
J. DIFFERENTIAL GEOMETRY
17 (1982) 643-653

RIEMANNIAN MANIFOLDS WITH BOUNDED
CURVATURE RATIOS

ERNST A. RUH

1. Introduction

The following classical result of Schur is well-known: If the sectional
curvature of a riemannian manifold of dimension greater than two at every
point is the same for every element of the grassmannian of tangent 2-planes,
then the curvature is constant over the manifold. It is natural to ask what can
be said if the ratios of sectional curvatures are close to one only. Gribkov [3]
shows that not much can be said for open manifolds. He proves that even if
the ratios of the curvatures are arbitrarily close to one, the variation of the
curvature over the manifold can still be arbitrarily large.

In this paper we prove that if the riemannian manifold is compact, the
sectional curvature is positive, and the curvature ratios are close to one, then
the manifold is diffeomorphic to a spherical space form. This result is new even
if we specialize to simply connected manifolds and assert the existence of a
homeomorphism only. The well-known sphere theorem of Berger [1] and
Klingenberg [4], while optimal in other respects, does not apply under the
above local pinching assumption.

Basically, the result is a consequence of the second Bianchi equation and the
Calderόn-Zygmund inequality. We prove that the curvature R is close to a
certain local average R whose covariant derivative is small. Techniques similar
to those of [5] provide a new metric connection v ' o n M whose curvature R' is
close to R and whose torsion 7" is small. As a consequence, [5, Theorem 2]
applies and yields the result.

We wish to thank Chuu-Lian Terng for suggesting improvements in the first
version of this paper.
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2. The result

Let M denote a riemannian manifold, and K its sectional curvature. We
introduce the following concept of local pinching.

Definition. The sectional curvature K is locally δ-pinched if there exists a
positive function A: M -> R such that at every point x G M the inequality
δA(x) < K < A{x)Yιo\άs.

Theorem. There exists δ = δ(n) with \ < δ < 1, such that any compact
locally δ-pinched manifold of dimension n is diffeomorphic to a spherical space
form Γ \ S".

The diffeomorphism constructed in the proof is in fact an almost isometry in
the sense that the dilatation of the differential is controlled in terms of (1 — δ)
—not just (1 — δ)A(x). The curvature of the model must be chosen to be the
average of the scalar curvature of M. If G is the isometry group of M, then G is
isomorphic to a closed subgroup of the isometry group of the spherical space
form M — Γ \ Sn of the theorem, and the diffeomorphism is equivariant with
respect to the actions of G on M and M respectively.

3. The proof

For convenience assume that the metric is normalized such that the sectional
curvature K satisfies 0<K<\. As is well-known, the space of 4-tensors
having all the symmetries of the riemannian curvature tensor R decomposes
into three subspaces which are irreducible under the action of the orthogonal
group. The three components of R correspond to scalar curvature, trace-less
Ricci tensor, and Weyl tensor. Let n(n — \)S denote the trace of the Ricci
tensor. The factor n(n — 1) is chosen such that S is the average of the sectional
curvature. Let g/y and R^ denote the components of the riemannian metric and
the trace-less Ricci tensor respectively.

The assumptions of the theorem imply that, for 1 — δ sufficiently small, the
estimate

(1) | * l 7 | < e S

can be achieved for any ε > 0. The second Bianchi equation implies the
following well-known equation relating scalar curvature and trace-less Ricci
tensor

( 2 ) * » = ( H - ! ) ( , - 2 ) t * 1 ' * ' - ^
where, in the usual tensor notation, the index after the semicolon denotes
covariant derivative, and the Einstein summation convention is in effect.
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The main point in the proof is a study of the positive real valued function S.

The main tool is the Calderόn-Zygmund inequality. We refer to [2, Chapter 5:

Potential theoretical approach] for background material. To state this inequal-

ity let

with ω(x) positive homogeneous of order zero on Rn be smooth for J C ^ O ,

f ω(x) = 0, where the integration is over the unit sphere in Rn. A function

k(x) with the above properties is called a singular kernel. For Ψ with compact

support in Rn let

k*ψ = jk(χ-y)Ψ(y)dy.

The Calderόn-Zygmund inequality (compare [2]) states

(3) | |* * Ψ | | i f

where const, is a constant depending on ω, 1 < q < oo, the support of Ψ, and

I I * I I L = (f\Φ(x)\qdx)ι/q. In addition to using this inequality directly, we

also use a consequence, the interior regularity theorem for the Laplace opera-

tor.

The general strategy of the proof is as follows. Because R^ is small, (2)

indicates that S is close to a constant function. The main work in the proof is

to determine in which sense this is true. To do this we define an average S of S

over small balls. It turns out that S is nearly constant, and \\S — S\\L is

suitably small compared to supS. We obtain this estimate by studying a

function Q(x) = P(S — S)(JC), where P is a parametrix for the Laplacian. It

turns out that on one hand Q solves ΔQ = S — S up to a small error, and on

the other hand that the second derivatives of Q are suitably small in Lq. Both

estimates combined yield that 11S — S11L is small. The main tool for the above

estimates is the Calderόn-Zygmund inequality

The estimate on 11S — S \\ r allows the definition of a new metric connection

V' which satisfies the conditions of the comparison theorem [5, Theorem 2]

with the sphere Sn as model. The method here is essentially the same as in [5],

In addition to the estimate on IIS — S | | L , we need an upper bound for the

diameter of M. This bound is obtained by Jacobi field estimates.

The estimates in the proof are done in terms of the following norms. Let /be

a real valued function on M, and

(4) 11/11= sup|/(*)|,
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where sup denotes the supremum over the manifold M. To define the Sobolev

norm involving s derivatives measured in Lq, let exp: TpM -» M denote the

exponential map. We define

(5) \\A\s,q= SUP
q \ v«f

dy\ ,

where Θ/ΘJC", in standard multi-index notation, denotes a derivative of order

I a I , Θ/ΘΛ:7, | /1 = 1, are euclidean coordinate vector fields in TpM, and Bx(0) is

the ball with radius 1 and center 0 G TpM.

Let BJO) C TpM denote the ball with radius π and center 0. Because we are

interested in local properties of S we let S, without change in notation, denote

the pull back of S o n M via exp: TpM -* M to BJG). Next we write (2) in terms

of euclidean coordinate vector fields 3/3xz and replace the covariant deriva-

tives by their coordinate expressions. We obtain

where L — Lx + Lo is a first order differential operator with leading term

Lx =Σai(d/dxι) whose matrix coefficients at are constant, and Φ is the

component matrix gιjRim in terms of the euclidean coordinate system chosen

in TpM. Because of (2) the norm of each coefficient in at is bounded by

l/(w - \)(n - 2). If we restrict L to a ball B2(0) C TpM with radius 2, then

the coefficients of Lo as well, via Jacobi field estimates due to the normaliza-

tion 0 < K < 1 of the sectional curvature, are bounded by a constant depend-

ing on the dimension. Thus the following estimate holds:

(7) k l+lA>l< c»
where c in this inequality, as well as in the remainder of the paper, denotes a

constant depending on the dimension of M only. Similarity, due to (1) the

component matrix Φ satisfies

(8) |Φ| < cεS.

Because the symbol 5 is used for a function on M as well as its pull back to

Bπ(0) C TpM, the definitions (4) and (5) are ambiguous. To avoid this problem

we let \\S II s q denote either the norm (5) for S on M or the supremum over

p G M of the norms of the pull backs of S to 2^(0) C TpM. These norms are

equivalent.

Next we define a local average S of S as a function on Bπ(0) C TpM as

follows:

(9) S(x)=[ η(\x-y\)S(y)dy,
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where 17: R -> R is a nonnegative function supported in 11 \ < p, η = const, in a
neighborhood of zero, and j B ( x ) η(\ x — y \)dy = 1. We will be interested in
S(x) for I x I < 2 only and will choose the radius p of the ball Bp(x) with center
x G Tp M small.

Integration by parts implies

gradS(;c)= / τj(| x — y |)grad S'(>')ί/v.
B (x}

A fixed choice of η yields | dη |< cp~ ( n + 1 ) with c depending on dim M only.
(1) and (6), together with inequalities (7) and (8), via integration by parts yield
for|jc|< 1,

(10)

To estimate S — S let cn be chosen, compare [2, p. 211], such that the

identity
/{y]_2dy]n_2

holds, where Δ is the Laplace operator and / is a real valued function with
compact support in Rw. In addition, let θ: R -» R denote a cut-off function
with support in 11 \< 1 and θ(t) — 1 for | /1< \. For | x \< 1 we define

(12) β(,) = cj f ( | X ~ ^ ( 5 - S)(y)dy.

The following two lemmas state the main estimates of the proof. The
functions S, S and Q are as defined above and the sectional curvature of M is
normalized to 0 < K < 1.

Lemma 1. The gradient of Q satisfies the inequality

(13) ||grad<2llu<c^(||S||+||S||o,9).

Lemma 2. Q satisfies the Laplace equation ΔQ = S — S up to an error

estimated by inequality

(14)

Since Δ involves only second order derivatives, Lemmas 1 and 2 combined

yield

The triangle inequality implies

||S - S||<u < cfε(\\S\\
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and for ε small enough we obtain the Main Estimate

(15) | | ,S-S| |o,,<c^| |S | | .

Proof of Lemma 1. (12) by integration by parts gives

grad Q(x) = cj θ^X~l\ grad S(y)dy
I χ ~ y\

= /,(*) + I2(x).

The smoothing property of the kernel \x — y\2~" together with (10), for p

yields

(6) and integration by parts imply

y\

= Γ2{x) + Γ{{x).

The second integral, by (7), (8) and the smoothing property of the kernel

I x — y I2"", satisfies the inequality

To obtain an estimate for || Γ2 \\ λ q we recall that Lx is a first order differential

operator with constant coefficients. To obtain first derivatives of Γ2 we have to

differentiate - ^ — ^ a second time. It turns out that — — ^ ~
μ - ^ l " - 2 dxj dxι |JC — ̂ Γ" 2

for I x — y I < { is a singular kernel. Thus the Calderόn-Zygmund inequality

(3) applies and yields, together with (7) and (8),

Now the above estimates for || /, || x q, \\ Γ2 \\ λ q, and II Γ{ \\ Uq give

| |gradβ | | , . ,<c(

which implies Lemma 1 in case ε < 1.
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To prove Lemma 2 we observe that, because of (11), Q satisfies the equation

Δ<2 = S — S up to an error caused by the derivatives of the cut-off function θ

up to second order. The error is of the form

E(x) = ff(x9y)(S-S)(y)dy,

where/is supported in \ < | x — y | < 1, and the gradient of/can be estimated

in terms of a constant depending on the dimension of M only.

To estimate E we make use of the fact that S is an average of S over small

balls. Let

E{x) = Eλ(x) + E2(x) = ff(x, y)S(y)dy - f f(χ, y)S(y)dy.

To compare the two summands we write

E2(x) = - / / ( * , y)fv(\ z - y \)S{y)dz dy,

which holds because / η = 1, and define g by f(x, y) = /(JC, z) + g(x, j , z).

We have

The above estimate on the gradient of / yields, for \y — z\< p =

\g(x, y, z)\< Cyfε, which implies

, < cfe ||S||o,,,

which is the statement of Lemma 2.

Up to now S was defined in B2(0) C TpM ίoτ arbitrary/? E M. For the next

step of the proof we need a local average of S defined on M, and set

S(p) = S(0), where0 G T^M.

In the second half of the proof we utilize the estimate on US — SIIOq to

construct a new metric connection v ' o n M which satisfies the conditions of

[5, Theorem 2]. In contrast to [5], where we solved the equation Cartan

curvature = Ω = 0 exactly, here we are only interested in solving the corre-

sponding equation up to an error bounded by cjε \\S\\. It suffices therefore to

deal with a parametrix instead of a Green's function for the partial differential

equation in question. We proceed with a few definitions.

The exterior derivative d v associated to the Levi-Civita connection v acting

on differential forms with values in a tensor bundle associated to the tangent
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bundle TM is defined by

The adjoint operator δ v of dv with respect to the metrics induced by the

riemannian metric is

( δ v α ) ( * 2 , Λ ) = - 2 (V£«)(e,., X2,- • ,Xp),

where ( e j is an orthonormal basis.

To obtain the new metric connection v ' we define

(16) V' = V + δ v 0,

and set

(17) β(p) = ^02
\y\"

where Bγ(0) is the ball with radius 1 and center 0 E TpM, exp: TpM -> M is

the exponential map, τ(y) is parallel translation along the geodesic exp (y from

exp y to exp 0 = p, I: V f\V -*V ί\V with V - TexpyM is the identity, R is

the riemannian curvature tensor, and cn is the constant of (11).

To estimate the curvature R' of V' defined in (16) we observe that (17) is a

parametrix for the operator Δ v = < i v δ v + δ v <i v . This is true because the

coefficients of the second order term of Δv, in terms of a canonical coordinate

system in 0 G TpM, coincide with the coefficients of the Laplace operator Δ on

the component functions. As in [5], the curvature R' of v ' is

(18) R' = R + dv8vβ + 8vβ Λ δ v β ,

where δ v β Λ 8vβ is a certain quadratic expression in δv/? whose exact defini-

tion does not matter here.

The following two lemmas serve to prove the estimate

(19) | |* ' - S/|| < c\\R' - Sl\\hq < eft \\S\\,

where the Sobolev norm for tensor fields on M is defined analogous to (5). The

only difference is that the tensors are translated parallelly along exp ty. We will

show later that S in this estimate can be replaced by || SΊI. Thus modified, (19)

together with a corresponding estimate on the torsion T of V' will prove that

[5, Theorem 2] is applicable.

Lemma 3. Under the assumptions of the theorem and the normalization

0 < K < 1, the differential form β defined in (17) satisfies the inequality

(20) l | j 8 | £
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Lemma 4. Under the assumptions of the theorem and the normalization

0 < K < 1, β defined in (17) satisfies the inequality

(21) | | W

The pinching constant δ of the theorem and the number ε of the above lemmas

are related as in( l ) .

The above lemmas imply (19) as follows. Lemma 3, via the Sobolev

inequality for q > dim M, gives

(22) ||«TB||<c£||S||.

This implies immediately that the quadratic term 8vβ Λ δv/? of (18) is within

the bounds claimed in (19). It suffices therefore to deal with the term

R + dvδvβ of (18). By Lemma 4 we can replace d*8vβ by Δ vβ without

exceeding the error allowed in (19). Now (17) is a parametrix for Δ v , therefore

Δv/? = SI — R except for an error which is a smoothing of SI — R. To

estimate this error we observe that analogous to (1), | SI — R \< cεS holds for

any ε > 0 if 1 — 8 is suitably small. The Main Estimate (15), together with the

triangle inequality, implies

(23) | | S ^

A smoothing of SI — R is therefore within the bound allowed in (19). Finally,

modulo the errors accounted for, R' ~ R + dv8*β ~R + (SI-R) = SI,

which proves (19).

To apply [5, Theorem 2] we also need an estimate on the torsion T of v ' In

view of definition (16) the estimate (22) and the fact that V has no torsion

yield immediately

(24) ||r||<c^||S||.

Proof of Lemma 3. The main observation in the proof is that the second

derivatives of #( | .y | )/ |y \n~2 for | > > | < i are singular kernels in the sense

introduced at the beginning of this section. Therefore the Calderόn-Zygmund

inequality (3) applies to the second derivatives of /? with Ψ — SI — R, except

for a contribution to the integral due to the derivative of τ(y) in the formula

(17). To estimate the first derivative of τ we estimate the difference between the

identity and the parallel translation along geodesic triangles. This difference is

well-known to be bounded by the area of the triangle times the norm of the

curvature. Since \K\< 1, the norm of the derivative of T is bounded by c \y \

which cancels one of the factors | jμ | in the denominator, and the contribution

of the derivative of τ to the derivative of β is actually smoother than the main

term. Consequently, (23) and (3) yield Lemma 3.
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Proof of Lemma 4. The main point in this lemma is that we gain one more
derivative than expected. The reason for this is the second Bianchi equation
dvR — 0. By integration by parts we throw the derivatives involved in the
definition of dv on (SI - R). Because of (10) with p = y/ε,(SI - R) satisfies
the Bianchi equation up to an error bounded by Cγ/ε ||SΊ|. Now except for the
contribution of the derivative of T, which is estimated as in the proof of
Lemma 3, the Calderόn-Zygmund inequality (3) yields Lemma 4.

It remains to be shown that (19) and (24) imply that v ' satisfies the
hypothesis of [5, Theorem 2] if 1 — δ, and hence ε, is sufficiently small. For
convenience let g' — \\S || g, where g is the original metric on M. Estimates (19)
and (24) in terms of the new metric g' yield

(25)
iisii

<d

where the last inequality is valid because of the previous normalization
0<K<l, which implies || S || < 1. As long as the ratio S/\\ S\\ does not differ
much from 1 on the manifold M, (25) implies that the assumptions of [5,
Theorem 2] are satisfied. This is so because the Cartan curvature of type Sn is
composed of the difference between the curvature form of M and that of Sn,
and the torsion form of M. These forms are naturally defined on the bundle of
orthonormal frames over M. To show that S/W S\I is close to one it suffices, by
(10) with p = γ/ε, to prove that the diameter d'(M) of M, measured in terms of
g', is a priori bounded. We will show that d'(M) < B can be achieved for any
B > 77 provided that 1 — 8 and hence ε are sufficiently small.

To estimate d'(M) let γ be a geodesic. It suffices to show that the first
conjugate point is at a distance of at most B. Let Y be a Jacobi field along γ
with initial condition 7(0) = 0, | 7(0) | = 1, where the dot denotes covariant
derivative. 7 is a solution of the differential equation

y + ( r ( y , γ ) ) + Λ ' ( y , γ ) γ = o,

where R' and T are curvature and torsion respectively of the metric connec-
tion v ' Let Z(t) = 7(0 4- /0' T'(Y, y)ds. Then Z satisfies the equation

where φ(t) = Rf(f^ T'(Y, y)ds, γ)γ. For | Y\< 2 and | /1< B < 4, ψ(t) satis-
fies the estimate
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Since \\T'\\ < cy/ε, the roots of Y and Z are close to each other. In addition, by

well-known theorems on approximate solutions of ordinary differential equa-

tions, the roots of Z and X, defined by

X + R\X, γ )γ = 0, JSf(O) = 0, X(0) = Z(0),

are close to each other as well. Now let γ(0) = p be a point where S(p) = \\ SII.

Because of (10) and (25) the first root of X beyond t — 0 is close to π.

Therefore the first conjugate point of p — γ(0) along γ is at a distance roughly

equal to π, provided ε is small enough. This concludes the proof.
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