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OSCULATION BY ALGEBRAIC HYPERSURFACES

JAY A. WOOD

Introduction

In this paper we give necessary and sufficient conditions for d pieces of

hypersurface to be osculated to a fixed order by an algebraic hypersurface of

degree d.

Given a line L o in Pn+X and d points P°, • ,? ί / °onL 0 , suppose there are d

pieces of hypersurface γ,, ,yd such that P? E γ, and L o intersects each γz

transversely.

The question addressed here is: when does there exist an algebraic hyper-

surface γ of degree d which osculates each piece γ, to order r at Pt°Ί The main

result gives necessary and sufficient conditions for the existence of such an

algebraic hypersurface γ.

Fix affine coordinates (x o , ,xw) on Pn+\ and fix line coordinates

(m,, ',mn, bv - 9bn), where a line L is given by xk = mkx0 + bk, k —

1,2, ,«. (Line coordinates are just local coordinates on Gr(l, n + 1), the

Grassmannian of all lines in Pn+ι.) Assume that coordinates have been chosen

so that the given line L o has line coordinates mk = 0, bk = 0 for all k. L o is

then the xo-axis. For convenience, write m = (mx,- ,m n ), b — (6,, -,bn). A

line L — L(m, b) near L o will intersect each γz at a point Pt = Pf (w, b). Then

i>(0,0) = PP. Let Λζ = Λ;.(m, b) be the Oth coordinate of i> in terms of the

affine coordinate system. Define Kjk = KJk(m, b)by

j , k — 1,2, , n. We can now state the main result.

Theorem. There exists an algebraic hypersurface γ of degree d, which oscu-

lates each γ, to order r,Kr<d,at Pt°9 i— 1,2, ,d, if and only if' Kjk and all

of its partial derivatives of order < r — 2 vanish at (m, b) — (0,0).

Remarks. 1. If the order of osculation desired is r — 0 or r — 1, there is no

condition. Just take γ to be the union of the d tangent hyperplanes to γf. at PP.
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2. In order to handle the case r ^ d, one must make assumptions on the

derivatives of the individual X^s not just on their sum. The needed conditions

are obvious, and we will not concern ourselves with them.

3. The case of second-order osculations for curves in the plane (n = 1, r — 2)

is treated by Griffiths-Harris [1, pp. 698-699]. The single condition obtained in

that case is called the Reiss relation. The conditions of the theorem above may

be considered as generalized Reiss relations.

Proof. The proof is in two parts. Each part will be treated in a separate

section below. The necessity of the conditions follows from a direct computa-

tion along the lines of some earlier work of the author [3]. The sufficiency of

the conditions will follow from a cohomological argument which counts the

number of obstructions to the existence of γ. This cohomology argument is a

direct generalization of the treatment by Griffiths-Harris of the n = 1, r — 2

case, as mentioned above.

Necessity. Suppose there exists an algebraic hypersurface γ of degree d,

which osculates each piece of hypersurface γ, to order r at Pt°. In addition,

suppose that γ has defining equation

P(xO>'">xn) = °>

where p is a polynomial degree d, and that yi has local defining equation

Φi(xo>'-,χ

n) = 0.

Because Lo (= xo-axis) meets γ and each yi transversely, the above equations

define JC0 implicitly as a function of xu -,xn locally near each P?\ say, for γ

nearP,0,

*o = *i(x\>' ">xn) (defining7rz),

and for γ, near P?9

x0 = <£,(*!,- •,*„) (defining Φ,).

Remember that our choice of coordinates dictates that 77,(0, ,0) =

Φz(0, ,0) = Jζ (O,O). Osculation to order r now means that the function

fli — Φ, vanishes through order r at (JC,, -,xn) = (0, ,0). Recall that

Xjζm, b) is the Oth coordinate of the point of intersection of γf and L(m, b).

Now define Yt— Y^m, b) to be the Oth coordinate of the point of intersection

of γ and L(m, b) near the point of intersection of γ, and L(m, b). Because γ

osculates γ,, Yt will be close to Xt^ for (m, b) near (0,0). More precisely, we have

the following lemma.

Lemma. // γ osculates γz to order r at P,0, then the function Xj{m, b) —

Yj(m, b) vanishes up through order r at (m, b) = (0,0).

Proof. Xt — Yt vanishes (to order zero) at (0,0) because Xt(0,0) =

Φ^O,- ,0), 1^(0,0) = *i(0, ,0), and Φ, (0, ,0) = 7^(0, ,0).
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Before proceeding to the higher orders, observe that Jζ (m, ft) —

Φ/(mAr

/(m, ft) + ft), where mX^m, b) + b is short-hand for (w, Jζ (/w, 6) +

ft,, , m π l , ( m , 6) + ftj. Similarly, ^ (w, ft) = ^(mY^m, ft) + ft).

Let d£, 3 * be multi-indexed partial derivatives with respect to the m- and

ft-variables respectively.

As an induction hypothesis, suppose Xt — Yt vanishes up through order s

( < r ) at (0,0). Consider one of the (s + l)st order partial derivatives

3 [ W ( * ; - Yi)]/dml9 where | / | +\K\= s.

where ΘΦ /θxy and d^/dxj are evaluated at mXi + ft and w ^ + 6 respectively.

The remaining derivatives remain to be calculated, but are easily visualized.

Because of the product rule, any (s + l)st order derivative of either Xt or Yt is

multiplied by an rrij. After evaluating the expression at (m, ft) = (0,0), such

terms vanish. The remaining terms are expressible in terms of derivatives of Φ,

and mt to orders < s + 1 < r and derivatives of Xt and Yt to orders < s.

Moreover, the entire expression is clearly skew-symmetric in the pairs (Φ/9 Xt)

and (TT , Yt). When we evaluate at (m, ft) = (0,0), the Φ/? ττi terms are evaluated

at mXi [or Yi] + b = 0. Φt•, — πt vanishes to order r at (0, ,0) by the

osculation assumption, and Xt — Yt vanishes through order s at (0,0) by

induction. Thus the expression is also symmetric in the pairs (Φ,, Xt) and

(TΓ,, yj), and consequently vanishes.

A similar argument holds for d[^J

mdξ{Xi - ^)]/3ft/.

The necessity of the conditions in the main theorem then follows from the

following theorem which was first proved in [3]. Since its proof is very simple,

we include it here for convenience.

Theorem. // γ is an algebraic hypersurface in pn+ι of degree d, and if

Yj(m, ft) (/ = 1, -,d) are the Oth coordinates of the intersection points ofy with

a line L(m, ft), then

8 2 l Y ( b ) 0

for all (m, ft), and for allj\ k = 1, ,/i.
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Proof. If γ satisfies the polynomial equation of degree d:

then the Y/s are the d solutions of the following equation (in x0):

P(xo) =P(xo> r"\Xo + b\>"'>mnxo + bn) = °

p is a polynomial of degree d in x0, whose coefficients are in turn polynomials
in(m, b). If we set

P(xo) = A0(m9 b)xd

0 - Aλ{m, b)xd

0~
l + ±Ad(m, b),

then the definition of p in terms of p implies that Aois independent of b and
that A! is linear in b.

It is well known that the sum of the roots of p, namely Σ^(ra, b\ is
expressible in terms of the coefficients of p. Specifically,

ΣYl(m9b)=Aι/A0.

Since Ax/A0 is only linear in ft, the second ft-partials must vanish.
Sufficiency. To prove sufficiency, we generalize the approach in Griffiths-

Harris [1, pp. 698-699]. The author would like to thank Phillip Griffiths,
Lawrence Ein and Raghavan Narasimhan for their helpful comments and
advice.

Henceforth we shall denote Pn+λ simply by P. Let / be the ideal sheaf of the
line Lo in P. Let O be the structure sheaf of P, and let Os = O/Γ+x. In
particular, O0 is the structure sheaf of Lo. Define the sth infinitesimal neighbor-
hood of Lo to be the scheme Ls — (Lo, Os). Let Pic(F) denote the set of Cartier
divisors on a scheme V9 modulo linear equivalence. Pic(F) is isomorphic to

An sth order germ of hypersurface intersecting Lo defines an element η of
Pic(Ls), together with a section of η. There is also a natural restriction map
as: Pic(P) -> Pic(Ls) obtained by intersection with Ls. Our problem of de-
termining when there exists an algebraic hypersurface γ which osculates γ, to
rth order at P? is equivalent to first determining when an element D E Pic(Lr)
is in the image of the map ar: Pic(P) -> Pic(Lr), and then determining whether
sections of D lift.

Using Fic(P)^H\P,O*) and Pic(Lr) ss H\Ln Or*), information about
the image of ar\ H\P, O*) -> H\Lr9 O*) can be obtained in the following
manner. From the exact sequence

exponentiate to obtain the multiplicatiwe version
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The long exact sequence on cohomology includes

(*) -> H\P9 O*) - Hι(Lr9 O*) - H2(P, /Γ + 1) - i/ 2 (P, O ) - .

It is easy to see that H2(P9 O*) — 0. Indeed, from the exact exponential
sheaf sequence

0 ^ Z ^ 6 > ^ 6 > * - > 0 ,

follows the long exact cohomology sequence

> H2(P, O) -> /72(/>, O*) -» i/ 3 (P, Z) -> .

But H\P9 O) = 0 and i/ 3(P, Z) = 0, so that H2(P, O*) = 0 also. Thus
sequence (*) above becomes

• - Hι(P9 O*) - Hι(Lr9 0;) - H2(P, Jr+ι) - 0,

where the first map is ar. Thus the obstructions to D G H\Lr9 Of) being in
the image of ar lie in H2(P, Jr+ι). Since Jr+ι = Γ+\ we will next calculate

A 2 (P,/ r + 1 ) .
Let N* — I/I2 be the conormal bundle of Lo in P. Because Lo is just a line

in P, N* = OQ(-\) where the superscript w means to take the direct sum of n
copies of O0(-\).

Proposition. H\Pn+\ I) = H\Pn+\ I2) = 0 /or i > 0. For r > 2,

Hi(Pn+\ /'+i) = o, i ^ 2, and

+ 2 ) +) + 2( ) + + (r -

Proof. First, from the definition of / we have the exact sheaf sequence
0-*/->(9-»O 0 -*0, where, as above, O is the structure sheaf of P = Pn+\
and O0 is the structure sheaf of the line Lo. On cohomology we have

0 - H°(P91) - H°(P9 O) - H°(L0, O0)

- H\P91) - H\P9 O) - H\L09 O0) - .

But i/°(P, O) = H°(L0, O0) = {constants}, and H\P, O) = ^ ' ( L Q , O0) = 0
for / ̂  1, so that /f ''(/>, /) = 0 for all i > 0.

Second, note the exact sequence 0 -» / 2 -> / -» Λ̂ * -» 0, which induces the
long exact sequence

• - H'-ι(LQ9 N*) - H\P, I2) - jy'(P, /) -, H\L09 N*) - .

Because H\LOi O0(-l)) = 0 for all / > 0, we see that H\P, I) = #'"(/>, / 2 ) .
So if '(Λ 72) = 0 for all i > 0.

We prove the remainder of the proposition by induction on r. For the case
r = 2 we use that

7 2 // 3 = Sym2(ΛΓ*) = O0

rk<2>(-2),
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where rk(2) = rank(Sym2(#*)), namely, C2

+1). Then

0 -> I3 -> I2 -* Sym2(N*) -> 0

induces

• - H\P, P) - #'(L0,Sym2(iV*)) - H2(P, P)

Because /Γ(f\ I2) = 0 for all / > 0, and #'(L0> 0o(-2)) = 0 for / ψ 1, we see
that H\P, P) ss H\L0,Sym2(N*)) and that H'(P,P) = 0 for / ̂  2. By
Serre duality, A^L,,, O0(-2)) = Λ°(L0,0O) = 1. Thus h\P, P) = 1 rk(2) =

(π

2

+1)
For the induction step, we assume the result for r — s and prove it for

r — s + 1. Using the isomorphism

where rk(5) = rank(Synf(iV*)) = (n~]~s), we get the exact sheaf sequence

0 - 7S + 1 ->/'-> SymJ(7V*) ^ 0.

The long exact cohomology sequence contains

- /f 2(P, /*) - i/ 2 (L 0 ,

Because A^LQ, O 0 ( - J ) )
 = h°(Lo> °o(s — 2)) = s — I, and all other A'"(L0,

O0(-J» = 0 for / 7̂  1, the induction hypothesis on h\P, Is) forces A'(P, / 5 + 1 )
= 0 for / 7̂  2, and the long exact sequence collapses to

0 -» ff1(L0,Symf(ΛΓ*)) -> ̂ 2 ( P , 7S + 1) ^ i7 2 (P, /*) ^ 0.

Then

= A2(P, / ') + (s - \)τk(s) =

and the induction step is complete.
We conclude the first part of the proof of sufficiency by showing that the

number of independent conditions among the necessary conditions (i.e., that
Kjk and its partial derivatives through order r — 2 vanish at (m, b) = 0) is
exactly equal to the dimension of the space of obstructions H2(P, Γ+λ).

For r = 2, h2(P, I3) = (w

2

+1). On the other hand KJk = Kkj9 so that the
number of independent components is also ("^ ]).
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By induction, it suffices to prove that the number of independent partial

derivatives of Kjk of order exactly s — 2 is equal to

At first glance, this appears hopeless because even in the case s = 3, the

first-order partial derivatives of Kjk are

of which there appear to be (w

3

+ 2) + « ( " ί ] ) which are independent.

Fortunately, there are relations among the partial derivatives of Σ A).

Recall that X^m, b) is the Oth coordinate of the point of intersection of

L(m, b) with γ/5 that γ, has defining equation Φι(x0,- ,xn) — 0 and that

L(m, b) satisfies xk — mkx0 + bk for k — 1, ,«. Thus Xt satisfies the iden-

tity

φ,.(* ; , mxXt + ft,, - Λ l , . 4- bn) = 0,

for all (m, Z?). Differentiation of this identity with respect to nij yields

A:

while differentiation with respect to bj yields

K )] = 0.

From these two equations it follows that

3Ai/3my = Ai

Equipped with this relation, let us reexamine the case s — 3:

= =

3m, dbjdb/βmt dbjdb
jdbk

= 3 ^ . / 3Λ; 3 2 ^ 3Λ; 3 ^ ,
Z ' dbdbflb Z \ db dbkdb, dbk dbflb,bj dbkdb, dbk dbflb, db,
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Now it is clear that there are only 2(n~\+3) = h\L0,Syπf(N*)) independent
components among the first partial derivatives of Kjk. The form of the general
derivative of Kjk of order s is now predictable.

Proposition. Let E and F be multi-indices with \E\— e and \F\= f. Let
G = E + F.Ife+f=s9then

modulo terms containing derivatives of Xt of order 1, ,s — 1.

Proof. For s = 0,1, this has already been shown above. The induction step
is quite easy. If e + / = j , then

dm,dmEdbF 9»i/[ ' dbGdbj9bj9bk

z ' Λidb, dtfdbflbΛ Δ ι db^dbk) v υ υujvυk

3 ί + 3 X

dbGdbjdbkdb,

modulo derivatives of order < s.
A similar computation holds for ds+ι[KJk]/db,dmEdbF.

We next note that

'" dbdb
[

dbk [ dbj J '" dbjdb
db

k

is symmetric in j and A:. Thus the expression for ds[KJk]/dmEdbF, once
expressed entirely in terms of ^-derivatives of Xi9 is a symmetric expression in
the s + 2 indices which appear. However, the highest order terms are dis-
tinguished by the power of Xt appearing as a factor. That power is precisely e.
Because e can be any number from 0 to s, there will be s + 1 independent
groups of derivatives with each group in turn depending upon s + 2 symmetric
indices. Thus the total number of independent components among the deriva-
tives of Kjk of order s is (s + Ό(n~l+2+2)- For s = r — 2, the number of
independent components is (r — l)(n~ * + r ) which is precisely h\Lθ9 Syms(7V*)).

The number of independent necessary conditions being equal to the number
of obstructions to D E Pic(Lr) being in the image of ar: Pic(P) -> Pic(Lr), the
necessary conditions are also sufficient. This concludes the first part of the
proof of sufficiency.

The second part of the proof of sufficiency is concerned with lifting sections.
Our original data of d pieces of hypersurface meeting Lo determine both a line
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bundle D G Pic(Lr) and a section σ of D. Assuming the conditions stated in
the theorem we have just proved the existence of a line bundle E on Pn+λ such
that E restricts to D. To get an actual hypersurface γ which osculates the
original γ/s, we must lift the section σ of D to a section τ of E.

Because there were d pieces of hypersurface and E restricts to a divisor
linearly equivalent to Z>, the degree of E is also d. Thus E = O(d) on Pn+ι.
The restriction map E -> D -> 0 has a kernel consisting of elements of E = O(d)
which vanish on Lr, namely 7r+1(<i). To prove that a section σ of D can be
lifted to a section T of £, it suffices to prove that H\Pn+λ

9 Γ+\d)) = 0. This
will follow from the following proposition.

Proposition. Ifs>landd^s- 2, then H\Pn+\ Γ(d)) = 0, for i > l .

Proof. If Pn+λ has homogeneous coordinates [xo, -,*„+,] such that our
original affine coordinates are given by taking JCΠ+1 = 1, then Lo is cut out by
the equations xλ = x2 = = xn — 0, and /(I) has global sections xl9—-,xn.
A basis for the global sections of I(d) consists of degree d monomials in
x0, ,xn+! having at least one factor from xl9— 9xn.

Case 5 = 1 . From the exact sheaf sequence o n P π + 1 ,

0 ^ J ^ O - + O 0 - > 0 ,

we twist by d to get

Since Lo is a line in Pn+\ O0 ® 0{d) = O0(d). For rf > -1, ̂ ' ( L Q , O0(έ/)) =
H\Pn+λ,O(d)) = 0 for j > 1. So the long exact sequence on cohomology
implies that Hi(Pn+\ I(d)) = 0 for / ̂  2, and thus the exact cohomology
sequence collapses to

0 - H°(P, I(d)) - H°(P, O(d)) - H°(L0, O0(d)) -, H\P, I(d)) -> 0,

where, as above, P = P π + 1 .
If J = - 1 , all of the i/°-groups above vanish, so HX(P, /(-I)) = 0. For

d = 0, H\P, I) = 0 by an earlier proposition. For ί/>l , a basis of
if °(P, O(rf)) consists of all monomials in JCO, ,JCΠ+I of degree d. A basis for
H°(P, I{d)) consists of all those monomials of degree d containing at least one
factor from *„• •,*„. Thus a basis of H°(P, I(d)) can be extended to a basis
of H°(P, O(d)) by including those monomials of degree d in xθ9 xn+λ only,
which is precisely a basis of H°(Lθ9 O0(d)). Thus Λ°(P, O(rf)) = h°(P91{d))
+ Λ°(L0,0o(έ/)), and we conclude that H\P, I(d)) = 0.

Cα ê s > 2. The proof now proceeds by induction on s. We assume the
result for s**\ and prove it for s + \ > 2. In particular, we assume
H\P9 Γ(d)) = 0 for d > s - 2, i > \. Using the exact sheaf sequence

0 -» Γ + 1 -> 7s -• Synf JV* -> 0,
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we twist by d > (s + 1) — 2 = s — 1 to obtain

(••) 0 -> Γ+\d) -» /*(</) -> (Synf #*)(</) -» 0.

Now SyπfN* = 0o

rk(5)(-*), where rk(j) = rank(Syπf TV*) = ( π " ] + ί ) , so that
(Syπf #*)(</) = O0

r k ( 5V - 5). Because we assume d > (s + 1) - 2 = 5 - 1,
d - J > -1, so that //''(Lo, O0(d - s)) = 0 for 1 ̂  1. Then the long exact
cohomology sequence obtained from (**) becomes

0 - H°(P9 Γ
+\d)) -> H°(P, Γ(d)) - H°(L09(SyπfN*)(d))

- H\P, Γ+\d)) - Hι(P9 Γ(d)) - 0,

together with

0 -+ ff'"(P, / 5 + 1 (^) ) ^ ^'"ί^, ^ ( ^ ) ) -> 0,

for / ̂  2. By induction, ff'(P, /5(<i)) = 0, d > s - 2, i > l9 so that
H\P9 Γ+\d)) = 0,1 > 2, rf > J - 1.

We now wish to count the dimension of H°(P, Ir(d)). A basis of
H°(P9 Γ(d)) consists of monomials of degree d in xo, ,xn + 1 containing a
factor of a monomial of degree r in x,, , JCW. To complete this to a basis of all
of H°(P, O(d))9 we must include monomials of degree d with fewer than r
factors from x l9 ,JCW. The number of such monomials is equal to

where the summation is over j = 0, ,r — 1. (" J + y ) is the number of
monomials in x,, ,xn of degree7, while 1 + rf — y is the number of monomi-
als in x0, xn+λ of degree d -j. Thus h°(P, Γ(d)) = h°(P, O(d)) ~ 2(1 + d
— yXΛ"J+y"). We apply this formula:

But this is precisely equal to Λ°(L0, (Syms N*χd)) = τk(s) Λ°(L0, O0(d - s)).
So the long exact cohomology sequence breaks up once more, and
H\P9 Γ+\d)) = H\P9 Γ(d))9 which vanishes by induction.

Using this proposition, we see that H\Pn+\ Γ+\d)) = 0, provided d ̂  r
— 1. Since we have assumed d > r, there is no obstruction to lifting sections,
and the proof of the sufficiency of the stated conditions is now complete.

Formula for γ. Assuming the conditions of the main theorem, we know of
the existence of an algebraic hypersurface γ which osculates our original γ/s. A
curious fact is that one can actually write down the degree d polynomial
defining γ. The proof that the γ so defined actually osculates the original γ/s is
not a pleasant task and will not be taken up here. For details, see [2].
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In homogeneous coordinates [xo, ,xn+x], chosen so that the affine coordi-

nates used above are given by xn+] — 1, the polynomial of degree d defining γ

is of the form

where the summation is over all multi-indices E = (£(0), £(1),- -,E(n + 1))

of degree d, i.e., Σ, E(i) = d, and where (*) = d\/(E(0)\ - E(n + 1)!) and
E _ E(0) . . . E(n+\)

X — XQ
 xn+\

Let Sk equal the A:th elementary symmetric polynomial in {Xλ9- "9Xd}. Set

So= l .Then

evaluated at b — 0, gives the coefficients of/?.
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