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POINCARE'S PROBLEM AND THE LENGTH
OF THE SHORTEST CLOSED GEODESIC

ON A CONVEX HYPERSURFACE

CHRISTOPHER B. CROKE

0. Introduction

In this paper we discuss two different but related problems.
The first problem is that of finding upper and lower bounds on the length L

of the shortest nontrivial closed geodesic on a convex hypersurface Mn CRn+ι.
We show that if M encloses a ball of radius r0, then L ^ 2πr0 (Theorem 1.5).
We also show (Theorem 1.7) that

{na(n)

where a(n) is the volume of the unit n sphere, {at{x)} is the set of principal
curvatures of M at x, and Sn_λ is the (n — l)st symmetric polynomial. Further,
if equality holds (in the upper bound), then M is a round sphere. The upper
bound is interesting in that it is in terms of an integral of curvatures rather
than bounds on curvatures. The lower bound is used in the proof of the second
problem.

The second problem was posed by H. Poincare, in 1905, in a well-known
paper [6]. In [6] it was suggested that one could find the shortest simple closed
geodesic on a convex surface M by minimizing the arclength functional over
the set & of all simple smooth closed curves which separate M into two pieces
of equal total curvature. Here we establish that this suggestion in fact works.

In 1980 using the methods of integral currents M. S. Berger and E. Bombieri
[1] showed that the result holds for metrics C3 close to the standard metric.
The reason for this restriction comes in showing that the minimum which they
get is connected. They suggest that by complicating the proofs and using the
theory of varifolds one may be able to extend their proof to cover all convex
surfaces.
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In this paper, we take a completely different approach. We consider compact
finite dimensional approximating spaces Ω™/2(M) °f closed piecewise geodesic
curves. The main difficulty with this approach is to show that the minima
achieved are simple.

One should note that if γ is a nontrivial simple closed geodesic on M, then
by Gauss-Bonnet γ splits M into two pieces of equal total curvature so γ E ό£.
On the other hand the first variation formula (see [1, §2]) shows that if T E &
and the length of T is the infimum L of the length functional on &, then τ is a
simple closed geodesic. Thus we will show (Theorem 3.2) that there is a simple
closed geodesic γ with length L. (The fact that L > 0 will follow from
Corollary 1.4.)

In the first section we prove the upper and lower bounds on the length of the
shortest nontrivial closed geodesic.

In the second section we define the approximating spaces SL™/2(M) and state
some properties of these spaces. Unfortunately, although most of the proper-
ties are geometrically intuitive, the proofs are often long and tedius. Therefore
the proofs of the lemmas in §2 are included in the appendix at the end of the
paper.

In the third section we show that Poincare's suggestion works.
The author would like to thank Wolfgang Ziller and Werner Ballmann for

bringing the Poincare problem to his attention. He would also like to thank
Eugenio Calabi for helpful conversations.

1. The length of the shortest closed geodesic on a convex hypersurface

In this section we prove an upper and lower bound on the length of the
shortest closed geodesic on a convex hypersurface Mn C R"+1. In the process
we will derive a result, Corollary 1.4, which will be needed in the proof of
Poincare's problem.

We begin with two lemmas.
Lemma 1.1. Let M C Rn+ι be a convex hypersurface which encloses the ball

of radius r0, centered at the origin. Then for all x E M we have (JC, N(x))> r0

where N(x) is the image of x under the gauss map (i.e., N(x) is the unit outward
normal to M at x). Further equality holds if and only if x lies on the sphere of
radius r0.

Proof, (x, N(x)) is the distance from the origin to the tangent plane P of
M at x. Since M is convex, P lies outside M, hitting M only at x. Hence P lies
outside the sphere of radius r0, hitting the sphere only if x lies on the sphere.
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Lemma 1.2. Let y be a closed piecewise C 1 curve in Rn+ι of length L. Then

there is a point x 0 G R " + 1 such that for all t, \ x0 — y(t) \< L/4. Further we

may choose x0 so that the inequality is strict unless y is a line segment of length

L/2 transυersed twice.

Proof. Let γ: [0, L] -> M be parameterized by arclength. Let x0 — i(γ(0)

+ γ(L/2)) (i.e., x0 is the midpoint of the line segment between γ(0) and

y(L/2)). Now for all / E [0, L]

= \(2xo-y(t))-y(t)\

<|(2xo-γ(0)-γ(0)|+|γ(0)-γ(O|

< L/2.

It is not hard to see that if equality holds above for some t0 E [0, L/2], then

Ύ\[O,L/2] *s ̂ e l i n e segment from γ(0) to γ(/ 0) followed by the line segment

from y(t0) to γ(L/2) and that these line segments lie on the same line (see the

first inequality). If equality does not also hold for some tλ E [L/2, L], then

one could make the inequality strict by moving x0 slightly. The above shows

that γ must be the line segment from y(t0) toy(t}) transversed twice except in

the case where x0 — γ(0) = γ(L/2) and the line segments from JC0 to γ(/ 0) a n ^

x0 to y(tx) make an angle at x0. In this case we could again move x0 slightly to

achieve strict inequality.

Theorem 1.3. Let Mn be a convex hyper surf ace in R"+ 1 which enclose a ball

of radius r0. Then every closed piecewise C 1 curve y on M, whose image under the

gauss map hits every closed hemisphere of the unit sphere, has length greater than

4/b

Proof. We may assume that the origin is the center of the ball of radius r0.

Let x0 be as in Lemma 1.2. There are two cases.

Case 1. x0 = 0. Since γ(/) lies on M which encloses the ball of radius r0, we

have r0 < | y(t) | = | γ(ί) — JC0 | < L/4. NOW if equality holds in the first in-

equality for all t, then γ lies on the sphere of radius r0. But in this case Lemma

1.2 says equality cannot hold in the second inequality, so L > 4r0.

Case 2. x0 Φ 0. Since the image of γ under the gauss map hits every closed

hemisphere, there is a / such that (x0, N(y(t)))^ 0. Thus

L/4 >|γ(ί) - χo\ > (y(t) - x00, N(y(t)))> (γ(/), N(y(t)))> r0,

so L > 4r0.

If equahty holds, then Lemma 1.1 says that y(t) lies on the sphere of radius

r0, and since (y(t),N(y(t)))= r0, y(t) = r0N(y(t)). So (xo,y(t))=O, and

x0 φ 0 shows that | y(t) — x0 | > r0. Thus equality never holds and L > 4r0.



598 CHRISTOPHER B. CROKE

Example. The following example shows that 4r0 is the best possible lower

bound in Theorem 1.3. One might suspect at first that the lower bound is 2πr0,

as this is the lower bound in the case that M is the sphere.

Let γ be the ellipse in R3 described by z = 2, x2/(\ + ε)2 + y2/ε2 = 1 for

some small ε > 0. Let K be the convex hull of γ and the unit sphere centered at

the origin. By perturbing K slightly below z = 2 and rounding off above z = 2,

we can construct a smooth convex two-manifold M enclosing K such that M is

symmetric with respect to x and y, γ C M, and the z component of the normal

is positive at (0, ε,2) and (0, — ε,2), and negative at (1 + ε,0,2) and ( - 1 -

e,0,2).

If Ms a parameter for γ: [0,1] -+ M which is symmetric with respect to x and

y (i.e., dt -> -dt under x -> -x and under y -> -y) and N(y(t)) =

O O ) , y(0, z(t)\ then JQ x{t)dt = /J .y(/)Λ = 0 by the symmetry. Further,

since z(t) < 0 at some t and z(ί) > 0 for some t9 we can choose a symmetric t

such that /J z(ί) = 0. With this parameter /J N(y(t)) — 0, and hence we see

that the curve N(y(ί)) hits every hemisphere.

To finish the example one needs only note that as ε goes to 0 the length of γ

approaches 4.

Corollary 1.4. Let M be a convex surface in R3, and y a closed piecewise C 1

curve on M such that M — γ consists of two open sets M+ and M~ {not

necessarily connected, but of course the union of connected components) of equal

total curvature. Then the length ofy is greater than 4r0.

Proof. Since M is convex, the gauss map G: M -> S 2 , where S2 is the unit

sphere, is a diffeomorphism. Now the volume of G(M+ ) (and G(M~)) is 2π,

the total curvature of M+ (and M~). Hence the curve N(y(t)) hits every closed

hemisphere, and the theorem gives the result.

Remarks. In some special cases one is able to improve the constant 4r0 in

Theorem 1.3 to the more natural constant 2πr0. In [4] it was shown that this is

the case if γ is a closed C 1 curve on M such that /0

L N(y(s)) ds — 0, where s is

the arclength parameter. Another case is the following theorem.

Theorem 1.5. Let Mn C RM+1 be a convex hypersurface enclosing a ball of

radius r0, and let y C M be a nontrivial closed geodesic. Then L(y) > 2πr0, with

equality holding if and only ify is a great circle on the sphere of radius r0.

Proof. Let s be the arclength parameter for γ, and k(s) be the curvature of

γ as a space curve. Since γ is a geodesic on Λf, y"(s) = -k(s)N(y(s)) where

N(y(s)) is the unit outward normal to M at y(s). Thus

= ίL(Ύ) (y(s), - γ"(*)> ds = (LMk(s)(γ(s), N(y(s))) ds.



SHORTEST CLOSED GEODESIC 599

By Lemma 1.1, (y(s), N(y(s)))> r0. So

If the equality holds in the above formula, then it also holds in Lemma 1.1, so γ
lies on the sphere of radius r0. To see that γ is a geodesic on this sphere, we
need only note that at y(s) the tangent space to the sphere and the tangent
space to M coincide, so y"(s) is perpendicular to the sphere.

We now prove that the length of the shortest closed geodesic on a convex
hypersurface has an upper bound which is an integral of a function of the
principal curvatures.

Let Mn C Rn + 1 be a convex*1iypersurface, and G: Mn -» Sn be the gauss
map. Since M is convex, G is a diffeomorphism. If γ is a geodesic (a great
circle) on Sn, then the smooth closed curve G~1(γ) on M is called a shadow
curve.

Lemma 1.6. Let L be a length of the shortest closed geodesic on a convex

hypersurface ΛΓ, and L the length of the shortest shadow curve. Then L ^ L.

Proof. Let γ be a great circle on Sn such that L(G~\y)) = L. Let P be the
plane in Rn+1 determined by γ.

We claim that if P is any plane parallel to P, then the length of P Π M is
less than or equal to L. To see this, let π: Rn+ι -> P be the orthogonal
projection. π(P Π M) is a convex curve τ in P, which is contained in the
convex region π(M), and further L(τ) = L(P Π M). By the definition of the
gauss map, the boundary of ΊT{M) is precisely π(G~\y)). Hence L —
L(G~\y)) ^ L(π(G~\y))) > L(τ) = L(P Π M), and the claim follows.

Let / ) ± be the (n — l)-dimensional plane in Rn+ι perpendicular to P, and let
5 C P 1 be the orthogonal projection of M to P 1 . For JC G S, let γ̂  be
Px Π M, where Px is the plane parallel to P through x. Let Cx G Px be the
center of mass of γ .̂ Fix an orthonormal basis eλ9 e2 for P, and let e\, e\ be the
parallel translate of this basis to Cx. For t G [0,2ττ] let rx be the ray in Px from
Cx making an angle t with e\ where the angle is determined such that rx

/2

corresponds to e%. We now parameterize γ̂  such that yx(t) = yx Π rx, if yx is
not trivial, and parameterize the trivial curves in the only way possible. This
construction clearly makes the parameter vary continuously with x.

Thus we have constructed a continuous map from S to Ω(M), the free loop
space of M. Let Ωo( M) represent the trivial loops on M. Then the map x -> γ^
gives rise to a homotopically nontrivial map of Sn~x to Ω(M)/Ω0(M). Now a
standard minimax procedure (see [3]) gives rise to a closed geodesic σ on M
such that L(σ) < maxJcG5 L(yx).
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Hence combining this with the claim we have

L > maxL(γJ ^ L(σ) > L.
xGs

Theorem 1.7. Let L be the length of the shortest nontriυial closed geodesic on
a convex hypersurface M" C R"+ι. For x G M let ax(x\ a2(x), ,an(x) be the
principal curvatures ofM at x. Then

a(n)]/n

where a(n) represents the volume of the unit n-sphere, and Sn_λ the (n — \)st
symmetric polynomial. In particular, for n — 2we have

Further, if equality holds, then M is a round sphere.
Proof. Let G: M -» S" be the gauss map. Let Γ be the space of great circles

on S" with the usual measure, that is, the measure such that for any function/:
US" -> R, where US" is the unit sphere bundle, we have

f(v)dv = f ί2nf(y'(t))dtdy.
US" JT J0

In particular, Vol(Γ) = £a(n)a(n - 1).
Let g( -, ) represent the metric on M. Then by Lemma 1.7 we have

V O J

«

a{n)a{n — \) Jυs
n

where Up is the unit tangent sphere at/? G Sn.
Now we have

(ii)
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((G-<)*g)(v,v)dv= «ίίL=Jl
n

" ι=, af(G-\p))

Combining (i), (ii), and (in) we get

f\Σaf(G
a(n)]ln Jsa[i=\

~ 1 / 2

7^ Γ

a(n)yjn
It is clear that equality holds at each step for a round sphere. On the other

hand, in order for equality to hold we must have L = L(G~ι(y)) for every
great circle γ. Tracing through equality in Lemma 1.6 we see that G~\y) is a
closed geodesic for each γ. Hence M is a Blaske sphere and is thus, by the
theorem of Berger, Kazdan, Weinstein, and Yang (see [2, Appendices D and
E]), isometric to a round sphere.

Corollary 1.8. Let M and L be as in Theorem 1.7. Then the following hold:
(a) L < 2π/a(n)fMa2(x) an(x)dx where ax{x) is the smallest principal

curvature at x. Equality holds if and only if M is a round sphere.
(b) L < 2<π/a{n)JήjMSn_x{ax{x\ ,an(x))dx.

In particular for n = 2

L<-γ=[ H(x)dx9

y2 J

where H(x) is the mean curvature of M at x.
Proof. This follows directly from the theorem and the fact that at(x) > 0

for all x E M and i = 1,2, ,n.

2. The approximating spaces Ω jy 2 (M)

We let M be a given convex surface, and c be 1/3 the convexity radius of M.
For fixed m the most natural approximating space would be the closure of the
set of all simple closed piecewise geodesies with m breaks which split M into
two pieces of equal total curvature and have the length of each segment less
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than or equal to c. However, in order to simplify the (nevertheless tedious)

proofs we define Ω™/2(M) in a more complicated way.

We begin by defining a larger space.

Definition. Ωm(ΛΓ) is the set of all closed curves γ: [0,1] -> M(γ(0) = γ(l))

satisfying the following conditions:

(a) If yn is y ^ , ^ , then yn: t2 1^-1,^] -> M is a geodesic segment (para-

meterized proportional to arc length).

(b) Let /„ be the length of yn. Then ln < c.

(c) γ is the limit of simple piecewise smooth closed curves. That is, for every

ε > 0 there is a simple piecewise smooth closed curve c]\ [0,1] -> M such that

for all t G [0,1] we have d(y(t), cj(/)) < ε, where d represents the distance in

M.

Although we will speak of γ as a map from [0,1] we think of it as a map

from Sι in the usual way. In particular when we speak of the parameter t or

the points n/m we mean them modulo the integers in the usual way.

The topology on Ωm(Aί) is the one induced by the embedding Ω m (M)

-* M X XMwhere γ is mapped to (γ( l/m), γ(2/m),. . . ,γ(l))
m times

The energy E and length L functionals are given by

= Σ'/
i=\

(Notice we do not include the usual factor of 1/2 in E.)

Another useful parameter for γ G Ωm(M) is the arclength parameter s. If

γ G Ω m (M) is such that /, > 0 for all i, then the parameter / can be thought of

as a function of s, that is, γ(/(s)) is the same curve only with the arclength

parameter.

Lemma 2.1. Ω W (M) is compact and contains the simple curves γ which

satisfy conditions (a) and (b) of the definition.

Proof. To see that Ω m (M) is compact let yi? -> γ in M X XM. Clearly

conditions (a) and (b) are satisfied by γ. To check condition (c), fix ε > 0 and

choose / so large that d(yi(t% y(t)) < ε/2. Consider the curve Cε^2 which exists

since γ, G ΩW(M). We then have

d(y(t), Q 2 ( 0 ) < d(y(t), γ,(ί)) + <*(Ύ/(0> Q 2 ( 0 ) < *,

hence γ satisfies property (c).

The other part of the lemma follows from the fact that any simple curve

satisfying (a) and (b) automatically satisfies (c), i.e., just let Q be γ itself.



SHORTEST CLOSED GEODESIC 603

Lemma 2.2. Ify G Ωm(Λ/) is such that for some /, /, = 0 and li+ , φ 0, let

1 / i - 1

(a)γGΩ-(M),
(b) /" φ 0, /.+ 1 φ 0, £(γ) < E(y),andL(y) = L(γ),

(c) γ w homotopic to γ ύuώfe γ[0,1].

/V00/. See appendix.
A curve γ G Ωm(Λf) is said to make a 180° turn at i/m if /z φ 0, //+1 ^ 0

and γ(i/m - //m/,-) = γ(//m + t/mli+λ) for all 0 < / < minf/,, / / + 1 ) .
Lemma 2.3. Le/ γ G ΩW(M) fee ̂ wc/i that l} Φ 0 /or all j and such that γ

makes a 180° /wπz at i/m for some i. Then there is a curve γ such that
(a) γ G Ωm(Λf),

(c) γ Z5 homotopic to y inside γ([0,1]).
Proof. See appendix.
For c: [0,1] -> Λf a simple closed curve then M — c consists of two open

connected components M+ (c) and M~ (c), where Λf+ (c) is the component for
which the orientation of c is the same as the orientation of dM+ (c).

A curve γ G ΩW(M) is said to be nondegenerate if there is a δ > 0 such that
for all sufficiently small ε > 0 and for all piecewise smooth simple closed
curves c: [0,1] -> M with d(c{t\ y(t)) < ε we have Vol(M+(c)) > 8 and
Vol(M~(c))>δ.

Definition. Given γ G Ωm(M) nondegenerate we say that x is in M+ (γ) if
x G M — γ and for all sufficiently small ε and all piecewise smooth curves c
such that d(y(t), c(t)) < ε we have x G M+ (c). Similarly we define M~ (γ).

Lemma 2.4. For γ G ΩW(M) nondegenerate, the following are true.
(a) M + (γ) U M" (γ) = M - γ.
(b) / / # w a component of M - γ, then K C M+ (γ) or K C M~ (γ).
(c) ///: Λf -> R is any continuous function, we have fM

+(Ύ) f — ϋ m

ε ^o /M+(CJ> /•
Similarly for M~ (γ).

(d) //JC G M + (γ), >> G Λf~ (γ) am/ γ G Ωw(Λf) swcA /Λa/ γ is homotopic to y
in M — {JC, y], then y is nondegenerate, andx G Λf+ (γ) andy G M~ (γ).

Proo/. See appendix.
A curve γ G Ωm(M) is said to be regular if γ is nondegenerate, /, > 0 for all

/, and γ makes no 180° turns.
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For γ G Ωm(M) regular and ι = l,2, ,m we define Ext(0 to be the
exterior angle at y(i/m) between γz and γ ί + 1 . Since γ makes no 180° turns, we
see — π < Ext(i) < π. i is called a + vertex if Ext(/) > 0, and a — vertex if
Ext(z) < 0.

Later in this paper we will want to make the deformations indicated in
Fig. 1.

FIG. 1

However, these deformations may not be allowed for a couple of reasons.
The first thing which can go wrong is that the piece of the curve γ shown in

the figure may be transversed many times by γ. In this case only the
"innermost" parameter piece of γ can be so deformed, since the deformation
of another parameter piece of γ will lead to a curve which is not the limit of
simple curves.

The other thing that can go wrong is that another piece of γ could prevent
the deformation (see Fig. 2).

B B

(a)
(c)(b)

FIG. 2

One should note that in Fig. 2(a) one can still make a length decreasing
deformation (see Fig. 3); however, this deformation may increase energy. This
"half deformation will also be important.

FIG. 3
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We will now be precise about which vertices of γ can be so deformed (or half

deformed) so that the resulting curve is still the limit of simple curves.

Let γ be a regular element of Ώ,m(M) and /,, t2 G [0, 1] —

{0, l/m,2//w, , 1} such that /, φ t2 and γ(/j) = γ(/ 2 ). Let Fo be the unit

tangent vector to γ at tx. Note that the unit tangent vector to γ at t2 is either Vo

or — Vo as γ cannot have transverse self intersections and still be the limit of

simple curves. Let St] and Sh be the arclength parameters corresponding to tx

and t2 respectively; i.e., t{Stχ) = tx and t(St ) = t2 where y(t(S)) is γ para-

meterized by arclength.

Let [S0(tv t2\ Sx(tx, t2)] be the maximal compact interval (S0(tx, t2) < 0 <

Sx(tx,12)) such that for all S G [S0(tx, t2\ Sλ(tλ, ί2)] we have y(t(Stι + S)) =

y(t(Sh + S)) (or if the unit tangent vector to γ at t2 is — Fo we have

y(t(Stι + S)) = y(t(Sh - S))). The only thing which needs to be verified here

is that the maximal such interval is bounded. We look at the two cases. If the

unit tangent vector to γ at t2 is Vo, and the length of the interval is greater than

the length of γ, then γ: [0,1] -» M must transverse its image at least twice and

hence cannot be the limit of simple curves. If the unit tangent vector to γ at t2

is — Vo, and the length of the interval is greater than the length of γ, then there

would be a 180° turn somewhere in [0,1], but this cannot happen since γ is

regular.

Given V a unit vector at γ(ί,) = y(t2) perpendicular to Vo, we will now

define an ordering > on [tλ, t2), i.e., either tx > t2 or t2 > tv

Define the unit vectors Vo, V, Vx, V2 at the point y(t(Sh + Sx(tx, t2))) -

y(t(St2 ± Sx(tx, t2))) as follows. Let /" = t(Stj ± Sx(tu t2)). Then:

Ko is tangent t o - γ ^ - ^ - j ,

F, is tangent to γ ( [ - - + ε >

F2 is tangent to Y|[Γ2,Γ2+ε)(or t o y^-^Ji]^the u n i t t a n 8 e n t t o Y a t h i s ~ vo\
V is the unit vector perpendicular to Vo such that the orientation given by

(VQ,V)is the same as that given by (— Fo, F) . (See Fig. 4.)

F I G . 4
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We notice that Vx Φ V2 since equality would contradict the maximality of

[S0(tl9t2\ Sx(tx, t2)]. We also notice that Vo φ Vl9 Vo φ V2 since γ has no

180° turns.

Now measure angles from Vo (either clockwise or counterclockwise) so that

the angle at V is ττ/2. We then say that t2 > tx if the angle from Vo to V2 is

smaller than the angle from Vo to Vx. Intuitively t2>tλ says that for simple

approximating curves the piece corresponding to t2 will be more "inner" (with

respect to V) than the piece corresponding to tx.

We could have looked instead at unit vectors (the signs appropriately

chosen, see Fig. 5) at y(t(St + S0(tl912)). The ordering on ίl912 would be the

same for if not (see Fig. 5), γ could not be the limit of simple curves.

F I G . 5

[This cannot happen unless Vx and F2.are interchanged.)

Also the above reasoning shows that the ordering does not depend on which

of the parameters was labeled tx and which t2 (even though the definition

proper does depend on the label).

Lemma 2.5. Let γ G Ωm(Λf) be regular and let x G γ([0, 1]) —

γ({0, l/m, , 1}). Let V be a unit vector at x perpendicular to y. Then the

ordering on the finite set γ~ \x) has the following properties:

(a) For tx, t2 G y~\x) either tx > t2, t2 > tv or t2 — tx.

(b)Iftx>t29thent2>ytx.

(c) Iftx>t2 and y(t(Su + S)) = y(t(Sh ± S))for all S in some interval about

0, then t(Stι + S)> t(St2 ±S)for all S in that interval where Vis the unit vector

at y(t(St + S)) perpendicular to y and giving the same orientation which V gave.

(d) Iftx > t2 and t2 > t39 then tx > t3.

Proof. Properties (a), (b), and (c) follow directly from the definition.

Property (d) also follows from the definition by checking the three cases:

(i)Sx(tx,t2)<Sx(t2,t3l
(iϊ)Sx(tx,t2)>Sx(t2,t3\

(iii) Sx(tx,t2) = Sx(tx,t2).
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For case (i) we see that Sλ(tx,t3) = Sx(tx,t2), and the measured angles

corresponding to tx and t3 are the same as those for tx and t2 respectively.

Hence Λ > ί v The others are similar.
1 y 3

Let K be a connected component of M — γ[0,1], and (*, V) be such that

x GdK — y({(i/m) \i = 1, ,m}) and Fis an inwardly pointing (towards K)

unit vector perpendicular to γ at x. (Note for given x it could happen that both

V and — V point inward toward K.) Then the boundary parameter for ^ at

(x, V) is that element of y~ ! (x) which is maximal with respect to > .

If K is a component of M — y, and an open interval (a, b) are boundary

parameters for K, then we define α and b to be boundary parameters for K at

γ(α) and y(b) respectively. This is to take care of the case x E y({i/m | / =

1,2, ,m}). One should note that for such an x there may be many boundary

parameters of K in y~ ι(x).

Lemma 2.6. Let K be a connected component of M — y. If K C M+ (γ)

{where y is regular) and [a, b] is a boundary parameter interval for K, then the

orientation ofy^{abλ agrees with the orientation of the boundary of K. If K C M~

(γ), then the opposite is true. In particular, if i/m E (α, b) and i is a + vertex

(resp. — vertex) and K C M+ (γ) (resp. ΛΓ~(γ)), then the angle at i/m is

convex to K.

Proof. See appendix.

Let γ be a regular element of Ω m (M), and / a + vertex. Then i is called a

free + vertex if [^r, U^L] is a boundary parameter interval for a component

K C M+ (γ). Similarly define a. free-vertex.

If / is a + vertex of γ and for some ε > 0, [^ — ε, L~ι] or [^^r, ̂  4- ε] is a

boundary parameter interval for a component # C M+ (γ), then ι is called a

half free + vertex. Similarly define a half free-vertex.

A component K of M — γ is called a cul-de-sac if the set of boundary

parameters of K consists of a single interval [a, b] (hence 3 ^ = γ([α, ft])).

Lemma 2.7. G/t>e« α regular y E Ω w (M), ίΛew d/Λer M + (γ) w connected or

there are at least two cul-de-sacs Kλ and K2 in M+ (γ). Similarly for M~ (γ).

Proof. See appendix.

Lemma 2.8. Let y E ίlm(M) be regular.

(a) If M+ (γ) is connected, then all + vertices are free, and 2π — Σ ^ 1 Ext(ί)

+ fM

+(y) k(x)dx (Gauss-Bonnet), where k is the gaussian curvature of M.

(b) If K d M+ (γ) is a cul-de-sac with boundary parameter interval [a, b],

then y(a) = y(b) and (after reparameterization) γ ^ ^ j E Ω m (M) for some m,

Ύ\[a,b]/5 regular, and M+ (y\[ajb]) = K. Further one of a or b is a vertex ofy, say

a = i/m. Let j be the largest integer such that j/m E [a, b]. If i < k <j, and k

is a + vertex, then k is free. If j/m φ b, andj is a + vertex, thenj is half free.
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If we let A represents the exterior angle for Ύ\[aib] at y(a) = y(b), then —π < A

< π and {assuming j/m Φ b) 2π — ΣJ

k=i+ι Ext(k) -f A + jκk(x) dx, where

k(x) is the gaussian curvature of M.

Proof. See appendix.

Lemma 2.9. Let y G Ωm(Λf) be regular, and A>0 a fixed number. Let i be

a half free + vertex {or — vertex) such that /z < c, li+ι < c, and Ext(ι) > A.

Then for small ε > 0 define the closedpiecewise geodesic curve γε by yε(j/m) =

Ύ(j/m) f°rJ =£ i and yε(i/m) — y(t(Si/m ± ε)), where the + is determined by

whether [^r, -^ + ε] or [^ — ε, ̂ r] is the boundary parameter of a component.

(This is the deformation shown in Fig. 3.) Then for sufficiently small ε, yε satisfies:

(a)y£GΩm(M),

(b)L(γε)<L(γ),

(c) Ext(z') > A, and i is a half free + vertex.

Proof. See appendix.

Lemma 2.10. Let y E Qm(M) be regular, and i be a free + vertex (or —

vertex) such that lt < c and li+λ < c. (The condition /, < c and li+ι < c is not

needed.) Define yε to be the piecewise geodesic with yε(j/m) = y(j/m)forj φ i

and yε(i/m) = τ(ε) where τ is the unit speed geodesic emanating from y(i/m)

such that (Vl9 τ ' (0))= (V2, τ'(0)>< π/2, Vx and V2 being unit tangent vectors at

y(i/m) tangent to ~Ύ\[L=± ±] and y^± i±ij respectively. (This is the deformation in

Fig. 1.) Then for sufficiently small ε, γε satisfies:

(a)γεeΩ"(M),

(b)L(γε)<L(γ),

(c) E(yε)< E(y).

Proof. yε can be achieved by making two deformations as in Lemma 1.9

(with A - 0) hence γ£ G Ω m (M). The first variation formula shows that /" < /,

and li+! < // + j , hence both b and c follow for small ε > 0.

Definition. Ω^ / 2(M) = {γG Ω m (M) | γ is nondegenerate, and fM+(Ύ)K =

/Λ/-(Y) K—Ίπ] where K is the curvature of M.

Lemma 2.11. Ω^ / 2(M) is compact and contains the simple closed piecewise

geodesies y with Lt < c and such that fM

+(Ύ) K = /A/-(Y) K

Proof. See appendix.

Remark. For γ G Ω^ / 2(M) both Lemmas 2.2 and 2.3 hold with γ G

Ω?/2(M). This follows, since by Lemmas 2.2 (c), 2.3 (c) and 2.4 (d) we see that

γ is nondegenerate, and M+ (y) — M+ (y) and M~ (y) — M~ (y) are sets of

measure 0 (they are subsets of γ[0,1]). Hence JM+^K — jM-^K and γ G

a?/2(M).
Lemma 2.12. Let y G ̂ ^(M) be regular, and A > 0. Assume that there

are vertices i and] such that i is a free + vertex, or a half free + vertex with

Ext(z') > A, andj is a free — vertex, or a half free — vertex with \ Ext(y') | > A.
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Assume further that li9 li+ι, lj9 and lJ+ι are all strictly less than c. Then by using

deformations as in Lemmas 2.9 or 2.10 at the vertices i andj one can construct

curves γe E il?/2(M)for sufficiently small ε > 0 such that L(yε) < L(γ).

Proof. See appendix.

Lemma 2.13. Let τ: [0,\] -* M be a simple smooth closed curve such that

fM+(T) K — /Λ/-(T) K. Then for every ε > 0 there is a simple curve γ E ίl™/2(M)

for some m such that L(y) < L(τ) + ε.

Proof. See appendix.

3. Proof of the Poincare's problem

We begin with a result which holds for all compact riemannian manifolds.

Proposition 3.1. Let M be a compact riemannian manifold, and L > δ0 > 0.

Then there is a number Q(M, L, δ0) > 0 depending only on M, L and δ0 such

that for all closedpiecewise geodesies T with δ0 < L(τ) < L and Σr

i=ι | «, | ^ 2<2

we have \ a0 | < *π — Q, where at(i = 0,1,2, •/) represents the exterior angle

at the ith vertex of r (a0 corresponds to the vertex at τ(0) and T has r + 1

vertices). Further if M is a convex two-dimensional riemannian manifold, we can

find a Q(M, L) (no δ0 dependence) which works for all regular r E Ω m (M) such

that M+ (τ)or M~ (r) is connected.

Remark. The important part of the above proposition is that Q is indepen-

dent of the number of vertices of T. In general the δ dependence is not

important, as for Q small enough there should not exist arbitrarily short closed

piecewise geodesies T satisfying Σr

i= ι\ai\< Q. Here we only show this for the

case we are interested in.

Proof. Consider the following 4 spaces of curves. In each space the curves γ

are parameterized on [0,1] proportional to arclength and L > L(γ) > δ0.

Ω( M) = space of piecewise geodesies on M.

Ω(ΓM) = space of broken lines γ such that γ C TpM for some p E M and

γ(0) = 0 E TpM.

Ω 0(M) = space of geodesic segments in M.

Ω0(ΓM) = space of line segments γ such that γ C TpM for some/? E M and

γ(0) = 0 E TpM.

Let UM be the unit tangent bundle of M with the usual metric, and let UTM

be the unit tangent bundle of TM with the usual metric.

The c1 topology on the above spaces is the same as the topology induced by

the distance function:
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where d on the right-hand side represents the distance in UM or UTM as
appropriate. (The fact that we can use the normalized unit vectors follows from
the fact that the curves γ, are parameterized proportional to arclength and

Now let D be the development map (see [5] for a definition). We have that
D: ίl(TM) -> Ω(M) and D: Ω0(ΓAf) -> Ω0(M) are homeomorphisms (all
spaces with the c1 topology). We also note that Ω0(ΓM) (resp. Ω0(M)) is a
compact subset of Ω(ΓΛf) (resp. Ω(M)). Thus for every ε > 0 there is a
δ(ε) > 0 such that if γ! G Ω(ΓM) and γ, G Ω0(ΓM) such that dQ(TM)(yl9 γ2)
< δ(ε), then we have dQ{M)(D(yλ\ D(y2)) < ε.

Now let F: Ω0(M) - R be given by F(y) = dUM(y'(0)/\ γ'(0) | ,
—γ'(l)/| γ'(l) |). F is continuous on the compact set Ω0(M) and is never 0, as
no geodesic segment ever has γ'(0)/| γ'(0) | = -γ'(l)/| γ'(l) | , hence F has a
minimum q on Ωo( M ).

Now choose Q(M, L, δ0) small enough such that 2Lsin(Q) + 2Q < 8(q/2),
Q < q/2 and β < τr/4.

Let T be as in the theorem, and let γ G Ω0(Λf) be the geodesic segment with
the same initial tangent vector as T and the same length as r. Let γ G Ω0(ΓM)
and T G Ω(ΓM) be D" ι (γ) and D~\τ) respectively.

By the definition of D the sum of the absolute values of the exterior angles
of f is the same as that for r (except for α0 which does not exist in f as f is not
necessarily closed) in particular the sum is less than or equal to 2Q.

Let T be a line segment in TpM (where p is such that γ, T C TpM) which
makes an angle of 2Q < π/2 with γ (see figure), and has the same length as γ
and T.

TpM

It is a simple exercise in euclidean geometry to show that dΩ(TM)(τ, y) <
rfO(™)(f,γ)<2Lsin(β) + 2β. Thus dΩ(TM)(τ,y) < 8(q/2), and by the
definition of 8(q/2) we have ί/Ω(M)(τ, γ) < q/2. In particular we have
<Wy'0)/l Y'O) I > τ'(l)/| TXI) I) < ?/2. Now using the fact that γ'(0) = τ'(0)
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we get

τ'(0) τ'(l) \ I γ'(0)

|τΌ)|Γίι"Ί|γ'(0)r T
r(l) \

|γ'O)Γ
> q - q/2 = 9 /2 > β.

Thus the absolute value of the interior angle at τ(0) is greater than Q, and
hence | α01 < π — Q.

To prove the second part of the proposition assume M is convex and two
dimensional. Let δo(ΛΓ) = sup{r < c\ fB(p)k < ir/2 for all p G M}, where
c = y convexity radius and let β(M, L) = Q(M, L, δo(M)).

Let T be as in the second part of the proposition. If L(τ) < 80(M) < c, then
T lies inside 5βo(Λ#)/2(τ(0)). Hence either M + (τ) C^ o ( M ) / 2 (τ(0)) or M -
Bδ (A/) / 2(T(0))

 c ^ + ( τ ) Thus by the definition of 80 and the convexity radius
of M, fM+(τ)k>Ίπ/2 or fM+(r)k<π/2. Now the fact that 2 i = 1 | a / | <
2Q(M, L) < T7-/2 and that |αo|<77- gives a contradiction to Gauss-Bonnet
(Lemma 2.8).

Hence we can assume that L(τ) > δo(M). In this case the result follows
from the first part.

Theorem 3.2. Let M be a convex two-dimensional manifold, and let L be the
infimum of the lengths of the smooth simple closed curves on M which split M into
two pieces of equal total curvature. Then there is a simple closed geodesic of
length L > 0.

Proof Let L - inf{L(γ) | γ G Ωjy2(M) for some m). By Lemma 2.13 we
see that L > L. By Corollary 1.4 L > 4r0 > 0 where r0 is the radius of the
largest ball enclosed by M (when M is isometrically embedded in R3). In
particular if we find a simple closed geodesic γ of length L, then γ is nontrivial
and, by the Gauss-Bonnet theorem, γ splits M into two pieces of equal total
curvature, hence L(γ) = L = L > 4r0 > 0 (in fact 2πr0 by Theorem 1.5).

Let ε = 1 + cos(ττ - Q(M, 2L)) where Q(M, 2L) (henceforth referred to as
Q) is defined as in Proposition 3.1.

Choose Lo such that
( i ) 2 L > L 0 > L , and

(ii) (1 + Ll)(L0 — L) < jεc, where c—\ convexity radius.

Let γ0 G Ωy2(M) for some m be such that L(γ0) < Lo. By splitting each
segment of γ0 into more pieces, we may assume

(m)m>E(yo)(\+L2

o)/c2L2

o.
Let Ω be Ω?/2(M) Π {γ|L(γ) < L(γ0)}. Ω is compact (since Ω^/2(M) is

compact by Lemma 2.11) and nonempty as γ0 G Ω.
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Let F: Ω -> R be the functional F(y) = -^E(y) + \L(γ). Let T be a
minimum point of F on Ω. By the definition of Ω, L(τ) < L(γ0). We will now
show that T is a simple closed geodesic of length L.

Let /, = L(T|[^ιf ±j). We claim that /,. < c for all i.
To see this we note that F(τ) < F(γ0), so

— E ( τ ) + -L(τ) < —E(y0) + - L ( γ 0 ) .
me y ' ε v y me y 0J ε x 0/

Hence

so by (i) and (ii)

E(τ) < mc2L2

0/ (l + L2) + me1/ (l + L§) = mc2

Thus we have /wΣJl λ I
2 = E(τ) < me2 and so for each i, /y < c and the claim is

shown.
We next note that r is regular. For if not, by the remark following Lemma

2.11 and by Lemmas 2.2 and 2.3, there would be a f G Ωj"/2(M) with
L(τ) < L(τ) and E(τ) < E(τ). But then f G Ω and F(τ) < F(τ) which con-
tradicts the definition of T.

We now claim that for either + or —, without loss of generality we will say
+ (if need be reverse the orientation of γ), there are no free + vertices and no
half free + vertices with exterior angle greater than Q.

To see this, assume it is not true. In which case there are vertics / and j such
that / (resp.y) is a free + (resp. - ) vertex or a half free + (resp. —) vertex
with exterior angle greater than Q (resp. less than — Q).

By Lemma 2.12 and the fact that /, < c for small 8 there is a τ8 G Ω^/2(M)
such that L(τδ) < L(r). Thus τg G Ω for each 8. If both i and j were free, we
also know (Lemma 2.10) that E(τδ) < E(τ) which contradicts the definition of
T. If one or both of i andy are half free, then E(τs) could be larger than E(τ).
To get a contradiction we must show F(τδ) < F(τ). Since τδ is built out of
deformations described in Lemma 2.9, it is enough to show that these deforma-
tions are F decreasing. To do this we compute ^'(0) for this deformation
applied to vertex i.

i- 1
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Z/(0) = /; + /;+1 = - l + /;+1 < -1 + (1 - ε ) = - ε where the inequality fol-
lows from the first variation formula, the fact that the exterior angle is greater
than Q, and the definition of ε. Since

£'(0) = 111(2/,/; + 2//+1/;+1) < 2#n/f.+ 1/;+1 < 2mc/;+1 < 2mc(l - ε) < 2mc,

we have

/v(o) = —E'(0) + -L'(0) < 2 - 2 = 0.

The above argument shows that the deformation is F decreasing as long as
li+x < c, and the exterior angle stays less than β. Since τs is constructed from
such deformations, where li+x stays less than c and the exterior angle stays
larger than β, we see that F(τδ) < F(τ). This contradicts the definition of T,
and the claim follows.

We now show that Af+(τ) is connected. Assume not, then by Lemma 2.7
there are at least two cul-de-sacs Kλ, K2 C M+ (T). Hence for at least one of
these, say Kl9 we have jKχ K<π.

Since Kλ is a cul-de-sac, dKx — τ[a, b] where [a, b] are the boundary
parameter values for Kx. By Lemma 2.8 we may assume that a — i/m9 and we
let j be the largest integer such that j/m < b. For i <k < j w e have Ext(λ:) < 0,
since there are no free + vertices and by Lemma 2.8 any such k which is a +
vertex must be free. Also by Lemma 2.8 and the previous claim, if j/m ¥= b
then Ext(y) < Q. Let A be the exterior angle of η [ f l b] at τ(a) = τ(b). A < π by
Lemma 2.8.

We consider two cases. First assume that b —j/m (i.e., b is a vertex of T). In
this case Gauss-Bonnet (Lemma 2.8) gives 2π = Σ£=)+ x Ext(A:) + A + j κ K <
0 + 7r + 77 = 2τr. This gives a contradiction. Now we assume that b Φ j/m. In
this case Gauss-Bonnet gives (Lemma 2.8)

j-\ j-\

(iv) 2τr= 2 Ext(ik) + Ext(y)+^ + / k< 2 Ext(A:) + ρ + 2ττ.
k=i+\ Kι Λ = i+1

So Σj(=j+1 Ext(A:) > - β . Since Ext(Λ) < 0 for each k we see Σ{Zι

i+ι \ Ext(k) |
< Q. Thus Σΐ= l +11 Ext(λ ) | < 2Q. Thus by Proposition 3.1 we haveΛ < π - Q.
Using this in (iv) we get 2ττ < 0 + Q + (IT — Q) + TΓ = 27r, again a contradic-
tion. Hence we have shown that Λf+ (T) is connected.

Since by Lemma 2.8 all + vertices are free, and since by a previous claim
there are no free + vertices we see there are no + vertices at all. Thus by
Gauss-Bonnet (Lemma 2.8) there are no — vertices either and T is a geodesic.

The fact that T is simple follows from the fact that T is the limit of simple
curves and hence does not transverse itself more than once nor does it have
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any transverse self intersections, thus it can have no self intersections since it is

a geodesic.

To see that L(τ) = L, assume not. Let Lo be such that L< Lo< L(τ) < L o .

The same procedure as above gives rise to a simple closed geodesic T with

L(τ) < L o < L(τ). But such a T can be thought of as an element of Ω^ / 2(M)

(the same m as above), and we have T G Ω since £ ( τ ) < L(τ) < £ ( γ o ) But

under the arclength parameter /*(?) < F(τ), which contradicts the definition.

Thus we have L(τ) — L — L, and the theorem is proved.

Appendix

We begin by introducing some notation and preliminary lemmas which will

be used throughout the appendix.

Let γ E Ω W (M) have /, ψ 0 for all i = 0,1, ,m - 1. Let {t0, /„• ,tp} be

γ-^γί ίO, l//n,2/#n, -,(w - l)//n})) where 0 = /0 < /, < /2 < < tp (of

coursep > m — 1). Define an equivalence relation ~ on the set {0,1, ,/?} by

i ~j if y[ti9 / m ] = γty, ίy+J. Let { V , J^} be the partition of {0,1, ,p]

induced by ~ . For each k G {1,2,- —,q}, y(Ik) will represent the geodesic

segment y[ti9 ti+λ] for i E /Λ.

Define A(y) = min{ί/(γ(//m), γ(/Λ)) | y(i/m) ί γ(/Λ)}. The only case

where A(y) is not defined is when γ is a single geodesic segment transversed

back and forth. In this case let A(y) be the length of the segment.

Define the normal exponential map Ft: [ti9 ti+ι] X R -> M for / E

(0,1, •,/>} by i^(/, 5) = Expγ ( ί )sYn where 7̂  is the unit vector perpendicular

to γ ' ( 0 and such that the orientation given by (y'(t)9 Yt) is the orientation of

M.

Let B(y) — sup{r | Fi | ( / , r + 1 ) X ( - r > r ) is a diffeomoφhism onto its image for all

i = 0,1, ,p. For r < i(γ+) let T^r) = ^(( ί / , / ί + 1 ) X ( - r , r)), the normal

tube around y((t, ti+ι)) of radius r.

A number ε > 0 is said to be small for γ if ε < min{iv4(γ), B(y)}. For a

given small ε a number δ > 0 is said to be much smaller than ε if for all /,

j E {0,1, •,/>} with i ooy we have T](δ) Π 3}(β) C U ^ 1 Bε/2(y(i/m)).

For all small ε and all j E (0,1, -,/?} we define the numbers αy(ε),

*y(β) E (/., / y + 1 ) such that d{y{tj\ γ(αy(e))) = ε and </(γ(/,+ 1 ), γ(6y(β))) = ε.

We note here that αy(ε) < bj(ε) since ε is small.

Lemma A.O. Let γ: [α, b] -> M be a minimizing geodesic segment para-

meterized by arclength, and c: [a, b] -> M a piecewise smooth curve such that

d(c(t\ γ(/)) < δ. If t0, tλ E (α, b) such that d(y(t0), c(tx)) < δ, then one can

reparameterize the curve c (we let c: [a, b] -> M be the curve with the new

parameterization) such that c(t0) — c(tλ) and for all t E [a, b], d(y(t), c(t)) <

5δ.
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Proof. Assume without loss of generality that t0 < /,. We see
d(Ύ(t0), Y(Ί)) < d(y(t0), c(ί,)) + d(c(tλ), γ(ί,)) < 28. Further since γ is mini-
mizing, we have d(γ(t0), γ(ί)) < 25 for t G [tQ, f,]. By the strict inequality
there is an ε > 0 such that d(y(t0), γ(ί)) < 28 for all t e [t0 - ε, /, + ε]. We
also see that for / G [/0 - ε, ί, + ε], d(c(t), γ(ί0)) < d(c(t), y(t)) +
d(y(t),y(to))<38.

Let

ίc(ί) t £ [to-ε,tx + ε],

M L , ( ί ) ) / e [ / 0 - e , ί , ] ,

[c(L2(ί)) ί e [ < , , / , + e ] ,

where Lj is the linear transformation from [t0 — ε, tλ] to [/0 — ε, tQ], and L 2 is
the linear transformation from [tl9 tx + ε] to [/0, tx H- ε].

By the definition c(ί,) = c(r 0 ) . Let t E [α, ft]. If t &[t0 — ε, ̂  + ε], then
d(y(t), c(t)) = </(γ(0, ^(0) < δ < 5δ. If / G [ί 0 - ε, tx + ε], then there is a
ί G [ί 0 — ε,tλ+ ε] such that c(t) = c(/"). Hence

), c(0) =
< 28 + 3δ = 55.

Lemma A.I. Let y G Ω m ( M ) fte ŵcΛ ίΛα/ /, =^ 0 for all i, αAirf let ε>0 be

small for γ. ΓΛeH /or et e/7 δ > 0 mwcΛ smaller than ε we can find a piecewise
smooth approximating curve cδ as in the definition ofΏ,m(M), such that for each
j G (0, •,/?} there is a δy with -8 < 8j < 8 such that cδ(t) = Fj(t, δy) for all
t G [aj{ε\ bj{ε)].

Proof. Choose δ < 8/5, and let cδ"be an approximation as in the definition
ofΩw(M).

We will assume for simplicity of argument that γ(/z) = γ(/y) and y(ti+ι) —
y(tJ+ι) for /, j G Ik. (In fact this will not be true if Ik consists of more than
one element. What we are doing is reversing the orientation of some of the
segments. The new approximating curve will also have the wrong orientation
on these segments, so to complete the argument one simply reverses the
orientation of those segments back to the original orientation.)

For each j G {0, •,/?} let δj be the number in [tj9 αy(ε)] such that
d(y(ajX y(aj(ε))) = 8. Similarly define bj G [fty(ε), tJ+ι]. Now since ε > δ > 5δ
we have

(ii) d(y(θj\ y(tj)) = ε-8> ε/2_+ δ,
(m)d(y(bj)9y(tJ+ι)=ε-8>489

(iv) d(y(bj\ γ (/ , + 1 ) = ε - δ"> ε/2 + δ".
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For eachy G (0,1, •,/?} let Ί- be the unit speed geodesic τ- : [ —δ, δ] -> M

peφendicular to γ at δj (τj(0) G γ). Similarly define τg. We note that if i ~j9

then T- = Tj and τg = τft-.

Since cδ-^t t +χλ is a ^approximation to y^t.tt.+y]9 and by (i) above we see that

there is a smallest number taj G (tj9 tJ+x) such that cδ</J>) G Tj [ — δ, δ]. Simi-

larly there is a largest number tbJ such that cδ\tbJ) G τft-[—ί", δ]. By applying

Lemma A.O many times (disjointly) we see that there is a reparameterization c

of cδ- which is a δ approximation and such that taj — άj and tb~j — bj for ally.

Let δj be the number such that r-(δj) — c{Uj\ and let δ̂  be such that
τh ($,) — c(bΛ. Now define

c{t) i f / « L J

Fj{t9Lj(t)) iϊt

where Ly.(/) is the linear transformation from [bj, bj] to [δ^, δj].

It is clear that cδ(t) is piecewise smooth and a δ-approximation to γ (since

δj < δ < δ and δ̂  < δ^< δ) so we need only show that c8 is simple. Assume

^5(^0) = cδ(t\)' ^ e wiU show t0 — tx by considering all the cases.

We first note that for i * j

(v) 0 .

This follows from the fact that δ is much smaller than ε and properties (ii) and

(iv). Now if tG[ti9ji+ι], then_cδ(t) G [Γ,(«) U U^Γj Λβ / 2(γ(//m))]. This

follows since cδ(ί) is δ close to y(t) for some t G[ti9ti+ι](t need not be t since

we reparameterized the original approximation).

Thus by the above and property (v) we may assume that t0 G[ti9ti+ι] and

tx E:[tj, tJ+ι] where i ~j. Since / ~j by the definitions, we have y{at) = ?(«/),

γίέi,.) = γ(α y), γ(ft,) = γ ( ^ ) , γ ( ζ )j= Y(ζ λ % = TJ/ a n d τ ί = τ v s i n c e c w a s

simple we have δ, Φ δy and δz 7̂  δy. Also since c had no self intersection, if

δi < δj then fy< δj. From this it is easy to see that either t0 &[ai9 bt] or

/, G[άj9bj]9oτt0 = tι._

Now assume ί0 ^ [ai9 bt]. Then by the definition of c(tf,) (that is the

reparameterization of cj) cδ(t0) « ^ f l^ , ζ ] X [-δ, δ]) = Fj<\μJ9 bj\X

[ —δ, δ]), hence tx £ [aj9 bj]. Thus we may assume that /0, /} £ U ^ = 0 [ Λ Λ , 6^],

but then cδ(t0) — c(ί0) and cδ(ίj) = c(tλ) so that t0 — tx since c is simple.

We now prove the lemmas of §2.
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Proof of Lemma 2.2. By the definition of γ it is clear that it satisfies the
conclusions (b) and (c) of the lemma. It is also clear that to show γ E ΩW(M)
we need only show that γ is the limit of simple curves.

Fix ε > 0, and let cε/2 be an approximation to γ as in the definition of
Ωm(Λf). Choose a E [^r, i,] so small that d(γ(^), y(j(a — L^r) + £)) < ε/2.
It is clear that d(y(t0), y(t})) < ε/2 for t0, tλ E [ ^ , \{a - ^ ) + £].

Define cε(t) by

/ - 1 i + l

m m

t E

/ 1 / i - 1 \ i. \ Γ / + 1 1
Cε/2\ ^\ t M ^ e \a> U

£/ 2\ 2 \ m ) m) [ m y

where L is the linear transformation taking [^r1, a] to [^r, ΐ(α — LvL) + ̂ ] .
Since cE(t) is just a reparameterization of c e / 2 , it is simple. Thus we only need
to show that d(y(t\ ce(t)) < ε for t E [0,1].

= d(y(t), c . / 2 (0) < ε/2 < ε.

< ε/2 < ε.

For t G [ ^ , α]

< ε/2 + ε/2 = ε.

Proof of Lemma 2.3. Let ί, = z'/m. Since y makes a 180° turn at i/m,

0 i > ' J ) = Yfl'v V i D ' L e ' z'o " 1 - fo Let / e {/', /2, -,/*} be the
set containing i0, i.e., j E / if j - /0. Let /0 C / be {j E / | γ(/y) = y(tio),
y(tJ+ι) = γ(ί / o + 1) and γ ί^ . , ) = γ( ί^O}, i.e., if j E /0, then γ make a 180°
turn at tj9 in particular /y = k/m for some & E {0,1, , m — 1}.

Fix ε > 0 small relative to γ. For all integers N such that \/N is much
smaller than ε (see definitions at the beginning of the appendix for the
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definition of "small" and "much smaller"), let Cx/N be a simple piecewise

smooth approximation to γ as in Lemma A.I.

Let 7 be a unit vector perpendicular to γ at γ(K*i0 + */0+i)) ( s a m e a s

Ί(i(tj + tj+ι)) for j G / ) . Then by Lemma A.I for each°y G J there is a δf

such that Cι/N(j(tj + tJ+x)) = o(δjN), where σ is the unit speed geodesic with

σ'(0) = y, and - \/N < 8? < l/N. Further 8/ = δf implies; = k.

Choose j N G / 0 such that for ally G / 0 we have | δ^_ x - δ * | < | δjί x - δjN\ .

We claim that for all i G /, δ,N £ ( δ ^ . j , 8^). To see this let T be the simple

closed curve constructed by joining

T splits Λί into two disjoint pieces since it is a simple closed curve. Now assume

that δf G ( δ ^ . ^ δ ^ ) , and further without loss of generality that γ(ί f ) =

y(tjN_x) and y(ti+ι) = y(tjN). (If not, reverse the orientation in the following

argument.) By the definition of Cx/Ή (see Lemma A.I) and the fact that

δf G (δjl_l9 δfN) we see that for small ε > 0, Cx/N(\(ti + / / + 1) + ε) is inside T,

while Cx/N(ti) and Cx/N(ίi+2) are outside since they are both near vertices of γ

which are not y(i/m)). Thus cx/Nπt t j must intersect T again. Since c 1 / Λ r is

simple, it must in fact intersect σ | ( δ * g^) again. This point of intersection

must be cx/N({(ti+x 4- / / + 2 ) by the definition of c 1 / J V (Lemma A.I) again. This

implies that i + l ε / 0 and δ , % δ ^ G ( δ ^ _ } , δ*) contradicting the minimal-

ity of j N . Thus we have shown the claim.

Since / 0 is a finite set, there is a j E 70 such that j = j N for an infinite

number of N. Let k be such that k/m = ^-(such a A: exists since j G 70). We

thus have [tj_v tj+x] C ^ 1 ^

Now we can define

- 1

,

where L^_, is the linear transformation from []LwL^ m] to [Lwi, i(tj-\ + ^01'

and Lj. is the linear transformation from [£, ^ - L ] to [^(ίy + tj+x), k^r].

It is clear that in order to complete the proof of the lemma the only thing to

verify is that γ is the limit of simple curves.
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Let έ > 0. Choose N so that \/N is much smaller than ε, \/N < ε, and
j N — j . Now define

**(') =

-\/N\

k- 1 k

m
- l A:

Fj(Lk(t),

m

m m

/G — + δ2,
1 m z m

where Lk and L^_ x are as above, Z>! is the linear transformation from [^ — 8l9 ^]
to [β^,,0], and L2 is the linear transformation from [£, ̂  + δ2] to [0, δf]. 8X

and S2 are chosen so small that d(y(Lk_λ(± - 8X)\ y(Lk_λ(%))) < \/N and
d(y(Lk(i + δ2)), y(Lk(±))) < \/N (see figure).

* δ ))m ιJJ
j \

\

2 /

It is easy to see that c-is simple (sincey^ =j). Also d(y(t), c£t)) < \/N < ε
for t G [0,1]. Thus the lemma follows.

Before proving Lemma 2.4 we prove a useful lemma.
Lemma A.2. Let yλ and y2 be simple curves on M. Assume x9 y E M are such

that x G M+ (yx), y G M~ (y{) and γ, is homotopic to γ2 in M — {x, y}. Then
x GM+ (γ2) andy G M~ (γ2).

Proof. Since the Gauss map is a diffeomorphism, we may assume that M is
the unit sphere. For y G M let Sy represent stereographic projection from y.
Sincey G M~ (γj) and x G M+ (γ,), we see that the winding number of Sy(yx)
about Sy(x) is -hi. Since γ2 is homotopic to yx in M — {x, y], Sy(y2) is
homotopic to Sy(yx) in R2 - {Sy(x)}. Hence the winding number of
around Sy(x) is + 1 . Thus x G Λf4" (γ2) and y G Λf~ (γ2).

0/ Lemma 2.4. Let δ0 > 0 and ε0 > 0 be as in the definition of
nondegenerate. There is an ε > 0 such that ε0 > ε and such that Vol{x G M \
d(x, γ) < ε} < δo/2; we will denote {xGM\ d(x, y) < ε} by Γε(γ). Let c be a
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piecewise smooth simple closed curve such that d(y(t), c(t)) < ε (which exists

since γ G Ωm(M)). By the definition of δ 0 and the fact that ε < ε0 and

Vol(7;(γ)) < δo/2, there are an JC0 G M+(c) - TE(y) and a y0 G M " ( c ) -

Tε(y). Now let x G Af — γ and let έ < min{ε, \d{x, γ)}. Let τλ and τ2 be two

piecewise smooth simple closed curves such that d(y(t), τ^t)) <ε,i= 1,2. To

prove part (a) of the lemma we need only show x G M+ (ΊJ) or x G M~ (τ, ),

i = l,2,

We first note that τλ is homotopic to τ2 inside T£y) since they are both

homotopic to γ inside ^ ( γ ) , and further η(/ = 1,2) is homotopic to c inside

Γε(γ). Now Lemma A.2 tells us that x0 G M + (η ) and}>0 G Af~ (η ).

Assume that x G M + ( τ , ) . Since τ2 is homotopic to η in T-(y) C M —

{x, y0}, we see that x G M + (τ 2) (Lemma A.2). Similarly if x G M~ (T,) , then

x G Λf~ (τ 2). Thus we have shown part (a) of the lemma.

For part (b) assume x, y G K where Kis a. connected component of M — γ.

Assume further without loss of generality that x G M+ (γ). We need to show

y G M+ (γ). Let ε0 be such that for every simple closed piecewise smooth curve

σ such that d(y(t), σ(t)) < ε0 we have x G M+ (σ) (this exists by the definition

of M+ (γ)). Let T C M — γ be a curve from x to j>, and let ε < min{ε0, d(y, r)} .

We need only show that y G M+ (σ) for any piecewise smooth simple closed σ

such that d(y(t), σ(t)) < ε. But this is clear, since T G M — σ, x and j lie in the

same component of M — σ, and since ε < ε0, x G ΛΓ+ (σ) and hence y G M +

(σ).

To see part (c) of the lemma it is sufficient to notice that by the previous

arguments for sufficiently small ε > 0, M+ (γ) Π (M - Tε(y)) = M+ (cΎ

e) Π

( M — Γ/γ)) for all c] which approximate γ within ε. Now since Vol(Tε(y)) -> 0

as ε -> 0, and since M is compact and thus / bounded, we have fM

+(Ύ) f ~

Part (d) is also similar. Let F: [0,1] X [0,1] -» M be the homotopy from γ to

γ in M - {x, y). Let ε < \rmn{d(x, F([0,1] X [0, l]))9d(y, F([0,1] X [0,1]))}.

Then if c] and cj are ε approximations to γ and γ respectively, they are

homotopic in M — (JC, y) (cj is homotopic to γ in M — (x, y}9 etc.). Since

x G M+ (cj) and j G AT (cj) by Lemma A.2, x G M + (cj) and j / G M " (cj).

Since this was true for any choice of cj, we have x G M+ (γ) and y G Λf~ (γ).

To see that γ is nondegenerate, we note that the same argument as for part (b)

shows that for all such c] we have Be{x) C M+ (cj) and Bε(y) C M " ( c J ) .

Thus in the definition of nondegenerate take ε to be this ε and δ —

min{Vol(2?ε(*)), Vol(Bε(y))}.

Remarks A.3. (a) Let γ G Ωm(Λf) be regular, and let 0(γ) > 0 be a number

such that there exists x0, y0 G M — y with JC0 G M + ( γ ) , y0 G Af~(γ),
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Y) > 0(Y)» a n d d(x0, γ) > 0(γ). Then the preceding arguments tell us
that for x E M - y and δ, 0 < δ < min{0(γ), d(x, γ)}, we have x E M+ (γ) if
and only if x E M+ (cδ) for all piecewise smooth simple closed curves cδ such
that d(y(t), cδ(t)) < 8. This follows since all such curves are homotopic in
M — (JC, y0}. A similar statement holds for x E M~ (γ).

(b) Let γ E Ω"(M) be regular, x E γ[0,1] - γ({£ | / = 1,2, ,m}), and F
a unit vector peφendicular to γ at x. Let ε be small for γ such that ε <
d(x,y({ii\i = 1,2, -,m})\ and let δ be much smaller than ε (see the beginning
of the appendix). Let cδ be an approximation to γ as in Lemma A.I. Then for
each t Ey~\x) there is a δ, > 0 such that cδ(t) = Expx8tV. Using the fact
that cδ is simple and the definition of tx > t2, it is easy to see that tx > t2 if and

only if δh > δ/2. Thus we can use δ^ > δ,2 as a definition of tx > t2.

It should be noted that > is only defined when γ is regular. In fact this

alternate definition has the same restriction as the ordering δ^ > 8t could be

reversed for different approximating curves cδ, if γ has a 180° turn.

Lemma A.4. Let yEtim(M) be regular, and x E γ[0,1] - γ{i | i -
1,2, ,m}. Let t E y~x(x) = {tl9- ,/r}, and let V be the unit vector at x
perpendicular to y such that the orientation given by (γ'(/), V) is the orientation
of M. Let τ be the unit speed geodesic with initial tangent V. Then t is a boundary
parameter of some component K of M+ (y) (respectively M~ (γ)) if and only if t
is maximal (resp. minimal) in γ " 1 ^ ) with respect to > . Furthermore if the

above holds then K is the component of M+ (y) (resp. M~ (y)) towards which V
(resp. —V) points.

Proof. We will prove the M+ (γ) case. The M~ (y) case is similar.
Let K be the component of M — y towards which V points. We need only

show, by the definition of boundary parameter, that if / is the boundary
parameter of K C M+ (y) then K = K, and that if t is maximal with respect to

Assume that t is the boundary parameter of K C M+ (γ), and let V be the
unit vector peφendicular to γ at x pointing towards K. We need to show
V — V. Let ε and δ satisfy the conditions in Remarks A.3. Let f be the unit
speed geodesic with initial tangent V. Let^ = τ(δ). Let cδ be an approximation
as in Lemma A.I and let δ, be such that f(δ,) = cδ(t). By the definitions and
Remarks A.3 we have τ(s) & y and τ(s) £ cδ for δί < s < δ, and in particular
y = f(δ) E M+ (γ) C M+ (cδ). Thus the orientation given by (c'δ(t\ τ'(δ,)) is
the same as the orientation of M (by the definition of the + side of a simple
curve). On the other hand the orientation given by (y'(t), V) is the same as the
orientation given by (c'δ(t\ τ'(δt)\ and hence V —V.
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Now assume that t is maximal with respect to > . Let ε, δ and cδ be as in the

previous section. Let T be defined by V. By the choice of ε and 8, τ(ί) G I

Let δ, be such that τ(δ,) = cδ(t). By the maximality of / with respect to > and

by Remark A.3(b), for δ, < s < δ we have τ(s) S- cδ. Since the orientation

given by (γ'(ί)> V) is the orientation of Λf, so is the orientation given by

(cδ(t% τ'(δ,)) and_hence τ(δ) G M+(cδ). Now by Remark A.3(a) τ(δ) G M +

(γ), and we see ί C M + (γ) since τ(δ) G #.

Proof of Lemma 2.6. By continuity we need only consider t a boundary
parameter for K C M+ (γ), with y(t) £ γ({^ 11 = 1, ,m}). But this follows
directly from Lemma A.4. The argument also works for K C M~ (γ).

Lemma A.5. Let y G ίlm(M) be regular, and assume that M+ (γ) {respec-
tively M~ (γ)) w connected. Then every / G [0,1] is a boundary parameter for
M+(y)(resp.M-(y)).

Proof. Let {/0, tλ, -,tp) be γ - ^ γ ^ i | i = 1, ,w})) as at the beginning
of the appendix. It is clear, since the set of boundary parameters is closed, that
we need only show the result for t $ {/0, tl9- -,tp}. It is also clear from the
definitions that if for some / G (ti9 ti+ι), t is not a boundary parameter for
M+ (γ), then no element of (/,, ti+ι) is a boundary parameter for M+ (γ). Let
*i — 2(*i "•" ̂ i+i) (^ ~ i{tp + 1)) f°Γ i = 0,1, •,/?. By the above we need only
show that /" is a boundary parameter for M+ (γ) for each /.

Assume that some ί~ is not a boundary parameter of M+ (γ). We will show

that γ has a 180° turn contradicting the regularity of γ. Let V be the unit

vector perpendicular to γ at y{tt) such that the orientation given by (γ'(^ )» V)

is the orientation of M. By Lemma A.4, /". is not maximal with respect to > .

By the definition of the tt and the fact that γ is parameterized proportional to

arc length on [ίi9 ti+\]9 we see that if / G y~λ(y(ti))9 then / = tj for somey.

Choose tj G y~\y(ti)) such that ί~ > ίz and such that there is no t G γ~1(γ(ί"i))

such that tj>t>tr Now considering cδ for sufficiently small δ as in Lemma

A.I and by Remark A.3 we see that the orientation of γ at f~. is opposite to that

of γ at /"). In particular since /"• > ί~ we see that ϊj is also not a boundary

parameter of M+ (γ). Let 5 = {/ G {70, /"„• -,ίp) \ t is not a boundary param-

eter of M+(y)}. We define a function /: S -* S by /(ί)) = /' where /y was

defined as above, /is a fixed point free involutive function such that γ(/j.) =

We claim that for all ti G S and for exactly one of the intervals [/"., /(/"))] or
[/(/'), ζ ] (here if/(rj.) > r", then [/(/•), /J means [/(/"), 1] U [0, ζ)), call that
interval /(/)), we have for any t. G {/0,.. .,tp} if ^ G /(*".), then ^ G S1 and
f(tj) e /(/)).
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Before proving the claim we show this proves that γ makes a 180° turn
giving the desired contradiction. Choose /". G S so that I{tt) is minimal (i.e., if
t} G S and I(tj) C /(/)), then I(i.) = /(/,)). If ϊj G /(/,), ϊj Φ ϊ. and ϊj Φf{tt)9

then f(ίj) also satisfies these conditions, hence by the claim /(*".) is strictly
contained in J(ί~.) contradicting the minimality of /(/(*"•))- Hence/(ζ ) = f~.+ 1

(or /"._,), and thus γ makes a 180° turn at ti+x (or /,.).

We now prove the claim. Since γ is regular, M+ (γ) is nonempty, and hence
there is some boundary parameter interval for Λf+(γ), so both intervals in
question cannot have that property. Assume /". G [*"., /(/"•)], 4 G [/(*/)> Ί L a n d
both are boundary parameters for M+ (γ). Let Vj and K̂  be as in Lemma A.4.
Choose ε and δ small as in Remarks A.3 and Lemma A.4, and let yj — Exp 8VJ9

yk — Exp 8Vk. As in the proof of Lemma A.4, yJ9 yk G M+ (γ) and yj9 yk G
M+ (cδ) for all 8 approximations to γ. Let σ be a curve in M+ (γ) fromyj \.oyk9

and let 8 — \d(y, σ) < ^δ. Let cδ-be an approximation as in Lemma A.I. We
have σ C M+(cδ). Let T be the minimizing geodesic segment from c^tt) to
cs(f(ti)\ a n d l e t τi be the simple closed curve given by T U c^ϊi9 /(/))] a n d τ2

the simple closed curve given by T U cβ-{/(/,-), /J. The orientation on τi is
chosen to agree with that of cδ- It is easy to see that M+ (τx) U M + (τ2) = M+

(cδ) - T, M + (η) Π Af+ (τ2) = 0 and j y G M + (η), ̂  G M + (τ2). Since the
curve σ C M+ (cδ) goes from^ to^ fc, we see that σ intersects T but that implies
that σ comes within δ̂  of γ(/~) contradicting the definition of 8. Thus we have
shown that one of these intervals, called /(/"), has the property that if /"• G /(/")
then tj G S.

We now need to show that/(^) G /(r^). Choose ε and 8 small as in Remarks
A.3 and Lemma A.4, let cs be as in Lemma A.I, and let τλ and τ2 be as in the
previous paragraph (we assume τx corresponds to /(*")))• Let V be the unit
vector at γ(/~), perpendicular to γ and such that the orientation given by
(y'{tj), V) is that of M. Let r be the unit speed geodesic determined by V. Let
8X and δ2 be such that τ(δx) = cδ(^) and τ(δ2) = cδ(f(ίj)). By the definition of
/and Remarks A.3 we have τ(s) G Λf — cs for s G (δ,, δ2). By the choice of V
and T, we see that τ(s) G M + (η) for s G (δ1 ? δ2). This says that τ(δ2) G dM+

(τx) so that cδ(f(tj)) = τ(δ2) G cβ(/(ί" )) and hence /(^.) G /(*'.). Thus the
claim and hence the lemma are proved.

Let γ G ΩW(M) be regular, and let K C M + (γ) (resp. M~ (γ)) be a compo-
nent which is not a cul-de-sac, and let [a, b] and [c, J] be two disjoint maximal
intervals of parameter values for K (such intervals exist since K is not a
cul-de-sac). Choose t0 G (0, b) and ^ G (c, d) such that /0, ^ G (ί0, ί̂ ,- ,^}
where the ϊi we defined at the beginning of the proof of Lemma A.5. Then
there exists a simple piecewise geodesic T: [0,1] -> M, which will be called a
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separating curve for K, such that
(a) τ(0, l)CKCM-y,

0>)τ(0) = γ(/o)andτ(l) = γ(/1),
(c) after reparameterization the closed piecewise geodesies η = T U γ[/0,/,]

and τ2 = T U y[/,, /0] (the orientation chosen to agree with that of γ) are
regular elements of Ωm'(M) and Ωm2(M) respectively.

(d) iΐ xEM~ (γ) then x G M~ (τz), i = 1,2, and if * G M+ (γ) - T, then
x G M + (η.) and x E Λf ~ (τy) for i ^y and i = 1 or 2.

Define T to start at γ(/0) orthogonal to γ, being a geodesic to length δ0, and
end at γ(ί,) orthogonal to γ, the last geodesic segment having length δl9 such
that between it lies inside K and is defined to have breaks in such a way that
each geodesic segment has length < c.

Properties (a) and (b) are immediate from the definition of T. TO see
properties (c) and (d) we need to approximate the curves T, by simple curves.
Let ε and δ be as in Remarks A.3 and Lemma A.4. Now for every 8 such that
δ < min{δ, δ0, δj} we define approximating curves c^to η as follows: Let cδ-be
an approximation to γ as in Lemma A.I, and construct cj-by joining cδ</0) to
c^tλ) via T (the joining curve may be a slight extension of τ or not all of τ; see
Fig. A.I). It is easily seen that by choosing an appropriate parameter for ĉ -it is
a δ approximation to η.

c-(r0)

<—— or

7

FIG A.I

Since we can construct c^ for all sufficiently small δ̂  we have that τ7 G
Ωw'(Λf) for some mr For all such δ it is easy to see that M+ (cδ-) — T (or the
slight extension of T) = M+{c\) U M+(cj) and M+(cx

g) Π M+ (cj) = 0 .
Also since T splits A' into two pieces, let xλ and x2 be in different pieces of
K — T, and choose * G M~ (γ). Since above is true for all small δ ît is easy to
see that M+(γ) - r = M + ( T , ) U M + ( T 2 ) , M+{τλ) Π M + ( τ 2 ) = 0, M"(γ)
= M " ( τ 1 ) Π M " ( τ 2 ) , and M+(τx)φ 0, M + ( τ 2 ) ^ 0 since xλ <Ξ M+(τ})
and x2 G M + (τ2). Thus property (d) follows.
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To see that η. is regular we note that by the definition of T we have no 180°

turns in τz (T is simple and orthogonal to γ), and also all segments of τ have

nonzero length. To see that η is nondegenerate we simply note that xt G M+ (η)

and y G M + (η ) and see that the proof of Lemma 2.4 shows that η is

nondegenerate.

Lemma A.6. Let γ G Ω m (M) fee regular, and K C Λf+ (γ) (resp. M~ (γ)) fee

a component which is not a cul-de-sac. Let τ be a separating curve of K. Let

{K, Kx, - ,Kr} be the components of M+ (γ) (resp. M~ (γ)). Then for i = 1,2,

M+(τi) is not connected, M+(τ}) Π M+ (τ 2) = 0L_M+(τι) U M+ (τ 2) = M +

(γ) — T. Further if K is a + component of τi9 then K C K or K G {Aj, ,AΓr},

α«J//K CJI ̂ i ί f l cul-de-sac of>z, ίΛe« A' w α cul-de-sac ofy.

Proof. It follows directly from Property (d) of separating curves that

M + ( η ) n M+(τ2)= 0 andM + (η) U M+(τ2) = M + ( γ ) -jr. It is also clear

that if AT is a connected component of M + (η), then KdK or A'G

{*„••-,*,}.
Using the arguments similar to those in Lemma A.4, and considering the

approximating curves c'δ it is not hard to see that if A' is a component of

M+ (τx\ then / is a boundary parameter for K (if K C K we mean K here) as a

component of M+ (γ) if and only if t G [/0, t{] and the corresponding parame-

ter of Tj is a boundary parameter of AT as a component of M+ (τλ). Similarly

for τ2.

The above shows that if K C M+ (η.) is a component such that K (^ K and

Â  is a cul-de-sac of M+ (η), then A' is a cul-de-sac of M+ (γ).

The only thing left to show is that M+ (η ) is not connected. Assume M+ (τ{)

is connected. Then M+ (T,) C K. By Lemma A.5 and the preceding statements

we see that every t G [t0, t}] is a boundary parameter for Â  as a component of

M + ( γ ) . But ί0 and ^ were chosen in disjoint maximal boundary parameter

intervals of K, giving the desired contradiction.

Proof of Lemma 2.7. We prove this by induction on the number of

components of M+ (γ).

Assume M+ (γ) has two components Kx and A 2̂. If both Kλ and A 2̂ are

cul-de-sacs, there is nothing to show. Assume Kλ is not a cul-de-sac, and let r

be a separating curve for A'j. Let r separate Kλ into two components A^1 and

K\. By Lemma A.6 each M + ( T , ) , / = 1,2, has at least two components in

[K\, K\, K2}. But since this set has only three elements and M+(τx) Π M+

(τ 2 ) = 0 , we get a contradiction.

Assume the lemma is true for all m and all regular y G Ωm(M) having fewer

than n > 2 components in M + ( γ ) . Let y G Ωm(M) be regular such that

M+ (γ) has n components. Since n > 2, we may assume that there is a
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component K C M+ (γ) which is not a cul-de-sac. Let τ be a separating curve
for K. By the definition of τ and Lemma A.6, η E Ωm<(M) is regular, and
M + (τ l ) has fewer than n and at least 2 components. Thus by the induction
assumption for i = 1,2 there are at least two cul-de-sac's in M+ (rt), and by
Lemma A.6 for each ι = 1,2 at least one of these cul-de-sacs is a cul-de-sac in
M + (γ) . Since M+ (τx) Π M + (τ 2 ) = 0, there are at least two distinct cul-de-
sacs in M+ (γ). The result now follows.

Lemma A.7. Let y E Ω W (M) be regular, and K a connected component of

M + ( γ ) . Let {70, ί,, ',tp) be as in the beginning of the appendix (i.e.,

{t0, tl9'"9tp) - y~\y({iϊ \i - 0,1, •,}))). Assume that for some /,[/,•_!, ti+ι]

is a boundary parameter interval for K, and that j Φ i is such that y(tj) = γ(ί, )

Let yk = y\[tk_ltik] for k G {0,1, ,p}. Then (yj)'(tj) does not lie between

( Ύ Z + 1 )'(*/) and ~(yι)\ti), where between means a counter clockwise sense as

defined by the orientation of M. A similar statement holds for K C M~(y).

FIG. A.2
(This does not happen)

Proof. Assume (γ-7')'(/,-) is between (yi+ι)'(ti) and -(γ')'('/) L e t ΰ-\
— i ( Ί - i + tt) and tt = \{ti + / / + 1 ) , and Vi_ι and ^ be the unit vectors at
γ(^ _i) and γ(f~;) peφendicular to γ and such that the orientation given by
(Yit^l Vt_x) and (γ'(/-), Vt) is that of M.

Choose δ0 so small that
(a) Exp^F . j) E ΛΓand Exp(^F ) E #for all 0 < s < δ0,
(b) the minimizing geodesies from γ(ίf.) to Exp(sVi_ι) and Exp(sVi) lie in i^

(except for the point γ(^)) for 0 < s < δ0.
Such a δ0 exists, since [ί/_i, ί, +i] is a boundary parameter of K (see Lemma

A.4), and γ has only a finite number of geodesic segments, and since all
geodesic segments have length less than c.
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Let x = Exp(δo FJ_,), y — Exp(δo Vt\ and let T, be the minimizing geo-
desic from x to y(tj), and τ2 the minimizing geodesic from γ(ίf.) to>>. Since K is
connected, so is K — (T, U T2). Thus let τ3 be a simple curve in K — (τλ U τ2)
from x to >>, and T the simple closed curve T, U τ3 U τ2. T intersects γ only at
γ(ί,). By construction γ[ *,-_!, /,-) and γ(ί,., f ί+1] lie in M + (τ) , while γ(/y, /y+1]
lies in M~ (T). We assume without loss of generality that tj > tt.

FIG. A.3

Let f= sup{t\y(s) G (M + (τ)) for all 5 E [/,., t]}9 where (M + (τ)) is the
closure. Clearly γ(/) = γ(/,), hence r"= ^ for some k G {0,1, •,/?}. By the
defimtion of / and T we have y([tk_x, tk)) C Af+(τ) and y((tk, tk+ι]) C M~
(T). If γ[/Λ_!, ^1 coincides with γ([*,-_!, /,] or γ[//? / / + 1 ] , then the fact that

*> h+ι]) c ^ ~ ( ϊ ) contradicts the fact that tt and ti_ι are maximal with
respect to > and > respectively. On the other hand by the construction of

T we see -(yk)'(tk)%s between - ( γ ' ) U ) and (γ/+1)'(ί/)> w h i l e (ϊ* + 1 ) '( '*)
lies between (γ/+1)'(/,-) and (γOX^ ) a11^ hence γ cannot be the limit of simple
curves. This contradiction gives the lemma.

Proof of Lemma 2.8. We first show part (a). Since M + (γ) is connected,
Lemma A.5 says that all t E [0,1] are boundary parameter values for M+ (γ),
and hence all 4- vertices are free. To show the second part we need only note
that since γ is connected, each component of M — y is simply connected, and
then apply Gauss-Bonnet to M + (γ). There are many ways to see that one can
apply Gauss-Bonnet even though γ may not be simple. One way is to consider
the closed simple piecewise geodesic curves γe, for sufficiently small ε, defined
by yβ(0w) = τ (ε) where η is the unit speed geodesic with initial tangent vector
half way between (in the counter clockwise sense) (γ / + 1)'(^) and — (γ1')'(«)•
Now for ε > 0 sufficiently small using Lemma A.7, the fact that /, < c, and
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standard convexity arguments, one can obtain that (a) γε is simple, (b)

M+ (γ ε) C M+ (γ), (c) l i m ^ 0 γε = γ, and (d) l i m ^ 0 M
+ (γ ε) = M+ (γ). Thus

one can apply Gauss-Bonnet to γε and letting ε -> 0 to γ.

We now show part (b). We first need to show that y(a) = y(b). Let

{tor-,tp}=y~ιy({iϊ\i = 0,'-,m-\}) and Y* = ϊ ![,,_„,,] as usual. We

have a = ti and b = tj for some / and j in (0, •,/?}; otherwise the boundary

parameters of K would form a larger interval. Let S = {fc | γ(ί Λ ) = γ(*,-)}, and

for each k G S let Vk and Vk be the unit vectors at y(tk) defined by

_
*

Let V G {Vk or F^" | k G 5} be the vector making the smallest nonzero

angle (in the counterclockwise sense) with Vt

+ . Since γ \[t.r+i] G dK, if V = Vk

(or F ί ), then γ L , i (or γ L , 0 is contained in the boundary of K. Thus

we can assume (by choosing an appropriate representative for F ) that V — V\

where [tk-x,tk] is a boundary parameter interval for K (by orientation

consideration it must be V^ and not V£ ). We also note here that Vζ Φ Vt

+

(representing an angle 2ττ φ 0), for this would imply V~ — V* , and hence γ

would make a 180° turn at ίf.. Since [ίΛ_ϊ, ίΛ] is a boundary parameter for K,

[tk-X9tk]^[a9b\.

We claim that b — tk (i.e., y = A:). Assume not. Then [tk_λ, tk+λ\ C [a, b],

and hence [tk_λ9tk+ι] is a boundary parameter for K. By the definition of

F ( = F^") we have F ^ is not between ϊ^+ and V^ . Further F ^ φ Vk , since γ

makes no 180° turns, and Vk Φ V+, since then both [tk, tk+λ] and [/,., / i + 1]

could not be boundary parameters for K (see Lemma A.4). Thus we arrive at a

contradiction to Lemma A.7. Hence b = tk.

Since b — tk, we have y(b) — y(a). Further since Vf Φ Vj~, the exterior

angle A satisfies — π < A <π. Also since no Vk or Vk lies between Vt

+ and

V~, we can define approximations γe, as in part (a), to the closed piecewise

geodesic y\[ayby Thus γ is the limit of simple curves. It is easy to see that

M+ (γ) = K since each / G [a, b] is a boundary parameter for K, and that

γ \[ab] is regular. The Gauss-Bonnet formula follows now from part (a).

To see that one of a and b is in fact i/m for some i — 0,1, ,m — 1 one

need only note that since Vf Φ V~ we cannot have both V~ = -Vf and

Vj+ = -P^~ , for then γ would intersect itself transversely at y(a) — y(b) and

hence not be the limit of simple curves. Thus the exterior angle at either a or b

must be nonzero, and hence one of a and b is a vertex of γ. Assume a = i/m

and let j be as in the lemma. If i < k <j, then we have [iL^-L,iL^-1] is a

boundary parameter interval for K C M + (γ). Hence if k is a + vertex, /: is a
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free + vertex, lij/m Φ b, then [-Sir1, b] is a boundary parameter interval for
K. Since b >j/m, if j is a + vertex, then it is a half free + vertex. Thus the
lemma is shown.

Proof of Lemma 2.9. Assume [^r1, £ + ε] is the boundary parameter for a
component # C M+ (γ). The other case is similar.

We claim that for ε sufficiently small, the minimizing geodesic segment τε:
[^Λm] -* M from γί 1 ^ 1 ) to γ(£ + ε) lies inside K (except for τ{L=^L) and
τ(Jn)). To see this we first note that since / is a + vertex (and lt < c) for small
ε, the angle Θε from yX^r) to rX^r) (measured counterclockwise) is small
and positive. Thus if ε is small enough, we can assume that Θε is smaller than
any positive angle from y'i^r) to y'(t) for any / such that y(t) — yi1^1).
Hence if r/1^1,7^) intersects γ for arbitrarily small ε > 0, we see, using the
fact that γ has only a finite number of geodesic segments, that there is a
segment γ[c, d] such that γ(c) G γ ί 1 ^ , i] and γ'(c) lies between y\t) and
— y\t) (in the counterclockwise sense) where / G (^r, i ] is such that y(t) =
γ(c) (if t= i then y'(t) is to be interpreted as (γ ί + 1 ) ' (0 and -y\t) as
~(yi)'(0) ^ u t t nis contradicts Lemma A.7.

Thus for ε sufficiently small T / 1 ^ 1 , £) C ^ . It is also clear, from the fact
that /, < c and Ext(z') > A, that for ε small enough γe satisfies /f(γe) < c and

Choose ε0 so small that for ε < ε0 all of the above holds and further
6ε < τr/2.

Every part of the lemma is now clear for γε(ε < ε0) except that γε is the limit
of simple curves.

Fix ε < ε0 and 8 > 0. We need to find a simple piecewise smooth closed
curve cs such that for all / G [0,1] we have d(cδ(t), yε(t)) < 8. To do this
choose the following numbers (see Fig. A.4):

ί°<tι<t2<t3<t4<t5,
s° <sι <s2 <s3 <s4 <s5,

where *° = t° = ^,s2 = t3 = ^s5 = t5 = ^r 1 , ϊ(^ 3) = U*3) = U*)* a n d

γ(j 4) = γe(ί4). We further assume they were chosen to have the following
properties:

(a) γ(5]), ye(tι), and γ(^°) = γε(/°) = γ( i) have pairwise distances less than
δ/4, and the minimal geodesic r from γ(^]) to yε(tι) is peφendicular to γ at
y(sι). (We can do this since 0ε < π/2.)

(b) y(s3) = yε(t3) = γ ε(i), γε(/2), and γ(54) = yε(t4) have pairwise distances

less than δ/4.
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y(S0) =

FIG. A.4

Choose ε < \d{y, yε([t\ t2])) and ε less than half the distance between any

pair of distinct points in {γ(V) or γε(V) 11 = 0,1, • -,5} and such that έ is

small for γ. Choose 8 much smaller than έ (as in Lemma A.I), and let cδ-be an

approximation to γ as in Lemma A.I.

We now define cδ.

For / <2 [t°, t5] let cδ(ί) = φ). Thus for / <2 [ Λ ' 5 ] we have d(y£t% c£t))

= d(y(t), φ)) <δ<δ.
For / G [/°, tι], let the curve cδ[t°, tι] be cδis°, ή U v , csis

ι) to γ^ί 1 ) .

By our choice of y(sι) and Lemma A.I this geodesic coincides with τ (but may

be slightly shorter or longer). We choose the parameter on this segment of cδ

(of course in [t°, t1]) to be proportional to arclength. By our choice of ε and 8

(and s\ tλ) we have for all / G [ Λ Z1], d(c8(t\ γ(£)) < 8/2 and d(yε(t\ γ ( i ) )

< 8/4 and hence d{yε( t), c δ (0) < δ.

For / G [/2, t4] there are two cases. In the first case there is a t G [ί2, ί3] and

an i G [.s2, s4] such that γ ε (0 = c$(s). In this case, c f i[/2, t4] is the curve

γ ε[/2, /] U c5[^, ^ 4] parameterized proportional to arclength. If the above does

not happen, then cδ[t2, t4] is the curve yε[t2, t3] U σ U c$[s3, s4], where σ is

the minimal geodesic from y(s3) to c$(s3\ and cδ[/2, t4] parameterized by

arclength. In the above both cases we have

d(yt{t),cs(t))^d

by choice of έ, δ, t' and s'.

), cβ(0)
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For t G [/4, ί5], let cs(t) = cδ<L(O), where L(t) is the linear transformation
from [t\ t5] to [s\ s5]. In this case d(y£t\ cδ(t)) = d(y(L(t)), cδiL(φ < δ
<δ.

The only thing left to check is that cδ is simple. To see this we note that
c8 = T U yε[t\ t] U c$[s, sι] o r T U yy[t\ / 3 ] U σ U cj[s3, s1]. E a c h i n d i v i d u a l

curve above is simple, and the fact that they only intersect at the endpoints
follows from the choice of ε and Remarks A.3.

Proof of Lemma 2.11. The fact that Ω?/2(M) contains the simple closed
piecewise geodesies γ with /• < c and fM+(y) K = fM-(Ύ) K is clear. To see that
Ω^/2(Af) is compact let {γ,} be a sequence in Ω^/2(M). Since Ω^/2(M) C
Ωm(Λf) and ΩW(M) is compact, we may assume, by taking a subsequence, that
γ, ->γ where γ G Ωm(M).

We need to show that γ is nondegenerate and ίM

+(Ύ)K — /A/-(Y)^ = 2 7 Γ

Since M is compact its curvature is bounded and hence there is a number V
such that for all i, we have Vol(M+(γ/)) > V and Vol(M-(γ/)) > V. Since
L(γ7) (and L(γ)) are bounded (by me), γ, has m vertices, and the curvature of
M is positive, there is an ε > 0 such that the volume of the tube of radius ε
about γz (and γ) has volume less than V/2. By Remarks A.3(a) if c approxi-
mates γ, within ε (c a simple closed piecewise smooth curve), we have
Vol(M+ (c)) > V/2 and Vol(M~ (c)) > V/2. Let c approximate γ within ε/2.
Choose i so large that γ7 approximates γ within ε/2. Then c approximates γ,
within ε so Vol(M+ (c)) > V/2 and Vol(M~ (c)) > V/2. Since this is true for
all ε/2 approximations to γ, we see that γ is nondegenerate.

By Lemma 2.4 for each i we can find a simple closed piecewise smooth curve
ci such that ct approximates γ, within \/i and such that 2π — \/i < / M + ( c ) ^
< 2π 4- I//. Now ct -> γ and lim/_^00/M+(c} K — 2m. Since γ is nondegenerate,
Lemma 2.4 gives fM+(γ) K=2<π = fM-(γ) K. Hence γ E Ω^/2(M).

Proof of Lemma, 2.12. We first consider the case where j φ i + 1 and

JΦi-l.

By Lemma 2.10 (or 2.9 if i is half free) there is an ε,. > 0 such that for all
ε < εi there is a curve γε G Ωw(M) which differs from γ only on [^r, ^r] and
satisfies the conclusions of Lemma 2.10 (or 2.9). Let S^ε) be the set between
the curves y[^r, ~r] and γ j 1 ^ 1 , ^r] (i.e., the lying inside the ball of radius
2c about γ(i)). By construction (see the proof of Lemma 2.9) we have
S^ε) C M+ (γ). On the other hand, by orientation considerations (Lemma
A.4), we see that S^ε) C M~ (γε). In fact, it is not hard to see that up to a set
of measure 0 (i.e., γ[0,1] U γε[0,1]) we have M + (γ ε ) = ΛΓ+(γ) - S .(ε) and
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Similarly there is an εy such that we can define γε and Sj(ε) for all ε < εy. In

this case, up to a set of measure 0, we have M + ( γ ε ) = M + ( γ ) U Sj(ε) and

M-φ = M-(y) - Sj(ε).

Since Sj(εx) C M~ (γ) and Sz(ε2) C M+ (γ) for ε} < εy and ε2 < ε, , we have

Sfa) Π S)(ε2) = 0 . Since M is convex fsj(εi)K>0 and js<εΰK>0, further,

as ε{ and ε2 go to 0, the integrals go to 0.

Assume without loss of generality that / j ( e ) J ί Γ > js(ε)K. Then for every

ε < εj there is an εx < εz such that fs ( ε i ) K = /5 ( ε ) Â . Now define γε by making

an ε-deformation at j/m and an ελ-deformation at i/m. Since j Φ i + 1,

j Φ i — 1, and s ^ ) Π j.(ε) = 0 , we see that these two deformations can be

made completely independent of each other. Hence by previous lemmas γε is a

regular element of Ω m (M), L(yε) < L(y), and if / (or j) was half free with

Ext(/) > A (or — Ext(y) > A), then the same is true for γe. It is also clear from

the choice of ε} from ε and from the fact that M+ (γ ε) = M+ (γ) — sfa}) + Sj(ε)

(up to a set of measure 0) that fM

+{Ύt)
κ — 2 7 7 Hence γε G Ω™/2(M).

The only thing left to show is that a similar construction can be made if

j = i + I oτj — i — 1. We assume without loss of generality thaty' = / + 1.

Let ε0 > 0 be so small that for all 0 < ε < ε0 the following hold:

(a) One can make the deformation of γ at i/m to a curve σε as in Lemma

2.10 or 2.9.

(b) The exterior angle of σε at j/m is negative.

(c) If j is a half free-vertex of γ such that — Ext(y) > A, then we have

-Extσp)>A.
Let Kj C M~ (γ) be the component which defines j as a free (or half free) —

vertex of γ. By previous arguments we have M~(γ) C M~(σ ε), so we can

choose the component Kj C M~ (σε) such that Kj C KJm It is not hard to see

that if t G [ii, X^-L] is a boundary parameter of Kj for γ, then t is a boundary

parameter of Kj for σε. In particular since j was a free — vertex (respectively a

half free — vertex) of γ,y is a free (resp. half free) — vertex of σε. (If y was half

free for γ, it could be free for σε, but we still consider it to be half free in what

follows.)

Let/(ε) > 0 be such that for all 0 < S < /(ε) one can deform σε aty'/m, as in

Lemma 2.9 or 2.10, to yε. We can choose / t o be a continuous positive function

on [0, ε0] this is clear from the proof of Lemma 2.9. Now consider the function

g(ε1? ε2) = jM+(ye2)K, defined for 0 < εx < ε0 and 0 < ε2 ^f(εx). By construc-

tion of γ^2 we see that g(ε1? ε2) is continuous and g(0,0) = 2π, g(0, ε2) > 2π if

ε2 > 0, and g(ε1? 0) < 2τr if εx > 0. Since g(0, /(0)) > 2ττ, there is an έ~ > 0 such

that g(ε, /(ε)) > 2ττ for all 0 ^ ε < ε. Since g(ε, 0) < 2ττ, for each ε there is an

0 < ε^ε) </(ε) such that g(ε, ε^ = 2ττ. Thus it is easy to see that for ε < ε,

γε = γε

ε (ε> will satisfy the conclusions of the lemma.
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Proof of Lemma 2.13. Let τ be as in the statement of the lemma, T:
[0,1] -> M parameterized proportional to arclength. Let V(t) be the unit vector
perpendicular to τ\t) such that the orientation given by (τ'(7), V(t)) is the
orientation of M. Fix ε > 0 and choose δ > 0 so small that the following hold:

(a) F: [0,1] X [-2δ,2δ] -> M is a diffeomorphism where F(ί, s) =
Exp τ ( 0(. F(0).

(b) If τs(t) Ξ F(/, s\ then L(τ5) < L(τ) 4- ε for all ί G [ - J , δ].
(c) δ < c/4.

We will let τs represent the curve τs with the parameter proportional to
arclength.

Let m > $(L(τ) + ε) Define ys to be the closed piecewise geodesic curve
such that ys\[±ti±i] is the minimizing geodesic from T / ^ ) to T ^ 1 ^ 1 ) . We note that
d(τs(iiX fs(φ-)) < ±L(τs) < i (L(τ) + ε) < δ < c for all s G [-«, δ], thus
the length of each geodesic segment ys^± ^ is less than c.

Fix s0 E [ — δ, δ]. We now show that γJo is simple. Let tk G [0,1] be such that
rso(tk) = rSQ(k/m). Since the sets Fk = F((tk, tk+ι) X (-2δ,2δ)) are disjoint,
it is sufficient to show that γ ^ ^ ^ ) is contained in JFJ for / = 0,1, ,m — 1.

Since rf(γ,o(O, r^)) < d(ySQ(t), γJo(i)) + rf(γ,0(ά), τ(/f.)) < 2δ for tG
[ i , ^ ] , we see that γ5o C T = F([0,1] X (-2δ, 2δ)).

Let σ^(^) = F(tk, s) for s G [-28, 28]. Now T - (σf.[-2β, 2δ] U
σ/+1[ —2δ, 2δ]) consists of two connected components Ft and T — cl(i^) (the
closure of i*]). Now since the geodesic segments γ ^ί+ij, at, and σ/+1 all have
length less than c, and since γ J o(i) = σ^^o) and γ . / ^ r ) = σ/+1(j0), we have
that γ ^ ά , 1 ^ 1 ) ) is disjoint from σ, and σ/+1. Thus γ 5 o ( ( i , ^ ) ) C ^ or
y^diti^r)) C Γ - cl(/;). We need only show that γ ^ ) points inward to-
wards Fr To see this let W(t\ for t G ( i , ^ ) , be the unit tangent vector at
Tyo(m) which is tangent to the minimal geodesic from T5Q(^) to ϊSo(t). Since
d(τs (^), τ5 (/)) < c, P^(0 varies continuously with t. For / near ^, W(t) points
inwards towards Fr For ^ £ ( 4 ^ ) , H^(0 ^ σ'(j0) and W(t) Φ-σ'(so\
hence by continuity Wi^) points inwards towards /}. Thus γJo(^, i ΐ L ) C i^,
and ys is simple.

So far we have shown that for s E [ — δ, δ], ys E Ωm(M) and is simple.
Further L(γy) < L(τs) < L(τ) + ε. Thus we need only show that there is an
s0 E [-δ, δ] such that JM+iΎsj K=2π.

We have for all ί , , / 2 G [ 0 , l ] that d(yδ(tx)9τ(t2))> d(τδ(tλ)9 τ(t2)) -

d(y8(txlϊδ(tι))>8-8 = 09 hence y£tx)Φr(t2\ i.e., γ δ Π τ = 0 . Since

γ δ (i) E M + (τ), we see that yδ C M + (τ), and by orientation considerations
M+ (y8) C M + (T). Similarly M+ (r) C M + (γ_δ).
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Thus, by the convexity of M, JM+(ys)K< fM+(τ)K= 2π < fM+(y_δ)K, and

we can find an ^0 E [-δ, δ] such that j M + ( Ύ s )K=2π. Hence γJo E Ω^/2(M),

and the proof is completed.
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