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EXISTENCE OF CLOSED GEODESICS
ON POSITIVELY CURVED MANIFOLDS

W. BALLMANN, G. THORBERGSSON & W. ZILLER

In [8] we examined stability properties of closed geodesies whose existence

can be obtained by elementary methods. In this paper we apply Lusternik-

Schnirelmann theory to obtain the existence of several closed geodesies below

certain length levels. We will then examine stability properties of these closed

geodesies.

Let g0 be the standard metric on Sn of constant curvature 1. Using

perturbation methods it follows that any metric on Sn, n>2, sufficiently C 2

close to g0, has at least as many closed geodesies of length approximately 2ττ as

a function on the Grassmannian G2n_λ of unoriented two-planes in Rn+ι has

critical points. This in turn can be estimated from below by the so-called cup

length which for Gln_x is g(n) = In — s — 1, where 0 < s — n — 2k < 2k.

Hence there are at least g(n) short closed geodesies for metrics on S"

sufficiently C 2 close to g0. Note that {{3n - 1) < g(n) < In - 1.

Theorem A. Suppose that M is homeomorphic to Sn and that 1/4 < 8 < K

< 1, where K denotes the sectional curvature of M.

(i) There exist at least g(n) closed geodesies without self-intersections and with

lengths in [2π,2π/ yfδ] C [2π,4π]. If all closed geodesies of length < 4π are

nondegenerate {an open and dense condition on the set of metrics with respect to

the C2 topology), then there exist at least n(n + l)/2 closed geodesies without

self-intersections and with lengths in [2π, 2π/ y/S].

(ii) // the closed geodesies whose lengths lie in [2π, 2π/ ]fδ] all have the same

length /, then all geodesies are closed of length I. If the closed geodesies whose

lengths lie in \2π, 2π/ Jδ] have only two different length values, then there exists

a family of closed geodesies of equal length in [2π,2π/ Jδ] such that every point

of M lies in the image of some geodesic in the family.
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It is well known that any simply connected manifold with 1/4 < K < 1 is
either homeomorphic to Sn or isometric to a symmetric space of rank 1. Hence
the above theorem remains valid under the weaker assumption that M is
simply connected and 1/4 ^ δ < K < 1.

Theorem B. Suppose that M = Sn and that the metric g satisfies g < a2g0,
1 ^ a < 2, and l(M) > 2π, where l(M) denotes the length of a shortest geodesic
loop of g. Then (i) and (ϋ) in Theorem A hold, where the lengths of the closed
geodesies lie in [2π, 2aπ] C [ 2π, 4π).

Although Theorem A is better from a geometric point of view, it is worth
noticing that the assumptions in Theorem B are C1 conditions on the metric,
whereas those in Theorem A are C2. For example, Theorem B implies that
every metric sufficiently C1 close to the standard metric on Sn has g(n) closed
geodesies without self-intersections and with lengths approximately 2π.

Note also that, by the injectivity radius estimate, l(M) > 2π is satisfied if n
is even and 0 < K < 1.

In the nondegenerate case the number n(n + l)/2 is optimal as shown by an
^-dimensional ellipsoid with pairwise different axes close to 1: the n(n + l)/2
ellipses in the coordinate two-planes are closed geodesies without self-
intersections and with lengths close to 2ττ. One can achieve that the lengths of
all other closed geodesies are greater than any given number by choosing the
axes sufficiently close to 1. In the general case it is not known whether the
number g(n) is also optimal. It is even not known whether g(n) is the minimal
number of critical points for a function on Gln_ v Gln__x always admits a
function with 2n — 1 critical points since dimG2 / i_, — 2n — 2. For n = 3
J. Milnor constructed an example (unpublished) of a function on G2 2 with only
g(3) = 4 critical points.

For n = 2 Lusternik and Schnirelmann [23] proved that any metric on S2

has at least three closed geodesies without self-intersections (see also [6]).
Theorem B is a slightly extended version of a result of Alber [3], [4]. Alber's

proof, however, relies on a topological result, the so-called lemma of Alber,
which turned out to be false. See chapter 2 for a short discussion of this.
Complete proofs of Alber's result were obtained by the authors, announced in
[7], and independently by Anosov [5] and Hingston [17].

Theorem A and B are proved by applying Lusternik-Schnirelmann theory to
the energy functional E on the space of unparametrized closed curves on M. If
Λ(M) denotes the space of curves Sι -* M, then the space of unparametrized
curves is the quotient Λ(Λf )/0(2), where (9(2) acts by linear reparametriza-
tions on Sι.

One of the difficulties in applying Lusternik-Schnirelmann theory is that
different homology classes of Λ(M)/0(2) can give rise to different critical
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points which are iterates of the same closed geodesic. One method to avoid this
is to choose homology classes which have representatives below an energy level
which is smaller then the energy of all iterated closed geodesies. Under the
conditions of Theorem A or B this is achieved by working in Λ8π2~ = {c E Λ |
E(c) < 8ττ2} which contains only prime closed geodesies.

A second difficulty is that 0(2) does not act freely on Λ(M), which was the
main source of errors in previous papers. It turns out that critical point theory
can be applied to the space P(M) of curves which no element of 0(2) except
the identity leaves fixed. The necessary topological informations about the
quotient P(M)/0(2) can now be obtained using Gysin sequences and char-
acteristic classes.

In the geometric part of the proof of Theorem A and B it is shown that the
relevant topological cycles consisting of great and small circles on Sn can be
deformed into PSπ ~/O(2). In Theorem B this is implied by the assumption
g < «2g0, but in Theorem A this is the main difficulty and will be overcome by
using a technique from [15] and [16] and a lemma, which for δ > 1/4 gives a
somewhat different proof of the sphere theorem.

We also prove the following theorems:
Theorem C. Suppose Mn is compact, simply connected, and a Z 2 homology

sphere. Assume that l/p2 < δ < K < 1 for some integerp > 2 and that i(M) > π
where i(M) is the injectivity radius. Then there exists at least ](n — \)/(p — 1)[
closed geodesies on M with lengths in [2π,2π/ Jδ] C [2ττ, 2pπ), where ]x[
denotes the smallest integer > x. In particular, if \/(n — I)2 < K < 1 and
i(M)> m, then M has at least two such closed geodesies.

Theorem D. Suppose Mn is compact, simply connected, and not a Z 2

homology sphere. Assume that l / 1 6 < δ < A ' < l , i(M)>π, and let k —
min{z > 0 | Ht(M, Z2) ¥= 0}. Then there exists at least k closed geodesies without
self-intersections and with lengths in [2π, π/ y/δ] C [2π,4π). If 3k < n + 2,
then there exist at least g(k) such closed geodesies.

In particular, for 1/16-pinched metrics on PmC and PmH, m > 3, one
obtains at least three, resp. seven closed geodesies. 1/16-pinched metrics on
P2C, P2H, P2Ca have at least two, four, resp. eight closed geodesies.

We also prove a theorem similar to Theorem B for these projective spaces. If
g0 denotes the standard metric on these spaces with 1/4 < K < 1, then any
metric with g < 4g0 and l(M)>2π has at least three, seven, resp. fifteen
closed geodesies. Note, however, that one could expect more closed geodesies
from perturbation theory.

In Theorem C and D the Morse-Schoenberg comparison theorem and Gysin
sequences are used to bring the relevant cycles under the appropriate energy
levels.
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Finally we examine the stability properties of these closed geodesies. The
Morse indices of the closed geodesies in Theorem A lie in [n — 1,3(Λ - 1)].
Unless the Morse index is 2(n — 1) a closed geodesic turns out to be nonhyper-
bolic if the metric is sufficiently pinched. In fact, if ind(c) < k and n — \ < k
< 2(/i - 1), or if indo(c) = ind(c) + null(c) > k and 2{n - 1) < k <
3(n — 1), then the linearized Poincare map has at least 2{n — X) — k resp. k —
2(n — 1) Jordan blocks with eigenvalues on the unit circle if the metric is
sufficiently pinched. In particular, if ind(c) < n — 1 or indo(c) ^ 3(n — 1),
then c is of elliptic-parabolic type if the metric is sufficiently pinched. We
obtain

Theorem E. // ((2« - 2)/(2Λ - I))2 < 8 < K < 1, then there exist at least
g(n) — 1 nonhyperbolic closed geodesies without self-intersections and with lengths

in [27r,2π/γ/^]. If nφ 2k, then there exist at least g(n) such nonhyperbolic

closed geodesies. If all closed geodesies of length < 4π are nondegenerate, then

there exist at least ]n2/2[ such nonhyperbolic closed geodesies.

In §1 we explain Lusternik-Schnirelemann theory in a setting which suits our
purposes. We then show that this theory can be applied to P(M). In §2 we
prove topological results which are needed in later sections. In §3 we prove
Theorems B, C, and D. In §4 we prove Theorem A, and in §5 we discuss
properties of the linearized Poincare map and prove Theorem E.

Throughout the paper the coefficient ring of all homology and cohomology
groups is Z2.

We are grateful to D. Epstein for helpful discussions, and would like to
thank the University of Pennsylvania and the University of Bonn for their
hospitality.

Some of the results in this paper were announced in [7].

1. Critical point theory

Closed geodesies and point curves of a Riemannian manifold M are the
critical points of the energy functional

defined on the Hubert manifold

Λ = Λ(M) = I c: Sι -> M | c is absolutely continuous and I (c, c) < oo | ,

where Sι - R/Z = [0, l]/{0,1). Critical point theory, therefore, is an im-
portant tool in estimating the number of closed geodesies.
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Lusternik-Schnirelmann theory

Suppose X is a metric space, F: X -» r a continuous function bounded from
below, and φ: X X [0, oo) -> X a continuous deformation such that /''(ΦO, ί))
< F(x) for all x G ̂  and / > 0. For any subset 7 of I and K G R set
Yκ = {xE Y\F(x) < K) and Y*~ = {JC E 71 F(JC) < fc}. The set tf= {JC E
Jf| φ(x, t) — x for all t ^ 0} will be called the set of critical points. Assume
that

for any K and for any neighborhood U of {JC E K\ F(x) = K}
(*) there exists a constant ε > 0 such that F(x) — F(φ(x, 1)) > 2ε

for all JC E Xκ+ε - (Xκ~ε U £/).

Let Z C Y C X and assume 7 and Z are invariant under the deformation φ.
Suppose h E HJJί, Z) is nonzero. Set

(1.1) κ(*) = inf maxF(x).

/c(Λ) is called the critical level of h.

Note that we do not demand that K C Y. This will be used in the applica-
tions in §3. For many applications, e.g., in the proofs of Theorems A and B, it
is sufficient to assume K C Y.

Let h E HJJί, Z) be nonzero. Then for any neighborhood U
(\ 2) °̂  {χ e K\F(x) — κ(h)} in X there exist a z E h and an

ε > 0 such that | z |C y***)"* U (t/ Π Y). In particular, there
exists a critical point x with ^(x) = κ(h).

Proof. By continuity of the deformation φ there exists a neighborhood F of
{JC E tf|F(jc) = κ(Λ)} such that φ(x, 1) E ί/ for all x E F. By (*) there
exists an ε > 0 such that F(x) - F(φ(x91)) ^ 2ε for all JC E X*W+e -
(χκ(h)-ε y p̂ ) τ h e definition of κ(Λ) implies that there exists a z0 E h with
|z |C yιc(/')+ε. Since φ is continuous and Y and Z are invariant, z = φ(z0,1) is
also a cycle in A, and we have | z |C yκ(Λ)- ε u (t/ Π y). q.e.d.

It is not true in general that linearly independent homology classes give rise
to different critical points. There exists for example a differentiable function
on the two-torus with only three critical points, although the sum of Betti
numbers is equal to four.

Suppose that hv A2 E HJJί, Z) are nonzero, and that there exists a
cohomology class ω E i/*(7), * > 1, such that ω Π h2 - hλ. We say that hx is
subordinate to h2.

If ω Π A2 = hl9 then κ(A2) ^ κ(hλ)9 and equality implies that

(1.3) the restriction of ω to U Π y is nonzero, whers i7 is any

neighborhood of {JC E # | F(x) = κ(h2) = κ(hx)} in X.
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Proof. κ(h2)> κ(hx) since any cycle in h2 contains a cycle of Λj by the

definition of the cap product, see [25, p. 254]. Suppose κ(h2) — κ(hλ) — K. Let

i: U Π Y -> Y and j : Y -* (Y, U Π 7 ) be the inclusions. If ί*(ω) = 0, then

ω = j*(η). This implies that there is a cocycle Z in ω such that Z(σ) = 0 for all

simplices σ with | σ | C £/ Π Y. By (1.2) there exists a cycle z E h2 such that

I z IC Yκ~ε U (ί/ Π Y) for some ε > 0. Choose a subdivision z' of z such that

any simplex of z' is either contained in Yκ~ or in ί/ Π Y. Now Z Π z' is a

cycle in /*! with support | Z ( Ί z ' | C Y"~. This is a contradiction to the

definition of K = κ(Λj). q.e.d.

A sequence of homology classes hl9" -,hk of (Y, Z) is called a cΛα/« o/

subordinate homology classes if Λz is subordinate to A/+1, 1 < / < k — 1; A: is

called the length of the chain. We say that (Y, Z) contains k subordinate

homology classes if there exists a chain of subordinate homology classes of

(Y9Z) of length k.

We want to point out that in our version of Lusternik-Schnirelmann theory

the equality κ(ht) = κ(hi+ι) of critical levels does not in general imply the

existence of infinitely many critical points on this level. It may happen that

there exists only one critical point x and the restriction of the corresponding

cohomology class to U Π Y is nonzero for any neighborhood U of x, compare

(2.5). However, if Y is locally contractible and K C Y, then ω\U Π Y = 0 for

any sufficiently small neighborhood U of x E. K. From (1.2) and (1.3) we get

immediately the usual consequence of Lusternik-Schnirelmann theory:

If Y is locally contractible and K C Y, and if (Y, Z) contains

(1.4) k subordinate homology classes, then there exist at least k

critical points.

Applications to the space of closed curves

Λ(M) is a Hubert manifold with a natural Riemannian metric. The energy

functional E on Λ(M), M compact, is C00 and satisfies condition (C) of Palais

and Smale. As a consequence, E and the flow φ generated by -grad E satisfy

condition (*). Here K corresponds to the critical points of E in the usual sense,

i.e., closed geodesies and the point curves. For general facts about Λ(M) see

[14] and [20].

0(2) acts on Λ(M): for, c E Λ(M) and χ E 0(2) set (χc)(t) = c(χt),

where 0(2) acts on Sι as usual. This action of 0(2) is only continuous, but

each element of O(2) acts by an isometry. Hence E and grad E are invariant

under 0(2), and for any subgroup Δ C 0(2) we get an induced function

E/L: Λ/Δ -» R and an induced flow φ/Δ which satisfies condition (*) of

Lusternik-Schnirelmann theory, since (*) is satisfied by E and φ. Λ/Δ is also

locally contractible for any Δ in 0(2), but Λ/Δ is not a Hubert manifold since
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the action of 0(2) on A(M) is neither free nor smooth. The fact that O(2) does
not act freely is the main difficulty in computations of H^A/A). In fact,
H^(A/0(2)) is unknown, even for M = S". For any subset X C Λ(M) we will
denote the quotient X/O(2) by X, in particular Λ = Λ/O(2).

For each c G Λ w e define the iterates cq

9 q E Z, by cq(t) = c(qt). c is called
prime if c — dq implies q = ± 1 . The main difficulty in the applications of
critical point theory to the energy functional arises from the fact that cq is a
critical point if c is, but is considered geometrically the same as c. Thus (1.4)
cannot be used directly to show the existence of more than one closed geodesic.

Let c E A(M) be a curve which is fixed under some nontrivial element
χ E 0(2), i.e., χc = c. If c is not a point curve, and χ E 5O(2), then c is an
iterate c = dq, q> \. If χ E O(2)\5O(2), then c satisfies c = c~ι or some
reparameterizationχc, χ E 50(2), satisfies (χc)"1 = χc.

Let P = P(M) be the set of curves c G Λ(M) such that no element of
O(2), except the identity, keeps c fixed. Let V= V(M) = {c E Λ(M) |
lim,.^ Z£(φfc) = 0}. P and V are invariant under the gradient flow of the
energy functional and the action of 0(2). Both P and V are also open, and
hence P/Δ and F/Δ are locally contractible for any subgroup Δ of O(2). Note
that the energy flow retracts F/Δ into Fκ/Δ for any K > 0. In the next section
we will prove that (P, V Π P) contains the appropriate number of subordinate
homology classes.

1.5. Lemma. Let Lo be the length of a shortest closed geodesic on M. Assume

that (P,V Π P) contains a chain h]9- -,hk of subordinate homology classes with

«, n * / + 1 =hi9ωiEH*(P).

(i) If for every closed geodesic c E Λ and any sufficiently small neighborhood U

of c in Λ we have ωi; | U Π P = 0, then there exist at least k/m geometrically

different closed geodesies on M with lengths in [L o, ^2κ(hk) ], where m

< yJ2κ(hk) /Lo < m + 1.

(ii) // κ(hk) < 2LQ, ίΛeH there exist at least k geometrically different closed

geodesies on M with lengths in [L o, ]/2κ(hk) ]. These closed geodesies do not have

self-intersections if κ(hk) < 2/(M) 2, where l(M) is the length of a shortest

geodesic loop.

Proof, (i) If c E Λ has energy < LQ/2, then c E V since there is no closed
geodesic of energy < LQ/2. Hence κ(ht)> L\/2 since the hi are nonzero
homology classes. If κ(hx) < κ(h2) < < κ(hk\ then there are k distinct
critical points of energy κ(hx), -,κ(hk). These critical points are prime or
iterate closed geodesies. Since a closed geodesic has length > Lo and
(m + \)L0 > ]/2κ(hk), at least k/m of these are geometrically different. If
κ(hi) = κ(hi+ι) for some i, then there exist infinitely many closed geodesies of
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energy /c(/ιz). Otherwise there would exist a neighborhood U of (c G Λ | c is a
closed geodesic with £(c) = *(/*,)} in Λ such that ωj t/ Π P = 0 by the
assumption made on ω,. But this would contradict (1.3).

(ii) If c G Λ is a closed geodesic with E(c) < 2LQ, then the length of c
is < 2L0. It follows that c is contained in P. Since P is open and locally
contractible, the first statement in (ii) follows from (1.4). Since a closed
geodesic with a self-intersection is the union of two geodesic loops, and since a
geodesic loop has length > l(M), the second statement is clear, q.e.d.

If c is a closed geodesic, 0(2) c is a submanifold of Λ(M). c is called
nondegenerate if its orbit O(2) c is a nondegenerate critical submanifold of
E: A(M) -» R. The index of c (resp. nullity of c), denoted by ind(c) (resp.
null(c)) is equal to the index (resp. nullity — 1) of c as a critical point of
E: Λ -» Λ. We also set indo(c) = ind(c) + null(c).

1.6. Lemma. Let Lo be the length of a shortest closed geodesic on M, and let K

satisfy K < 2 L Q . Assume that all closed geodesies of energy < K are nondegener-

ate. If there exist k linearly independent homology class hl9- -,hk in H^(PK~ , V

Π Pκ~) of dimensions rl9- -9rk respectively, then there exist k distinct closed

geodesies cv—-9ck with lengths in [L0,j2ϊc), and indίc,-) = η. These closed

geodesies do not have self-intersections ifκ< 2l(M)2.

Proof. Since Pκ~ contains only nondegenerate critical circles, there are
only finitely many critical levels which we denote by αz and on each level only
finitely many critical circles. Hence there exists an ε > 0 such that all critical
points in pa+ε — p(«»-£)- have energy ar Let O(2)-yu be the finitely many
critical orbits of energy at and let Ttj be a submanifold of Λ transversal to
(9(2) γly at yijm Then ytJ is a nondegenerate critical point of E \ 7]y. Let U^ be a
Morse chart for E \ Ttj around γ/y. Then we have

H(uι u , Λ ί
HMJ ,ίί/ ) - | Z 2 ; w = i n d ( γ i v ) .

But since all closed geodesies in Pκ~ are prime, the projection U^ -> U^ is a
homeomoφhism onto a neighborhood of γ/y in Pκ~ if Iζ . is sufficiently small.
K < 2LQ implies as in (1.5) that a closed geodesic in Λκ~ is contained in Pκ~ .
Hence (*) is satisfied on 1 = Pκ~ and therefore also on Pκ~ . Since the
gradient flow on Pκ~ induces a flow on Pκ~ , this can be used to show that

j

Using the exact homology sequence of a triple as in [24, §5], it follows that

dimHm(Pκ- , P ε ) < 2 dim Hm(Ό*+\ U^~ή.
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It follows from the definition of V that the gradient flow retracts V Π Pκ~

onto Pε. This proves (1.6).

§2. Topological results

The space of biangles on the sphere

Let S" be the n-sphere with the metric of constant curvature 1. We assume

that S" is embedded in Rn+ι in the usual way, i.e., Sn = {x G Rn+ι | x%

+ +x2

n — 1}. A great circle is a closed geodesic of length 2m. The set G of

all great circles is a closed subset of A(Sn) and invariant under the action of

O(2).

G — G/O(2) C A(Sn) is called the set of unparametrized great circles. A

great circle c G G i s determined by the orthonormal two-frame (c(0), c(l/4))

in Rn+ι. With respect to this identification G is isomorphic to the Grassman-

nian of unoriented two-planes in Rn+ι. The homology and cohomology of G

with Z 2 coefficients can be described as follows:

For any pair of integers a, b such that 0<a<b<n— I, the set of

unparametrized great circles contained in Sh+ι = {x G Sn \xb+2

 = * * * = xn

— 0} which meet the subsphere Sa — {x e Sn \ xa+ι = = xn — 0} is the

carrier of a cycle [a, b] of dimension a + b. The homology class of [a, b] is

also denoted by [a, b]. The set of all [a9 b], 0 < a < b < n — 1, a + b — k, is a

basis of Hk(G). The dual class of [a, b] with respect to this basis is denoted by

(a, b). Note that the number of linearly independent homology classes is

n(n + l)/2.

D e f i n e s>0 by 2k + s = n< 2k+\ a n d s e t g(n) = 2n-s~\=n + 2k

— 1. Using formulas of Chern [12] for the cup product of G, Alber showed that

(0, l ) 2 " - 2 * - 2 u (1, \γ = (Π - l, n - 1), see e.g., [20, p. 50]. Hence the se-

quence of cohomology classes ωi9 K i < g(n) — I, such that ω, = (0,1) for

\ < i <2n — 2s — 2 and ωtf = (1,1) otherwise, gives rise to a chain of sub-

ordinate homology classes Λ,, -,hg(n), inductively defined by hg(n) = [n —

1, n - 1], ω,. Π λ m = A,.. Since H\G) = Z 2 and (0,1) 2 "" 2 ' " 1 = 0, any chain

of subordinate homology classes has length < g(n). The chain of the A/s can

be altered by changing the ordering of the ω/s.

Set θ = (Q_?) G O(2). We denote both the action of 0 on Λ and its

restriction to G by 0. Notice that θc = c"1. The Sι bundle G/θ -> G is the

sphere bundle of the canonical two-dimensional vector bundle over G. Hence

we obtain the following which will be crucial later on:

The Stiefel-Whitney classes of the Sι bundle G/θ -> G

(2.1) generate the cohomology ring of G. The first Stief el-Whitney

class is (0,1), and the second is (1,1); see [12].



230 W. BALLMANN, G. THORBERGSSON & W. ZILLER

A circle on Sn is an injective curve c: Sλ -> Sn

9 parametrized proportional to
arc-length, such that im(c) = Sn Π σ, where σ is a two-plane in Rn+ι with
rf(σ,0) < 1. The set C of all circles is a subset of A(S") which is invariant
under 0(2) and contains G.C— C/O(2) is called the space of unparametrized
circles.

For any two-plane σ in Rn+1 there is a unique parallel two-plane σ' such that
0 E σ'. This defines for any circle c on S" a unique great circle a(c) on Sn

parallel to c. a: C -> (7 is O(2)-equivariant and an open (« — l)-disc bundle.
For any ε E (0,2) let Cε be the subset of C consisting of circles c such that
||c(0) — c(l/2)|| < ε. a: C -> G is an open (AZ — l)-disc bundle, and one can
use the Thorn isomorphism T to compute the homology and cohomology of
(C, Cε). Define {a, b) to be the unique homology class in H^(C, Cε) such that
T{a, b} = [a, b], and set (α, b)' = α*(α, ft). From the definition of T (see [25,
p. 259]) follows (α, 6)' Π {c, </} = Σ {*,., £} if and only if (a, b) Π [c, rf] =
Σ[ei9 ft. Hence (C, Cε) contains a chain of g(n) subordinate homology class
whose dimensions lie in [n — 1,3(w — 1)]. It follows from (2.1) that (0,1)' and
(1,1)' are the Stiefel-Whitney classes of the Sλ -bundle C/θ -* C.

Remark. Let ij(C,_Cε) -> (A -Λ°, Λδ - Λ°) and 7: C -> Λ -Λ° be the
inclusions, where Λ = Λ(»SW), Aδ is defined with respect to the energy of some
metric, and ε, δ > 0 are sufficiently small. The lemma of Alber states that /# is
injective and carries subordinate classes into subordinate classes, see [2] and
(2.3.5) in [20]. This is equivalent to the surjectivity of j * and ι#{0,0} Φ 0. On
the other hand, it follows as in the proof of (2.2) below that Λ — Λ° -> Λ is a
weak homotopy equivalence. Hence TΓ^Λ — Λ°) — ττ (Λ). The canonical fibra-
tion Λ -> M has a section and hence ^(Λ) ^ ^-(Λf) θ πi+λ(M). Therefore
ir{(A -A°) = 0iίn>3. Using (6.3) in [10, p. 91], it follows that ^(Λ -A 0 )
= 0 if n > 3. This contradicts the surjectivity of 7* since (0,1) cannot be in the
image of 7*. One can also show that (1,1) is not in the image of 7* if n > 4. The
lemma of Alber becomes true if we replace Λ — Λ° by P and Aδ — Λ° by
P Π Λδ or P Π V. The proof is similar to the proofs of (2.3) and (2.4) below.

In the proofs of Theorems A, C, and D it will be essential to replace the
small circles by biangles. This was already used in [19] to push the cycles {0, /}
under the 8ττ2 energy level. We will only consider the space of great circles and
biangles with initial point on the equator. It will be possible to control the
lengths of these curves in the geometric constructions in Chapter 4. This space
is only invariant under the subgroup Γ of 0(2) generated by θ = (o_?) and
η — (~o_?), which turns out to be sufficient for our topological considerations.
Notice that Be = c"1 and (ηc)(t) = c(t + 1/2).

A closed curve c on Sn is called a biangle if c | [0,1/2] and c \ [1/2,1] are
half great circles and if c(l/4) φ c(3/4). Let B be the set of all biangles. B is
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invariant under the subgroup Γ of O(2) defined above. B contains the space G

of great circles. Let Be be the set of all biangles c such that c(0) lies on the

equator S"~ι = {x E Sn \ xn = 0} and let Ge be the set of great circles in Be.

Be and Ge are invariant under Γ and Γ operates freely on both spaces. Hence

Ge/T is a compact manifold since Ge is. We have dim Ge/Y = 2(n — 1) =

dimG, where G = G/O(2) as in Chapter 1. The preimage of an unparame-

trized great circle in G transversal to Sn~ι with respect to the projection

p : Ge/T -» G consists of one point. Hence p has degree 1 mod 2, i.e., p maps

the fundamental class [n — 1, n — 1]Γ of Ge/T on the fundamental class

[n- 1 , Λ - l ]o fG.

For any [α, ft] there exists a unique cohomology class ω such that ω Π

[Λ - 1, n - 1] = [a, ft]. Set [α, ft]Γ = p*ω Π[n- \,n- 1]Γ and (a, ft)Γ =

p*(a, b). Then pj[a9 b]τ = [α, 6]. In particular, / ^ is surjective and p* is

injective. From the naturality of cup and cap product it follows that (a, b)τ Π

[c, d]τ = Σ[ef , / ] Γ if and only if ( β , ft) n [c, rf] = Σ[ef , / ] .

For ε > 0 set J?e

ε = { c G 5 e | | |c(l/4) - (3/4) || < ε}. A biangle c <Ξ Be is

determined by the triple (c(0), c(l/4), c(3/4)) and c E Ge is determined by

(c(0), c(l/4)). The map

defines a Γ equivariant projection y:Be^> Ge. γ / Γ : Be/T -> G^/Γ is an open

(Λ — l)-disc bundle. Thus we may use the Thorn isomorphism T to identify the

homology of (Be, Bε

e)/T with the homology of Ge/T for 0 < ε < 2. There is a

unique homology class {a, b}B of (Be, B*)/Γ such that T{a, b}B = (α, ft}Γ. Set

(a, b)B — (γ/Γ)*(fl, ft)Γ. From the definition of the Thorn isomorphism and

properties of cup and cap product it follows immediately that (α, b)B Π

{c,d}B = Σ{ei9fi}B if and only if (α, 6 ) Γ Π [c, d]Γ = Σ[^, / J Γ . Hence

(^ e, BD/Y contains a chain of g(n) subordinate homology classes whose

dimensions lie in [n — 1,3(n — 1)].

Remark. Let i: (Be, Bε

e)/Y -*(P,VΠ P) be the inclusion. Our next step

will be to show that ι# is injective on the subspace generated by the {a, b}B. It

is clear that i*{a9 b}B = j*{a, b) where j : (C, C ε) -> ( P , F Π P ) is the inclu-

sion. In particular, it will follow that y'* is injective and maps subordinate

classes into subordinate ones.

On the topology of the space of closed curves

For any subgroup Δ C 0(2) set ΛΔ = Λ Δ (M) = {c E Λ | 3χ E Δ, χ φ id

such that xc = c}. As in section 1, P = P(M) = Λ(M) - Λ O ( 2 ) (M).

2.2. Lemma. Suppose U C A is open. Then the inclusion U — AA -* U is a

weak homotopy equivalence for every subgroup Δ o/ 0(2).
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Proof. We have to show that the inclusion induces isomorphisms on all
homotopy groups. Suppose /: Sm -> U is a continuous map. Since im(/) is
compact, it is contained in some Λκ~ , K < oo.

Let k be an integer such that k > 2κ/i(M)2. There is a deformation
retraction ru{k): Aκ~ -> Λκ~ , 0 < u < 1, which deforms Λκ~ into the finite
dimensional approximation Λ(fc, K), see [24, §16]. Here Λ(fc, /c) consists of
geodesic polygons c: S1 -» M with breaks in //&, 0 < / < / : , such that E(c) < K.
For all 0 < u < 1, lim^^r^A:) <> / = / by the definition of r, hence
im(ru(k) o / ) c £/ independently of w for fc sufficiently large. Then
rλ(k) o / : S m -> (7is homotopic to/and imίr^fc) ° / ) C Λ(fc, K).

We will now show that ΛΔ Π A(k, K) is the union of finitely many submani-
folds of codimension > A:dim(M)/2 if k is chosen appropriately. Since every
closed geodesic has length > 2i(M), we can choose k such that the multiplicity
of every closed geodesic in A(k, K) divides k. Then, if c E ΛΔ Π A(k, /c), there
exists a χ G Δ with χc = c and χ G Δ Π Z ^ or χ G Δ Π ΘZk. Therefore
χ(Λ(A:, /c)) C A(k, /c), and the fixed point set of χ | A(k, K) is a submanifold
of codimension > kdim(M)/2. We can now choose k such that this codimen-
sion is also greater than m + 1. It then follows from transversality arguments
that rx(k) o f can be deformed away from ΛΔ. This shows that the inclusion
U — ΛΔ -> U induces surjective maps on the homotopy groups. Similarly one
shows that it induces injections, q.e.d.

A C00 map f:Sk^>M induces a continuous map B(f): B -»Λ. If
B(f)(Be) C P, then we obtain a continuous map

for ε sufficiently small, and a map

B(f)/T:(Bβ9B;)/Γ-+(P9VnP)/T.

If TΪ-^^/Γ -> P is the projection, we denote TΓ O B(f)/T by 2?(/) :

2.3. Lemma. Suppose M is simply connected and Ht(M) = 0 /or 0 < / < k.
Iff: Sk -* M is differentiable, Z2-homologically nontrivial, and B(f)(Be) C P,

Remark. One can always approximate a map g: Sk -* M by a C00 map /
such that / — g and such that / is injective on an open set, which, after a
reparameterization, contains an open hemisphere of Sk. Then B(f)(Be) C P is
satisfied.

Proof. Under the projection (£ e, B
ε

e) -> (P e, Pe

ε)/Γ, (0,0}5 is the image of
a homology class Z which is represented by the fundamental class of (/% F ε),
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where F is a fibre of the (n — l)-disc bundle y:Be^Ge defined above. Let
Sk = Ik/dlk, where / = [0,1]. To the C°° map / we associate a continuous
map Ff:(Ik-\dIk-ι)-+(A,p) by Ff(x)(t) = f(χ9t). We also denote by
Ff G Hk_x(A) the image of iy under the Hurewicz homomorphism. By (2.2) the
inclusions P -> Λ and V Π P -> F are weak homotopy equivalences, and under
the isomorphisms Hk_x(A)->Hk_x(A,V)^-Hk_x(P9VΠP), Ff represents

The S1 action on Λ gives rise to natural homomorphism HJ^A) -
for any 0(2) invariant subset A of Λ. The image of a homology class h is
denoted by Sιh. Let p: Λ -> Λ/0 be the projection and e: Λ/0 -> M the
evaluation c -> c(0). Since e^p^SλFf is equal to the homology class of /, it
follows that p*SxFf φ 0 in Hk(A/θ).

Since Hk_x(P) ->Hk_x(P,V Π P), there exists a homology class X in

Hk_x(P) which represents B(f)#Z. Let p.P^P be the projection and

T: /?*(P) -> H^ + xiP/θ) be the transfer of the Gysin sequence of the S1

bundle q: P/fl -* P. It follows from the definition of τ that τp^X = p*SlX.
Since p^S^is not zero in Hk(A/θ\ it is a fortiori not zero in Hk(P/θ). Hence
p+XΦO.

To prove £(/)„,{(),0}B T^ 0 in Hk_λ(P, V Π P) it now_suffices to show that
/?** is not in the image of Hk_x(V Π P) ^ Hk_x(P). Now # Z ( F Π P )
^i/XF) ^i/z(Λ0), and since Λ° ^ M we get i/,(F Π P) = 0 for 0 < / < k.

Let Q be the set of all c E F Π P such that lim,^ ̂  φ,c is a point curve in some
fixed open convex ball in M. By (2.2) we have H^(Q) = 0 for * > 1, H0(Q) =
Z 2 . Q is invariant under the gradient flow of E and the action of 0(2). From
the Gysin sequences associated to Q -> β/0, P -> P/0 and β/0 -* β, P/θ -> P
it follows that Ht(Q) -> /^(F Π P) is an isomorphism for i < k — 1. Hence
J^X is in the image of Hk_x(Q) -» ^ _ , ( F Π P) if it is in the image of

Hk_x(V Π P) -> Hk_x(P). But then T/?,,* = p^S'^is in the image of Hk(Q/θ)
-* Hk(P/θ) by the naturality of T. On the other hand, the composition

Hk(p/Θ) "* Hk(λ/Θ) is obviously zero, whereas p^S1^is not zero

2.4. Theorem. Suppose M is simply connected and Ht(M) = 0/or 0 < / < A:.

If f:Sk-*M is C 0 0 . Z 2 homologically nontriυial and B(f)(Be)(ZP, then

B(f)* maps the subspace ofH*((Be, Bε

e)/T) generated_by the {a, b}B, 0 < a <

b^k- 1, injectiυely, and the image of B(f)* : ί f*(P) -^ H*(Be/T) contains

the subspace generated by the (a, b)B, 0 < a^b < k — 1. In particular, (P, F

DP) contains g(k) subordinate homology classes.

Proof. Since B(f)(Ge) C P we have B(f)(G) C P, and hence / induces a
map G ( / ) : G -» P. The pullback of the S1 bundle P/0 -> P is the 5 1 bundle
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G/θ -> G. Since the total Stiefel-Whitney class of the latter bundle generates
H*(G) by (2.1), G(f)* is surjective by naturality. From the definition of
(a, b)Γ it follows that the subspace generated by these is contained in the
image of (π ° Ge(f)/T)*, where Ge(f): Ge -> P is the map induced by / and
77: P/T -> P is the projection. Since (γ/Γ)* is an isomorphism, im !?(/)*
contains the subspace generated by the (a, b)B. B(f)^{090}B Φ 0 by (2.3). Let
x be an element in the subspace of H^((Be, B*)/T) generated by the {a, b}B. It
follows from the relation we have with the cap product of elements in i/*(G)
and Hj^G) that there is a cohomology class ω in the subspace of H*(Be/T)
generated by the (a, b)B such that ω Π x = {0,0}B. There is a class η E H*(P)
such that B(f)*η = ω by what we proved above. Hence we have 2?(/)*{(), 0}B

= B(f)t(ωΠx)=_ηn B(f)*x, and therefore B(f)*x Φ 0. The same argu-
ment shows that B(f)^ maps subordinate classes into subordinate classes,
q.e.d.

Let ω1 E H\P) and ω2 E H2(P) be the Stiefel-Whitney classes of the Sι

bundle <?: P/θ -> P. We saw in the proof of (2.4) that the pullbacks B(f)*ωx

and B(F)*ω2 generate the subspace of H^(Be/T) generated by the (a, b)B.
Therefore, if homology classes hλ and h2 in the subspace of H^((Be9 B*)/Γ)
generated by the {α, b}B are subordinate with respect to a cohomology class in
the subspace of H*(Be/Γ) generated by the (a,b)B, then B{f)J<hλ) and
B{f)*{h2) are subordinate with respect to some polynomial in ωλ and ω2. In
order to apply (1.5)(i) we have to investigate whether a closed geodesic c E Λ
has a neighborhood U such that ωt,\ U Π P = 0.

2.5. Proposition. Suppose c E Λ is a closed geodesic.

(i) // U is a sufficiently small neighborhood ofc in Λ, then ω{ | U Π P = 0

(ii) There exists a neighborhood U of c such that ω2\ U ΠP = 0 // <z«<ί o«/y //

ί/ze multiplicity ofc is odd.

Proof. Let £/ be a neighborhood of a closed geodesic c in Λ which lifts to a
tubular neighborhood U of 0(2) c in Λ. U has two connected components W
and 0JF. The Sλ bundle (£/ Π P)/θ ^ UΠP is equivalent to the oriented Sι

bundle WΠP ^ ΌHP. Henceί^ | UΠP = 0.
It follows from (2.2) that H°((U Π P)/θ) = ^ ^ ( t / Π P)/θ) = Z 2 . Hence

also i/°(ί/ΠP) = Z 2. We consider the Gysin sequence

>H2{ϋnp)ω2SH0(ϋnp)^Hι(wnp) ->Hx(unp) ->o.

Let m be the multiplicity of c. Then (χc | 0 < χ < \/m) is homeomoφhic to
5"1 and represents a generator of HX(W). Hence the S1 orbit of anyy G W Π P
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represents m times a generator of HX(W Π P). Since the transfer T : H0(U DP)

-+ Hλ(W Π P) maps the point class to the fundamental class of the fibre, it

follows that T is an isomorphism if m is odd and zero if m is even. Hence

H*(U Γ)P) = 0iϊmis odd and * > 1. Therefore also H*(Ό Π P) = 0 in these

cases. For m even we obtain HJJJ Π P) — 0 if * is odd and HJJJ ΠP) — Z2

if * is even and ̂  0. It follows that H*(U Π P) = Z 2 if * is even and ̂  0, and

ωί> is a generator of i/ 2 /(ϊ7 Π P) .

Remark. Using similar arguments it is also possible to calculate the integer

homology and cohomology of U ΠP. In fact, it is not hard to see that U DP

has the homotopy type of a classifying space BZm where m is the multiplicity of

c. Similarly VHP has the homotopy type of M X BO(2), and P has the

homotopy type of the homotopy quotient Λ XO(2)E. This shows that our

theory is analogous to the critical point theory on the homotopy quotient,

compare [17].

3. Some existence theorems for closed geodesies

3.1. Theorem. Let (M, g) be a simply connected, compact Riemannian

manifold with l(M) > 2π, where l(M) is the length of a shortest geodesic loop,

and H^M) = 0 for 0 < i < k. Suppose there is an injective differentiable map

f:Sk^>M which is not Z 2 nullhomologous and satisfies /*(g) < a2g0 for an

a E [1,2), where g0 is the metric of constant curvature 1 on Sk. Then (M, g) has

at least g(k) closed geodesies without self-intersections and with lengths in

[277,2aπ] C [ 2ττ, 4ττ). If all closed geodesies of length < 4τr are nondegenerate,

then there exist at least k(k + l)/2 such closed geodesies.

If M = Sn we can apply (3.1) to id : Sn -> Sn. If M = PmC, PmH, of P2Ca

respectively, and g0 is the canonical metric on M with maximal sectional

curvature 1, then M contains totally geodesically embedded spheres Sk of

constant curvature 1 which represent a generator of Hk(M\ where k = 2,4,

and 8 respectively. Since Ht(M) = 0 for 0 < i < k we get:

3.2. Corollary. Suppose M - Sn, PmC, PmH, or P2Ca respectively. If g is a

metric on Msuch that l(M)^2ττ andg < a2g0 for an a G[\92\ where g0 is the

standard metric on M with maximal sectional curvature 1, then (M, g) has at

least g(k) closed geodesies without self-intersections and with lengths in [2π9 2aπ],

where k = n, 2,4,8 respectively.

Remarks, (a) The Z2 Hurewicz theorem [18, p. 305], implies that there

exists a map f:Sk-*M which is not Z 2 nullhomologous for k — min{/ > 0 |

0}. /can be chosen to be smooth, but not necessarily injective.
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(b) The length of a shortest geodesic loop is a lower-semicontinuous function
on the space of metrics with the C1 topology, and hence an appropriate
renormalization of g0 lies in the C1 interior of metrics satisfying g < 4g0 and
l(M) ^ 2ττ. Notice that i(M) is only upper-semicontinuous in the C1 topology
(but continuous in the C 2 topology).

Proof of (3.1). The assumptions on / guarantee that B(f): (Be, Bε

e)/T ->
(P,VΓ\P) maps g(k) subordinate classes into subordinate ones by (2.4).
Since /*(g) < a2g0, the critical values of the homology classes B(f)^{a, b}B

are < 2a2π2. The first claim in (3.1) now follows from (1.5χii). Since the
k(k + l)/2 classes #(/)^{α, b} are linearly independent homology classes in
( P 2 β t V , V Π P 2 Λ 2 ) , the second claim follows from (1.6).

3.3. Theorem. Let M be a simply connected, compact Riemannian manifold
which is not a Z 2 homology sphere. Let k be the first dimension in which a
nontriυial homology class appears.

(i) // 1/4/?2 < 8 < K < 1, p some integer > 2, and i(M) > π, then there
exist at least ]k/(p — 1)[ closed geodesies with lengths in [2π, π/ Jδ], These
closed geodesies do not have self-intersections ifδ> 1/16.

(ϋ) // 1/16 <δ<K<l, i(M) > 77, and 3(k - 1) < n - 1, then there exist
at least g(k) closed geodesies without self-intersections and with lengths in
[2π,π/}/δ] C [2τr,47r).

Remark. The theorem applies to the projective spaces PmC, PmH, P2Ca
with k = 2,4,8 respectively. Here i(M)> π follows from the curvature as-
sumption since dim M is even. The condition 3(k — 1) < n — 1 is satisfied for
PmC and PmH if m ^ 3.

Proof. It follows from the Poincare duality that k < n/2. By the Z 2

Hurewicz theorem [18, p. 305], there is a map f:Sk-*M which is Z 2

homologically nontrivial. We can assume that / is smooth and that it is
injective on an open subset of Sk, which after a reparametrization contains a
closed hemisphere. This prevents a biangle from being mapped into ΛO(2) and

There exists an ε > 0 such that B(f)(B*) C F, and hence we get an induced
map B(f):(Be, B*)/Γ -> (i\ F Π P) which maps subordinate classes into
subordinate ones by (2.4). Hence (P,V Γ\ P) contains g(k) subordinate classes
with dimensions in [k — 1,3(k — 1)].

We want to show that k of these classes have a representative under the
τr2/2δ energy level in the proof of part (i) of the theorem and g(k) in the proof
of part (ii).

It follows from [8, (1.8)] that any closed geodesic c with L{c) > *n/ 4δ or
E(c) > π2/2δ has index >n— 1. Hence critical point theory implies that
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Hi(A,Aκ~) = 0 for i<n — 1, where K > π2/2δ is arbitrary. E.g., apply
[24, p. 121] to a finite dimensional approximation of Λ. Hence by (2.2),
i/,(P, Pκ~) = 0 for i < n - 1. The Gysin sequences of the covering (P, Pκ~)
-+(P, P"-)/0 and of the Sι bundle (P, Pκ~ )/θ -» (P, Pκ~ )_ imply
Hj(P,_Pκ~) = 0 for i < n - 1. The homology sequence of_th^trip]e (P, Pκ~ ,
VΠ Pκ~) then implies that Hi(Pκ~ ,VΠPK~)^ # , ( P , VnPκ~) is an

isomoφhism for / < n — 2 and surjective for i — n — 2. Since F Π P"~ is
a deformation retract of P Π F, it follows that any homology class in
i/,(P, F Π P), / < « — 1, has a critical level < /c, and since K > π2/2δ was
arbitrary, a critical level < τr2/2δ.

We first prove (ii). In this case all g(k) homology classes have critical
levels < π2/2δ since 3(k - 1) < n - 1. Since δ > 1/16 we can apply (1.5)(ϋ).

In part (i) we can choose k subordinate homology classes in dimension
k — 1, ,2(& — 1), which are subordinate with respect to the first Stiefel-
Whitney class ωλ of P/θ -» P. Indeed, the g(k) subordinate homology class in
(Be, B*)/Γ are obtained by applying the one- and two-dimensional cocycles
(0, \)B and (\,\)Bto {k — 1,/c— \}B. Since these cocylces can be applied in an
arbitrary order, and since there exist at least k one-dimensional ones among
them (see §2), the claim follows. Since k ^ «/2, we have 2(k — 1) < n — 1.
Hence these k classes have critical level < ττ2/2δ. It follows from (2.5) that
(1.5)(ϋ) applies. This proves (i).

Remark. In (3.1) we had to assume that/is injective, since changing/as in
the present proof could violate/*(g) < «2g0

If M is simply connected and a Z 2 homology sphere, then the Z 2 Hurewicz
theorem implies that there is a map f:Sn->M which is Z 2 homologically
nontrivial. With arguments as in the proof of (3.3) we get

3.4. Theorem. Suppose M is a simply connected compact Z 2 homology
sphere. Assume that \/p2 < δ < K < 1, p an integer > 2, and i(M)> π. Then
M has at least ](n — \)/(p — 1)[ geometrically different closed geodesies with
lengths in [2π,2π/ }/δ]. In particular, there exist two such closed geodesies if
δ > \/(n - \)2andi(M)>π.

Remarks, (a) Any compact Riemannian manifold has a closed geodesic of
length < 2π/}/δifK>δ>0.

(b) (3.4) implies that any metric with ((A: - \)/{n - I))2 < δ < K < 1 for
some integer k < n — 1 and i(M)>π has at least k geometrically different
closed geodesies with lengths in [2π, 2m/ ]fδ ].

(c) If also follows from (3.4) that any metric with 1/4 < K < 1 has at least
n — 1 closed geodesies. Arguments as in the proof of (3.3)(ii) show that any
metric with 9/16 < K < 1 has at least g(n) — 1 closed geodesies. Using a
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result of Tsukamoto, see [28], it follows that the proofs also work if 1/4 < K < 1

and 9/16 < K < 1 respectively. Notice that these proofs are, in contrast to the

proof of the better result in (4.1), much more elementary.

4. Closed geodesies on 1/4-pinched manifolds

4.1. Theorem. Suppose M is homeomorphic to Sn and 1/4 ^ 8 < K < 1.

(i) M has at least g(n) closed geodesies without self-intersections and with

lengths in [2π, 2π/ \/δ ] C [2π, 4π]. If all closed geodesies of length < 2m/ y/8

are nondegenerate, then there exist at least n(n + l)/2 such closed geodesies.

(ii) If all closed geodesies with lengths in [2π, 2m/ }/δ] have the same length /,

then all geodesies are closed of length I. If the closed geodesies with lengths in

[2π,2π/ Jδ] have only two different length values, then there exists a family of

closed geodesies of equal length in [2ττ, 2π/ V^] such that every point of M lies in

the image of some geodesic in the family.

Remark. It is easy to find surfaces of revolution which satisfy the condition

in the second part of (ii) with two different length levels. There also exist

surfaces of revolution such that all geodesies are closed of the same length /,

but K is not constant, see [9]. In particular, there exist perturbations of the

standard metric with this property.

The sphere theorem states that M is homeomorphic to S"1 if 1/4 < δ < ΛΓ < 1

and π{(M) — 0. This is proved by showing that one can cover M with two

balls: for each point/? and a point q furthest away from/?, two balls of radius p

with π/2y/8 < p < π around p and q cover M. One can then cover M with

geodesic quadrangles with corners at /?, q and on the equator consisting of

equidistant points from p and q. This enabled Klingenberg to represent the

classes {0,0}, ,{0, n — 1} by curves with energy ^ 2π2/δ if 8 > 1/4; see

[19].

In [27] Thorbergsson used the fact that one can cover M by balls of radius TΓ

around the endpoints of a geodesic segment of length π if 4/9 <K< 1.

Choosing a fixed ball of radius π/2 one can then perform the above equator

construction for each pair of antipodal points on the boundary of this ball.

Thorbergsson attempted to use this construction to push the classes {/, n — 1},

0 < / < n — 1, under the energy level 2π2/δ. However, the deformations

involved were only Γ equivariant and not O(2) invariant as claimed in [27].

Klingenberg observed that this is still sufficient to bring all the classes {a, b]

below the energy level 2<π2/8 if 8 > 4/9; see [21].

To extend Thorbergsson's idea to 1/4 < 8 < K < 1 we need the following.
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4.2. Lemma. Let K> 8 > 0 and γ : [0, it/yfδ] -» M a normal geodesic. Set

(i) Any r E M satisfies min{d(p, r), d(q, r)} < \iτ/ }/8.
(ϋ) Suppose 1/4 < 8 < K < 1 am//? φq.Ify is a normal geodesic emanating

at p, then there is precisely one t E (0,2π2/δ] such that d(p, γ(/)) = d(q, y(t)).

4.3. Lemma. Suppose 1/4 < K < 1 α«J assume that K is not constant. Given
a > 0 ί/zere exwi a β > 0 and a constant a, 0 < a < 1, swcΛ ίΛαί /or et e/j /?, #
w/7A d(p, q) < 7Γ + /? /Λere ex/rf,? α CM/*Û  cpq{t), 0 < / < I, fromp to q such that
(p, q, t) -β. c^(0 w continuous, smooth on {(/?, ί ) | </(/>,?)< *τ + /?} X [0, α]
α«J(?/ί {(/?, #) I J(/7, ̂ r) < 7Γ + jβ) X [α, 1], and such that E(cpq) < π2/2 + α.

Remarks, (a) If 1/4 < 8 < K< 1 andπx(M) = 0, theni(M) >π>π/2yf8.
Then (4.2) implies that M can be covered by two balls around p and q with
radius p, where 2π 2 /δ < p < TΓ, which proves that M is homeomorphic to Sn.
This proof differs from the usual proofs of the sphere theorem.

(b) In the proof of (4.3) we associate, as in [15] and [16], vector fields to
distance functions, such that the associated flow shortens distances. Our
presentation follows [15]. The essential observation is that the distance func-
tion does not have any critical points (in the sense of [15]) at distance π if
1/4 < K < 1. The curves cpq in (4.3) will be used to replace the minimal
geodesies connecting/? and q, which are not uniquely defined if d(p, q) > π.

Proof of (4.2). (i) Let cx be a minimal geodesic joining q and r, and c2 a
minimal geodesic joining r and p. If mm{d(q, r), d(r, p)}> π/2]f8, then
(cj, c2, γ) is a generalized δ-triangle of parameter > 2π/ }/8. This is a con-
tradiction by the Toponogov comparison theorem, see [11].

(ii) This follows from (i) as the corresponding statement follows in the proof
of (6.4) in [11].

Proof of (4.3). As in [15] we say that q is a critical point of the function
x -> d(p, x) if for every unit vector v at q there exists a minimal geodesic γ
from q to p such that <£ (ϊ(0)> v) < π/2. It follows from Klingenberg's
injectivity radius estimate that there is no critical point q with 0 < d(p9 q) < π.
We now prove that there is also none with d(p,q) = π:

Suppose q is a critical point with d(p, q) = π. Let C be the set of unit
tangent vectors at q tangent to minimal geodesies from q to p. It follows from
Lemma 6.9 in [11] that C is convex in the sense that the shortest great circle arc
joining t>, w E Sn~ι is contained in C if v Φ -w. Since we assume that K is not
constant, there is no closed geodesic of length 2 π on M by a result of
Tsukamoto; see [28]. Since i(M) > π there also does not exist a geodesic loop
of length 2ττ. Hence -v £ C if υ E C. But a closed convex subset of Sn~ι

containing no antipodal points is easily seen to be contained in an open
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hemisphere. This is a contradiction since q was assumed to be a critical point.
Therefore there exists no critical point q with d(p, q) = m.

We conclude that there is a βx > 0 such that there is no critical point q with
0 < d(p, q) < π + /Jj. If q is not a critical point, then there exists a C00 vector
field Â  in a neighborhood of # such that 11 Xp 11 < 1 and such that <£ (Xp9v)
< π/2 for all v tangent to a minimal geodesic from/? to q9 and, hence for all υ
tangent to a minimal geodesic from p to a point sufficiently close to #. Using a
partition of unity we get a smooth vector field Xp(q) on {(/>, #) | d(p, q) < TΓ
+ βx) such that || A ,̂(ήf)|| < 1 and such that d(p, Φpq(s)) is strictly monotoni-
cally decreasing for/? φ q, where Φpq(s) is the integral curve of Xp starting at q.

Choose 0 < a < 1 such that π2/a + 1 - a < π2 + 2α. There exists a /? > 0
such that d(φpq(\ — a), p)<π for all/?, # with d(p,q) *^π + /?. Define

.(') = - 0

— a). Thenwhere γ : [0, a] -» M is the unique minimal geodesic from/? to <
E(cpq) < π2/2 + α, and the lemma is proved.

Proof of (4.1). (i) We first prove this part of the theorem under the
assumption 8 > 1/4, since the main ideas of the proof seem to be clearer
without the additional arguments needed for the case 8 — 1/4. We then
explain the changes which have to be carried out in the case 8 = 1/4.

Choose a point p0 G M and set R — {r G M | d(p0, r) = π/2/8}. R is a
smooth submanifold of M diffeomorphic to Sn~x since m/248 <π < i(M).
For any r G R there exists a unique normal geodesic γr such that γr(0) = r and
yr(π/2)f8) = /?0. Set I(r) = γΓ(ir/ }[8) E R. I defines an involution of #.

We now construct a homeomorphism h: Sn -> M which maps the equator
of S"1 onto R. Let TV = (0, ,0,1) be the north pole and S = (0, ,0,-l)
be the south pole of Sn, and let A : TNSn -» ^ 0 M be an isometry. Let
q0EM be a point at maximal distance from p0. Then by (6.3) in [11],
nύn{d(p, p0), d(p,q0)} < m/2{8 < π for any p EM. Hence we can define
h: Sn -

h(x) =
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where Bt(y) denotes the closed ball of radius / around y in the corresponding
manifold. By (6.10) in [11] the complement of the ball Bm/2y^{p^ is π/y/δ-
convex. Hence any geodesic of length < π/2jδ starting at q0 meets the
boundary of the ball at most once. Therefore h is injective and hence a
homeomorphism. However, h is not necessarily differentiable. We make h
differentiable by reparametrizing h close to the equator and around q0 along
the geodesies emanating fτomp0 and q0. Denote this new map by /. /° c is in
P( M) for c G Be since/is a homeomorphism.

/induces a continuous and Γ equivariant map B(f): Be^> P(M). There is
an ε > 0 such that B(f)(B*) C V. Note that / is Z 2 homologically nontrivial
since/is a homeomorphism. By (1.5)(ϋ), (1.6), and (2.4) we will be done if we
can show that the classes B(f)^{a, b}B have critical levels < 2π2/δ < 8ττ2. It
suffices to show that the classes (B(f)/T)^{ay b}B have critical levels < 2π2/δ
in (P,KΠ P)/T. To do this we define a deformation of these cycles which
possibly brings a curve into a θ invariant curve. By excision we then bring
these cycles back into ( ? , F Π P)/T.

We first give some definitions. For r G R set

E(r) = {p<ΞM\d(r,p) = d(lr,p)}.

Since r and Ir are connected by a geodesic of length π/ }/δ, it follows from
(4.2) that E(r) divides M into two cells B+ (r) = {p G M \ d(r, p) < d(Ir, p)}
and B_(r) = {p G M \ d(r, p) < d(Ir, p)}. E(r) is diffeomorphic to Sn~x and
depends smoothly on r: U r e / ? E(r) is the set of zeros of the function g: RX
M -* R, g(r, p) = d(r9 p) — d(Ir, p). g is C°° in a neighborhood of g~ι(0) and
it follows from the Gauss lemma that g has 0 as regular value. Let Drs, r G R,
0 ^ s < 1, be the radial projection of M — (r, Ir} into E(r), which is well
defined by (4.2)(ii). The s parameter is chosen such that Drs(p) is smooth in
r, 5, and/? and such that DIr s(p) = Dr s(p).

We will deform / o c into the geodesic quadrangle with corners / ° c(0),
^/oc(0),i(/°c(l/4)), /°c(l/2), and Dfoφ)Λ{fo c(3/4)). We choose the
parametrization of the quadrangle such that the corners occur at ι/4, i =
0,1,2,3. Notice that this construction is Γ equivariant and that the geodesic
quadrangle has energy < 2iτ2/δ since each side has length < m/'UE. Since it
can happen that DfoC{0),x(f°c(l/4)) = DfoC(p)yl(foc(3/4)), this geodesic
quadrangle can be an element of Λ^ = {c G Λ | θc = c). Aθ is invariant under
Γ.

We now define the desired homotopy of B(f)/T. Choose η > 0 such that
2η < 1/4 and d(f ° c(0), /° c(t)) < d{f° c(l/2), /° c(0) for all c G Λe and
all / G [-2rj, 2η]. By the Γ equivariance of B(f) this also implies
d{foc{\/2\foC{t))<d{focφ\foC{t)) for / G [1/2 - 2η, 1/2 + 2η].
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Define Hx: Be X / -> P U Λ, by

7 ° c ( 0 , if/E[O,τj],

i I I O / ' I / I I I T / ^ - I n / Ύ\ I

/"o c ( 0 ) , 5 ( ί — η ) / η V 7 c \ * //> A 1 * ^" L '/> ^ ' 1 J>

l>/.c<σ).i(/oc(0). i f ί e [21J.1/4].

Extend this definition to ί G [0,1] such that Hλ is Γ equivariant. c = i/,(c, 1)

then satisfies ί/(c(0), c(0) < w/2i/S" < w for ί E [-1/4,1/4], d(c(l/2), c(ί)) <

fl-/2\/δ < w for ί e [1/4,3/4], and c(0) = / ° c(0), c(l/2) = / ° c(l/2), c(l/4)

= £/oc(0),i(/° c(l/4)), c(3/4) = /)/oc(o),,(/° c(3/4)). Thus we can define a

further Γ equivariant homotopy of #,( , 1), H2: BeX [0,1/4] -^?UΛ ( , by

where ypq is the unique shortest geodesic connecting/? and # and c — H{(c, 1).

if2 is extended to ί E [0,1] such that it becomes Γ equivariant. H2(c, 1/4) is

now the desired geodesic quadrangle. Hx and H2 are continuous since B(f) is

continuous, D is differentiate, and ypq and its derivatives depend continu-

ously on p and q if d{p, q) < π. Throughout the homotopy, 0 is the only

parameter value mapped into/ ° c(0). Therefore the multiplicity of all curves in

the deformation is equal to one. By compactness we can choose ε > 0 such that

H^c, s) E V for all c G Bz

e, all s, and / = 1,2. Hence we have a homotopy

between £ ( / ) / Γ and H2( , l/4)/Γ as maps from (Be9 Bε

e)/T -> (P U Λ,,

( F Π P ) U Λ^)/Γ. But (P, F Π P)/Γ -* (P U Λ,, ( F Π P) U Λ^)/Γ is an

excision map which induces an isomorphism in homology since Aθ/T is closed

and ( ( K n ? ) U Λ^)/Γ is open with respect to the topology of (P U Aθ)/T:

A0/T is closed since it is closed in Λ/Γ. ( ( K Π P ) U Λ^)/Γ is open because

V/T is open in Λ/Γ and F/Γ Π (P U Λ,)/Γ = ((F Π P) U Aθ)/T. Simi-

larly we have an excision map (P κ , F Π P*)/Γ -> ( P κ U ΛK^,(FΠ Pκ) U

Λ^)/Γ,fc = 2τr2/δ. We can thus first map a cycle (Jβ(/)/Γ)sl£{β, Z?}5 into

( P U Λ ^ , ( F Π P ) U Aθ)/Y and apply the above deformation to bring it into

( P κ U AK

Θ,(VΠ Pκ) U Aκ

θ)/T. Using the inverse of the second excision

map we get the cycle into (PK

9V Π P")/Γ. This cycle is homologous to

(Jβ(/)/Γ)s |e{α, Z?}β. Hence the critical level of (B(f)/Γ)+{a, b}B and therefore

also the critical level of £ ( / ) + { α , b}B is ^ 2ττ2/δ.

We now explain which changes have to be made in the case 8 = 1/4.

We can assume that K is not constant. By a result of Tsukamoto, see [28],

there does not exist a geodesic loop of length 2m, Choose/?0, q0 E M such that

d(p0, q0) = ί/(Λf) and set R = {/? E M | </(/?, /?0) = π). Note that P is not

necessarily a submanifold of M in contrast to the case 8 > 1/4 above. By (6.5)
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and (6.6) in [11] we have π < d(M) < 2ττ, and the proof of (6.6)(1) in [11] then
implies that d(r, q0) < π for any r G R. Let Sn be the sphere of constant
curvature 1 with north pole N9 south pole S, and equator Ro. Let A : 7^5"* ->
TpM be an isometry. Define h: Sn -> M by

expPo{2A o exp^(x)), if x G Bv/2(N),

and c^S,

0, iίx = S.

Since d(r, q0) < <n for any r E R,h is well defined but not necessarily injective.
As above we make h differentiable by reparametrizing h close to the equator
and around q0 along the geodesies emanating ίτomp0 and q0. Denote this map
by /. / clearly has degree 1 and hence is Z 2 homologically nontrivial. / can
possibly map a biangle in Be into Λ^. To overcome this difficulty we consider a
continuous family Ft: Sn -> Sn of diffeomorphisms where t G [0,1], Fo — id,
and Ft maps the equator into the open northern hemisphere for / φ 0. / ° Ft

maps Be into P for t Φ 0 since / ° i^ is a diffeomorphism on an open set
containing the equator and the northern hemisphere. Setf = f°Fx. Then (2.4)
applies to /. To prove the theorem for δ = 1/4 it suffices to show that the
images of the homology classes {a, b}B under / i n (P9VΠ P)/T can be
deformed under the energy level 8π2. As in the proof of the case δ > 1/4 it
follows by an excision argument, that it suffices to deform them in (P U
AΘ,(V Π P) U Aθ)/T under the energy level 8ττ2. Now/o Ft defines a defor-
mation of the images of the homology classes {a, b}B under/to those under/
in(P U AΘ,(VΠ P)U Aθ)/T. Hence it suffices to deform the images of the
homology classes {a, b}B under/under the energy level 8τr2.

Since K is not constant, there do not exist closed geodesies of length 4π by a
result of Tsukamoto-Sugimoto [28], [26], and therefore none of energy 8ττ2.
Hence there exists some a > 0 such that there is no closed geodesic with energy
in [87Γ2 - 16α, 8π2 + 16α]. Therefore it suffices, using the gradient flow of E,
to show that the critical level of any B(f)^{a, b} is < 8ττ2 + 16α. We will do
this by representing these classes by curves consisting of four of the curves cpq

in (4.3).
Notice that R does not necessarily have an involution as in the case δ > 1/4.

But we have a corresponding involution / on Ro which will suffice for our
purposes. As before we can use (4.2) to define the equators E(r) = {p G M\
d(f(r\ p) = d(f(Ir), p)} for r G Ro which divide M into two regions B+ (r)
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and B_(r). Note that f{r)φf(Ir) for every r E Ro since these points are

connected by a geodesic of length 2π by the definition of/. Thus E(r) is never

the whole manifold M. E{r) is not necessarily a submanifold of M since there

may exist points/? such that d(f(r)9p) = d'(f(Ir)9p) = π. Similarly the radial

deformation retractions Drs, r E Ro, ί G [0,1], of M — {/(r), f{Ir)} into

E(r) are well defined by (4.2)(ϋ) and also continuous, but may not be

differentiable. To make these retractions differentiable we proceed as follows:

Let N = {(r, o ) | r G Λ 0 , i ? G 7}(r)M, \\v\\ = 1}, and let g(r, t>) E (0, *r] be

the unique parameter such that yv(g(r, v)) E E(r). Choose a smooth map

h:NX (O,τr) X [0,1] ->(0, TΓ)

s u c h t h a t h(r, v9 ί , 0 ) = t, h(r, v91,1) > g ( r , υ ) - /?, a n d h(r, v, t,s) = t i f

t > g(r,υ) — /?/2, where β > 0 is chosen with respect to a as in (4.3). Define

'yΌ(h(r9 v9 t9 s))9 ifp = yΌ(t)9 v E Tf(r)M9 \\v\\ = 1

andJ(/7,/(r))<g(r,t;),

γo(A(/r,ϋ,ί, j))^ if/? = γ o ( 0 ^ G τ/(ir)M> IMI = 1

andd(p9f(Ir))<g(Ir9v)9

p, otherwise.

It is clear that D'r s(p) is differentiable in r, s and /?, and that D,s(p) defines

deformations of M - {/(r), /(/r)} such that DΓ'5 = Z);Γf5, rf(/(r), D'rs{p)) <

έ/(/(/r), D'rΛ(p)) < 77 + )8. We replace D by /)' in the definition of ff, above,

c = #,(c, 1) then satisfies rf(c(0), c(t)) ̂  π + β for r E [-1/4, 1/4],

rf(c(l/2), c(0) <π + β for / E [1/4,3/4], and c(0) = /° c(0), c(l/2) =

/o c(l/2). Furthermore, throughout the homotopy, 0 is the only parameter

value mapped into / ° c(0). Therefore the multiplicity of all curves in the

deformation is equal to one. In the definition of H2 we replace the segments

Yc(θ),c(s) by the curves c^0)^s) in Lemma 4.3. It is clear that Hλ and H2 are

continuous. The energy of H2(c, 1/4) is less than 8τr2 + 16α and hence the

critical level of B{f)^{a, b) is < 8ττ2. The rest of the proof is as above.

(ii) The images hx and h3 of the homology classes {0,0}B and {n — 1, n — 1 }B

are subordinate classes in (P, V Π P\ and it follows from the proof of (i) that

κ(hx) < κ(h3) < 2π2/δ < 8τr2 and < 8ττ2 if ^Γis not constant.

Let q: P/θ -» P be the projection. In the proof of (2.3) it was shown that

there exists an hλ E Hn_λ({P, V Π P)/θ) such that q+(hx) = A^ We first show

that Hn__x((P9VΓ\ P)/θ) = Z 2 since we will need that hx is uniquely de-

termined. Since M is homeomorphic to 5", we have Hn_x(P,V Π P) =

Hn_λ(P) ss Hn_x(A). Because ̂ (Λ) = 0 for i < n - 1 and irn_x(A) s ττrt(M)

= Z, it follows from the Hurewicz theorem that Hn_x(A) = Z2. Now the
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Gysin sequence of (P, VΠP)^(P,VΠ P)/θ implies Hn_x((P, V Π P)/θ)

= Z 2

Clearly κ(hx) > κ(A,). Since q is an Sι bundle, we have the transfer map

T : H^(P,Vn P) -» H* + ι(P, V Π P)/θ) of the associated Gysin sequence.

Define A3 = τh3. It follows from the naturality of the transfer that κ(Λ3) <

κ(Λ3). We will now show that hx and A3 are subordinate, which implies

κ(h3) ^ κ(hx). Hence κ(hx) < /c(^) < κ(A~3) < /c(A3).

We first compute the cohomology of G/θ = TxS
n/θ, where 0: Γ,̂ "1 -» T^S"1

is defined by θ(v) = -υ. H\TxS
n) = Z 2 for / = 0, #i - 1, Λ,2Λ - 1 and

vanishes otherwise. The generator of Hn~ι(TxS
n) is dual to the fundamental

class F of the fibre Sn~ι of η S " -> S". Under Γ14S
W -* Γ,S n /^ F is mapped

into twice the fundamental class of the fibre Pn~λR of TxS
n/θ -• S"\ Hence

Hn~\TλS
n/θ) -* Hn~\TxS

n) is the zero map. The generator of Hn(TxS
n) is

the pullback of the fundamental coclass [Sn] of S"1. Since ΓjS" -> 5"1 factors

through TxS
n/θ the pullback ωn of [5"] to TxS

n/θ is nonzero. From the Gysin

sequence of 7,5" -> TxS
n/θ we conclude that H\TxS

n/θ) - Z 2 for 0 < / <

2w — 1 with generator cή for 0 < i < n — 1 and ωn U ω1,"" for /i < / < 2/i — 1,

where ω, is the Stiefel-Whitney class of TXS" -> TxS
n/θ. In particular ωπ U

ωx and cow both have preimage under (G(/)/#)*, where G(f)/Θ:

P/β is the map induced b y / ( / a s in the proof of (i)): Let ώx be the

Stiefel-Whitney class of the covering P -* P/θ. By naturally (G(f)/Θ)*ώλ =

ωx. The evaluation ^(c) = c(0) defines a map e: P/θ -> M such that

eoG(f)/θ:G/Θ^M coincides with G/θ-*Sn^M. Hence ώπ =

Set l = ωHU ώn

χ-\ Then (G(f)/Θ)*l = [G/θ]. Let ij: H*{G/Θ) -* ί P

and ή: H*(P/Θ) -» H*~\P) be the transfers in cohomology of the corre-

sponding Gysin sequences. Then ηlG/β] = [G], and hence ξ = ή(ξ) G

H2n~2(P) satisfies G(/)*£ = [G]. As at the end of the proof of (2.4) it follows

that ξΠh3 = hx. By the definition of T and η and (12.14) in [13, p. 240], it

follows that q^(l Π τh3) = ή(£) Π Λ3, and hence

? (S Π A3) = 9 # ( J Π τΛ3) = ξnh3 = hx.

Since Hn_x((P, V Π P ) / ί ) = Z 2 it follows that { Π A 3 = Ale Set A2 = ώn Π A3

E H2(n_X)((P, V Π P)/0). Then ώ^"1 Π A2 = Aj and hence hx is subordinate

to A2 and A2 is subordinate to A3.

Assume first that all closed geodesies whose lengths lie in [27r, 2π/ \/δ ] have

the same length /. Then κ(A3) = JC(AΊ) = l2/2. From (1.3), applied t o l =

Λ/0, Y = P/θ and Z = (V Π P)/fl, it follows that 11 U Φ 0 for any neighbor-

hood U of AT = {c G P/β I c closed geodesic with £(c ) = I2/!} in P/fl. Since
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P/θ is a locally contractible metric space, it follows that H*(U) isjiaturally
isomorphic to H*(U) for any open subset U of P/θ, where H denotes
Alexander cohomolgy, see [25, (6.9.5)]. Since K is closed we have H*(K)
= lim H*(U), where the direct limit is over all open neighborhoods U of K9

ordered by U < V if V C U; see [25, (6.6.2)]. Hence | defines a nonzero
element in H2n~\K) and therefore Ή2n~\K) φ 0. On the other hand, K can
be embedded into TXM/Θ since a closed geodesic is determined by its initial
vector, and the topology induced on K by TXM/Θ coincides with the topology
induced by P/θ. We have again that ΪΪ*(K) = lim ΪΪ*(U), where the limit is
over all open neighborhoods U of K in TXM/Θ. If U is not all of_TxM/θ, then
U is an open (In — l)-dimensional manifold which implies H2n~λ(U) — 0.
Hence Ή2n~\K) = 0 if K is not all of TXM/Θ. Therefore K = TXM/Θ and all
geodesies are closed of length /.

If the closed geodesies with lengths in [2τr, 2ττ/ {8 ] have only two different
length values, then κ(hx) — κ(h2) or κ(h2) = κ(Λ3). Assume first K = κ(h2) =
κ(A3). From (1.3) it follows that ώn\UΦ0 for any neighborhood U of
^ = { c G P/0 I c closed geodesic with E(c) = K}. Suppose there is a point
x E M such that no c EL K meets x, i.e., given any representative c G P o f any
c E K, then c(t) Φ x for all / E S1. Then there is also a neighborhood ί/0 of K
such that no c E C/o meets x. Uo contains a cycle z such that ώn(z) φ 0. Since
ώn is the pullback e*[M] of the fundamental class [M] of M, e*(z) is a
fundamental cycle of M. Hence the carrier of e^(z) contains x, a contradiction
to the choice of l/0.

To discuss the case κ(hx) — κ(h2) = K, we first define a map HJ^P/Θ) ->
Hχ + X(M): Let σ be a singular λ -simplex in P/0. σ has a lift σ to P since
P -• P/0 is a covering. Then e o (S1 σ) is a (A: + l)-chain of M, where S1 σ is
defined as in the proof of (2.3). σ has exactly two lifts, σ and θσ, to P. Since we
use Z 2 coefficients we have e ° (S1 σ) — e ° (S1 θδ). Hence σ->e° (S1 σ)
induces a map £ of the singular chain complexes, e commutes with differentials
since d(Sι σ) = Sι 3σ. We denote by e also the induced map of the homol-
ogy groups.

Assume that there is some x E M such that no geodesic in the set K9 defined
as above, meets x. Let Uo be a neighborhood of K in P/θ such that no curve in
Uo meets x. Then there is a cycle z in Uo such that ώ"~!(z) ^ 0 by (1.3). It
follows that z represents the unique nonzero element in Hn_x{P/θ) — Z 2. On
the other hand, it is also clear that e maps the nonzero element in Hn_x(P/θ)
onto the fundamental class of M. Therefore the carrier of e(z) is equal to M,
contradicting the choice of Uo.
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Remarks, (a) In all three cases in the proof of (ii) it is essential to work in
(P, V Π P)/θ. For example, in the first case we use the embedding of K into
TXM/Θ. Note that there is no such natural embedding of K.

(b) As claimed in Theorem B, one can prove (ϋ) also under the assumption
g < a2g0, 1 < a < 2, and l(M) > 2π, where the lengths of all closed geodesies
considered are in the interval [2 π, 2 πa\. This follows as in (ii) since the
assumptions imply κ{hλ) — κ(h3) and κ{hx) — κ(h2) or κ(h2) = κ(h3) respec-
tively.

(c) The method of the proof of (ii) can also be used to prove the following
result claimed by Lusternik and Schnirelmann; see [22, p. 82]: If the closed
geodesies without self-intersections on 5 2 with respect to some Riemannian
metric g all have the same length a, then all geodesies on (S2, g) are closed of
length a and have no self-intersections. If the lengths of the closed geodesies
without self-intersections only take on two values, then there is a family of
closed geodesies without self-intersections and of constant length which meets
every point of S2.

(d) It is interesting to note that one can easily prove the following perturba-
tion version of (4.1)(i):

Let g , , 0 ^ ί < l , b e a C 2 family of metrics on 5" such that g0 has constant
curvature 1 and such that the sectional curvature Kt of gt satisfies 1/4 < Kt < 1.
Then g, has g(n) closed geodesies without self-intersections and with lengths in
[2τr,4τr].

To see this let C be the set of metrics g such that 1/4 < Kg < 1, endowed
with the C 2 topology. Let g E G. If g has a closed geodesic of length Aπ, then
Kg = 1 or 1/4 by a result of Tsukamoto-Sugimoto; see [28] and [26]. Hence
there exists an a > 0 and a neighborhood U of g such that no g' G U has a
closed geodesic with length in (87Γ2 - α, 8ττ2). It follows that (^87r2~ , Pg

ε) has
exactly as many subordinate homology classes as (P*™ ~, Pg,). Therefore the
set A of metrics g G G such that (Pg

S7τ2~, Pg) contains g(n) subordinate
homology classes is open and contains g0. The same arguments imply that
G — A is open, and hence A contains the connected component of g0 in G.

Similarly it follows that the number of subordinate homology classes of
(P 8 7 r 2 ~ , Pg) depends only on the connected component of g in G.

5. Stability properties

In this section we discuss some properties of the linearized Poincare map of

the closed geodesies found in the previous sections. For definitions we refer to

[8].
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5.1. Theorem. Let δ < K <: 1. Suppose that c is a closed geodesic with
L(c) > 277 and ind(c) < k, where k is some integer with n — 1 < k < 2(n — 1).
Then the following hold.

(i) δ > (k/2(n — I)) 2 implies that c is nonhyperbolic.
(ϋ) δ ^ ((2s + 3)/(2s + 4))2, s = k - (n - 1), im/?//£tf ί t o ίAe linearized

Poincare map of c has at least 2(n — 1) — k Jordan blocks JR(eιφ, m, σ) with
0 < φ < π and σ > 0. 7/φ T^ 0, /Aew /w w 0*ϋ tfwd σ = + 1 .

(iii) δ > 9/16 W A: < 3(« - l)/2 /m/?//^ /Λαί /Λ r̂e βjcwί αί feα^ 3(« - 1) -
2k Jordan blocks with 0 < φ <π and σ > 0.

5.2. Theorem. Lei δ ^ Λ ^ 1. Suppose that c is a closed geodesic with
L(c) < 27r/ Jδ and indo(c) > k, where k is some integer with 2(n — 1) < k <
3(n- 1). Then the following hold.

(i) δ > (2(n — \)/k)2 implies that c is nonhyperbolic.
(ϋ) δ > ((2s + 4)/(2s + 5))2, s = 3(« - 1) - A:, /mp//^ ίΛαί ίΛe linearized

Poincare map of c has at least k — 2(n — 1) Jordan blocks JR(eιφ

9 m9 σ) w/ίλ
0 < φ < 7Γ αnrf σ ^ O J / φ ^ O , ίΛe« m w odrf and σ = - 1 .

(iii) δ > 16/25 and k > 5(n - l)/2 //πp/μ that there exist at least 2k -
5(n — 1) Jordan blocks with 0 < φ < π and σ < 0.

Proof. Notice that for all pinching assumptions δ > 1/4. Hence by results
of Tsukamoto and Sugimoto we can assume L(c) > 2π (see [28]) and L(c) <
2ττ/v/δ (see [28] and [26]).

(5.1)(i) then follows as at the end of the proof of [8, (3.9)].
Assume now that y/8 > p/2q. Then L(cq) > 2πq >pπ/Jδ, and hence

ind(c«) > p(n - 1) by [8, (1.8)]. As in the proof of [8, (3.3)] it
follows that there exists a z with zq = 1, z φ 1, such that I(z) — 7(1) ^
(p(n — 1) — kq)/(q — 1). To prove (5.1)(ii) choose/? = 25 + 3 and q = s + 2.
Then 7(z) - 7(1) > 2(« - 1) - k - (s/(s + 1)), and hence (5.1)(ii) follows
from [8, (3.2)]. Similarly, for (5.1)(iii) choose p = 3 and q — 2. This implies
I(z) - 7(1) > 3(Λ - 1) - 2ik.

To prove (5.2)(i) choose a rational number p/q such that L(c) <pπ/q <
2π/{E. Then L(cq)<pπ, and hence indo(c^) ^/?(n - 1) < 2q(n - I)/]fδ
< qk< ^findo(c) since \/δ > 2(n — \)/k. Therefore c is nonhyperbolic by [8,
(2.3)].

Assume now that \/δ ^2q/p. Then L(cq) < 2mq/ \/δ ^^TΓ, SO that [8,
(1.9)] implies indo(c^) <p(n — 1). Hence there exists a z with zq = l9 z ¥= I,
such that 70(z) - 70(l) < -(kq - p(n - \))/(q - 1). To prove (ϋ) let q = s
+ 2 and p = 2s + 5. This implies 70(z) - 70(l) < -(k - 2(n - 1)) +
s/(s +1), and (ii) now follows from [8,(3.2)]. To prove (iii) let q = 2 and
/> = 5. Then 70(z) - 70(l) < -(2k - 5(n - 1)).
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Remark. As in [8, (3.3)] and [8, (3.4)] one could estimate the number of

Jordan blocks with eigenvalues on the unit circle and their angles as δ

increases.

In Remark (b) following [8, (4.2)] we gave a local example with K— 1,

ind(c) — k, n — 1 < k < 2(« — 1), such that all eigenvalues of the linearized

Poincare map are on the unit circle, but k — (n — 1) of them could be chosen

to be - 1 . Notice that Jordan blocks with eigenvalues -1 cannot be detected

with our methods. This shows that in (5.1) one cannot obtain more than

2(n — 1) — k Jordan blocks on the unit circle with our methods. A similar

remark applies to (5.2).

In Chapter 4 we showed that there exist g(n) closed geodesies with lengths

in [2π,2π/}fδ] if πx(M) = 0 and 1/4 < 8 < K< 1. In order to apply (5.1)

and (5.2) we have to find estimates for their index.

If all closed geodesies of length < 4ττ are nondegnerate, we can apply (1.6):

For each a, b,0 < a < b < n — 1, there exists a closed geodesic c with length

in [277,2ττ/ yfδ ] and ind(c) = indo(c) = α + 6 + / i - l . Hence ]n2/2[ of these

closed geodesies have ind(c) — indo(c) ¥= 2(n — 1). Using (5.1)(i) and (5.2)(i)

they are nonhyperbolic if δ is sufficiently large. The strongest pinching which

we need occurs if indo(c) = 2{n — 1) + 1, and hence we obtain ]n2/2[ nonhy-

perbolic closed geodesies if δ > ((2n — 2)/{2n — I))2.

To get an estimate for the number of nonhyperbolic closed geodesies in the

general case we need the following two lemmas.

5.3. Lemma. Suppose i(M) > π and K < Sπ2. IfhG Hk(Pκ~, V Π Pκ~) is

nonzero, then there exists a closed geodesic of energy κ(h) satisfying ind(c) < k

< indo(c).

Proof. Let κ(h) = a. If (5.3) is not true, then every closed geodesic of

energy a satisfies ind(c) > k or indo(c) < k. Given ε > 0 we can approximate

the metric g by a metric g* in the C2 topology such that g* has only

nondegenerate closed geodesies and such that (1 — ε)g < g* < (1 + ε)g, see

[1]. If we set P% = E~ι[0, /?], where E^ is the energy of g*, we have

pa(l-ε)2 ς- pa(\-ε) Q pet Q pa(\+ε) ς- pa(\+ε)2^

We can furthermore assume that all closed geodesies of g* in P £ ( 1 + ε ) 2 —

pα(i-ε)2- satisfy ind(c) φ k. Otherwise we can take a sequence εz -> 0 and

metrics gy -> g such that all closed geodesies of g, are nondegenerate, and such

that g, has a closed geodesic c, with ind(c,) = k and Efa) e [α(l - ε7)
2,

α(l + ε,)2]. But then a subsequence of the ct converges to a closed geodesic c

of g with energy α, and by continuity of the eigenvalues of the Hessian,

ind(c) < k ^ indo(c).
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As in the proof of (1.6) it follows that Hk{Pf+ε)\ P ^ " ε ) 2 ) = 0 since there

exist no closed geodesies of g* of index k in P £ ( 1 + ε ) 2 _ - P£ ( 1 ^ ε ) 2 ~^But by the

definition of α, there exists a representative of h in {p«V+e\ γ n p«( 1 + ε)) ? and

since V contains no closed geodesies, also one in (i>α(1 + ε)5 γ π Pε). But since

(Pa^+ε\VΠ Pε) C (P£ ( 1 . + ε ) 2 , Pl(l~ε)2), the above implies that h has a repre-

sentative in (Pl(l~ε)\ VDPε)C ( P α ( 1 - β ) , V Π Pε) which contradicts the defi-

nition of α.

5.4. Lemma. Suppose i(M)> π and K < 8ττ2. Let hx and h2 be two sub-

ordinate homology classes in (PK~,V Π Pκ~) with κ{hx) = κ(h2) = «. ΓΛe«

/Λere exwί infinitely many degenerate closed geodesies of energy a.

Proof. If there exist only finitely many degenerate closed geodesies yx, , yk

of energy α, let ί̂  be pairwise disjoint contractible neighborhoods of γ, in Pκ~.

Then there exist only finitely many nondegenerate closed geodesies σ1? ,σz of

energy a which are not contained in Ul9-—9Uk. By choosing the JJi ap-

propriately, we can assume that none of the σy's lies in Wt. Choose contractible

neighborhoods Wt of σ, such that the ί/l9 , ί 4 , Wl9" 9Wι are pairwise

disjoint. Then (/,,-• -9Uk9 Wλ9 —9Wι cover the set of closed geodesies of

energy α, and one obtains a contradiction to (1.3) since the cohomology of

Ux U U Uk U Wλ U U Wt vanishes in positive dimensions.

Remark. One could expect that the existence of / subordinate homology

classes hλ9-"9ht in (Pκ~, V Γ\ Pκ~) of dimension kλ9—-9kι implies the ex-

istence of / closed geodesies cl9- ,c7 with E(ct) — K{ht) and indίc,-) ^ kt <

indoί^).

5.5. Theorem. If M is homeomorphic to Sn and {{In - 2)/{In - I)) 2 < 8 <

K< 1, then there exist at least g{n) — 1 nonhyperbolic closed geodesies on M

without self-intersections and with lengths in [2π,2π/ y/δ]. If nψ 2k, then there

exist at least g{n) such closed geodesies. If all closed geodesies of length < 4ττ are

nondegenerate, then there exist at least ]n2/2[ such closed geodesies.

Proof. The g{n) homology classes in (4.1) have dimension in [n — 1,

3(« — 1)]. By (5.4) we can assume that the critical levels of these g{n)

homology classes are all different, since null(c) = dimker(P — id) implies that

a degenerate closed geodesic is nonhyperbolic. Unless the homology class has

dimension 2{n - 1), (5.3) together with (5.1)(i) and (5.2)(i) implies that the

corresponding closed geodesic is nonhyperbolic if the pinching is appropriate.

The strongest pinching we need occurs if k — 2{n — 1) + 1, hence 8 >

{{2n — 2)/{2n — I)) 2 suffices. This implies the existence of g{n) — 1 nonhy-

perbolic closed geodesies as claimed.

If n Φ 2k, the sequence of g{n) subordinate homology classes is obtained by

applying at least once the cap product with a two-dimensional cohomology

class. Since the cap product with cohomology classes can be performed in



EXISTENCE OF CLOSED GEODESICS 251

arbitrary order, we obtain a sequence of g(n) subordinate homology classes

none of which has dimension 2{n — 1).

The case where all closed geodesies of length < 4ττ are nondegenerate was

discussed above.

5.6. Theorem. Let M be a simply connected compact Riemannian manifold

which is not a Z 2 homology sphere. Assume that 1/16 < 8 ^ K < 1 and i(M) >

π. Let k be the first dimension in which a nontrivial homology class appears. If

4(k — \) < n — 1, then there exist at least k nonhyperbolic closed geodesies

without self-intersections and with lengths in [2π, π/ Jδ]. If 6(k — 1) < n — 1,

then there exist at least g(k) such closed geodesies.

Proof. The homology classes considered in the proof of (3.3)(i) (resp. (ϋ))

have dimensions < (n — l)/2 if 4(k — 1) < n — 1 (resp. 6(k — 1) < n — 1).

The proof now follows from (5.3), (5.4), and [8, (3.8)].

Remark. This theorem applies to PnC and PnU if l/\6 < K < I. There

exist two (resp. four) nonhyperbolic closed geodesies on PnC (resp. PnH) if

n > 3 (resp. n > 4), and there exist three (resp. seven) such closed geodesies if

n > 4 (resp. n > 5). Notice that in [8, (3.9)] we obtained the existence of one

nonhyperbolic closed geodesic on these spaces under weaker pinching assump-

tions.
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