-. It then follows that the integrated contribution to the constant term,
coming from the singular point/?, is invariant under multiplying the metric on
N4l-χbyc2.

Let (*2lζ2ι(
s)(r> χ)) denote the trace of the pointwise zeta function on

2/-forms of C0Λ(N4l~ι) composed with *2/. An argument like that of §2 shows
that the contribution to the constant term due to the singularity is equal to

half the constant term in the Laurent expansion at s — 0. We can calculate this
by a slight modification of the computation of §4. Note that

(6.5) a(2l - 1) = i [ l + 2(2/ - 1) - (4/ - 1)] = 0.

Thus Vj(2l — 1) = μλ/2. Moreover, the coexact eigenforms on Λ^4/-1 in dimen-
sion (21 — 1) can be chosen to satisfy dφj = (±Pj)*φ.. Since

$ ' - ' Λ *2φ}'-1 = dφ]ι~ι Λ *2dφ]ι~ι = 0,
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forms of types 1 and 4 will not contribute to the zeta function (nor will there
be contributions from the harmonic forms in dimensions 21,21 — 1 on N4I~ι).
Using *2/_! = 1, one sees that the contribution for type 3 equals the contribu-
tion for type 2 and that these are each given by

(6.6) T(s)Σj λ-1-2ί</[Λ/2/_1)(λr)φy(jeI)| ^d\Jrj(2,-l){\r2)φj(x2)\d\.
J

At rx — r2 — 1, the sum of the contributions for types 2 and 3 becomes

(6.7) 4T(s) 2 /°°λ-2V'v/ΪI-(λ)y^(λ) dλ dr Λ φ. Λ dφj.

Using 7^- = \(JφΓj-\ ~JJΪΓJ + \)
 a n d applying the Weber-Schaftheitlin

formula [53, p. 401] gives for ίμ~ — 1,

(6-8) -J-T T ^ Γ T Σ

For Jμ] + 1 we get

where from now on we drop dr. Subtracting (6.9) from (6.8) and using
Legendre's duplication formula for the gamma function yields

Λ S'
^ +s+ί)

As in §4 we can use the asymptotic expansion of the gamma function to
evaluate the constant term in the Laurent expansion at s — 0. Neglecting terms
which are O(s2), and multiplying by \ as in (6.4), we obtain

(6.11) + 2
/ = O J =

s=0
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If we use the above result that η(s) is holomorphic in the plane Re s < - {,
then the expression in (6.11) simply reduces to η(0), the η-invariant of N4i~ι.
The integrated form of this result is also a direct consequence of the above fact
that the total contribution in (6.11) is invariant under scaling of the metric on
N4l~ι. In fact, if we multiply the metric on N4l~ι by c, we replace η(s) by
c~2sη(s). Now for / > 0,

(6.12) Rcsc-2sη(s) = c"2/Resη(j),

and since near zero c~2s — (1 — 2slog c + O(s2)),

(6.Π) i |
5 = 0 ds

- 21ogcResη(.y).
5=0 5=0

Since it is known that B^Q for all /, it follows that the expression is (6.11)
can be independent of c, only if the integrated residues vanish for s = 0,1, .
Thus we obtain the η-invariant formula of Atiyah-Patodi-Singer,

(6.14) sig(Λ/4') =

or equivalently,

(6.15) sig(*4 ') = /

It is natural from our present viewpoint to consider as well, the η-invariant
for (4/ - l)-manifolds with conical singularities. We can interpret this as a
definition of the η-invariant for manifolds with boundary where in effect we
impose global boundary conditions through the device of attaching a cone to
the boundary. In case H2ί~\N4l~2, R) φ 0, we must choose *-invariant ideal
boundary conditions as in (1.11). Then the η-invariant can be defined as the
analytic continuation to s — { of

(6.16) -ί^fV-'tr^^ί))*,

s > (41 — l)/2. Although we will not pursue the analog of (6.15) in detail here
(see however §9), we note that the η-invariant is still finite for X4l~ι —
C0Λ(N4l~x) U M4l~\ As usual we can reduce to considering the fundamental
solution &2l_x(t) for C(N4l~2). By considering the various types of forms,
(1-4), it is easily checked that in fact, tτ(*d&2l_x(t)) = 0. The finiteness of the
η-invariant for X4l~x immediately follows.
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7. Pseudomanifolds
7.1 Introduction. The methods of the previous sections can be exploited in

the study of the spectral geometry simplicial complexes with piecewise smooth
metrics of constant curvature. Although the general case is similar, for simplic-
ity we will restrict attention to pseudomanifolds. Recall that an n-dimensional
pseudomanifold X" is a finite simplicial complex such that every point p is
contained in a closed w-simplex and every (n — l)-simplex is the face either of
one or two «-simplices (if the number is one, p is a point of dXn).

We will assume that Xn\Σn~2 is a flat riemannian manifold such that any
simplex σw is isometric to the interior of some linear ^-simplex. More generally,
we consider metrics piecewise smoothly riemannian equivalent to g in the sense
of [9], i.e., piecewise smoothly quasi-isometric to g. In particular, the links of
simplices inherit metrics of this type.

Here by the link, L(σk) of a simplex σk C X, we mean the following. Let
p e σk and consider the union of line segments in X, emanating from /?, of
length ^ e, normal to σk. If c is sufficiently small, it is easy to see that this set
is isometric to some truncated cone COt(L(σk)) where L(σk) is by definition
of the links of σk. We call C(L(σk)\ the normal cone to ok. If the metric on X
is piecewise flat, then L(σk) is a union of simplices of curvature = 1 with
totally geodesic faces. Such a metric is of course quasi-isometric to a piecewise
flat metric. Then/? has a neighborhood which is isometric to ^lk X (Co eL(σk)),
where %* C σk, and the metric is the product metric. The appearance of
Co c(L(σk)) makes our previous analysis relevant.

We emphasize that the results of subsections 7.2, 7.3, depend only on the
quasi-isometry type of the metric.

7.2 Review of Hodge theory. In [9] a number of basic results on the
ZΛcohomology and Hodge theory were given in the case where X is admissible
in the sense of that paper. Essentially this means that ideal boundary condi-
tions do not enter. Equivalently in our context, d= δ*, where the bar denotes
closure, and the star denotes adjoint. Here we will use Gaffney's terminology
and say that X has negligible boundary. Unfortunately even in this case the
Laplacian on forms of compact support may fail to be essentially selfadjoint;
see [7].

(i) If Xn has negligible boundary, the selfadjoint extensions ΔD, Δ^ of the
Laplacian Δo on forms of compact support coincide. The operators ΔD, ΔN

correspond to the generalized Dirichlet and Neumann problems respectively.

(ii) the ZΛcohomology spaces H^2)(X) — Hι

{1)(X\Σn~2) are finite dimen-

sional. Thus J, 8 have closed range and the strong Hodge Theorem that

%i ^ Hfa(X) holds. Here %' = {h ίΞ L2\dh = δh = 0}.
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(iii) In fact, H^ is naturally isomorphic to the dual of the middle intersec-
tion homology group IH7( X) introduced by Goresky and MacPherson [29].

7.3 The Kunneth formula. We also mention a consequence of the above
which was implicit in [9], namely the Kunneth formula; see also [55]. Let Y be
arbitrary. Define the reduced L2-cohomology by

(7.1)

By Gaffney [25],

(7.2) ( 4 - i ) * = δ~,o>

where δi0 is the closure of the operator δz restricted to forms of compact
support. As in [7] we have the self-adjoint Laplacian, the generalized Neumann
problem,

(7.3) Δw = δi_1JOrf/ + J/_1δ/ J O,

and it follows immediately that

(7.4) i%:keτAN^H 2)(Y)

is always an isomorphism. Thus if

(7.5) Y=Y{XY2,

we can consider the operator

(7.6) 2 ,Δ^,. ®2Ij Θ,/,. ® &NJ = Ak

i+j=k

on L2 Π Λ'(7), where tΔNJ is the Neumann Laplacian on /-forms of Yt. The
operator Ak in (7.6) is known to be essentially selfadjoint by Hubert space
theory; see [46, p. 300]. However, it is trivial to check that the domain of Ak is
contained in that of ΔNtk on Y. Since ΔNtk is always essentially selfadjoint, we
have

(7.7) Ak = Δ N , k .

The relation (7.7) together with (7.4) implies
Theorem 7.1 (Kunneth formula).

(7.8) H

For the case of closed pseudomanifolds with negligible boundary, by §7.2(ii)
we can replace H{2) by H(2). By (i) we have ΔN = ΔD = Δ. The discussion can
also be modified in a straightforward fashion to include the case of ideal
boundary conditions.
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7.4 Inductive arguments invariant under quasi-isometry. In §§1-6 we dis-
cussed spaces Xm+ι =C0Λ(Nm)Ό Mm+ι with conical singularities by detail-
ing the following observations.

(i) Local analysis in dimension (m + 1). In dimension m + 1, local analy-
sis away from the singular point p is as in the nonsingular case. The singularity
manifests itself in the nonuniformity of this local behavior as the singularity is
approached.

(ii) Semilocalization in dimension (m + 1). Aspects of global analysis on
Xm+ι can be reduced to (a) local analysis in dimension (m + 1) and (b) global
analysis on the cone C(Nm).

(iii) Functional calculus on cones C(Nm). Global analysis on the cone
C(Nm) can be reduced to global analysis on the cross section by means of a
functional calculus based on the Hankel inversion formula and the functional
calculus for the Laplacian on the cross section.

At this point we have obtained enough information about Xm+ι so that we
can replace the cross section Nm with the space Xm+\ and repeat the whole
process. In this way, the results on cones can be generalized to pseudomani-
folds. In this subsection, we will give the initial portion of this discussion—the
part which is invariant under (piecewise smooth) quasi-isometry. This includes
the fact that e~Δ' is trace class, and the estimate tr(e~Δ') < kt~n/1, as / -> 0.
The complete asymptotic expansion is treated in the next subsection.

We now introduce some terminology and give a flow chart for the inductive
argument.

The subscripts m + 1, /; m + 1, sl\ m, g; will refer to the following regions
respectively.

I. Regions.

1. m + 1, /; (local in dimension m + 1) refers to

%kX COi(L(σk)) C C ( L ( ί ) ) , where %k C σk

9qE6lLk

9 k > 0.

2. m + 1, sl\ (semilocal in dimension m + 1) refers to

Q f € (L( /0 )CC(L( /0 ) where/? = σ°.

3. m, g; (global in dimension m) refers to Xm.
We will be concerned with the following properties on these regions.

II. Properties.

!• tΓm+u> tΓm+i,5/> irm,g a r e t h e estimates (a)-(c) below, on the integrated

pointwise trace.
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(a) For all fixed %jj with p(%*. Σ*"1) > δ, as t -» 0,

(b)

(c) / tr£(O < *
. / VIM

2. Let i * ! ^ , §0, ^2(^2' δ2) denote polynomials in dx, δ l 5 and </2, ̂ 2 respec-
tively. The decay conditions Dm h Dm+ι sl refer to the statements (α),(/?) below
where n > 0 is arbitrary. The norm is the ZΛnorm with respect to both
variables.

(a) For almost all4 ux, w2 such that

p ( W y , Σ ^ 1 ) > δ , \ux-u2\>6/2,

we have

(7.10)

(β) If c > β, p(Q t € l(L(p)), w2 X CojL(σk))) > β/2, then

/ ί
t'Q(ί'(/'));«2

There is a corresponding estimate with the roles of «,, w2 reversed.
The inductive interconnections between the various properties of II will be

exhibited with the help of the following principles which are established in all
dimensions simultaneously without inductive arguments. Of these, only Princi-
ples 1 and 6 will require proof.

III. Principles.
1. (q.i.i.) Whether or not e~Δ ' is trace class for t>0 and satisfies the

inequality t r ( e " Δ r ) < Kt~n/1, as t -> 0, depends only on the piecewise smooth
quasi-isometry, i.e., riemannian equivalence, class of X.

2. (f.c.c.) functional calculus on cones.
3. (f.c.p.) functional calculus on products RX Y.
4. (όD) denotes any argumennt based on DuhamePs principle.
5. (symm) denotes the fact that the heat kernel E(x, y, t) is symmetric on x

andj.

ι I t is not difficult to see that "almost all" can be replaced by "all."
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f.cc. > m>sl Ί

m,sl

F I G . 7.1

6. ( β ) denotes the existence of a cut-off function g on the piecewise linear

cone C(L(σ)) such that multiplication by g preserves the domain of all powers

of Δ on C(L(o)).
Given the above terminology, the inductive argument can be explained by

means of Figure 7.1 which contains five distinct types of entries, say t r m + 1 sh
Dm+\,sh tΓm,g) t r w + l f / , Dm+\,si W e b e g i n bY establishing Principles 1 and 6

above, and then proceed to the entries in Figure 7.1.

Lemma 7.1 (q.i.i.). Let Y" be riemannian manifolds with metrics gJ9j = 1,2,

and let f: Yx -> Y2be a quasi-isometry (for example piecewise smooth) such that

f*d = df*. Let jΔj denote the Laplacian on i-forms of YJ1 for generalized

Neumann conditions 7Δ, =jδod + djδ0. Then e" ' Δ / ί is trace class for all i and

satisfies t r (e" 2 Δ / 7 ) < Kλt~
n/1, if and only if e'2**' is trace class for all i and

satisfies t r ( ^ Δ < ' ) < K2Γ
n/2.

Proof. As in subsection 7.3, d i m k e r ^ = dimker 2 Δ z . Let d~x denote the

map which vanishes on kerδo, and assigns to each form da E range J, the

unique form Pcea in δ 0 Λ 0

+ \ Jo f which is da. The spectrum of y Δf is discrete if

and only if the bilinear forms defined on ranges dt_ 1? dt by

(7.11)

have discrete spectrum with respect to g,, g2. If {7 /A/-i}, {yM/} a r e the nonzero

spectra of these bilinear forms, the nonzero spectrum of yΔ, is {7/x;I x) U {y^;1}.

But since the operators

(7.12)

are bounded with respect to both g, and g2, it follows that the forms in (7.13)

are mutually bounded. Since the same is true of g\, g2, the lemma easily

follows.
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(β) The possibility of localizing follows in particular from the existence of a
cut-off function on Rk X C(L(σ*)), multiplication by which preserves the
domain of all powers of Δ. To construct such a function, clearly it suffices to
construct a function with the analogous property with respect to the Laplacian
on C(L(σk)). Since L(σk) is itself a space with conical singularities, it will not
immediately suffice simply to employ a function of the radial variable, when
considering /-forms with / > 0. However, a direct way to construct a suitable
cut off g, for the piecewise linear cone C(L(σk)\ is the following.5 Fix c > 0
small. Let {τj} denote the /-simplices of L(σk). Define g on U7C(τ7°) to be
φ(r), where φ|(0, c/2) = 1, and φ|(c, oo) = 0. Extend g to a small product
neighborhood T° of U .C€/3jOO(7yO) in C(L(σk)) by composing g with orthogo-
nal projection onto UyCc / 3 o o(τy°). Next extend g\T° Π \JjC(τJ) to all of
UjC(Tj) in the obvious fashion depicted in Figure 7.2; the level surfaces of g
have been indicated. Extend g to a product neighborhood of U C(τ)1) in
C(L(σk)) by composing with orthogonal projection onto the various C(τJ\
Note that this extends g\ T°. By proceeding inductively, we construct a cut-off
function g which is compatible with the local product structures on the T'.
Then multiplication by g will clearly preserve dom Δy for ally.

We now consider the five distinct types of entries in Figure 7.1.
(tΓm+u/) If w e assume that for piecewise flat m-dimensional pseudomani-

folds we have tr(e"Δ/) < Kt~m/1, then by Lemma 7.1 (q.i.i.), this estimate also
holds for m-dimensional pseudomanifolds with piecewise smooth metrics of
constant curvature = 1. The arguments of §§2-4 now apply. In particular, let
p be a vertex of the piecewise flat pseudomanifold Xm+\ and L(p) the link of
p. By trm g9 one sees that for t > 0 we have convergent series representations
for &i(t) on C0](L(p)) in terms of the modified Bessel function /, as in (3.42)
and (4.1). The convergence is uniform pointwise if we stay away from lower
dimensional skeleta. More important, from (3.43) it follows that the conver-
gence is uniform in the Sobolev spaces corresponding to dom Δ' for all /. For
fixed t, these representations imply that

(7.13) ί] f trS(r, t)rudr = ^Γ I trS(l, J )*" 1 ds9
J0 JL{p) l Jt JL(p)

where, in particular, it follows from the series representation that the integrals
converge; the integrals in (7.13) are regarded as L2 valued. In order to obtain
the estimate for small t most directly from tr m + 1 , , we fix t small and define

5 Analogous constructions will play a role in §9.
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FIG. 7.2

a E [̂ , ̂ ] and Nby t = a2N. We can write

(7.14)

Γf tτ&(r,t)rmdr= f']/2 f trS(r, t)rm dr + Γ f tr S(r, i> m

•Ό /L(/>) Λ) 'Lί/O Jt]/2jL(p)

The first integral is given by

(7.15) (tWΊ \x&(rrλ'2Λ)t<m+χV2rmdr= C ί trS(w, \)um du9
J0 JL(p) J0 JL{p)

and thus is independent of /. The second integral can be written as
N-\ N-\

Σ ίa' ί tx6(r9t)rmdr= Σ f f tr&(ua\ t)a^+^umdu
/ = 0

N-\

(7.16)
= Σ f ί K&{u,t/a2i)umdu

, = 0 Ja JL(p)

/ = 0

where the next to the last step follows from t r w + 1 / . This completes the
verification of tr m + 1 sl.

(Dm+,f/). Let £/(0 denote the heat kernel of /-forms of R\ and &™_~Jk+ \t)
denote the heat kernel of (i — /)-forms of C(L(σk)). Then by Dmsh trm 7 and
the analogous properties for Ek, it follows that

(7.17) E
m+\.x=
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has the decay property in (7.10)(α). Thus it suffices to show that the heat
kernel S,m+1 on C(L(p)) can be localized to E["+Ux on [ux X COc(L(σ*))} X
{W 2XCα e(L(σ*))}.Ifweset

(7.18) %=(h

where h is a cut-off function on R*, and g is the cut-off function described in
(β), then we get

(7.19) SΓ+1(0 = %{t) + /V*'-'>ft(*) A,

where

(7.20) ρ^z, x2, j) = (Δ2 + 3/fa)β>(z, X 2, J ) ,

and e-^~s) is the heat kernel on C(L(p)). Observe that

(7.21) P(dxι9 δX2)e-«'-» = e-^"')/>(e r, dz)9

and that e" Δ ( ί ~ s ) does not increase ZΛnorm. From the Stokes' theorem for
collars proved in [9, §2], it follows that we can apply DuhameΓs principle and
integrate over {«, X Cθ€(L(σk))} X (w2 X COc(L(σ*))} for almost all
boundaries in the shaded region in Figure 7.3. In this way we obtain the
desired localization.

ii, X Q

{Dm+X s l ) . We can argue as in the proof of (Dm+λl) above, and then use
(symm) to reverse the roles of the variables.

(tΓm+i,/) W w e assume trm§5/, then it is clear that Et

m+Ux satisfies the
required estimate (7.9)(a). But £ , m + 1 can be localized to £ . " I + 1 * by the
argument used in the proof of (Dm+, /).

(trm ). In view of what has been established above, the argument can
proceed as in §2.

7.5 The asymptotic expansion. We now derive the complete asymptotic
expansion on a piecewise flat pseudomanifold Xn. Intuitively, it is easy to see
what the general form of this expansion must be. Note that the geometry of Xn

is locally constant on the open simplices σk of Xn, and is completely de-
termined by the links L(σk). Thus any locally computable invariant of Xn must
be of the form

(7-22) l4i(L(o£))A{ai),



SINGULAR RIEMANNIAN SPACES 621

FIG. 7.3

where A(σ£) denotes the fc-dimensional area of σ*, and φ(L(σα*)) is some
(quite possibly global) invariant of L(σ£). Now multiply the metric tensor on
X" by c2, i.e., multiply distances by c. Then the L(σ£~J) remain invariant.
However, for fixed j , the areas A(σ£~J) are multiplied by cn~j. Since multiply-
ing the metric by c2 has the effect of replacing t by t/c2 in the trace of the heat
kernel, the coefficient aj/2 of a term of the form t'n/2+j/2 in the asymptotic
expansion would also exhibit this behavior. Thus the expansion on /-forms
should involve only terms of the form iaj/1t~

n/2+j/2J = 0,1, ,/i. Moreover,
for fixed j we should have

(7-23) ,aj/2 = Σ ^

for some invariant ^ ( L K ^ ) ) . Finally, keeping in mind the form of the
local parametrix in (7.17), it is tempting to assume that i%y2(L(σ^~J)) has the
following description. Let ^{L{o^~j)) denote the constant term in the asymp-
totic expansion of the trace of the heat kernel &{(t) for /-forms on
coΛL(°a ~y)); of course we have yet to show that this expansion exists. For
the case Co Λ(Nm\ jψ(Nm) is computed as a spectral invariant of Nm in
Theorem 4.3. Let %j/2{L{o^)\ ψ(L(σβ

π^)) denote the column vectors
whose entries are ^/2{L{o^)\ , ^ / 2 ( L ( < > ) )

Define the (n + 1) X n matrix Mn by

(7.24) M =

1
1
0
0

.

0
0

0
1
1
0

0
0

0
0
1
1

0
0

0
.

0
1
1
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Let / π + 1 be the identity matrix, and put

(they th column of the Mnk consists of (j' — 1) zeros, followed by (n~k) ones,

ι = 0 n — k, followed by k — j' + 1 zeros). Then from the local product

structure, we might guess that

(7.26) *UL(oΓJ)) L

In fact, (7.26) does give a correct description of the trace locally on regions of

the form %n

a~
J X Co c(L(σα

w~y)). However, it is not correct globally on Xn,

because Xn cannot be covered by a family of such regions whose interiors do

not overlap. One way of dealing with this point is to replace the normal cones

Co c(L(σα

n~y)) by "dual sets" D^ withpiecewise flat boundary (see below for the

description of D^). Then X" can be covered by nonoverlapping regions

%^~7 X Dl. In this way we obtain a formula which looks like (7.26). However,

ψ(L(σα

π~y)) gets replaced by φ(DJ), the constant term in the asymptotic

expansion for the heat kernel &\t) of C(L(on~J)) restricted to DJ

a C (L(σ£~J))

(rather than to COe(L(σ£~J))). Thus this simpler formula is not expressed

directly in terms of spectral invariants of links.

When one calculates the φ(D£) in terms of such invariants, a much more

complicated formula results. However, for the particular combinations of

coefficients which occur in applications to the Euler characteristic and signa-

ture in §§8 and 9, the distinction between Co c(L(σα"~7)) and DJ

a turns to be

unimportant.

We now give the details of the above discussion. Let Lk be a complex with a

metric which is piecewise of constant curvature = 1, and let {η/} denote the

simplices of ZΛ After possible subdivision we can assume that each τl is

isometric to a subset of a hemisphere. Let 1 — 2c2 be small and let the dual set

Z)* + 1 betheset

(7.27)

Then Dk+X has a piecewise flat boundary and its codiml faces Dk can be

regarded as subsets of the normal cone to the ray from p to τα°. If Lk is

homeomorphic to a sphere, Dk+ι is a cell which is "dual" top.

Now let Xn be piecewise flat, and for each σ° choose a small Dn as above.

We proceed inductively to choose dual sets in the normal cones to the

/c-simplices σ*, k — 1, ,w, subject to the following condition. Note that for

each A>simplex ok and each face σk' C σk, there is a unique (n — A:)-dim face
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of Dn~k normal to σk. Regard all these as subsets of a fixed normal cone to
σ\ At each stage choose the dual set Dn~k to σk so small that it is contained in
all such (n — A:)-dim faces of the various Dn~k . Also, set

(7.28) %k = σk\ U ^LkXDk\

Then the sets ^ J X Dk^ and %k

a

2

2 X Dk* corresponding to σα*/, σ
k

2

2 have
disjoint interiors unless σ^1 = σk

2

]. Moreover,

(7.29) Xn = U %* X />""*.

We now let D" be the dual set to σ°, and consider the trace of the heat
kernel &n(ί) of C(L(σ0)) on D". We divide Dn into subsets β^ consisting of all
segments joining σ° to points of the codim 1 face D£~x. Assume for conveni-
ence that the distance from D£~ι to σ0 is 1, and set xa = τα° E L(σ°). Let
7r: D^" 1 -* L(σ°) denote radial projection, and let p(x, xα) be the distance in
L(σ°) from x to xα. Note that if dx is the volume element on L(σ°), and dA is
the volume element onD"" 1 , then

(7.30) dA(π~\x)) = (secp(x, xa))"~X secp(x: xa)dπ*(dx)

Thus if we let the density for tr &n(t) be the column vector/(r, JC, /)> we have

(7.31) X

ί
Jt

= ί T ί /(secp(Λ;, jcα), x, u)u~xdudA
JDZ~X l Jt

= o " ί ί f(secp(x,xa),x,u)dA \u~x du.

Now suppose that for u small,

(7.32) ί /(secp(jc, JCJ, X, «) Λ4 - " Σ 1 V2 w " ( π

^ ί " 1 y = 0
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FIG. 7.4

Then as in §2 the last integral in (7.31) is asymptotic to

Γ- Γ f
LJχ JDn

(7.33)

,xa),x, u)dAu~λdu

ί f{secp(x,

7 = 0

u ι du

*

Now for u small, as in (7.17), &n(u)\D£ ] can be replaced by En'x(u), where
in this case k — 1. We can assume by induction that lτ&n~\u)\D£~x has an
asymptotic expansion of the form

(7.34)

Then (7.32) will hold with

(7.35)

j = 0

α> / 2 =
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We can further assume by induction that

where θβ~λ~j varies over the (n — 1 — y)-simplices of D£~K From the lower
dimensional case of (7.32) and the existence of decompositions such as (7.29) it
follows easily that φ(Dj) is independent of the choices involved for D£, i.e., of
possible subdivision of the link and distance from the vertex. Note that the
(n — y)-simplices θn~J of Dn which contain σ° are just the joins to σ° of the
various θn~x ~J. Also the dual set to θn~J in Dn can be taken as the correspond-
ing dual set for θ"~ι~J CD£~\ Finally

(7.37) A(θ"-J) = (fun-J'-ήA(θ"-J'-1) = ^ - ' • ^

By combining (7.33)-(7.37), we find that

(7.38) / t r 6 ( / ) ~ Σ 'JD» j~o (4τrY

Finally, if we use the decomposition (7.29) and the parametrices (7.17), we
easily get

Theorem 7.2. On the piecewise flat pseudomanifold Xn we have

n t-n/2+j/2

(7.39) tr£"(O~ Σ

We now consider the more complicated expansion for &n(t) on Coι(Ln ι ) .
This will enable us to calculate the constant term in the asymptotic expansion
for Dn in terms of links (some details will be omitted). We also obtain the
analytic continuation of the functions v~2s on the links. It will be convenient to
work with slightly more general dual sets to which the preceding discussion
immediately applies. We choose these as follows. Given x E Ln~\ set

(7.40) %(x9 e) = [q e C0Λ{Ln~x) ΰ~p2 - ^ < 1 - 2c2},

where the bar denotes distance. Choose points Xβ E U τα* and c^ > 0, and set

(7.41) Ύk= U %(xi,*i)\ U 3C(x>,€>).

β y

It is easy to see that x^ e^ can be chosen so that
(i) U ^ Ύ ' i s a neighborhood of Uj<k tβτβ> în Coι(Ln~ι%

(ii) for fixed aj < k, we have 3C(JC£, C^) Π TJ — 0 unlessy = k,a = β.
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(iii) 3C(x*, c*) ί l τ / > 0 ίorj > k implies τα* is a face of T .̂ Put

For w E Ŵ *, set w, /? = s(w). Then the components Z* of Ύ* are of the form
(7.42)

where the metric is induced from the product metric on Wk X Co \(L(τk ])).
If we set

(Ί 41) Dn = C (ln~x\\\ \ Ύk

then Dn is a dual set of essentially the type we have previously considered, and

(7.44) ί trSw(O= ί trSπ(O+ Σ ί tr&n(t).
JCQΛ{Ln-λ) JDn k,a za

We now calculate the asymptotic expansion of the integrals in (7.44)
corresponding to the Zk. To simplify notation we drop the subscript α. Set

(7.45) Ak(s) = Area({w G Wk\s{w) = *}),

(7.46) lk — min s(w);
w<ΞWk

we will just write / for lk. On Z^ we have the parametrix

(7.47) iτEnx(t)= λ

Set

(7.48) f tτ&"
JC0,J.L(τ£-χ))

where F"~k(c, t) is a column vector. If we put F"~k(l, t) = F"~k(t), then

(7.49) F"-k(c, t) = F"-k(t/c2).

Then using (7.42), (7.49), we have

(7.50) /
(4vrOA

Set
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Then (7.50) becomes

Assume now that
00

(7.53) F"-k(y) ~ 2 <*jyλj>
j=0

where λy < λj+,; this assumption will have to be generalized later. Also let

be the Taylor expansion, and set

Then the integral in (7.52) can be written as

For the first term in (7.56) we can use (7.54) (7.55) to get

(7.57) 2 V γ + 2

If we choose JV' < λN — 3, for the second term in (7.56) we have

/ '(7.58) 2 V γ + 2 / '
γ=0 Λ(l-/
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The third term in (7.56) can be rewritten as

Σ vγ+2/' Λ "-^τ+2) 2 «/ ;*
γsS/V" Vθ-/2) j<N

r\ I t\i t
( 7 5 9 ) + h/(^)n'n-kΆN"\y)\y

where we choose N" > λN. The first term in (7.59) equals

Σ V γ + 2 Σ
y^N" λj-y-\=£O

(7.60) ^

J"*n,n-kaj

γ - 1 \.-y-l\i-i

byt
y+2 Σ ^n_kajlog(—^

λ,—γ-l=0 V [ ~

For the second term in (7.59) we set

(7.61) l=u,

to get

Ί -(7.62) Γ
J0

The expressions in (7.58), (7.59), (7.60), (7.62) provide the required asymptotic
expansion of (7.50); however, this was derived under the assumption that
Fn~k(y) has an expansion of the form (7.53). This holds if k — n — 2, and in
particular if n — 3. For the latter case however positive powers of t arise in
(7.60). Thus if n = 4, k = 2, then the second line in (7.60) can give rise to
logarithmic terms in the expansion for F4. So for the case n — k = 4, (7.53)
will no longer hold. The general assumption which replaces (7.53) is

(7.63) Fn~k(y)~ Σ Σ^y^og1'^-

Then corresponding to (7.60) we have

γ + 2

(7.64) J Γ ^ | > ( y ) Ύ ^n,n-kΣ J^Λo^ydy.

If - ( γ + 2) + λy =7*= - 1 , integration by parts gives a sum of terms of the form

(7.65) /λ>+ 1log^/, jβ = O, ,/.
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If -(γ + 2) + λj = - 1 , we also get a term

(7.66) log'+ 1/.

Thus the expansion in dimension n > 4 can involve logarithmic terms at most
of the form ίfl logw~3ί.

By using

(7.67) f tr &n(t) dx = \ Γ f tr S"(l, x, u)u~x dx du,

we see that an asymptotic expansion of essentially the same form holds for

(7.68) [
Ln-

l9 x9u)dx.

Now consider the function ψ(KO, s) on Ln \ where we mean the trace
integrated over Ln~\ The estimates of subsection 7.4, together with standard
arguments, show that this function is analytic in the half plane Re s > {{n — 1).
Using the arguments of §4 and the asymptotic expansion just established we
can now get

Theorem 7.3. The functions ψ(KO, s) have analytic continuations to mero-
morphic functions in C. The possible poles are points y/2, where j = n9 (n — 1),
(n — 2), they are simple for n < 3 and have order at most n — 3 for n > 3.

Proof. The arguments of §4 and the asymptotic expansion just established
show that the expression show that the expression in (4.4) has such an analytic
continuation, where the possible logarithmic terms give rise to the higher order
poles. Let Re s > a be a maximal half plane in which ψ(*>, s) is meromorphic.
The terms involving ψ(^(/ — 1), s + 1) are then meromorphic in Re s > a — 1.
The finitely many harmonic terms are meromorphic in C. The remaining terms
can be written as

(7.69) <ΰtH%n_J(p9s)9

where ψ(*>, s) is the column vector whose /th entry is v{i, s), i — 0, ,« — 2.
Since the total expression in (4.4) is meromorphic in C; the expression in (7.69)
is meromorphic in Re s > a — 1. Multiplying (7.69) by the matrix

(7.70)

1
-2

3

0
1

-2

0
0
1

0

±n

gives back ψ(p, s). Thus ψ(p, s) is meromorphic in Re s > a — 1, which implies
a — -oo.
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By using (4.25), an argument like that of Theorem 4.4 now shows that the
functions v~2s are also meromorphic in C with poles at j /2 , where j = n — 1, n
— 2, . Again the poles are of order at most n — 3. Using the techniques of
§4, the terms in (7.58)-(7.62) can be expressed as spectral invariants of the
links L(τ£). Applying (7.42) we can now calculate the asymptotic expansion of

(7.71) / trS"(O,
JDn

and in particular, the constant term in that expansion, in terms of spectral
invariants of links.

By letting the number of faces increase to infinity we can choose a sequence
of dual sets D", such that D" -> Coι(Ln~x). The corresponding term in (7.42)
then gives a contribution

n t-n/2+j/2

(7.72) 2 ' ,(n-j)/2l^n,M^)-A(C0J(rrJ-1))
j=\ (47Γ) α

as in (7.38). The volume of a region Uα Z* e goes to zero as the region shrinks
to the (k — l)-skeleton of Ln~\ The contribution to the asymptotic expansion
corresponding to U α Z * c for fixed k will blow up in general. However, these
blow ups must cancel when we Sum over k, since the expression in (7.72)
remains finite. Using our previous computations we can extract a "finite part"
for each fixed k, which can be thought of as the correction term to (7.72)
associated to the (k — l)-skeleton of Ln~\ Although we will omit further
details, we make the following observation which will be needed in §8.

Remark 7.1.. The correction terms associated to the (k — l)-skeleton of
Ln~x can effect only terms of order > t-n/2+k/i+\-t j n ^ e e x p a n s i o n # j o s e e

this, note that as in (7.50) we have

Replace Fn~k(t/(\ — s2)) in (7.73) by its asymptotic expansion up to terms
which are O((t/(\ - s2))ι~€) plus an error which is o((ί/(\ - s2))1"*). Since
the resulting integrals with respect to s converge, and Vol(Uz£c) -» 0, our
claim easily follows.

8. The Chern-Gauss-Bonnet formula
for pseudomanif olds

In this section we give a concrete application of the results of §7 by showing
how they lead to an explicit formula for the Euler characteristic of a piecewise
flat pseudomanifold. The formula is entirely in terms of interior dihedral angles
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of simplices. Naturally the derivation which is based on the heat equation
method leads directly to a formula for the L2-Euler characteristic χ ( 2 )(X n). But
from this we can easily derive the corresponding formula for the ordinary
Euler characteristic χ( X").

Remark 1. Although for convenience we have only considered pseudo-
manifolds, it is possible to modify our whole discussion so that it holds for
arbitrary simplicial complexes with piecewise flat metric. In particular, the
formula to be derived in this section holds in that generality; compare also
(8.24)-(8.26).

Remark 2. There is an almost obvious formula,

(8.1) X(X") = Σ Σ (-l)*extα(σ*),
σ° σ*Cσ°

where extα(σ*) is the exterior angle of σk at its vertex σ ;̂ see [4] for further
discussion. However, insofar as we are aware, our formula (8.18), (8.19) in
terms of interior angles is new. As one might expect, in fact, it is possible to
obtain our formula from (8.1) by "elementary" arguments. But it was only
much later that we realized how to do this. We refer to [14] for details.

Remark 3. The underlying philosophy of this section and the next is that in
order to generalize curvature invariants of smooth spaces to piecewise smooth
spaces, it suffices to express these invariants as spectral invariants of links.
More generally it suffices to find some analytic or geometric interpretation of
the particular curvature invariant under consideration, which makes sense for
piecewise smooth spaces.

Remark 4. Spectral invariants of links may themselves be local on the
links, as is the case for the Lipschitz-Killing curvatures; see (8.27) and [13],
[14]. However, for the Pontrjagin classes of §9 the relevant η-invariants are not
local on the links. For essentially this reason, the problem of generalizing
curvature invariants to piecewise smooth spaces is more subtle than one might
initially suppose.

We now derive the formula for χ(2)(Xn) where Xn is piecewise flat. By a
standard argument [38], together with the results of §7, we have

(8.2) χ(2)(X") = 2 (- l )X / 2 = 2 2 (-1)', Φ(J>/?).
1 = 0 β 1 = 0

Now fix Dβ = Dn which we choose so as to satisfy the conditions preceding
(7.42). On any region Z* C C(L(σ°))\Dn, we can use the parametrix En>x(t)
of (7.50). Then (7.50) and the relation

(8.3) " Σ V »
7=0
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imply that all coefficients in the asymptotic expansion of

(8.4) Σ ( - l ) ' t r £/"*(')

vanish identically. Hence the right-hand side of (8.2) can be replaced by

(8.5) Σ Σ (-O'lΨίΦ*0)),
k 1 = 0

where f ψ(L(σ°)) is as in (7.26). By taking the alternating sum of the expression
in (4.4) for L(σ°), we see in the same way

(8.6) χ(2)(C0,,(L(σ°))) - \χm{L{(o*))) + Σ V I Γ V W ) , S + 1)
z = 0

is a holomoφhic function; compare §5. If we introduce the notation

(8.7) χf2)(σ*) = χ ( 2 )(Q.,(L(σ*))) - hm{L(ok)),

in the same way we see that

(8.8) 2 (-lYM*0) = Xέ)(σ°) + 4 Res ̂ (- l)V(KO, s + 1)
/ = 0 s~° i = 0

is the value of this function at zero.
We will need an expression analogous to (8.8) in other dimensions. For this

purpose, let σ1' be a face of σ7, and introduce the notation

(8.9) [σ'V],

for the normalized dihedral angle of a1 at σι. Thus [σι\σι]is the volume on the
(/ — /'— l)-sphere, of the unit vectors at a point of σ1' pointing into σ7, subject
to the normalization that the volume of Sι~r~λ is 1.

Let 91tπ k be as in (7.25), and let Kn+λ be the «X(/ i + 2) matrix in (7.70)
with two columns of zeros added at the right. Then it is easily checked that for

(8.10) Kn_2j Kn

where

Now consider the coefficient of rn/2+j for

(8.12) f trS(O

''Co.KLίσ0))

Multiply (8.12) on the left by

(8-13) Kn_2(J_]) Kn_2 - Kn,
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take the alternating sum of the entries of the resulting column vector, and
consider the coefficients of rn/2+j. If we use the parametrix En-X(t), it is clear
from (8.3) that the terms in (7.44) corresponding to Zf, for β > 2j do not
contribute. However, in view of Remark 7.1 at the end of §7, the terms
corresponding to Zf, β < 2y, make an arbitrarily small contribution, provided
the volumes of these regions are chosen arbitrarily small. Thus by passing to
the limit De

n -> Co {(L(σ°))9 we find as in (7.39) that the expression just
calculated is just equal to

(8.14)
1

(4π)J

where V(SfJ~ι) = 2πJ/T(j).
Let ( ) denote the operation which replaces a vector with n — 1 components

by a vector with n + \ components defined by

0

0

Then

(o-lj) Kn-2(j-\) K n \ V ) - \Kn-2j Kn J^n,n-2V / '

If we drop the harmonic terms in (4.4), which does not effect the operation
Res, the remaining expression can be written as

(8.16) 91tπ Π-2Ψ(^» s) + 4s(\f(v,s + 1)).

Multiply this expression on the left by Kn_2(J_l) Kn/(n — 2j). Then take
the alternating sum of the elements in each column and take Res5=/. The
resulting expression is also equal to (8.14). Thus multiplying through by

4yr(y)
2

(8.17)

where the symbol Σ(-l) on the right-hand side indicates taking the alternating
sum of the elements of a column vector. Now add (8.17) for; = 1, -\n/2\.
Since 4^T(y) 4 j = 4J+] T(j + 1), in view of (8.15) all terms on the
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right-hand side cancel, save for

(8.18) 4ResΣ(-l) / ψ (",*).

This is just the second term appearing on the right-hand side of (8.8). Thus by

(8.8),

(8.19) Σ ( - I ) Ί Ψ ( * ° ) = XC<>( 0 ) - Σ IO

The argument can now be iterated. Introduce the notation

(8.20) Δ(σ2>) Σ

where 2k is the largest even integer < Λ, and 2j<2k. Thus Δ(σ2y) is a
"defect" which will vanish if X" is flat at σ2j. Then we get

Theorem 8.1 (Chern-Gauss-Bonnet). Let 2k be as above. Then

(8.21) + 2 (-1) V , σ2'«][σ2\ σ2'*] • • [ σ 2 K σ2%f2)(σ2';),f 2 ) (
σ°C 2/>

2/7 < 2A:

(8.22) = 2 (-l)7'[σ°, ^2 / l] * * [σ2 7^1, σ2/>]Δ(σ2/>), 2/,- < 2fc.
σ°C Cσ2tJ

Note that if Xn is a piecewise linear manifold, we can replace χ ( 2 ) by χ and
just write χ-1 for χ^ }. If « is odd, then the invariants χ±(σ2k) are all zero at
interior points. If n is even, then χ± (σ2k) — 1 at interior points. In either case,
χ-^σ2*) is equal to { if σ2k is contained in the boundary, unless 2k — «,
(χ- L (σ Λ )=l ) ; see (8.26).

Example 8.1. Consider the case of a 3-dimensional cube. At each vertex we
get a contribution of \ from the vertex itself, and a contribution of \ X \ for
each of the 3 faces of dimension 2 which contain the vertex. Thus

(8.23) χ(3-cube) = χ(3-cube) = 2 ; I - 3 ( | x ^ ) = 8 x | = l .

If X is a /c-simplex σ*, we obtain from (8.21),

(8.24) 1 = Σ (-OV.^'Ί Iσ^-.σ^lx-1^),
σ ° C ••• C σ 2 / / C σ *
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where χ± (σ2/>) is equal to \ unless o2lJ = σ*, in which case χ± = 1. If Xn is a

piecewise flat simplicial complex, by applying (8.24) to each σk we easily get

X(*")= Σ (- l )V\» 2 / ' ] [°2/>-,σ2'-<]

(8.25) ° c c 1/;
Σ (-

But clearly,

(8.26)

This yields for the ordinary Euler characteristic χ(Xn), the formula which

corresponds to the expression (8.21) for χ ( 2 ) ( X n ) .

We now consider the Lipschitz-Killing curvatures. Recall that Rx is just the

scalar curvature up to normalization (the curvatures which are denoted here by

Rj/1 are denoted by RJ in [14]). From the formula (5.15) it follows that Rj is

multiplied by

W\n ~ Ij)

if we take the metric product of Xn with a flat space Yp. Since the Λ7 should be

locally computable, it is then reasonable to set

(m-2j)\ y y (-\Y\nm~2J σ 2 / Ί ί α 2 / ' - α 2 / Ί
(4flΓ) σm-lJa

(8.27)

in the piecewise flat case. For the case of scalar curvature, this coincides with

the proposal of Regge [47]. Moreover, it plays the expected role in the

piecewise flat version of Chern's kinematic formula; see [14]. Finally, note that

definition (8.27) has the correct scaling property when the metric is multiplied

by a constant.

We can now see that the relations (5.18), (5.20) continue to hold in the

piecewise flat case; as in §5 we will only treat the case n odd, since the case n

even, then follows easily by taking products with a circle.

Theorem 8.2. Let X" be a piecewise flat pseudomanifold. Then relations

(5.18), (5.20) hold.
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Proof. If we use the formulas

(8.28) 2 ( - ! ) ' ( 2 n )(« - i + ' ) 2 n = (-l)J(2n)l9 I = 0, ± 1 ,
ι = 0 V l '

, x 2(-i)'
(8.29) f, '

/ = 0 , ± 1 , • • • ; * = 1 , • • • , « ,

the claim follows immediately from Theorem 7.2 and the proof of Theorem
8.1.

In view of Theorem 8.2 it is natural to conjecture that if we consider a
suitable sequence of piecewise flat approximations X? converging to a smooth
riemannian space Xn

9 then the expression (8.27) should converge to the
corresponding Rj for Xn. Indeed, those physicists who have discussed Regge
calculus seem to have accepted this statement for Rx without proof. The
assertion is correct, but not obvious; see [13], [14]. In this connection, note that
for piecewise flat manifolds the form of the asymptotic expansion (of Theorem
7.2) is quite different from that in the smooth case; it contains extra negative
half powers of ί, and no positive powers. Thus the corresponding approxima-
tion property for arbitrary combinations of coefficients in the asymptotic
expansion cannot hold.

9. The η-invariant and combinatorial formulas

for Pontrjagin classes

In this section we discuss the generalization to pseudomanifolds of the
results of §6 concerning the η-invariant and signature. As a consequence we
obtain a canonical (if not readily computable) local formula for the L-classes
of piecewise linear manifolds, and more generally a local definition of these
classes for pseudomanifolds.

As we indicated in §6, nontrivial ideal boundary conditions play a signifi-
cant role in the discussion of the signature, and it is also important to consider
coefficients in a vector bundle. We can then make a connection with Morgan's
unpublished work on the geometric realization of A'-homology; in conversa-
tions with Morgan (in 1977) it became apparent that our *-invariant boundary
conditions were the metric version of his choice of selfannihilating subspaces
for the intersection pairing on links.

In the present work, the L-classes, which are ordinary homology classes, are
defined in terms of η-variants of links. We take the point of view (natural in
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our context) that the statements that the chains representing these classes are
cycles and that corresponding homology classes are independent of piecewise
linear structure, are formal consequences of the fact that the derivative of the
rj-invariant under change of metric is locally computable at the vertices of the
link.

Of course, there are various discussions of the existence of local formulas for
Pontrjagin classes of piecewise linear manifolds in the literature (see e.g., [22],
[35], [45]) as well as an explicit formula for/?,(*), due to Gabrielov, Gelfand
and Losik [23], [24], [37], [51]. The relation between these papers and the
present work has yet to be clarified. Also Goresky and MacPherson [29] have
independently defined L-classes (equivalent to those discussed here) for pseu-
domanifolds admitting a stratification by strata of even codimension. How-
ever, their definiton (which generalizes Thorn's for the case of piecewise linear
manifolds; see [39]) is not local, and in particular they do not show that the
signature is multiplicative under coverings; perhaps the existence of a local
formula in their context can also be proved by extending the arguments of [35].

A natural consequence of our methods is a generalization of the η-invariant
formula of Atiyah-Patodi-Singer [2] to piecewise flat pseudomanifolds with
boundary. We can also define piecewise linear invariant analogs pE(Y), ox(Ϋ)
of the invariants ρE(Y\ ox{Ϋ) defined in [2] for the smooth case. If Y is
smooth, it is clear that σ^Ϋ) — σ^Ϋ). We conjecture that if 7 is smooth, then
ρE(Y) = pE(Y) which would imply the piecewise linear invariance of pE{Y).
The latter follows from [2], provided there exists a finite cover for which the
pullback of Ek is globally flat. It seems to be unknown in general.

Finally, we discuss briefly the extra step (not carried out here) which when
combined with the methods of [14] would show that in the limit under
subdivision (in the sense described in §8), our formulas for (the duals of) the
L-classes go over into the Pontrjagin forms in the smooth case. This is a special
case of the corresponding conjecture for η-invariants with coefficients in a flat
bundle Ek. The latter would imply that pE(Y) — pE(Y) in general.

We now begin with the case of a closed oriented piecewise flat pseudomani-
fold X41 with negligible boundary and trivial coefficients. As in §6 we can
consider tr(*e~Δ2/') This operator is trace class, as follows from the results of
§7 and the fact that * is a bounded operator. By the standard argument,

(9.1) sig(X4/) - tr(*e-Aiι') = lim tr(*<ΓΔ2'').

We can localize the trace in a preliminary fashion by using dual cells as in
Theorem 7.2. We observe

Lemma 9.1. The only nontriυial term in the asymptotic expansion ofix(*e~^2lt)
is the constant term.
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Proof. On sets ^ X Z)α"~' as in (7.28), a local parametrix for *e~*2lt

vanishes identically. This follows because such sets admit local orientation

reversing isometries; the βlla are flat.

Note that the possibility of localizing the asymptotic expansion of tr(*e~Allt)

already yields

Theorem 9.2. s i g ^ 4 ' ) is multiplicative under coverings.

Since tr(*<ΓΔ2/') = 0{tN) for all iV on \ X Z)α, we can pass from a dual

cell Dn to Co c (L(σ 0 )) with changing the asymptotic expansion. In this way as

in (6.10) we find that on L(σ°) the function

(9.2) T(s).J(s)=f o f Σ y

converges for Res > (4/ — l)/2, and continues analytically to a holomoφhic

function in C, whose value at zero is equal to the constant term in the

asymptotic expansion for tr(*e~Δ 2 /') on Dn. By arguing as at the end of §7 we

find that the function

(9.3) η(s)=f 0 ^

for s > (4/ — l)/2 also continues to a holomoφhic function in C, and we

obtain the following explicit local formula for the signature.

Theorem 9.3. Let X41 be a closed oriented admissible riemannian pseudo-

manifold with piecewiseflat metric. Then

(9.4) sig(X4/) = Στ?(L(σ0)).

Theorem 9.4. Formula (9.4) gives rise to a canonical local combinatorial

formula for triangulated pseudomanifolds and in particular for piecewise linear

manifolds by choosing the metric for which all edge lengths are equal to 1.

Remark 9.1. The above formula is combinatorial in the sense that it is

invariant under (orientation preserving) combinatorial symmetries. Unfor-

tunately, the invariants η(0) for L(σ°) are not readily computable and may

well be irrational numbers in many cases (approximate computer calculations

seem possible in principle).

Remark 9.2. Actually, we can obtain a 1-parameter family of "canonical"

formulas by considering metrics of arbitrary constant curvature on X, rather

than restricting attention to piecewise flat metrics; compare the proof of

Theorem 9.5.
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The formula of Theorem 9.3 can be promoted to a local definition for
L-classes as follows. Let Xn be a closed oriented pseudomanifold with piece-
wise flat metric. For each k, define an n — 4k chain cn_4k(Xn) by

(9.5) cn_4k(X")= Σ η(L(σ"-4*))σ«-4*,
σn-4k

where the orientations L(σ"~4k) of σn~4k are compatible with the orientation
of*4".

Theorem 9.5. The chains cn_4k are cycles whose homology class Ln_Ak

depends only on the piecewise linear structure.

Proof. At this point we will only give the formal argument, assuming
the result that the derivative of the η-invariant under change of metric
on L(σn~4k) is supported at the vertices of σ"~4k. We will then derive the
explicit formula for the derivative in detail.

In order to show that cn_4k is a cycle we compute its boundary. For a fixed
(n — 4k — l)-simplex on~4k~λ we get the contribution

(9.6) Σ v(L(σ-4k)).

We claim that the sum in (9.5) is equal to

(9.7) s i g ^ α " - 4 * - 1 ) ) .

Since we are still assuming negligible boundary, we have

(9.8) s i g ( L ( σ M - 4 ^ 1 ) ) = 0 ;

this will be generalized below.
The equality of (9.6) and (9.7) would just be the content of Theorem 9.3 if

the metric on L(on~4k~x) were flat. After subdividing the link sufficiently
finely, we can assume that for each 4/c-simplex of L(σn~4k~]) there exists a
unique simplex τ4k (up to isometry) in the space of constant curvature t>,
0 ^ v < 1, with the same edge lengths as τ4k — τ4k. Now each 1-simplex of
L{on~4k~λ) contains a pair of O-simplices in its boundary. The derivative of
the sum of the η-invariants of the O-simplices for the metrics gv on L(σ"~4k~ι)
corresponding to τv contributes once to each 1-simplex of L{on~4k~λ) for each
point in its boundary, but with opposite orientations. Thus the sum of the
η-invariants remains constant throughout the deformation, and for v = 1 we
are reduced to Theorem 9.3; the derivative formula applies since η(0) is
independent of the scaling factor v.

We now observe that the homology class

(9.9) k_4*I = £Λ-4*
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depends only on the piecewise linear structure. By definition any two piecewise
flat metrics on Xn giving rise to the same piecewise linear structure have
subdivisions which are piecewise linearly isomorphic. Since the η-invariant of
the standard (4k — l)-sphere vanishes, our formula is invariant under combi-
natorial subdivision, (keeping the underlying metric fixed). Clearly any two
piecewise flat metrics g0, gλ on Xn with the same underlying combinatorial
triangulation can be connected by a 1-parameter family of piecewise flat
metrics gv. Write

(9.10) cn_4kΛ-cn-4kfi
n-4k

where the dot denotes differentiation with respect to v. Each term ή(L(σn 4k))
is a sum of contributions at each of the vertices τ° of L(on~4k), which depend
only on the metric and variation induced on L(τ°), the link of τ° in L(σ"~4k).
The vertices of L(σn~4k) correspond to the σ

n~4k+x containing on~4k, and
L(σ"-4k+ι) in Xn is isometric to L(τ°) in L(σ"-4k). Let ev(L(σn-4k+x)) be
the contribution to ή(L(σn'4k)) for some fixed σn~4k C σn~4k+ι. Then it is
easy to see that the orientations are such that in fact

(9.11) cn-4kΛ-cH-4ks> = d Σ fev(σ"-4k+ι)dυ.o«-4k+K

Before proceeding to derive the explicit formula for ev in (9.11), we wish to
generalize the above discussion to allow for coefficients in a nontrivial rieman-
nian vector bundle. In order to avoid the necessity of further generalizing our
analytic arguments, we restrict attention to connections which are partially flat
in the sense which we now describe. Given a vector bundle Fm over Xn, we
begin by choosing a decomposition of Xn as described after (7.27). Choose an
orthonormal basis for the fibre over each σ°, and extend it to Dn by using
radial projection. Next extend the induced trivial connection onFm\(\JDn) Π
(Uσ 1 ) to a smooth connection over Uσ1. Then extend to the βh] X Dn~x by
using radial projection normal to the σ1 onto the βliι. Since the various
projections are compatible, by proceeding inductively in this fashion we
construct a "partially flat connection" θ on Fm over X". If Xn is embedded in
some R ,̂ it is easy to extend θ to a smooth connection on a smooth regular
neighborhood of Xn by a similar construction. Thus it follows that the cochain
which assigns to each σ2', the integral of the corresponding characteristic form
over it, represents the /th Chern class of Em.

Now consider the Laplacian on forms with coefficients in Fm relative to the
connection θ. By the construction of 0, it follows that on each ί/α* X D£~ι we
have a parametrix for the heat kernel Ex = Ej) X &"~ι. Thus by using the
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standard results on the heat equation in the smooth case (see [27]) we get
Theorem 9.6. // X41, Fm are as above, then the signature ήgFθ(X41) is

defined and is given by

(9.12)

Also note that we can extend the above discussion to the case of *-invariant
boundary conditions as in §6. Consider first a closed pseudomanifold X3 of
dimension 3. The links of vertices in X3 are pseudomanifolds of dimension 2.
Since each L(σ°) has signature 0, we can locally choose *-invariant boundary
conditions. In the case of general Xn one can continue the above construction
by induction (starting with the links of codim-3 simplices), provided that the
ZΛsignature of the links of the σ

n~4k~ι are zero at each stage. In this way we
arrive at a general class of pseudomanifolds for which the signature with
coefficients in Fm is defined and is given by Theorem 9.6.

The class of pseudomanifolds so defined was considered independently by
Morgan [40] who showed that the bordism theory determined by using these
spaces as cycles is a geometric representation for A'-homology away from the
prime 2. However, in this work, the pairing between a cycle and a vector
bundle was not given explicitly. The result of Theorem 9.6 shows that this
pairing arises naturally. Moreover, suppose that dY4l+] = X41 where Y4l+\
X41 are pseudomanifolds of the above type. Choose a piecewise flat metric on
7 4 / + 1 which is a product near X41. If cx(Y4l+ι) is defined as above, but using
only those 1-simplices which are interior to Y4l+\ then as in the proof of
Theorem 9.5, we see that 3c,(74 / + ι) = co(X41). This immediately implies

Theorem 9.7 (Cobordism invariance). If dY4l+ι = X41, and F extends over
Y4I+\ then sigFθ(X4l) = 0.

The previous discussion of rj-invariants and the proofs which follow gener-
alize immediately to the case of coefficients in a flat orthogonal or unitary
bundle Fk. Correspondingly, there is a generalization of the notion of partially
flat connection in which the connection is only assumed to be locally flat over
the normal cones; the corresponding bundles are not defined over the whole
space in general.

We now derive the formula for the derivative of the η-invariant under
change of metric for spaces of piecewise constant curvature, the form of which
was required in Theorem 9.5. For simplicity we will treat only the case of a
pseudomanifold L4k~x with negligible boundary. The general case of •-in-
variant ideal boundary conditions is similar but technically slightly more
complicated.

Consider a pseudomanifold Xn with a fixed triangulation. We can specify a
one-parameter family of piecewise flat spaces X£ with metric gυ and a fixed
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underlying combinatorial structure by picking smooth positive functions-

{lζ(V)} for the edge lengths of the 1-simplices {σ }̂ (provided the la(v) satisfy

all relevant triangle inequalities; see [14]). If / : X{j -» X" is induced by the

identity map on X", then I*(gv) is a one-parameter family of piecewise flat

metrics on X£. However this parameterization is not convenient, because it

does not respect the local product structures ^ X C(L(σ')). Our first goal is

the observation that there does exist a smooth family of maps/^: Xo -> Xv such

that the family f*(gυ) preserves the local product structures and radial

coordinates in C(L(σj)). By considering the points at small distance from

vertex of Xn (and rescaling) we obtain a corresponding reparameterization for

variations L"~] of piecewise constant curvature = 1 metrics.

Lemma 9.8. There exists fv: XQ -» X" such that f is continuous in x and υ,

and the restriction of fυ(x) to each open i-simplex ol

aQ is smooth in x, and v.

fv : °α,o "^ σα υ / 5 a diffeomorphism. Moreover, there exists c, > 0 and maps

8a,v ' °α,0 ~* σα,ϋ>

such that if x EL σ̂  O, then on some neighborhood

(9.13) ^ , o X Q τ ( l « » ) ) , /β = gi.oXAά.o

Finally, hι

av preserves the radial coordinate.

Proof. Pick a sufficiently small sequence 0 < c M _ j < ••• < c 0 a n d con-
t radictable o p e n sets %ι

a v C σj Ό such that the sets

(9.14) X. = K.X <*

cover X", and for i < k,

(9.15) X,rιχΌ=09

unless σj v is a face of θβv. Define fυ on {σ^0} by

(9-16) U<o) = <v-

Assume by induction that fυ has been extended to the closed y-skeleton such

that the conditions of the lemma are satisfied on the sets Ύ^o Π σ£0, (σj C σ^)

with c = c, for x E %^ 0 . We claim that /o can be extended to the (j + 1)-

skeleton so that the induction hypothesis continues to hold. This is proved by

descending induction starting with {ΎjQ Π σ^J ]} a n d working downward to

{%°o n σ/o *}• F o r {%y!o n σ/o l}> t h e definition is forced by the condition
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F I G . 9.1

that hJ

a v preserves radial coordinates. Suppose^ has been extended to {%f

0 Π

σ^Q1} such that the induction hypothesis holds. Then it is easy to see that it

also holds on

{Ύι Π σ i + 1 | (Ί ( T Π α / o 1 ) , f o r / < / .

This is a direct consequence of the following obvious fact. Let R1 C R 2 C R 3

and let p3 £ R 2. Let ph E R 2 be the point closed to p3. Assume p2 ^ R1 and

let pλ E R1 be closest to p2. Then px is the point in R1 closest to /?3, and

W^Q is the projection, the^ T h u s i f T ^ o 1 : ^Λ» P\ ~ Pi> Pi
extension of fυ to

is determined by the condition that fv preserves fibres and radial coordinates.

Clearly we can pick an extension to all of {X^ 1 } so that this continues to

hold. After completing the second induction, we pick any continuous extension

which is smooth in x, υ and such that/u(x) is a diffeomorphism on that part of

{^ ,o l ) o n which it is yet to be defined. This completes the first induction.

From now on we will assume that variations are parametrized as in Lemma

9.8, and simply write gυ for f*v(gv). Let *Ό denote the * operator correspond-

ing to gv and in general let a dot denote differentiation with respect to v. A

basic consequence of the above construction, which is clear by inspection (and

induction), is

Corollary 9.9. For a variation X" or L"" 1 with gv as above, the operator * is

uniformly bounded inpointwise norm. In particular * : Λ' Π L2 -* An~ι Π L2 is a

bounded operator.

The proof of Theorem 9.5 now follows easily from the following three

propositions. Objects on LA

υ

k~λ will be denoted by a tilda.

Proposition 9.10.

(9.17) tr
,-γ/Ar
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Proposition 9.11. As t -> 0, for all N

,-V/A,
(9.18) tr -*de b0 + O(tN).

Proposition 9.12. As t -* 0,

(9.19)

_, is locally computable at the vertices of L4k ι.
Completion of the proof of Theorem 9.5.
For s > 0, by Proposition 9.11 we have

1
*de- ί/ί

(9.20)

tr
yΔ

Ω

Thus τ](0), the analytic continuation of η(s) to ,s = 0 is given by

(9.21)

Then by Propositions 9.10, 9.11,

(9.22) lim-

lim

I- 1

*d-

, \
- vAj t

IK 1

Ik

- tr

dv =

0

- (
c_x vdv.

It remains to establish Propositions 9.10-9.12. Propositions 9.11 and 9.12
are proved by "the method of descent." At the core of this method is the
metric identity R X C(X) = C(S(X)) where S(X% the suspension of X, is the
space (0, TΓ) X X with metric dθ2 + sin2 0g. The proof of Proposition 9.10
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follows from two lemmas which are quite general. Before proving these, we
give as motivation a formal argument based on "first order perturbation
theory".

Let φ be an eigenform of * d with ||φ|| = 1. If

(9.23) | φ = *</φ,

then

(9.24) ξφ + ξφ= *dφ + *dφ.

Taking inner products with φ and using

(9.25) (*dφ9φ)=(φ9l

we get

(9.26) ξ = (*c

Also, if Δφ = μφ, μ = £2, then

(9.27) μ =

Thus

(9.28)

(9.29) I

sl ds 'kds.

Integrating by parts and using (9.26), we obtain

(9.30) -te-fi'k = -te-&'(idφ,φ),

which implies

(9.31) tr

In order to make the above argument rigorous, we begin with a formula for
the variation of the Green's operator on /-forms of L4k~]. The essential
components of the Green's operator which change with v are the projection
operators on the spaces of closed and exact forms. We will write these as 9 and
P respectively, with the dependence on υ understood. For operators corre-
sponding to v = 0, we will add the subscript 0. We have

(9.32) 9 = P + H,
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where H denotes orthogonal projection on the space of coclosed forms. Write

(9.33) (Φ,Ψ>O

where A (= Av) is a smooth family of bounded selfadjoint operators on
A1" Π L2. Let

(9.34) Ao = α,

where α is a bounded operator by Corollary 9.9.
Lemma 9.13. Lei gυ be a l-parameter family of metrics on a ήemannian

manifold such that the operators d^\ 8Q1 are bounded on i-forms and such that
*ol*v is a smooth family of bounded operators. Then the Green's operators Gv

form a smooth family of bounded operators, and atv = 0,

(9.35) G = Ga(I - P) - PaG + δ" 1^" 1 - d^aδ'1

-Had-ιδ~ι -d-λ8~λaH,

(9.36) H = Ha- Ha<3> - PaH.

Proof. It is easy to see that

(9.37) 9 = (%A%YlA, P = (PoAPoy
lA,

where the notation means that (%A%)'\ (P0AP0)~ι vanish on the coexact
(respectively coclosed) forms for g0, and

(9.38) (%A%Y\%A%) - %, (P0APoy\P0AP0) = Po.

In fact, for the metric gυ the coexact and coclosed spaces are obtained by
applying A~λ to the corresponding spaces for g0. Thus the operators in (9.37)
clearly vanish on these spaces, Also, if φ is say closed, then

(9.39) = (%A%y]%A%φ = %φ = φ,

where the second equality follows since (%A%)~1 \ ker % = 0.
We have

(9.40) ((%A%)-')'= -%<*%, ((PQAP0)-1)' = -PoaPo.

Thus by (9.37),

(9.41) 3> = V - V % > P = Poa - PoaPo.

Since H = ty - P, (9.36) follows easily from (9.41).
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As usual let d~x denote the operator which assigns the unique coexact form
β to an exact form p such that dβ = p. Then

(9.42) d-χ = (I-9)dϊιP,

(9.43) (rf-1)' = - (%a - %a%W + d'o\Poa - PoaPo)9

= dola - %ad? ~ dΰιaP0,

where we have used %d^λ — 0, d^P^ — d$ι. To derive the corresponding
formula for (8Q])', note that
(9.44) δ-χ = (d-χ)*v = A-\d-*)*0A,

where *o, *0 denote adjoints with respect to gv, g0. Thus

(δ- y
(9.45)

By combining (9.43), (9.45), we can derive the formula for the variation of the
Green's operator. We have

(9.46) G = δ-χd~ι +d~ιδ-\

G = (e-')-rfo + W 1 ) " + (rfo1)'^1 - rfίW)"

(9.47) = [δo-
]α - δo-'α% - Poa8^] d? + δ0"

! [̂ o *« " V^o"1 " ^o'^o]

+ [</0-
1α - Vrfί 1 - ^o^Pojδo1 + dόι[δoxa - δ^a% - Poaδ^].

Simplifying (9.47) gives (9.35).
Lemma 9.14. Let Cυ be a smooth l-parameter family of compact operators

with real spectrum, and let Bυ be a smooth family of bounded operators such that
CυBυ — BυCv. Let {λt υ} be the spectrum of Cv, and let f be a smooth function on
a set containing the spectra of all the Cυ such that the series

(9-48) Σ/(λ,,0), Σf'iKv)
are uniformly absolutely convergent with respect to v. Then Bυf(Cv) is a smooth
family of trace class operators, and

(9.49) tr(2?/(C)) - tr(2?/(C)) + tr(2?/'(

Proof. This follows from the corresponding formula in the finite dimen-
sional case by a standard approximation argument.

Proof of Proposition 9.10. Write

(9.50) * de-^ - * δ-'(Δ + H)x/2eίKτΊ
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(where we omit the tilda's), and apply Lemma 9.13 with BΌ = *δ~\ CΌ = G +
H. Using Lemma 9.12 and (9.45) we get

tr(* δ ] ( Δ + / / ) < r ^ ^ < ) + t Γ [ * ( δ ' α - δ " 1 ^ -

(9.51) + trί*δ~ ι ί- (Δ + Hfe-J^* + | ( Δ + ff)5/Vi

X {Ga(l - P) - PaG + δ ' W " 1 - d~]aδ~]

-Hadιδ] - dλδxaH + Ha - Ha6? - PaH}].

The first term (in 9.51) is equal to

(9.52)

Since

(9.53) δ~}H = d~xH = 0,

tΐ(DxD2) = tv(D2Dx) iϊ Dx is bounded and D2 is trace class, and « = * = -**,
the second term equals

(9.54) (-*•(•«-')-*

where we have used (9.53) and

(9.55) g)*δ"1 = P*δ] = 0.

Similar manipulations show that all terms involving H in the third piece of
(9.51) drop out, and this piece becomes

(9.56) 2

The proposition now follows by arguing as in (9.29).
Proof of Proposition 9.11. Let L4k ~ι have piecewise constant curvature = 1.

Consider the cone C(L4k~λ\ and let s denote the radial variable. The Green's
operator G(sx, xx, s2, x2) on (2k — l)-forms of C(L4k~ι) has a coexact type 1
piece given by

+ —

(9.57) 2 Sχ 2v φ ® φ'

together with log terms corresponding to ju = 0; see [8]. Since

(9.58) {2k - 1) = H i + 2(2* - 1) - (4A: - 1)] = 0,
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applying dλ9 d2 to (9.57) and evaluating at (su xu 1, x2) give

s

(9-59) 2 " ^

(where dφ, dφ/ Jμ are absent if μ — 0). This is closely related to the kernel

*de ~V̂ ' on L 4 *" ! in which we are interested, via the substitution sλ = e~\
Next observe that the expression in (9.59) can be obtained by applying dxd2

to the full Green's operator G, and not just the type 1 piece. To see this, first
note that G also contains an exact type 4 piece which is killed by applying
dλd2. Moreover, one can check that in general the remaining piece of G is
given by

® [sf dφ + a~ sf " λds2 Λ φ]
(9.60) L J

Since each term contains an exact form on either the right or the left, the
expression in (9.60) is also killed by applying dλd2.

Let T* map the cotangent space (sλ9 x) to the cotangent space at (1, x), and
be given by parallel translation along the radial segment from (s}9 x) to (I, x)
followed by multiplication by sfk. Then letting tr denote the point wise trace at
(1, x), we have

(9.61) tr(*1 j;dxd2(G)) = Σsfds, ΛdφΛφ.

For the remainder of the calculation, it will suffice to assume that (1, x) lies
in a small neighborhood of a vertex τ° of L4k~ \ where L4k~ι is identified with
( 1 , L 4 F I ) C C ( L 4 F 1 ) . In any case, this can be achieved by picking an
appropriate subdivision of L4k~\ Let E(t) be the heat kernel on (2k — l)-forms
of C(L4k~ι). Then from the relation

(9.62) G= f°°E(t)dt9

and an argument like that of Theorem 4.1 if there exist small eigenvalues of Δ,
it follows easily that as 5, -> 1,

(9.63) ( \xUxT^dxd2G) ~ /" C \x(*Ί?dxd2E(t)) dt + const + o(l)9

JD4k-\ JDAk~Xj0
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where D4k~x is the "spherical dual cell" (with totally geodesic faces) dual to
τ°. If &{t) denotes the heat kernel of the normal cone to the ray of C(L4k~ι)
through (1, τ°), then we have a local parametrix Ex(t) for the heat kernel of
C(L4k~x\ of the form

(9.64) r^r~&2A:-l(0 ^ wT~duχ ® du2&2ic-2(t)'

Clearly, the second term will be killed by applying tr *, ,Γ5*, since du Λ du = 0.
Similarly, after applying dx d2 to the first term, we need only consider

(9.65)

After applying tr*, ,77 we see that the two terms in (9.65) cancel due to the
opposing signs of the factors (M2 — w,), (w, — w2). Thus

(9.66) lim f Σsf<*<t> Λ Φ - const + o(l)9

and so, setting s{ = e"r, as / -> 0

(9.67) tr( έ fe-^ ' ) - const.

Finally

(9.68) tr ^ ^ /°°
& .

Note that since, as we observed earlier in this section, η(s) is holomorphic
(and vanishes at the poles of Γ(s)), by taking the Mellin transform of
tr(*rfe"^Δί/ /Δ~) and arguing as in §4 if necessary, it follows that in fact

(9.69) tr

for all N, which completes the proof.
Proof of Proposition 9.12. Consider a variation L4k~\ and let s be the

radial coordinate of the associated variation C(L4k~]) which preserves ds.
Moreover,

^ Γ

where /^ denotes interior product with dsλ.
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Thus

(9.71) tϊ(*idsdsι Λ λT*dλd2G) = Σ ^yds Λ**dφΛ φ.

Let (1, JC), where Λ: = xλ = xl9 be a point which lies in a neighborhood
^4o x C(^(σi,o)) The variation on C(L4k~x) preserves the product structure
and the radial coordinate in each factor. At the point (1, x) we introduce
rectangular coordinates (w, w) in %^0 with (1, x) at the origin, u in the radial
direction of C(L{oι

aw)\ and w = (w2, , w,). Then at this point,

(9.72) *(γy + du Λ ψy._j) = (-l)yί/w Λ *γy + *ψy_,.

Moreover, if the coordinates of (1, x) are (0,0, r2), then the coordinates of

Near (0,0, r^) the heat kernel of C(L%k~λ) has a parametrix of the form

Σ Yn~Ej{t)^)2k-j-\it)

(9.73) + Σ Λ , β ^ 2 C ^ " 2 ^ 4 ί ^ ( 0 6 2 ^ y - 2 ( 0 >

where £y.(ί) is the Euclidean heat kernel in the w direction ony-forms, and &(t)
is the heat kernel of C(L(σj 0)).

Let dj, dj\ dj" denote d in the w, w and C(L(σ^0)) directions respectively.
Since ** preserves the splitting and ds — du at (0,0, r2), after applying
*ι*ιi£jSιdsι ΛιT*dιd2 the only possibilities for a nonzero contribution corre-
spond to

(9.74) d['d'2, d\"d'2,

acting on the first term in (9.73) with

( 9 ? 5 ) 2 . / + l = / - I , 2(2k-l-j) = 4k-i,

2j = i — 1, 2(2k - 1 — j) + 1 = 4k - ι,

respectively. Suppose / > 2. Then the first possibility gives zero since

which vanishes when we set wι = w2 = 0. The second possibility also gives
zero for i s* 2. To see this let * denote the * operator on y-forms of the
w-ΐactor, 2j = i — 1. Let /,,• ,fj be an orthonormal basis for they-forms of
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the w-factor, and let ω be the volume form. The contribution of this factor to
the trace is

(9.77) tr(*.)ω

= Σ (*//> ifi >ω = Σ (*ίϊ//> Ϊ// ) ω

where g, is the orthonormal basis *fh and we have used ** = -**, which
follows from *2 = /.

If we now argue as in (9.62), (9.63), we see that for / > 2, tr(*ίfe"^') stays
finite as / -» 0, and, in particular, any contribution to the coefficient of t~ι must
be computable near the vertices of L4k~ι. This actually suffices to establish
Theorem 9.5.

Now consider the case / = 1. Take a local coordinate system as above with
the origin at τ° C L4k~x where L4k~λ is identified with (1, L4k~]) C C(L4k~l).
Set (1 — u2) = z. As in (9.75) we are reduced to consideration of the expres-
sion

(9.78) 2(1 - z

where the factor z in front of the expression corresponds to the factor 2 in the
denominator of (9.73). If we recall (see [6]) the identity

(9.79) e-fi^z

3/2Γ
o t

where Δ2 j t_1 is the Laplacian on C(L(τ0)), we see that we have reduced our
problem from the curvature 1 case to the curvature 0 case (up to the factor
(1 — z)2k which will play no role).

Let F(r, t) represent the pointwise trace of the kernel of *de~v^2k-1 \ Then it
is easy to check that F(r91) satisfies the scaling property

(9-80) F{r, t) = -jj-

Thus

ί o tτ(ide-^') = fj F(r, t)r4k~2 dr
(9.81)

Λ> Λ.(τ°)
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Setting

(9.82)

this becomes

(9.83)

Since

(9.84)

-dr = ds,

-if F(l,s)ds.
* Ja JL(τ°)

lim ί F{\,s)ds = 0

(the case / > 2), we see from (9.78), (9.83) that Proposition 9.11 holds with

(9.85) c.,= 2 Γί F(hs)ds.
τoGL4k-\JO JL(τ°)

This completes the proof of Proposition 9.11, and hence the proof of Theorem
9.4.

In fact, the integral in (9.85) can be calculated as a spectral invariant of
L(τ°). By arguing as in §§4 and 6 we see that the integral in (9.85) can be
identified with the analytic continuation to s — 1 of

(9.86)

If we apply the Weber-Schaftheitlin formula, it is clear that it is only necessary
to consider forms of types 1 and 3. For forms of type 1 we get

(9.87)

As in (6.7)-(6.10), this gives

( 9 8 8 ) T(s/2) Γ ( , - 2 )

Λ((-l)"-V,(λ)d ΛSφ)</λ

= r( f) jΓ(λ2-v;(λ)/r(λ) dλ)iφ Λ

T(v-s/2+l),_
ΛΛ *φ

s=\
2s Γ ( J / 2 ) Γ ( J / 2 - 1) T(v + s/2)

A simple calculation shows that the contribution from type 3 forms is also
given by (9.88). Thus we get a total contribution of

(9.89)

S=\
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Now the fact that on L(τ°), ix^de'^*) ~ const + o{\) implies that
Y(v — s/2 + \)/T(v + s/2) is holomorphic for Re 5 > 1 and vanishes at

s = 1. Thus we get
Theorem 9.15.

(9.90) ^

*° *" ,= 0

Δce is the Laplacian on coexact (2k — \)-forms ofL(τ°).
Note that the expression in (9.90) is not locally computable on L(τ°), due to

the fact that we project on coexact forms. Also, performing further differentia-
tions with respect to v does not lead to locally computable expressions. This is
an obstacle to making our combinatorial formulas more explicitly computable.

As mentioned in §6 we can also consider the η-invariant for manifolds with
isolated conical singularities, or equivalently for manifolds with boundary. A
straightforward modification of the arguments leading to (9.90) shows that
(9.90) remains valid in this case. This implies a generalization of (6.14) to the
case in which N4l~ι itself has conical singularities, the cross-sections of which
are spheres. On the other hand the device of attaching a cone to the boundary
can also be used to define the η-invariant for pseudomanifolds with boundary.

We now consider the geometric index formula (6.15) for piecewise flat
pseudomanifolds X4k with boundary. First consider the case where the metric
is a product near the boundary. Form a closed manifold Y4k by adding one
new vertexp and an n-simplex containing/? for each (n — l)-simplex of dXn.
Take the lengths of all new 1-simplices to the same constant /. Now apply
Theorem 9.5 to Y" and let / -> 00. In the limit the metric approaches a product
RX g' near the new interior vertices which were formerly boundary vertices.
So these vertices do not contribute. The link Lt(p) with metric rescaled to have
curvature I//2 approaches "geometrically" dX4k. Moreover, by modifying our
previous analysis it is not difficult to show that ̂ (θ^ 4*) exists and that

(9.91) limη(L /(^)) = 7,(ΘZ4*).
/->oo

Thus we get

Theorem 9.16. Let X4k be a piecewise flat pseudomanifold with boundary
such that Y4k is of the class described after (9.12). Let the metric be a product at
dX4k. Then

The case in which the metric is not a product at the boundary can now be
handled using (9.90). In particular, the analog of the second fundamental form
term in the smooth case is locally computable at the vertices of ΘΛ'4*.
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Ak

FIG. 9.2

Now suppose L4k~2 is the unit sphere. It is easy to check (by a symmetry
argument) that the expression in (9.90) vanishes for all variations. We conjec-
ture in fact that the first (2 k — 1) derivatives with respect to v of the
η-invariant vanish for S4k~ι. This together with an appropriate expression for
the 2A:th derivative (compare [14]) would imply via the methods of [14] that in
the limit under subdivision of our formula for the top L-class goes over into
the dual of corresponding characteristic form in the smooth case. More
generally we have

Conjecture 9.1. Let X" -* Xn be a sequence of uniformly fat piecewise flat

approximations to the smooth compact riemannian manifold X {as in [13], [14]).

Then for all ωn~4k E An~4k(X\

(9.92)

Conjecture 9.2. Let X4l~ι -» X4l~ι as above. Then

(9.93)

The fact that the derivative under change of metric of the η-invariant ηEk(X)
with coefficients in Ek is locally computable at the vertices implies that we
have piecewise linear invariants

(9.94) f>E*(X) = ηEk(X)-kη(X)

corresponding to the smooth invariants pEk{X) of [2]. Conjecture 9.2 implies
Conjecture 9.3. For XΛl~λ compact smooth, pEk(X4l~x) = pEk(X4l~ι). In

particular pEk(XAl~λ) is a piecewise linear invariant. One might further conjec-

ture that pEk(XΛl~x) is a topological invariant.

Finally we mention that there does not as yet exist a satisfactory interpreta-
tion of the η-invariant for pseudomanifolds in terms of generalized Chern-
Simons invariants. In any case one would like to have the nonimmersion
theorems for pseudomanifolds which such an interpretation would imply; see
[2].
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